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Abstract

Let ¢ > 1+%. We prove that any positive solution of (E) dyu—Au+u? = 0 in RY x (0, 00)
admits an initial trace which is a nonnegative Borel measure, outer regular with respect to
the fine topology associated to the Bessel capacity Cz ,, in RY (¢’ = q/q—1)) and absolutely

2,

continuous with respect to this capacity. If v is a nonnegative Borel measure in RV with the
above properties we construct a positive solution u of (E) with initial trace v and we prove
that this solution is the unique o-moderate solution of (E) with such an initial trace. Finally
we prove that every positive solution of (E) is o-moderate.
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1 Introduction

Let ¢ > 1, Qr = RY x (0,T) with T'> 0 and Q = RY x (0,00). It is proved by Marcus and
Véron [19] that for any positive function u € C*1(Qr) solution of

Oru—Au+u? =0 (1.1)

there exists a unique couple (S, ) where S is a closed subset of RN and p a positive Radon
measure on R := RY \ S such that

lim [ u(x,t)dzr = 0o (1.2)
t—0 10)

for all open set @ of RY such that SN O # 0, and

lim u(z, t)((x)dr =

A C(z)du(z) V¢ e CF°(R). (1.3)
RN RN

To this couple (S, u) it is associated a unique outer Borel measure v called the initial trace of
u and denoted by tr(u). The set S is the singular set of v and the measure p is the regular set
of v. Conversely, to any outer Borel measure v we can associate its singular part S(v) which
is a closed subset of RY and its regular part p, which is a positive Radon measure on R(v).
We denote v & (S, ). When 1 < ¢ < g, := 252 Marcus and Véron [19] proved that the trace
operator tr defines a one to one correspondence between the set U (Q7) of positive solutions of
(1.1) in Q7 and the set B7(RYN) of positive outer Borel measures in R™. This no longer the
case if ¢ > g, since not any closed subset of RY (resp. any positive Radon measure) is eligible for
being the singular set (resp. the regular part) of the the initial trace of some positive solution
of (1.1). It is proved in [4] that the initial value problem

O — Au+ [u|Ttu =0 in Q (1.4)
u(.,0) = p in RY ’
where p is a positive bounded Radon measure admits a solution if and only if p satisfies
_ _ N
Caq/(E) =0= wu(F)=0 VECRY,FE Borel, (1.5)

where C , stands for the Bessel capacity in RN (¢’ = q/(q —1)). It is shown in [19] that this

result holds even if o is unbounded; this solution is unique and denoted w,. If G is a Borel
subset of RY we denote by M, (G) the set of Borel measures p in G with the property that

C%’q,(E) =0= pu(F)=0 VE C G,E Borel, (1.6)

In the same article it is proved that a necessary and sufficient condition in order v = (S, u) to
be the initial trace of a positive solution of (1.1) is

€ My(R) (L7)



and

S=0.5Js" (1.8)
where
0,8 ={z € S: u(B,(2)[)S) = 00, ¥r > 0} (1.9)
and
§'={2€8:C2,((Bi(2) ()S) >0, vr>o0}. (1.10)

The meaning of (1.8) is that the singular set is created either by the local unboundedness of the
Radon measure or because the singular set is localy non-removable. Furthermore the solution
which is constructed is the maximal solution with initial trace (S, u).

A striking result due to Le Gall [15] shows that if ¢ = 2 and N > 2, a positive solution of
(1.1) is not uniquely determinef by its initial trace v =~ (S, u) if S # 0. The results is actually
extended to any ¢ > ¢. in [19]. The main point in this counter-example relies on the construction
of a positive solution u of (1.1) with a singular set S = RY, with a blow-up set at ¢ = 0 which
the union of a countable of closed balls B, (a,) where {a,} is a dense set in RY and the ¢,
are chosen small enough so that u(0,1) < « for some a > 0 fixed. If UR”( ) denotes the

Qan
solution with initial trace (B, (a,),0), then Up. (an)(O,l) < C(epn) with lime_,0C(€). This is
a consequence of the supercriticality assumption and the estimates in [22]. The solution u is

constructed between a sub-solution and a super-solution

sup{Up,, (@)} S <D U, (0 (L.11)

n=0

the right-hand side being chosen so that > oo ,C(e,) < a. Denoting E = U, B, (ay), then
|E| < oo and u satisfies

}/in(l]u(x,t) =0 Ve € RV \ E where |E| < oo, (1.12)
e

and

%iirg]tq%lu(x,t) =c,=(¢— 1)1%,1 uniformly for z € K C UBEn(an), K compact. (1.13)
n

Thus (1.2) holds for any nonempty open set O C R, This counter-example points out that the

trace process associated to averaging a positive solution u of (1.1) on open sets and letting t — 0

is not sharp enough to distinguish among solutions; this process is now called the rough trace.

This is why the introduction of a finer averaging appears to be needed. This finer averaging

method is constructed by using the fine topology associated to the capacity C% 7 It will lead

us to the notion of precise trace.

A similar approach has been carried out if one considers the boundary trace problem for the
positive solutions of the elliptic equation

—Au+ |ultu =0 in Q (1.14)



where Q is a bounded C? domain in RY (N > 2) and ¢ > 1. The boundary trace is defined in a
somewhat similar way as the initial trace, by considering the limit in the weak sense of measures,
of the restriction of u to the set ¥, := {x € Q : dist (z,Q2° = ¢)}, when ¢ — 0. The boundary
trace trapo(u) is a uniquely determined outer regular Borel measure on 0f), with singular part
S, a closed subset of 02 and regular part p, a positive Radon measure on R = 002\ S. This
equation possesses a critical exponent go = (N + 1)/(N — 1). The main contributions which
lead to a complete picture of the boundary trace problem over a period of twenty years are
due to Gmira and Véron [11], Le Gall [13], [14], Dynkin and Kuznetsov [5],[6], [7] [8], [9],[12],
Marcus and Véron [17],[18],[20],[21],[23], [22], [16], and Mselati [24]. These contributions can be
summarized as follows:

(i) If 1 < ¢ < g, the boundary trace operator establishes a one to one correspondence between
the set Uy (€2) of positive solutions of (1.14) and the set of positive outer regular Borel measures

on 0f).
(ii) If ¢ > ¢ the boundary value problem

—Au+ |ul?tu =0 in

u=p in 092 (1.15)

where p is a positive Radon measure on 02 admits a solution (always unique) if and only if

C%,q,(E) =0= w(E)=0 VE C 99, FE Borel, (1.16)

where C2 , is the Bessel capacity in RV~1,

q
(iii) If ¢ > g., a outer regular Borel measure v ~ (S, u) on 0f2 is the boundary trace of a positive
solution of (1.14) if and only if

q

C: (E)=0= pu(E)=0 VECS,E Borel,
q7

and (1.8) holds with (1.9) and (1.10) where the capacity is relative to dimension N-1.
(iv) If ¢ > g, a solution is not uniquely determined by its boundary trace whenever S # ().

However in [23] Marcus and Véron have defined a notion of precise trace for the case ¢ > ¢
with the following properties,

(v) If we denote by T, the fine topology of 02 associated with the C= o -capacity, there exists a
q7
T4-closed subset S, of 9 such that for every z € §,

lim [ u(e,0)dS = o0 (1.17)

e—0 =

for every ¥,-open neighborhood = of z where (r, o) € [0, 9] x OS2 are the flow coordinates near
09, and for every z € R, := 00\ S, there exists a T,-open neighborhood = of z such that

limsup/u(e,a)dS < 0. (1.18)

e—0 =



(vi) There exists a nonnegative Borel measure p on R, outer regular for the T -topology, such
that

liH(l) us = Upy locally uniformly in €2, (1.19)
€E— =

where 1= is the solution of

—Av+ |v[T7 v =0 in Q¢ :={z € Q:dist (z,00) > €}

v =u(€ )Xz in ¥, = 9. (1.20)

The couple (S, it) is uniquely determined and it is called the precise boundary trace of u. It can
also be represented by a Borel measure with the Tg-outer regularity. It is denoted by trj,(u).

Concerning uniqueness Dynkin and Kuznetsov introduced in [9] the notion of o-moderate
solutions, which are elements u of U4 (§2) with the property that there exists an increasing
sequence {/,} of nonnegative Radon measures on 02 such that u,, — u when n — oco. In [23]
Marcus and Véron proved that a o-moderate positive solution of (1.14) is uniquely determined
by its precise boundary trace. This precise trace is essentially the same, up to a set of zero
Cg’ -capacity, as the fine trace that Dynkin and Kuznetsov introduced in [9] using probabilistic
tools such as the Brownian motion; however their construction is only valid in the range (1, q]
of values of ¢. Finally, in [16], Marcus proved that any positive solution is o-moderate. Notice
that this result was already obtained by Mselati [24] in the case ¢ = 2 and then by Dynkin [6]
for g¢ < ¢ < 2 by using a combination of analytic and probabilistic techniques.

In this article we define a notion of precise initial trace for positive solutions of (1.1) associated
to the T -topology, which denotes the C- ¢ fine topology of RV. We denote by H[.] the heat
q ’

potential in Q) expressed by

1 _le—y?
H(t) = | ean, (1.21)

for all £ € LY(RYN). We define the singular set of u € Uy (Qr) as the set of 2 € RY such that
for any T,-open neighborhood O C R¥ of 2, there holds

/ H[x,, |uldzdt = oo. (1.22)
Qr

The singular set, denoted by S, = S,;(u), is T-closed. The regular set is R, := RN \ S,; it is
Tgopen. If z € §; and O C RY is a T 4-open neighborhood of z such that

/ H[x,, |uldzdt < oo, (1.23)
Qr

2
then for any n € L>® N W a7 (RN) with T 4-support contained in O there exists

limy ¢ /RNu(:U,t)(n(:c))Qq/dx =Lo(n). (1.24)

As a consequence there exists a positive Borel measure p1 on R, outer regular for the T -
topology, such that for T,-open subset = C R, there holds

lime—0 Ue y= (5 1) = Uy_p (1.25)



where u, . is the solution of

o —Av+ [T v =0 in Q° := RN x (¢,00)

v(.€) = Xz in RV, (1.26)

The set (Sy, i) is called the precise initial trace of w and denoted by tr¢(u). To this set we can
associate a Borel measure v on RY. It is absolutely continuous with respect to the C2 o~ capacity
q )

in the following sense
vQ C RN, T, - open ,¥A C RV, A Borel 7C§,q'(‘4) =0= u(Q\A) =pnQ). (1.27)

It is also outer regular with respect to the T, -topology in the sense that for every Borel set
ECRN

p(E) =inf{u(Q) : Q@ D E, Q T,- open } =sup{p(K): K C E, K compact }. (1.28)

A measure with the above properties is called Ty-perfect. Similarly to Dynkin, we say that a
positive solution u of (1.1) is o-moderate if the exists an increasing sequence { ., } of nonnegative
Radon measures in RY such that u,, — u when n — oco. It is proved in [22] that if FF C RY
is a closed subset, the maximal solution Up with initial trace (F,0) coincides with the maximal
o-moderate solution Vy with the same trace and which is defined by

Vp = sup{uy, : p € My(RY), u(F°) = 0}. (1.29)

It is indeed o-moderate. Following Dynkin we define an addition among the elements of U, (Qr)
by

V(u,v) € U (Qr) X U (QT), u B v is the largest element of Uy (Qr) dominated by u + v.
(1.30)
The main results of this article are the following

Theorem A. If v is a T;-perfect measure with singular part S, and reqular part 1 on Ry then
u,, ® US is the only o-moderate element of U (Q) with precise trace v.

In order to extend Marcus’s result we need a parabolic counterpart of Ancona’s character-
ization of positive solutions of Schrédinger equation with singular potential [1]. We prove a
representation theorem valid for any positive solution of

Ou— Au+V(z,t)u=0 in Q, (1.31)
where V is a Borel function which satisfies, for some ¢ > 0,

0<V(z,t) < for almost all (z,t) € Q. (1.32)

Sl et

Let T be fixed and let ¢ be defined by

_lz—y

r 1 lz—y[® ,
¢($,t):/t /}RNWG C=0V(y,s)dyds  in Qr.

7



Theorem B.There exists a kernel I' defined in Qr x Q7 satisfying

—ay \z:yt\Q gzl
Cl%gr(-%yt,y,S)SCQe >
(t—s)Z (t—s)

|
<

|

V(z,t), (y,s) € Qr X Qr with s < t. (1.33)

2 |

where the a; and cj are positive contants depending on T and V', such that for any positive
solution u of (1.81), there exists a positive Radon measure p in RN such that

u(z,t) = ew(x’t)/ [(x,t,y,0)du(y) for almost all (z,t) € Qr. (1.34)
RN

The next result, combined with Theorem A, shows that in the case ¢ > ¢. the precise trace
operator realizes a one to one correpondence between the set of positive solutions of (1.1) and
the set of T -perfect Borel measures in RN,

Theorem C Any positive solution of (1.1) is o-moderate.

Several proofs in this work are transposition to the parabolic framework of the constructions
performed in [23] and [16]. However, for the sake of completeness and due to the technicalities
involved, we kept many of them, sometimes under an abriged form.

2 The % -fine topology

We assume that ¢ > 1+ % and set ¢ = q_il. We recall that a set £ C RN is (%, q')-thin at a

point a if
1 /C2 ,(ENBy(a)\ 4"
/ < A ) % . (2.35)
0

S

If the value of the above integral is infinite, the set E is called (%, q')-thick at a. A set U is a

(%, ¢')-fine neighborhood of one of its point a if U€ is thin at a. It is (%, q')-finely open, if U€ is
thin at any point a € U. It is (%,q’)—ﬁnely closed if it complement is (%,q’)— finely open. For
simplicity we will denote by T, the (%, q')-fine topology associated to these notions (see [2, Chap
6] for a thorough discussion of these notions). We say that a set £ C IRY is Tg-open (resp

Tg-closed) if it is open (resp. closed) in the T,-topology.

Notation 2.1 Let A, B C RV.
a) A is Ty-essentially contained in B, denoted A C? B, if

C%,q’(A \ B) == 0
b) The sets A, B are T4-equivalent, denoted A ~? B, if

C: 4(AAB) =0.

q

c)The T4-closure of a set A is denoted by A. The Ty-interior of A is denoted by A°.
d) Given € > 0, A® denotes the e—neighbourhood of A for the standard Euclidean distance in



RN
e) The set of T4-thick points of A is denoted by by(A). The set of T,-thin points of A is denoted
by eq(A).
Ais Ty -open & A C eq(A°), B is %, closed < b,(B) C B.
Consequently,
A=A Jby(4),  A°=Aney(A°).

The capacity C'2 , possesses the Kellogg property (see [2, Cor. 6.3.17]), namely,
q7
C%, g (A\bg(4)) = 0. (2.36)
Therefore )
A CTby(A) ~1 A,
but, in general, by(A) does not contain A.

Proposition 2.2 (i) If Q is a T,-open, then e,(Q°) is the largest T,-open set that is Tq-
equivalent to Q.
(it) If F is a T4-closed then by(F) is the smallest Tq-closed set that is Tq-equivalent to F.

The proof is [23, Prop. 2.1]. We collect below several facts concerning the T,-topology that are
used throughout the paper.

Proposition 2.3 Let ¢ > 1+ %
i) Bvery T,-closed set is Ty-quasi closed ([2, Prop 6.4.13]).
W)If E is Ty-quasi closed then E ~4 E ([2, Prop 6.4.12]).

iii)A set E is Ty-quasi closed if and only if there exists a sequence {Ey,} of closed subsets of E
such that C2 ,(E\ Ep) — 0 ([2, Prop. 6.4.9]).
q7

iv) There exists a positive constant ¢ such that, for every set E,
C%q,(E) < cC%,q,(E),

([2, Prop 6.4.11]).

v) If E is T4-quasi closed and F ~9 E then F is T4-quasi closed.

vi) If {E;} is an increasing sequence of arbitrary Borel sets then

cg,q/(U E;) = lim C2 ,(E;).

2
i—moo ¢4

vii) If {K;} is a decreasing sequence of compact sets then

cqu,(ﬂ K;) = lim C

; 2 q’(Ki)'
1—00 g’
viii) FEvery Suslin set and, in particular, every Borel set E satisfies

C: ,(E) = inf{C: ,(G): ECG, Gopen}
q7
= sup{C: ,(K): K C E, K compact}.
q7



For the last three statements see [2, Sec. 2.3]. Statement (v) is an easy consequence of [2, Prop.
6.4.9]. However note that this assertion is no longer valid if "% -quasi closed” is replaced by
"% 4-closed.” Only the following weaker statements holds:

If £ is Ty-closed and A is a set such that C2 ,(A4) =0 then EU A is T, -closed.
q7

The next corollary is an easy consequence of (iii).

Corollary 2.4 A set E is T,-quasi closed if and only if there exists a sequence {Ep,} of Ty4-quasi
closed subsets of E& such that C2 q,(E \ Ep) — 0.
q7

Definition 2.5 Let E be a T;-quasi closed set. An increasing sequence {Ey,} of closed subsets
of E such that C% ¢ (E\ Ep) = 0 is called a Ty-stratification of E.

(i) We say that E,, is a proper %,-stratification of E if
1
037 q/(Em+1 \Em) S W
(W) If V' is a Tq-open set such that C2 ,(E\'V) =0 we say that V is a Ty-quasi neighborhood
q7
of E.

The following separation statement is valid in any locally compact metric space.

Lemma 2.6 Let K be a closed subset of an open set A. Then there exists an open set G such
that
KcGcGcA.

Proof. Let x € K. We set B, = By(z); n € N and K,, = B, N K. Since K,, is compact,
we can easily show that there exists a decreasing sequence {g,} converging to 0 such that
Ki» ¢ Ky» € A. Now we have

0o n 00 — 0o
Uk: c| K c|JET cA
n=1 n=1 n=1

If we prove that the set

is closed then the proof follows with G = (J;7 Kn?n . We will prove it by contradiction. We

assume that there exists a sequence z, € J,—; Kn?n such that z, — z and z ¢ (J,—, K;Tn .
We have x1 = x,, such that dist(z,,, K) = inf{|z,, —y|: y € K} < 5. Also we assert that
there exists x,, such that dist(xy,, K) < %. Indeed, If this is not valid then Vn € N we have
% < dist(xy, K) < &, which implies # € K. Thus we have clearly a contradiction. Inductively,
we can construct a subsequence {x,, } such that dist(z,,,K) < &, Vk € N. If we send k to

10



infinite, we reach to a contradiction, since we would have dist(x, K) = 0 and using the fact that
K is closed, we would obtain that = € K. O

In the framework of the T ,-topology, the preceding result admits the following counterpart.

Lemma 2.7 Let E be a T,-closed set. Then:
(i) Let D be an open set such that C: ,(E\ D) = 0. Then there exists an open set O such that
q )

Ec?OcOc!D. (2.37)

(11) Let D be a T4-open set such that E C1 D. Then there exists a Ty-open set O such that
(2.37) holds.

Proof. (i) Since END ~% E, END is T,-quasi closed, (see the discussion of the quasi topology
in [2, sec. 6.4]). Thus there exists a proper ¥ -stratification of E N D, say {E,,} and E ~1
E' =J;2, E;. If E' is closed the result follows by Lemma 2.6. We assume that E’ is not closed.
Thus, we can assume without loss of generality that

Epnii\En#0 Vm € N.

We set E!, = G, where G is the open set of Lemma 2.6 with K = FE,, and A = D. Now
since Cg7 ¢ (Em \ Em—1) < 2”1%’ there exists an open set Dy, D Ep, \ Ep—1 ;m > 2, such that
q

C2 (D) < 7. Also we set D1 = E}. Also we have by Lemma (2.6),
q7

D, NE,CD,NE,CE.CD VYmeN.

Also, since E' = Ey U, _o(Em \ Ep—1) we have that

o o
E'c|)DwnE,c|]DnnE,CD.

m=1 m=1

Thus, it is enough to prove that the set (Joo_; Dy, N E!, is T4-quasi closed. Indeed, for each
n > 1, we have

e} n e} oo
Cm(U DmmE;n\UDmmE;n> < ciyq/< U DmﬂE,’n>§ Y. C2 y(Dm)
m=1 m=1

m=n+1 m=n+1

< o> G Dwze Y
:

m=n+1 m=n+1

~——

And the result follows by Corollary 2.4, since (J;,,_; D N EY, is T4-quasi closed.
The proof of (ii) is same as in [23, Lemma 2.4 (ii)]. O

Lemma 2.8 (I) Let E be a T-closed set and {Ep,} a proper T,-stratification for E. Then there
exists a decreasing sequence of open sets {Q;} such that UE,, := E' C Q; for every j € N and

11



(i) N;Q; = E', Qjs1 € Qj,
(ZZ) limjﬁoo C%,q/(Qj) = C%’q/(E).
(II) If A is a T,-open set, there exists a decreasing sequence of open sets {Ay,} such that

Ac(NAn=4",  C: (An\A) = 0asm—o00, A~TA.
q7

Furthermore there exists an increasing sequence of closed sets {F;} such that F; C A" and
(2) UFj:A/, F}'Cq F]<'>+1
(i1) C%q,(Fj) — C§7q,(A') as j — oo.

Proof. Let {D;} be a decreasing sequence of open sets such that D; O E, Vj € N and

lim Cz ,(Dj) = Cz ,(E')=C2

j—oo g

Case 1: E is closed (thus E,, = F for any m € N).
By Lemma 2.6 there exists a decreasing sequence {e1 5} converging to 0, such that €17 < 1, and

o fln _
ECQ1:UKn2 CQ1CD17
n=1

€1,n
where K,, = B,(z) N E ,z € E. Also we have proven in Lemma 2.6 that the set (0o K,? is
closed.
Again by Lemma 2.6 there exists a decreasing sequence {2, } converging to 0, such that &3, <
€1, for all n and

> £2,n _
Ec@=|JK." cQyc D,

n=1

We note here that

o £2,n o €1,n
QC | JEt c K,
n=1 n=1

€2.n

and since K, * is closed we have
Q2 C Qy C Q1.

By induction, we construct a decreasing sequence {¢;,,} converging to 0 with respect to n, such
that Vn € N: g5, < &g, for all j > K,

[e.9] g5

L _
Ec@;=|J K& cQ;c D,
n=1
and B
Qi CQ; CQj-1.
Now note that )
FEC Qj C B,

12



thus ' = NQ);. Finally,

and the result follows in this case.

Case 2: F is not closed.

There exists a proper ¥ -stratification of E, say {E,,} and E ~? E' = (J;2; E;. Also by the
Case 1, we can assume without loss of generality that

Let us denote by Q;‘L the sets denoted by @; in the previous case if we replace E by F,,. Since

there holds C: /(Em \ Em-1) < ¢Cz ,(Ep \ E1), we can choose an open set D} such that
q’ q’
C%’ q,(D,{ﬂ) < 5. In view of Lemma (2.7) the set

[o¢]
o= J phLnaQr
m=1

is open and N
E,CQ1CQ1CD1.
Furthermore the set -
U phnaery
m=1

is T4-quasi closed. By Lemma 2.7 there exists an open set D2, such that
D2 c D2, c D}
By induction, we construct a sequence of open sets {Dﬁn} such that

Dj,c D c DIt Ca y(Dh) < oo

Thus in view of Lemma 2.7 the set

[e.e]

Q= phney

m=1
is open and the set

U Dl N Q™
m=1

is T4-quasi closed. For any m we have

e~ —

D}, NQM C DHNQT C DHLNQE C DI nQ .
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Thus
N T~ > A
Qc@c|JDhnQrc|)Di'nQr, cD;
m=1 m=1

——~—

Since the set (-, Di, N Q;” is T4~ quasi closed we have

Qj C @vj C Qj_l.

Finally )
E' cQjCcE?Y,

thus E/ = NQ;. The result follows in this case since

q’

02 q/(E) Sth%q/(Qj) Sth%,q/(Dj) :CQ /(E)
(IT) The proof is same as in [23, Lemma 2.6 (b)] and we omit it. O

The next results are respectively proved in [23, Lemma 2.5] and [23, Lemma 2.7].

Proposition 2.9 Let E be a bounded T -open set and let D be a cover of E consisting of T4-
open sets. Then, for every e > 0 there exists an open set O, such that C2 q/(Oe) <eand E\O;
q7

is covered by a finite subfamily of D.

Proposition 2.10 Let QQ be a T;-open set. Then, for every & € @, there ewists a T4-open set
O¢ such that

£€QeCQeCQ. (2.38)

3 Lattice structure of U, (Q)

Consider the equation
2
Ou— Au+ |[ulTlu =0, inQw =RY x (0,T], where ¢ > 1+ N (3.1)
A function u € L} (Qr) is a subsolution (resp. supersolution) of the equation if dyu — Au +
|u|9=tu < 0 (resp. > 0) holds in the sense of distributions.
Ifu € L} (Qr) is a subsolution of the equation then by Kato’s inequality (8;—A)|u[+]ul? < 0

in the sense of distributions. Thus |u| is a subsolution of the heat equation and consequently
u € L2 (Qr). If u e LL (Qr) is a solution then v € C*1(Qr).

loc

Proposition 3.1 Let u be a non-negative function in LiS.(Qr).

(i) If w is a subsolution of (3.1), there exists a minimal solution v dominating u,

.e. u<v <U for any solution U > u.

(ii) If u is a supersolution of (3.1), there exists a mazimal solution w dominated by u,
r.e. V< w <wu for any solution V < u.

All the above inequalities hold almost everywhere .
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Proof. (i) Let {J.} be a filter of mollifiers in RN*1. If v is extended by zero outside of Q7, then
the function u. = J. * u belong to C®(RY*1) lim. you. = & = v a.e. in R¥* and u. — u
in L} (Qr). We note that we can choose £ > 0 small enough such that the function u. is a

subsolution in Br(0) x (s,00) where R > 0 and 0 < s. Let v be the positive solution of

O — Av + |v|97 v = 0, in Br(0) X (s,00),
V= U, on 0BR(0) x (s,00), (3.2)
v(.,s) = u(.,s) in Br(0).

In view of the proof of Lemma 2.4 and Remark 2.5 in [19] we can prove that ve > u.. Since v, is
a subsolution of the heat equation, we have ve < [|uc||Loo (B (0)x(s,77) < W]l 200 (B (0)x (s,7)- Thus
there exists a decreasing sequence €; converging to 0 such that v., — v in LY(Bg(0) x (s,T1),
u < v < ul[zeo (Broyx(s,17); 0 < 8 < T < 00 and v is a positive solution of

O — Av + |v|97 v = 0, in Br(0) x (s,T],
v =u, on dBRr(0) x (s,T], (3.3)
v(.,8) =ul.,s) in Br(0).

Let {R;} be an increasing sequence tending to infinity and s; be a decreasing one converging to
0. Let v; be the positive solution of the above problem with R = R; and s = s;. Since v; > u,
we have by the maximum principle that v;j; 1 > v;. Thus, by Keller-Osserman inequality and
standard parabolic regularity results, there exists a subsequence, say {v;}, such that v; — v
locally uniformly in Q7. The results follows in this case by the construction of v.

(ii) Since u € LY(Br(0) x (s,T]) there exists a solution w of the problem

Ow — Aw + |u|? = 0, in Br(0) x (s,T]
w =0, on 0BR(0) x (s, T (3.4)
w(.,s) =0 in Br(0).

Hence u+w is supersolution of the heat equation with boundary and initial data u. Consequently,
u 4 w > z where z is the solution of the heat equation with boundary and initial data u. Also,
the function z — w is a subsolution, thus there exists a solution v < u of the problem (3.3) with
boundary and initial data u. As before, let {R;} be an increasing sequence tending to infinity
and s; be a decreasing sequence tending to 0. Let v; be the positive solution of the problem
(3.3) with R = R; and s = s;. Since v; < u, we have by maximum principle that v;;; < vj.
Thus by standard parabolic arguments, there exists a subsequence, say {v;}, such that v; — v
locally uniformly in Q.. Again, the construction of v implies the result. O

Proposition 3.2 Let u and v be nonnegative, locally bounded functions in Q.

(i) If w and v are subsolutions (resp. supersolutions) then max(u,v) is a subsolution (resp.
min(u,v) is a supersolution).

(7i) If uw and v are supersolutions then uw+ v is a supersolution.

(i5i) If u is a subsolution and v is a supersolution then (u — v)4 is a subsolution.

Proof. The first two statements are immediate consequence of the parabolic Kato’s inequality.
The third statement is verified in a similar way since
d

(& M) =)y < sign(u—v)( — A)(u—v) < —sign. (u—v)(u ~ %) < —(u— ).
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Notation 3.3 Let u, v be nonnegative, locally bounded functions in Q.
(a) If u is a subsolution, [u; denotes the smallest solution dominating u.
(b) If u is a supersolution, [u]" denotes the largest solution dominated by wu.

(¢c) If u, v are subsolutions then u \V v := [max(u, v)};.
(d) If u, v are supersolutions then u A v := [inf(u,v)]" and u ® v = [u + v]l.
(e) If u is a subsolution and v is a supersolution then u © v = [(u — v)4];.

Proposition 3.4 (i) Let {uy} be a sequence of positive, continuous subsolutions of (3.1). Then
U := supuy is a subsolution. The statement remains valid if subsolution is replaced by superso-
lution and sup by inf .

(ii) ([5]) Let T be a family of positive solutions of (3.1). Suppose that, for every uy and us
belonging to T there exists v € T such that

max(uj,uz) < v, resp. min(uy, ug) > v
Then there exists a monotone sequence {uy,} in T such that
up Tsup 7T, resp. Uy, 4 inf 7.
Thus sup T (resp. inf T ) is a solution.

Proof. (i) Set v; = max (u1, u2, ..., uj) = max (max(uy, uz), max(max(uy, uz), u3), ..., max(max(...), uj)) .
By proposition 3.2 v; is a subsolution and v;11 > v;. Thus the positive solution [v;]+ is increas-
ing with respect to j. Also by Keller-Osserman inequality, we have that [v;]; — ¥, where ¥ is
a positive solution. Thus v; — v where v is a subsolution of (3.1). Now since u; < v for each
i € N, we have that U < v. But v; < U for each j € N, which implies v < U. And thus v = U.
The proof for ”inf” is similar and we omit it.

(ii) The proof is similar as the one in [5]. Let A = (x,,t,) be a countable dense subset of Q7 and
let upy, € T satisfy the condition sup,,, tm(Tn,tn) = w(zy,t,). Since T is closed with respect to
V, there exists an increasing sequence of v, € T such that v = lim,, s vy, coincides with w on
A. We claim that v = w everywhere. Indeed, v < u. Suppose u € T. Then u < w and therefore
u < v on A. Since A is everywhere dense and u, v are continuous, u < v everywhere in ),
which implies v > w = sup . O

As a consequence we have the following result which extends to equation (1.1) what Dynkin
proved for (1.14) [5, Theorem 5.1].

Theorem 3.5 The set U (Qr) is a complete lattice stable for the laws ® and ©.

4 Partition of unity in Besov spaces

Lemma 4.1 Let U ¢ RY be a Tq-open set and z € U. Then there exists a function f &

2
Wa T (RN with compact support in U such that f(z) > 0. In particular, there exists a bounded
Lq-open set V' such that V C U.
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Proof. We suppose that z is not an interior point of U with respect to Euclidean topology, since
otherwise the result is obvious. Since U is T,-open we have that U€ is thin at z. Also by the
assumption on z, we have that 2 € U¢\ U. By [2, p. 174], we can find an open set W D U¢,
z € W\ W and W is thin at z.

We recall that for a set E with positive C%q,—capacity, FE .= yre = G% * (G% * up)P~! where
wg is the capacitary measure on E. Then, by [2, Proposition 6.3.14], there exists r > 0 small
enough such that

1
13 -
V(z)<2,

where 1 is the capacitary measure of B(z,r) NW and V¥ the corresponding Besov potential (see
[2, Theorems 2.2.7, 2.5.6 ]). By [2, Theorem 6.3.9], V* > 1 quasi everywhere (abr. q.a.e.) on
B(z,r) N W, and by [2, Proposition 2.6.7] V# > 1 everywhere on B(z,r) N W. Thus

1
Vi(z) < 5 <1<Vi(x), Vo€ Bzr)nW.
Thus we can find o > 0 small enough such that
1
V) < 5 < 1S EVH): o € Blara) \ U

Now let 0 < H(t) be a smooth nondecreasing function such that H(t) =t for t > 1 and H(t) = 0
for t < 0. Also let n € C$°(RY) such that 0 < 5 < 1, supp n C B(z,79) and n(z) = 1. Then the
function

f(Z) = 77H(1 - VM)’

2 7
belongs to Wa'? (RY). Since by definition V* is lower semicontinuous, the set {1 —u > 0} is
closed. Hence the support of f is compact and

suppf C suppn N{l —u >0} C U.
]

Lemma 4.2 Let U be a T4-open set and z € U. Then there ewists a 4-open set V, such that
2 7
z €V CU, and a function ¢» € Wa'T (RY) such that » =1 q.a.e. on'V and 1) =0 outside U.

Proof. As before, we assume that z is not an interior point of U. Let V* be the Besov potential
of the previous lemma, with

1
VHE(z) < 7 V=1 on B(z,ro) \ U.
By [2, Proposition 6.3.10] V¥ is quasi continuous, that we can find a T,-open set W which
contains z such that

Vi(x) < -, q.a.e. on W.

] =

Let 7 € C5°(RY) such that 0 <7 <1, suppn C B(z,19) and n(z) = 1,V z € B(z,2). Set
f=onH (1 —H (% _ vu(x)> - vu(x)> .
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Then f € Wg’q,(RN), 0< f<land f=0on B(z,r) \U. Also, f =1 on B(z,%)NW and
f =0 outside of B(z,19) NU. O

Lemma 4.3 Let % <1, K be a compact set and U be a T,-open set such that K C U. Also,
let {U;} be a sequence of Ty-open subsets of U covering U up to a set of zero C- ¢ -capacity Z.
q7

2
We assume that there exists a nonnegative u € W7 (RV) N L (RN with T,-suppu C K C U.
Then there exist m(k) € N and nonnegative functions ug ; € L®(RY) with Ty-supp uy; C U;,
such that

m(k)
g < U (4.1)
j=1
and
kli)rrgo ||u — ; ukJHW%’q/(RN) =0.

Remark. If u changes sign, the conclusion of Lemma remains valid without inequality (4.1).

Proof. Without loss of generality we can assume that U and the U;U; are bounded. For any
J > 0, there exists open sets G}, ; such that C- q/(Gk,j) <97k=i 7 ¢ G0 and for j > 1, the
q7

sets U; U Gy, j are open. Also the sets

Gr=J6Gr;, UG
j=1

=0
are open and Cz ,(Gy) — 0 when k — oo.
q7

Since Gy, is open, its Besov potential FC* is larger or equal to 1 everywhere on Gy 2,
Theorems 2.5.6, 2.6.7 ]). Also we have

M q
VI 2 g o S AC2, (G

where A is a positive constant which depends only on n, q. Now consider a smooth nondecreasing
function H such that H(t) =1 for t > 1 and H(t) =t for t < %, then the function ¢;, = H(V/*)

belongs to wad (RV), satisfies 0 < ¢ < 1, ¢ = 1 on G, and there exists a constant A’(n,q) > 0
such that

/
<A 037 q/(Gk)-

/
||¢k||q 2
wWa? (RN)

Set ¥, =1 — ¢. By Lebesgue’s dominated theorem

lu—rull? , 0. (4.2)
wWa? (RN)

Thus it is enough to prove that
m(k)

uy, = Z Uk - (4.3)
j=1
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Fix k € N. Then there exist open balls By, ;;, for ¢, j = 1,2..., such that

Ek,j,i C Uj U Gk, and U Gy, U Uj = U Bk,j,i-
j=1

ij=1
Since K is compact, there exists m(k) € N such that
m(k)

K C U Bk,j,i-
1,j=1

Now consider wy, ;; € C§°(RY) such that
{wky.]7l > O} = Bk7j7i'

If we set ®)

m
Z; W, j,i
J— =1 5J5
Uk,5 = ’lﬂﬁk m(k) A A’
Zi,jzl Wk, j,i

then uy ; € L>°(RY), satisfies 1 and
Tg-suppuy,j C (K \ Gg) N By ;i C Uj.

O
Remark. We conjecture that the result still holds if % > 1, but we have not been able to prove
(4.2).

5 The regular set and its properties

Let ¢ > 1, T > 0. If Q7 = RY x (0,T), we recall that U, (Qr) is the set of positive solutions u
of
Ou—Au+u? =0 in Qr. (5.1)

If a function ( is defined in RY. We denote by T,-supp(¢) the T,-closure of the set where || > 0.
Let U be a Borel subset of RY and xy be the characteristic function of U. We set

1 _lo—y)?
H(xv)(z,t) = & / e m  xudy.
(4nt)2 JRN

For any & € RY the following dichotomy occurs:
(i) either there exists a T4-open bounded neighborhood U = Ug of £ such that

T
/ / wIH[xy )7 dodt < oo, (5.2)
0 RN

where ¢ = =,

(ii) or for ag_ q-open neighborhood U of &

T
/ / uwIH[xy ]9 dadt = oo. (5.3)
0 JrRN
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Definition 5.1 The set of ¢ € RY such that (i) occurs is T,-open. It is denoted by Ry(u)
and called the regular set of u. Its complement Sy(u) = RN \ R, (u) is Ty-closed and called the

singular set of u.

Proposition 5.2 Let n € Wa? (RY) N L(RY) with T,-support in a Ty-open bounded set U.

Also let w € U (QT) satisfy

T
My = / / wIH[xp]* dadt < co.
0 JrN

Then there exists

— 1 2q
l(n) = %E)I(l) o u(x, t)Hn| ! dx.

Furthermore

] < COta) (Il + e e )

Proof. Put h = Hln] and ¢(r) = 7’+ Since |n| < ||n||Lexv, there holds

ulop(h dxdt' < ||77|| / / wIH[xy %9 dodt = ||77|| I My < oo.
RN

Moreover

/ [ (ol + aom) + wodsdr = [ uow(s)ds — [ uon)(.ods

Op(h) + Ap(h) = 2¢' ¢(h)h;*(2h4 Oth + (24" — 1)|Vh|?).
By Holder

u(0yp(h) + A¢(h))dzdr

<( / / Nu%(h)dwch) ( / [ o)™ @(h) + Ao)|7 dadr )

t q RS
<44 </ /RN uq¢(h)dmdr> (/ /RN(h_F’ath‘ + ’vmz)q dwdr)

By standard regularity properties of the heat kernel

[ [ it awir < / |, torhlY o < il

and by Gagliardo-Nirenberg inequality and the maximum principle

-

t T ! ! ! !
[Vh|* dzdr < IVh|* dwdr < C|In||T<[|AR]%, = Clinllfwll0:n],,
s JRN 0 JRN L L
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Therefore,

t . .
‘/s /RN w(Opp(h) + Ap(h))dxdr| < C </s /RN uq¢(h)dacd7'> ]\n]\Loo]\ny‘W%q,.

This implies that the left-hand side of (5.7) tends to 0 when s,¢ — 0, thus there exists

I(n) := lim up(h)(x, s)dz.

s—=0 JpN
From (5.7) it follows
/ [ (@) + Aou) + wo(tydedr + [ o) Tz = i)

Since [ug(h)(-, )| < C(T)|nll 7%, we derive

2
< C (Il + 11l 2.0)

WwWa’

1) < Cilinlliz% + Clinllgalimll?

to

2
qq

Proposition 5.3 Let the assumptions of Lemma 5.2 be satisfied. Then

: 2q' —
lim UU(m,t)m (z)dz = 1(n).

Proof. Using (5.6) with h replaced by hs(z,t) := H[n](z,t — s), we get

(5.8)

(5.10)

(5.11)

/ /RN u(Op(hs) + Ad(hs))) + uig(hs)drdr + /RN ug(hs)(., T)dx :/R ud(hs)(., s)dz.

N

When s — 0
[ woth)( e = [ w1,
]RN ]RN

/ST /]RN ule(hg)dzdr — /OT /]RN ule(h)dzdr,

by the dominated convergence theorem. Furthermore,

and

‘ /OTS /RN (u(z,t + 8) — u(z,t))(Oep(h) + Agb(h))dxdt‘

I— 1
B ’ q , ,
0 RN w9

which tends to zero with s. Finally,

T
lim/ / ulp(h)dzdr = 0.
s—0 T—s JRN
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Subtracting (5.7) to (5.12), we derive

liH(l) u('? 3)(¢(h)(7 S) - ¢(77))d90 =0,
5—0 JpN

which implies the claim. O

The next statement obtained by contradiction with the use of Lemma 5.2 and Lemma 5.3
will be very useful in the sequel.

Proposition 5.4 Assume that U is a bounded T-open set and

lim [ w(z, t)n? (x)dz = oo, (5.13)
for some 0 < n € Wa? (RN) N Lo(RY) with T,-support in U, then

T
/ / uwIH[n]* dadt = co. (5.14)
0 JRN

Proposition 5.5 Let & € Sy(u). Then for any T,-open set G which contains &, there holds

li = 00. 1
lim Gu(w,t)dw 00 (5.15)

Proof. If £ € S;(u) and if G is T4-open and contains £, then by Lemma 4.2 there exist n €
2 7
Wa? (RY) N L= (RY) and a T,-open set D C G such that n =1 on D, n = 0 outside of G and

0 <n < 1. Thus
T / T /
00 = / / ulH[x p]* dzdt < / / u?H. 1) dzdt,
o Jrw 0o JrN

Therefore
lim uH[n)*? dz = oo,
t—0 JrN
which implies
lim un? dz = oo,
t—0 RN
and the result follows by the properties of 7. O
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5.1 Moderate solutions

We first recall some classical results concerning initial value problem with initial measure data.
A solution u of (3.1) is called moderate if v € LY(K) for any compact K C ),,. Then there
exists a unique Radon measure p such that

lim [ w(z,t)((z)dr = C(x)dp V¢ e CR(RY). (5.16)

t—0 JpN RN

- / / wln-+ Ag)dadt + / /Q " ugdadt = /R 9, 0)dp,

for all ¢ € CHH1(Q,,), with compact support.

Equivalently

The above measure has the property that it vanishes on Borel sets with Cz ,-capacity zero.
q b

There exists an sequence {p,} C W~ q’q(RN ) of Radon measures such that p, — p in the weak*
topology. If we assume that u is a positive moderate solution, or equivalently that the initial
measure u is positive, then the previous sequence can be constructed as being increasing and
particularly {u,} C ng’q(]RN ) NG (RY), where 98 (RY) is the set of all positive bounded
Radon measures in RN,

If v e W «YRN) N9t (RY), then we have for some constant C' > 0 independent on v(see
Lemma 3.2-[22])

-1
CHWI 20 gny < Hllza@n) = I,

where we recall that H[v]| denotes the heat potential of v in Q.

gy’ (5.17)

Lemma 5.6 Let u be a moderate positive solution with initial data p. Then for any T > 0 and
bounded T,-open set we have

T
/ / uI(t, 2)H* [xoldzdt < .
0 JrN

Proof Let 0 < n € C(RY) and n = 1 on O and s < T. We define here h = H][n|(x,1),
= H[n)(x,t — s) and ¢(r) = |r|?¢". Then we have

/ / u(e 1) (D (he) + A(he)) + [l () drdt + / u(hs) (., T)dz = / u(z, 5)(n)d.
RN RN

RN

In view of Proposition 5.2, (5.8) and Holder’s inequality, there exists a constant ¢ = ¢(q, N') such
that

/ST L etttz + ANu¢<hs><-,T>dst< | wtesotmde + I Il )

Using Fatou’s lemma and the fact that, for any bounded Borel set E

s—0

limsup/ u(z, s)dr < oo,
E

we conclude the proof. O
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Theorem 5.7 Let u be a positive moderate solution with u as initial data, then
(1) p is regular relative to the T,-topology.
(ii) For each quasi continuous function ¢ € LOO(RN ) with bounded T ,-support in RN, we have

lim u(z, t)p(x)dx = o(z)dp.
t—0 JrN RN

Proof. The proof is similar to the one given [23].
(i) Every Radon measure on R” is regular in the usual Euclidean topology, i.e.

w(E) = inf{u(D): EC D, Dopen}
= inf{u(K): K C E, K compact},

for any Borel set F. But if D is open and contains F, it is T,-open, hence
p(E) <inf{u(D): EC D, D T4 open} <inf{u(D): E C D, D open} = p(FE),

and the result follows.
(ii) Since the measure p; = u(t, x)dr — p in the weak* topology we have

limsup py(E) < p(E),  liminf p(A) > p(A),
t—0 t=0

for any compact set F, respectively, open set A. This extends to any bounded T,-closed set E

(resp. T,-open set A).

Indeed, let E be a T -closed set and {K,} be an increasing sequence of closed sets such that

C%, o (E\ Kn) = 0. Then for any m € N and any open set £ C O we have

limsup i (E) < limsup pi(Kp,) + limsup (B \ Kn) < p(O) + limsup pe(E'\ Kpp).
t—0 t—0 t—0 t—0
Now we assert that
lim limsup i (E \ Ky,) = 0.
m—0o0  ¢0
We will prove it by contradiction. We assume that lim,, o limsup,_,q ue(E \ Kp,) =€ > 0.
Let {t,,} be a decreasing sequence tending to 0 and lim,, o0 pir,, (E\Kp,) = limsup,_, pe(E\ Kp,).
Then there exists subsequence of positive solutions {u}"}?° ; with initial data [t XE\E,, SUCh
that uf* — «™ for any m € N. Since u is a moderate solution and uy' < u, u" is a moderate
solution too. Also by construction, the sequence {u™} is nonincreasing and u,, < Up\k,,- By
proposition 5.17 we have Ug\ ,, — 0 which implies u,, — 0 and

lim lim py, (E\ Kp) =0.

m—00 k—00

The proof follows in the case where E is T -closed. The proof is similar in the other case.
If Ais T4-open and



then
lim 14(A) = u(A).
t—0

Without loss of generality we may assume that ¢ > 0 (since otherwise we set ¢ = ¢T—¢~) and
¢ < 1.Given k € Nand m = 0, ..., 28 —1 choose a number a,,  in the interval (m2~%, (m+1)27%)
such that p(¢~*({am})) = 0. Put

Apk = 6 (ampy (@merr)), m=1,..,28 — 1, Aor = ¢ ((aok, (a1 ),

then we note that since ¢ has compact support the above sets are bounded and

%ir% pt(Ami) = (A i), ¥Ym >0, k € N. (5.18)
H
Consider the step function ¢y = Zik;Ol m2_kXAm’k, then ¢ 1 ¢ uniformly, and by (5.18),
i [ uletiods = [ owdn 0 e CRERY),
t—0 JrN RN
This completes the proof of (ii). O

5.2 Vanishing properties
Definition 5.8 A continuous function w € Uy (Qr) vanishes on a Tq-open subset G C RN if

for any n € Wt (RY) N L(RY) with T,-supp(n) C? G, there holds

lim [ u(w, t)niq/ (x)dzdt = 0. (5.19)
t—0 G

When this is case we write u =g 0. We denote by Uq(Qr) the set of u € U (Qr) which vanish
on G.

We have the following simple result.

Proposition 5.9 Let A be a T,-open subset of RY and uy, us € U (Qr).
If us =4 0 and uy < us then uy ~4 0.

Proposition 5.10 Let G,G’ be T,-open sets such that G ~1 G'. If v € Ua(Qr) then u €
U (Qr)

Proof. If n € W%’q,(RN) N L®(RY) with T,-supp(¢) C? G, then T,-supp(¢) C¢ G'. Since
|G\ G'| =|G"\ G| =0 the result follows. O

If G is an open subset, this notion coincides with the usual definition of vanishing, since we
can take test function n € C§°(G). In that case u € C(Qr U{G x {0}}).

Lemma 5.11 Assume u € Ug(Qr). Then for any n € Wt (RMYNL®(RY) with T,-supp(n) C?
G, there holds

T
| wtl dude+ [ ute T @ e < Cullll il , (5.20)
0 RN RN wa
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Proof. If u € Ug(Qr) and n € Wt (RY) N L>®°(RY) with T,-supp(n) C? G, there holds, with
h = Hiy] and ¢(r) = r2?.

/ / w(@b(h) + Ad(h))) + ule(h)dzdr + / wp(h)(., T)dzx = 0. (5.21)
RN RN

Therefore (5.20) follows from (5.8). O

Lemma 5.12 Let G C RY be a T,-open set. Then there exists a nondecreasing sequence {uy,} C
U (Qr) which converges to supUg(Qr). Furthermore supUq(Qr) € Uc(QT).

Proof. If u; and ug belongs to Ug(Qr), then uy + ug is a supersolution and it satisfies (5.19).
Therefore u; Vug is a solution which is smaller than uj+us, thus uy Vugs € Ug(Qr). By Proposition
3.4 there exists a increasing sequence {u,} C Ug(Qr) which converges to u := supUg(Qr). By
(5.21),

T
/ / (—un(Bid(h) + AG(R))) + ul d(h)dzdr + / und(h) (., T)da = 0. (5.22)
0 RN RN

Now, ulg(h) 1+ ulg(h) in L' (Qr) and u,¢(h)(., T) 1T ug(h)(.,T) in L'(RY). If E is any Borel
subset of Q7, there holds by Hoélder’s inequality, as in (5.8)

I 1
=
0 E q

The right-hand side tends to zero when |E| — 0, thus by Vitali’s convergence theorem, we derive

‘ /OT /E un (0s0(h) + A(h))dwdr

/ / w(@b(h) + Ad(h))) + ul(h)dzdr + / wb(h)( Tz =0,  (5.24)
]RN RN

from (5.22). Thus u € Ug(QT). O

Definition 5.13 (a) Let u € U (Qr) and let A denote the union of all T4-open sets on which

u vanishes. Then A€ is called the fine initial support of u, to be denoted by %,-supp (u).
(b) Let F be a Borel subset of RN. We denote by Up the mazimal element of Ux.(QT).

5.3 Maximal solutions

Definition 5.14 Let mﬂ_(RN) be the set of all positive bounded Radon measures in RY. Also
let uy, € UL (QT) be the moderate solution with initial data pu.
For any Borel set E C RN of positive C2 o ~capacity put

q7

Vimod(E) = {u, : pe W7 RNy Aot (RY), p(E€) = 0}.

VE = sup Vmod(E)'
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The following result due to Marcus and Véron [22] shows that the maximal solution which
vanishes on an open set is indeed o-moderate. This is obtained by proving a capacitary quasi-
representation of the solution via a Wiener type test.

Proposition 5.15 Let F be a closed subset of RN and ¢ > 1+ % Then there exist two positive
constants Cy, Co > 0, depending only on N and q such that

Lo F N Fy(x,t
oS e nFeton , (EEED) <y < Up(a,n
k=0 - (k+1)t
= o P F(et) (5.25)
1 N _k kAT,
< Cot a1 k+1)2e aC2 , | —— V(x,t) € Q,
<oty winteloy, (TRAED) e
where Fy(z,t) = {y € RNV : Vkt < |z —y| <+/(k+1)t}. As a consequence Up = Vp.
Remark. We recall that the main argument for proving uniqueness is the fact that
C
Up < 2Ve  inQ. (5.26)

=0,

This argument introduced in [17] for elliptic equations has been extended to parabolic equations
in [19], [22].

Definition 5.16 Let F' be a Borel subset of RN. We denote by Ur the mazimal element of
Up.(Qr).
Fc

Proposition 5.17 If {A,} is a sequence of Borel sets such that C2 ,(A,) — 0, then Ua, — 0.
q7
Proof. Let O,, be an open set such that A, C O, and C:2 q/(On) < C2 q,(An) + % Now since
q’ q’
Oy, is open, C2 , is an outer measure, by (2.36) and (iv)-Proposition 2.3, we have
q7

C2 y(O0n) = C2 <(6n Nby(0a)) | @1 eq@))) < C2 (0n) < cC2_ ,(On).

o e
Thus C 2 g (On) — 0. The result follows by
Ua, < Ug,
and by (5.25). O

Corollary 5.18 Let E be a Borel set such that C: ,(E) = 0. If u € Ug.(Qr) then u = 0. In
particular Ug = 0. !

Proposition 5.19 Let E, F' be Borel sets.
(1) If E, F are T,-closed, then Up ANUp = Ugnrp.
(i1) If E, F are T4-closed, then

Ugp<Up & [EC?FandC: q/(F\E)>0],
q7
UE:UF & EBEAIMFE (5.27)
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(111) If F,, is a decreasing sequence of T,-closed sets, then

lim Up, = Ur where F =NEF,.

n—o0o
(i) Let A be a Ty-open set and v € U (Qr). Suppose that u vanishes Ty-locally in A, i.e. for
every point o € A there exists a T,-open set A, such that

o€ ACA, ury, 0.
Then u vanishes on A. In particular any v € Uy (Qr) vanishes on the complement of Tq-supp (u).

Proof. The proof is similar to the one in [23] dealing with elliptic equations.

(i) Ug AUF is the largest solution under inf(Ug, Ur) and therefore, by definition, it is the largest
solution which vanishes outside £ N F.

(ii) By (5.25) Ug and Up satisfies the same capacitary quasi-representation up to universal
constants. By the Remark after Proposition 5.15 |

ENqFé%UESUFS%UEéUEZUF.

The proof of
EClF = Ug<Up.

follows from Proposition 5.15 and the fact that Ug = Vg and Up = Vg and Vg < Vp. In
addition,
C:2 q/(F\E) > 0= Ug # Up.
q7

Indeed, if K is a compact subset of F'\ E of positive capacity, then Ux > 0 and Ux < Up but
Uk £ Ug. Therefore Ug = Up implies E ~? F and Ug < Up implies E C? F.

(iii) If V := limy, 00 Up,, then Up < V. But T4-supp (V') C F, for each n € N and consequently
V < Up.

(iv) First assume that A is a countable union of T-open sets {A,} such that u ~4, 0 for each
n. Then w vanishes on UleAk for each k. Therefore we can assume that the sequence Aj is
increasing. Put F,, = AS. Then u C U, and by (iii), Ug, | Up where F = A°. Thus u < Up,
i.e.,which is equivalent to u =4 0.

We turn to the general case. It is known that the T ,-fine topology possesses the quasi-
Lindeldf property (see [2, Sec. 6.5.11]) as any topology associated to a Bessel capacity Clq p.
Therefore A is covered, up to a set of capacity zero, by a countable subcover of {4, : o € A}.
Therefore the previous argument implies that v =4 0. U

Proposition 5.20 (i) Let E be a T,-closed set. Then

Ug = inf{Up: E C D, D open}
= sup{Uk : K C E, K closed}. (5.28)

(ii) If E, F are two Borel sets then

Ug = Urne © Up\p-
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(iii) Let E, F,, n = 1,2,... be Borel sets and let u be a positive solution of (3.1). If either
C: J(EAF,) —0orkF,]|E then
q7

UFn — UE.

Proof. (i) Let {Q;} be the decreasing sequence of open sets of Lemma 2.8-(I) such that NQ; =
ﬂ@j = E' ~7 E. Thus by Proposition 5.19 (iii) we have that Ug, — Ug, this implies the first
equality in (i).

Let {F,} be a nondecreasing sequence of closed subsets of E such that C’% s (E\F) — 0.

Let Dy and D3 be open sets such that F,, C Dy and E \ F,, C Ds. Also set D3 = (]_N?l U ﬁQ)c.
Let u(ﬁz) be the positive solution of

Ou—Au+u? = 0 in RN x (8,T]
u(.,B) = xpUs(.) on RY, (5.29)
where 0 < 3 < T. For any (z,t) € RN x (8, T] we have
Ug < ug) + ug) + u(ﬁ?’).

Letting 5 — 0 (taking an subsequence if it is necessary) we have ug) — 1 and

Up <u® +u® +4® i O,

But v < Up, thus
Ug < Up, + Up, +u®.

Now u®) < Up, and u®) < Ug thus by Proposition 5.20-(i) u® < Upsng- But Dy U Dy is an
open set and thus C2 q,(Dg N E) = 0, which implies by Corollary 5.18 that u®) = 0. Finally we
q b

have that
Ug <Up, +Up,.

Since D; is arbitrary, we have by the first assertion of this Proposition
UESUFn+UE\Fn (5.30)
But C: ,(E\ F,) — 0, thus by Proposition 5.17, we have
q7
Up < lim UFn = Ug = lim Upn,
n—oo n—o0
since Up,, < Ug for any n € N.
(ii) By similar argument as in the proof of (5.30) we can prove that

Ug < Urne +Up\r = Ug < Urne ® Up\p.

On the other hand both Upng and Ug\r vanish outside of E. Consequently Upng ® Up\r

vanishes outside E so that
Ug > Upne © Up\r,
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and the result follows in this statement.
(iii) The previous statement implies,

Ug < Up,ne +Ugp\F,, Ur, <Up,ne +Up\E- (5.31)

If C2 q,(E A F,) — 0 then Proposition 5.17 implies Ugap, — 0. And the result follows in this
q b

case by (5.31).
If F,, | E the result follows in this case by Proposition 5.19(iii). O

This implies the following extension of Proposition 5.15 to merely T,-closed sets.

Proposition 5.21 If E is a T,-closed set, then Vi and Ug satisfy the capacitary estimates
(5.15). Thus Ug = Vg and the mazimal solution Ug is o-moderate.

Remark. Actually the estimates hold for any Borel set E. Indeed by definition, Ug = Uy and

o ENF(zt)) ., EN Ey(x,t)

2 | —— ] ~C2 || —————— | .

a4 (n+ 1)t T\ \/(n+1)t

Proof. The proof is same as in [23].

Let {Ej} be a T, -stratification of E. If u € Vg and p = tru then u, = supu,, where

pr = X E,- Hence Vg = sup Vg, . By proposition 5.25, Ug, = Vg, . These facts and Proposition
5.20(c) implies Ug = V. Since U, satisfies the capacitary estimates (5.15) and

o, (Be0E@\ o (EOR@Y) o
a4 (n+ 1)t a1 (n+ 1)t

it follows that Ug satisfies the corresponding capacitary estimates. O

5.4 Localization

Definition 5.22 Let A be a Borel subset of RY, we denote by [u]a the supremum of the v €
U (Qr) which are dominated by u and vanishes on A°.

We note here that [u]4 = u AUy
Lemma 5.23 If G C RY isa Tg-open set and u € Ug(Qr), then

u = sup{v € Ug(Qr) : v < u, v vanishes on an open neighborhood of G}.

Proof. Set A = G° and let {A,,} be a sequence of closed subsets of A4, such that C2 ,(A\A,) —
q7

0. By Proposition 5.20 we have
Ua<Ua, +Us\a,:

thus
u:u/\UAgu/\UAn—i—u/\(UA\An).
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By Proposition 5.17, we have

UA\ A, 7 0.
Thus
u= lim uAUsa,,
n—oo
and the result follows. O

The next result points out the set-regularity of the correspondence E — [u]g.

Proposition 5.24 Let u € U (Q7).
(i) If E is T4-closed then,
[ulp = inf{[ulp: E C D, D open}. (5.32)
= sup{[ulr: F C E, F closed}. (5.33)

(ii) If E, F are two Borel sets then
e < [ulpne + [ulp\F, (5.34)
and

[u]slr = [[ulr]e = [ulrne. (5.35)

(iii) Let E, F,, n = 1,2,... be Borel sets and let u be a positive solution of (3.1). If either
C: J(EAF,) —0orkF,]|E thn
q7

[ulF, — [ulE.

Proof. The proof uses a similar argument as in [23].
(i) Let D = {D} be the family of sets in (5.32). By (5.28) (with respect to the family D)

: . : P > ‘ .
inf(u, Ug) mf(u’l%relfD Up) l%relfDmf(u’ Up) > 512%[1413 (5.36)

Obviously
[u]D1 A [U]D2 = [u]D1ﬂD27

thus we can apply Proposition 3.4 and obtain that the function v := inf pep[u]p is a solution of
(3.1). Hence (5.36) implies [u]g > v. The opposite inequality is obvious.

For the equality (5.33), Firstly, we note that the set {v € U (Qr) : v < wu, T4-supp (v) C? E}
is closed under V. Thus, by Proposition 3.4, there exists an increasing sequence {v,} such that
vp pe= 0 and lim,,_,o, v, = [u]p. Since v, is an increasing sequence by Proposition 5.23 we can
construct an increasing sequence {wy, } such that each w, vanishes on an open neighborhood B,,
of E, By, C Byy1 and lim,,_,o0 wy, = [u|g. Now set K,, = B¢, then

Letting n tend to infinity, we obtain the desired result.
(i) Let v € U (Qr), v < u and Tgsupp (v) C E. Let D and D’ be open sets such that
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ENF C D and E\F C D'. By Lemma 2.8-[19], there exists a unique solution v}, where

]’
ﬁ < j € N, of the problem

1
oru — Au + |u|q71u = 0, in RN x (=,T]
J

u(,l) = XD(.)U(.,E,) in RV,
J J
Also we consider v]2~ and vj? the unique solutions of the above problem with initial data x pr(x)v(z, %)
and X(p,up,)c. In view of the proof of Proposition 5.20 we can prove that v < v]l + vjz» + vg»’.
By standard arguments there exists a subsequence, say {v;}, i =1,2,3, such that 1);. — v" and
v < v! 4+ v? + v3. Since v vanishes outside of E, it vanishes outside of (D1 U Dy), consequently
v(z, %)XX(DluDQ)C — 0, as j — oo, which implies U? — 0. Thus we have

v <ot +0? < [ulp + [u]pr.
By (5.32) we have

v < [ulpne + [U]p\F,

since v € {w € U (Qr) : w < u, Tg-supp (w) C? E} is arbitrary the result follows in the case
where E is closed. In the general case the result follows by (5.33).
Put A= F and B = F. It follows directly from the definition that

[[U]A]B S inf(u, UA, UB).
The largest solution dominated by u and vanishing on A°U B€ is [u]4np. Thus

[[w]a]ls < [u]ans-

On the other hand
[ulang = [[ulanslp < [[ulals,
this proves (5.35).
(iii) By (5.34)
[ule < [ulp,nE + [Up\F,, [ulr, < [ulp,ne + [UlF\B-
If C% o (EAE,) — 0, then by Proposition (5.17)(c) we have that Upap, — 0. Since [u]p\p,, [u]p,\5 <

Ugar,, the result follows by the above inequalities, if we let n go to infinite.
If F,, | E. By Proposition (5.17)(c) we have Ug, — Ug, thus

[ulp < lim [u]p, = lim uAUp,
n—oo n—oo

< lim inf(u,Uf,) < inf(u, Ug).
n—oo

And since [u]g is the largest solution under inf(u, Ug) and the function v = lim,,_,[u]F, is a
solution of (3.1), we have that Ug < v, and the proof of (5.34) is complete. O
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Definition 5.25 Let i be a positive Radon measure on RY which vanishes on compact sets of

C: ,-capacity zero.
K

(aq) The %,-support of p, denoted T,-supp(p), is the intersection of all T,-closed sets F such
that p(F°¢) = 0.
(b) We say that u is concentrated on a Borel set E if u(E€) = 0.

Proposition 5.26 If i is a measure as in the previous definition then,

Ty-supp (1) ~7 Tq-supp (u,).

Proof. Put F' = supp?u,. By Proposition 5.19(iv) u, vanishes on F'“ and by Proposition 5.23(c)
there exists an increasing sequence of positive solutions u, such than each function u, vanishes
outside a closed subset F, say F,, and u, T u,. If S, := T4-supp (u,) then S,, C F, and {S,}
increases. Thus {S,,} is an increasing sequence of closed subsets of F' and, setting p, = KX3, »
we find u,, <u,, < u, so that u,, T u,. This, in turn, implies

oo
pn T, Tgsupp(p) €| ) Sn C P
n=1
If D is an open set and p(D) = 0 it is clear that u, vanishes on D. Therefore u,,, vanishes outside
of Sy, thus outside Ty-supp (1). Consequently u,, vanishes outside T -supp(p), i.e., F C? Ty
supp (k).
Second proof. The result follows by Proposition 5.7 and Definition 5.8 O

Definition 5.27 Let u be a positive solution and A a Borel set. Put
[u]t == sup{[u]p : F c? A, F q—closed}.

Definition 5.28 Let 8 > 0, u € C(Qr). For any Borel set A we denote by ué the positive
solution of

O — Av + |v|q_1v =0 in RN x (8,0)
v(,B8) = xa()u(,B) RV

Proposition 5.29 Let u be a positive solution of (3.1) and put E = Tg-supp (u).
(1) If D is a T,-open set such that E C9 D, then

D _ iy D
=1 = = u. 5.37
l” = lim b = fulp = (5.7
(i1) If A is a T4-open set, then
umy 0o u? = él_)Hb ug =0, V(@ Ty—open : Q i A. (5.38)
(iii) Finally,
ura 0s [u]t =0. (5.39)
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Proof. The proof is similar as in the one as in [23]
Case 1: E is closed. Since u vanishes in E€, it yields u € C(Qo U E€) and u = 0 on E°. If, in
addition, D is an open neighborhood of E, we have

lim | ¢(z)u(z,t)dz =0, Vo € Co(E°).

t—0 Ec

Thus,

lim ué)c =0.

B—0
Since

uf <u<uf +ug,  Vt>B,
it follows
= lim u?%. 5.40
u = lim ug (5.40)

If we assume that D is T,-open and F C? D then, for every ¢ > 0, there exists an open set O,
such that D C O, E C O and C2 ,(0;) < & where O, = O. \ D. Therefore
q?

uG® (w,t) — uf (,t) <o (x,t — B), Yt = B.
We note here that lim. o Uor (z,t—/) = 0 holds uniformly with respect to 3. Since limg_q ugf (x,t) =
u it follows that u = limg_, ué) . The same arguments shows that limg_,o ué) “ = 0. Thus we have

u = lim ug < [ulp <.
B5—0

Hence u = [u]p. By Lemma 2.7, there exists a T,-open set @ such that £ C?Q C @ C? D, then
u = [ulg < [uP. Hence u = [u]P.

In addition, there holds E C? A° C? Q°. Thus the direction "=" in (5.38) follows by the

previous argument if we replace D by Q°. For the opposite direction, by Proposition 2.38, for

~ OC

any & € A, there exists a T4-open set O such that Og C? A. Using (i) we infer u = limg_, uBE.

c

o
Finally, since uﬁ5 ~q, 0 for all > 0, it implies u ~p, 0 by Proposition 5.17(i), and the result
follows in this case by Proposition 5.19(iv).

Case 2. Assume E is Ty-closed. Let {E,} be a Ty-stratification of £ such that C2 ,(E\E,) — 0.
q K
If D is a T4-open such that &/ C? D then, by the first case we have,

tim (e, )5 = (il (5.41)

By (5.34) and the definition of ug, and since [u]p = u,

uf = ([Wp)§ < (Wens)f + (Wee) s = (We)f + (Wes), - (5.42)

Let {Br} be a decreasing sequence converging to 0 such that the following limits exist

T D T D .
w = kl;n;ouﬁk, Wy, = klingo ([U]E\En)gk , n=12 ...
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Then by (5.41) and (5.42),
[ulg, <w <[ug, +wn < [ulg, +Up\g,-
Further, by (5.33) and Proposition 5.20(c)
[ulg, = [u]g = u, Un\g, — 0.

Hence w = w. This implies (5.40), which in turn implies (5.37).
To verify (5.38) in the direction = we apply (5.42) with D replaced by Q. We obtain

([We)§ < (Wlp)§ + ([Wee,)s -

By the first case we have

li Q_ .
B%([U]En)ﬁ 0

There exists a decreasing sequence converging to 0, still denoted by {3}, such that the following
limits exist

. Q . Q —
klg)élouﬁk, khﬁrgO ([U]E\En)ﬁk , n=12,...
Then o
. Q .
klgr;o ug < klggo ([ p\s,) 5. = Ur\E,»

since Ug\ g, — 0 we obtain (5.38) in the direction = . The assertion in the opposite direction is
proved as in Case 1. This complete the proofs of (i) and (ii).
Finally we prove (iii). First assume that u ~4 0. If F' is a T -closed set such that F' C9 A,

then by Lemma 2.7 there exists a T,-open set T, such that F' C? @ C @ C? A. Therefore,
applying (5.37) to v := [u]r and using (5.38) we obtain

v = lim v < lim «€ = 0.
B—0 p B—0 p

By definition of [u]4, this implies [u]4 = 0. N
If [u]* = 0, then for any T,-open set Q@ C @ C? A there holds [u]g = 0.. Now since
Tg-supp (ug) C? @ we have for some subsequence 35 | 0, limy_,o ugk < [u]g = 0. Thus u =g 0

by (5.38). Applying once again Proposition 2.38 and Proposition 5.19(iv) we conclude u =4 0.
O

Definition 5.30 Let u, v € U (Qr) and let A be a T,-open set. We say that u = v on A if
u© v and v © u vanishes on A. This relation is denoted by u =4 v.

Proposition 5.31 Let u, v € U (Qr) and let A be a Ty-open set. Then,
(1)

~qv e li —w@=0. 5.43
UL Bg%lu vl (5.43)

for every %,-open set @ such that @ c? A.
(ii)

U KAV [U]F = [U]F, (5.44)
for every T,-closed set F' such that F' C? A.
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Proof. The proof is similar, but in a parabolic framework, to the elliptic one in [23].
By definition u /4 v is equivalent to u © v 4= 0 and v © u 4= 0. Hence, by (5.38) we have
wg = (uS v)g —50 0. Set fz = ((u— v)+)g and consider the problem
ow —Aw+|w|? = 0, in B;(0) x (B,00)
w = 0, on 0B;(0) x (8,00)
w(,p) = u, in B;(0).

Let w; and f; be solutions of the above problem, with initial data xg(u © v)(z, ) and xq(u —
v)4(x, B). By [19, Lemma 2.7, the sequences {w;} and {f;} are increasing. Also, we recall that
u © v is the smallest solution which dominates the subsolution (v — v)4, thus w; > v;, Vj € N.

Furthermore, in view of [19, Lemma 2.8|, there holds lim;_,o w; = wg and lim;_,o f; = f3.
Thus wg > fg, and letting 8 — 0 we derive

((u=0)+)§ = 0.

By the same argument we have
(v =u)p)§ =0,

this implies (5.43) in the direction =.
For the opposite direction, we consider the problem

w — Aw + |w|? = 0, in B;(0) x (8,00)
w = h, on 0B;(0) x (8,00)
w(.,f) = u, in B;(0).

Let @ C @ C? A be a T -open set and w; be the solution of the above problem, with h =
xq(lu —v]) and p = xglu — v|dz. Also, let f; be the solution of the above problem with
h = xge|u — v| and p = xQc|u — v|dz, then

lu —v| <wj + fj.

In view of [19, Lemma 2.8], there exist subsequences, say {w;} and {f;}, satisfying lim;_,.c w; =
w and lim;_,« f; = f, such that (w, f) solves the problem

o —Av+ [T = 0, in RY x (3, 00)
v(,8) = p in RV,

with initial data g = xglu — v|dr and p = xgec|u — v|dz respectively. By uniqueness of the
problem (see [19, Lemma 2.8]), we have w = |u — v|g2 and f = |u— v|gc. Let fBi be a decreasing
sequence such that the following limit exists

lim |u—o|%.
dn, v = s,

Since limg_,o |u — v|§ = 0, we have

|lu —v| < lim |u—v|§c.
k—o00 k
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Now since |u — vlg: ~q 0, by Proposition 5.17(i) we have limy_,o [u — vlg: ~qo= 0. Using the

fact that u © v is the smallest solution which dominates the subsolution (u — v)4, there holds
max{u S v, vou} < limy_, |ju — v]g: and the result follows in this case by Propositions 5.23
and 5.19(iv).

(ii) We assume that u ~4 v.

For any two positive solutions u, v we have

ut(v—u)y <v+u—-v)y <v+udw (5.45)
If F'is a T4 -closed set and @ a T4-open set such that F' C? @, we claim that
[ulp < [v]g + [u e v]g. (5.46)
To verify this inequality, we observe first that (see (5.34))
u = [ulew < [tlo + [ulg-
thus by (5.45)
[ulp < [ulpy <v+uO v <|lg+[vlge + [uS g + [u6 v]ge.

The subsolution w := ([u]r — ([v]g + [u S v]g))
[v]ge. By definition we have

4 is dominated by the supersolution [usv]ge +

w < [wly < [uevjge ® [vlge < [uSv]ge + [v]ge-

Thus [w]; =g 0. But w < [u]p which implies [w]; < [u]p, that is T-supp ([w]t) C? F C? Q.
Taking into account that [w]i ~g 0 we have that w = [w]{ = 0 and the proof of (5.46) is
completed.
If we choose a T -open set () such that F' C?Q C @ C? A (see Lemma 2.7), and using the fact
that u v m=a=0= [u©v]F =0 (see (5.39)) and (5.46), we infer

[ulr < [vlg-

Now by Lemma 2.8(I), we can construct a decreasing sequence {Q;} of open sets such that
NQ; ~? F, thus by Proposition 5.24(iii) we have
[u]p < lim [v]g, = [v]F.

n—oo

Similarly, [v]p < [u]F and hence the equality holds.
Next we assume that [u]p = [v]p for any T,-closed set F' C? A. If Q is a T,4-open set such

that FC1Q CQc? A (see Lemma 2.7), we have
uo v < ([ulg @ [ulge) © [vlg,
where in the last inequality we have used the fact that

u=[ulpy < [ulg + [ulge = u < [ulg @ [ulge < [u]q + [ulge
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1iince ([ulg @ [ulge) © ([v]g) is the smallest solution dominating (([ulg & [ulge) — [v]@)

4 we

([ul @ lulge) = Q) < (fulg + [ulge) — [vl), = [ulg + [ulge — [vlg = [ulqe,
since by assumption we have [u]g = [v]g. Thus we have
uevr <uov < |ulge,

This means Tg-supp ([u © v]r) C? F and [u© v]p ~¢ 0, which in turn implies [u © v]p = 0, and
by 5.39 ©u ©v = 4= 0. Similarly, v © u =4 0. 0

Corollary 5.32 If A is a T,-open set, the relation ~4 is an equivalence relation in Uy (Qr).

Proof. This is an immediate consequence of (5.43). O

6 The precise initial trace

6.1 The regular initial set

Lemma 6.1 Let u € U (Qr) and Q be a T,-open set. Then for any n € W%’QI(RN) N L2 (RN)
with T4-support in Q°, we have

T
/ / (u A UQ)(t, x)H? [n] L dxdt < co.
0o JrN

Proof. By Proposition 5.9 and the properties of Ug, there holds

I nd —
lim Qu/\UQ(QU,t)nJr (x)dx =0,

and the result follows by the estimates in Lemma 5.11. O

Proposition 6.2 Let u € U (Q1) and Q be a Ty-open set. We assume that uAUq is a moderate
solution with initial data p. Then for any § € Q) there exists a Ty-open set O¢ C Q such that

T
/ / ud(t, x)H> [XOe|+drdt < oc.
0 RN
Furthermore, for any n € W%’ql (RY) N L2(RY) with T,-support in Q, we have

lim u(m,t)niq/(x)dx:/nwdu.
t—0 Q Q
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2 /
Proof. Let n € Wa¥ (RN) N L>®(RY) with T -support in Q. Since niq is a quasi continuous
function we have by Lemma 5.7 that

lim [ uA UQ(:c,t)niq/ (x)dx = / 7 dp.
t—0 Q Q

Using the properties of Uge,
lim A Uge(z, )27 (z)dz = 0.
m [ u qe(z, t)n! (z)dx

Combining all above and using the fact that u <u A Ug +u A Uge we get

2¢ 3, = 1 2¢/ < 1 2¢/
/Qn du tgr(l)/Qu/\UQ(x,t)mr (x)dx < lim Qu(x,t)n+ (z)dx

< li 2 I c 2
< lim QuAUQ(x,t)n+ (x)dx + lim Qu/\UQ (z,t)ny! (x)dx

Q

In view of the proof of Lemma 5.2 and by 5.3 there holds
T
/ / (u A UQ)(t, 2)H? [n] L ddt < oo, (6.1)
0 RN

2
for any n € Wa T (RY) N L>®(RY) with T -support in Q. By Lemma 4.2, there exists n €

W%’q/(RN) N L®(RY) such that 0 < < 1,7 =1o0n O C Q and Tysupp (n) C Q. Thus we
have by (6.1) and the properties of 7,

T
/0 /RN (u A UQc)q(t,x)qu/ [xO,|dzdt < oo. (6.2)
U

2
Definition 6.3 (Section 10.1-[2]) Let Q be a Borel set. We denote W« (E€) the closure of
the space of C* functions (with respect the norm || - HW%’Q/) with compact support in E°.

Proposition 6.4 Let u be a positive solution of (3.1) and Q a bounded T,-open sets such that

/T/ ud(t, z)H> [xgldzdt < oo. (6.3)
0 JRN

(i) Then, there exists an increasing sequence of Tq-open set {Qn} satisfying Qn C Q, @n c1
Qn+i1 and Qo = Uy, Qn ~1 Q, such that the solution v, = u A Qy is moderate, v, T [u]g,

tr(vy,) = pg-
(ii) For any n € W%’QI(Q) we have

imy | et () = /Q 72 ()dig-

t—0
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Proof. We choose a point z € Q. Then by Lemma 4.2 there exist a T4-open set V, such that

2€V CV CQ,and a function ¢ € WE’QI(RN) such that ¢ =1 q.a.e. on V and ¢ = 0 outside
Q. By Lemma 2.38, there exists a Tj-open set z € O, C 0.cV.
We assert that the function
v, =uANUp, (6.4)

is a moderate solution.
Indeed, let Br(0) be a ball with radius R large enough such that @ CC Bgr(0). Also, let
0 <71 <1 be a smooth function with compact support in Bar(0) and 7 =1 on Br(0). Then the

function ¢ = (1 —¢)n € wad (RN) N L2°(RN) with compact support in Byg(0) \ V. Now

IN

T / T /
/ / vi(t, ) [bp)dxdt + / / vi(t, 2)H* [1 — o]dadt
0 RN 0 RN

T T
/O /R N vI(t, 2)H? [Y]dadt + /O /R N vI(t, 2)H? [¢)dedt < o,

T
//Ug(taw)qul[XBR(o)]dxdt
0o JrN

IN

where the first integral in the last inequality is finite by assumption and the second integral is
finite by Lemma 6.1. Thus since Bg(0) is arbitrary, the function u A O, is a moderate solution.

By the quasi-Lindeldff property there exists a non decreasing sequence of T,- open set {O), }
such that @ ~% UO,, and (by the above arguments) the solution u A Up,, is moderate for any
n € N. Now, by Lemma 2.8 (II)(i)-(ii), for any n € N, there exists an increasing sequence {4, ;}
of ¥ -open sets such that Zn,j c? Ay j+1 C1E, and U;)i1 Ap; ~1 B, Put

Qn = U Ak,j-
k+j=n
Then B ~ N
Qn C U A j 1 U Apjt1 = Qnt1.
k+j=n k+j=n
Hence,
Qo:=Jan~ Q.

Now, we will prove that v,, = u A Ug,, — u A Ug. By Proposition 5.24(ii) we have
uNUg <uNUq, +uiUgg,-
Since @ \ Qn 4 F' with C2 ,(F) = 0, we have by Proposition 5.24(iii) that
q7
u N UQ\Qn — 0.

The opposite inequality is obvious and the result follows in this assertion. By Lemma 5.24(ii)
Un, = [Un+k]Qn, Vk € N. Therefore

pn(@n) = tnrk(Qn) = pQ(Qn)- (6.5)
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(ii) First we assume that the function n € WQ’q (Q) has compact support in Q). Then by Lemma
4.3 there exists a function 7, such that Tg-supp () C Qk, and

(6.6)

=

=l 2, <

Wwa’

and |ng| < |n|. By Lebesgue’s dominated theorem, we can assume that n; satisfies

r : 1
| ey - nd dad <
0 RN

Also in view of Proposition 5.2 and (5.7)-(5.11),

T
tim [ e (@)do < Clallfu 0l o+ [ [ ut(t) Bl 2 o,
t—0 Q wa’ 0 RN

But by (6.5) and Lemma 6.2 we have

2ql 2%1, . 2ql 2iql
2 @dng )" = i ([ ue. i (2)da
Q —0\JQ
lim /u(x O (z)da Z
t—0 Q O

<
1 L
, 2 ! /
< lim (/ u(z,t) (n — )™ (x)dx> " 4 lim (/ u(z, t) ( )dﬂ:)
t—0 Q t—0 Q
S 1 1
2(1/ 2q’ L3 B
< ([ e @na) "+ Clln =il anfln =l

T , v
b ([ uncta ) ds)
0 RN
2 1 1 1\ 27
2q’ a - 2 -
(f e @na )™+ clilioem + (3)

The result follows in this case by letting & — oc.
For the general case, by theorem 10.1.1 in [2], there exists a function 7 with compact support
in @ such that

IN

1
=l 2.0 < 7 (67)

wWa’

and |nx| < |n|. The result follows as above. O
Remark. By Lemma 6.2 and (6.4), we have that the definition of the regular points in the elliptic
case (see [23]) coincides with our definition of the regular points.
Lemma 6.5 Let Q) be a T4-open set and u € U (Qr) satisfy (6.3). Then
i)

[ulg = sup{[ulr : F C?Q, F T,—closed}. (6.8)
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ii) For every Tq-open set O C O C% Q such that [u]o is a moderate solution we have

1oxg = tr'lulo) = tr([uglo)- (6.9)

Finally, pg is T4-locally finite on Q and o-finite on Q' := UQy,.
iii) If {wn } C UL (QT) is a nondecreasing sequence of moderate solutions such that Tq-supp(wy,) C?
Q and wy, 1 [ulg, then tr(wy,) = vy, T pg.

Proof. i) Let u* denote the right-hand side of (6.8). By Proposition 3.4 there exists a nonde-
creasing sequence {[u]r, } such that [u]r, 1T u*. We consider the function [u]g, of Proposition
6.4. Then by Proposition 5.24 we have

[, < [ulF.nQm + [UlF\Qm-

Now we note that F, \ Qp, is a Ty-closed set and N77_1 F, \ Qm = A with Cz ,(A) = 0. Thus by
q7

Proposition 5.19 we have that lim,, e Up,\q,, = 0 which implies lim, o0 [u] F\@m = 0. Thus
[u]p, < limu]g,, = ug. Letting n — oo we have u* < ug. By definition of u* we have that
ug < u*, thus u* = ug.

ii) Put po = tr(fulo). If F' is a Ty-closed set such that F' C? O , by Proposition 5.24-(ii)
we have
tr([ulr) = tr([[ulolr) = poxr- (6.10)

In particular the compatibility condition holds: if O’ C 0 c4 Q is T4-open set such that [u]or
is a moderate solution

HONO" = HOXGnGr = MO X5 (6.11)
With the notation of (6.5), [vn1k]g, = v and hence HntkX g, = Mk for every k € N.
Since [u]r is moderate, we have by (6.11)

[onlr = [ulprg, T ulF- (6.12)
In addition, [ug|r > limy,—co[vn]F = [u]F, jointly with ug < u, leads to,
[U]F = [UQ]F (6.13)
By (6.10) and (6.12), if F' is a T4-closed subset of R,(u) and [u]p is moderate,

tr([u]r) = Tim tr([va]p) = Hm pnxr = pr,XF, (6.14)

n—oo

which implies (6.9).

Since Q' :=UQ, ~? Q, pg is o-finite on Q. The assertion that ug is Ty-locally finite on Q
is a consequence of the fact that every point in ) is contained in a € -open set O C Oc Q
such that [u]p is a moderate solution (see (6.4)).
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ili) If w is a moderate solution and w < ug and Ty-supp (w) C? Q, then 7 := tr(w) < pg.
Indeed

[wlg, < [ulg, = vn, W, Tw= tr([w]g,) T7 < lim tr(v,) = .

Now, let {wy, } be an increasing sequence of moderate solutions such that F,, := Tg-supp (wy,) C?
Q@ and wy, T ug. We must show that, if v, := tr(w,), then

vi= nh_)rrgo Up = Q- (6.15)

By the previous argument v < ug. The opposite inequality is obtained as follows. Let D be
a Tg-open set such that [u]p is moderate. Also, let K be a compact subset of D such that
Cz q/ (K) > 0

q7

wy, < [wp]p + [wp]pe = ug = lim w, < lim [wy,]p + Upe.
n—oo n—oo

The sequence {[wy,]p} is dominated by the moderate solution [ug]p. In addition tr([w,]|p) =
vnXp T vXp- Hence, vx is a Radon measure which vanishes on sets with C'2 o -Capacity zero.
q7

Also, [wy]p T Uy s where Upy 5 18 @ moderate solution with initial trace vx . Consequently
ug = lim w, < Uy + Upe.

n—oo

This in turn implies
<[uQ]K — ul,X5>+ < inf(Upe,Uk),

the function on the left being a subsolution and the one on the right a supersolution. Therefore
(luglie = wny) | < [U)nelx = 0.

Thus, [ug|x < Uyy 5 and hence pgxr < vxp. Further, if O is a T;-open set such that OciD
then, in view of the fact that

sup{ugxk : K C O, K compact} = pugxo,

we obtain,
HQXo < VX - (6.16)

Applying this inequality to the sets @, Qm+1 we finally obtain

HQXQm S VX3, 1 S VXQmya:

Letting m — oo we conclude that pr, < v. This completes the proof of (6.15). U
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6.2 % -perfect measures

Definition 6.6 Let ;1 be a positive Borel measure on RY.
(i) We say that p is essentially absolutely continuous relative to C: o Uf the following
q7

condition holds:
If Q is a T4-open set and A is a Borel set such that C2 q,(A) =0 then
q7

@\ A) = (@)

This relation be denoted by
==y Cs q"
q7

(i1) p is regular relative to T,-topology if, for every Borel set E,

p(E) = inf{u(D): EC D, D%;—open}
= inf{u(K): K C E, K compact}. (6.17)

w is outer regular relative to T,-topology if the first equality in (6.17) holds.
(111) A positive Borel measure is called T ,-perfect if it is essentially absolutely continuous rel-

ative to C% g ond outer regular relative to Zq-topology. The space of T4-perfect Borel measures

is denoted by M, (RNY).

Proposition 6.7 If u € M, (RY) and A is a non-empty Borel set such that C o (A4) =0, then
q7

(6.18)

0 otherwise.

B { oo if p(Q\A) =00 VQ Ty-open neighborhood of A,

If po is an essentially absolutely continuous positive measure on RN and Q is $q4-open set such
that po(Q) < oo then pglg is absolutely continuous with respect to C: g 'n the strong
q7

sense, i.c., if {A,} is a sequence of Borel subsets of RN
C% g (An) = 0= po(Q N A,) — 0.
Let uo is an essentially absolutely continuous positive Borel measure on RY and denote
pu(E) =inf{uo(D): E C D, D %, -open}, (6.19)
for every Borel set E; then

(@) po<p po(Q) = @) VQ Ty-open,
(b) plo=rolg for every Ty-open set Q such that pp(Q) < oo. (6.20)

Finally p is T4-perfect; thus p is the smallest measure in ?mq(RN ) which dominates L.
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Proof. The first assertion follows immediately from the definition 2,(RY). We turn to the
second assertion. If y is an essentially absolutely continuous positive Borel measure on RY, and
@ is a T4-open set such that 119(Q) < oo then poxg is a bounded Borel measure which vanishes

on sets of C2 ,— capacity zero. If {A,} is a sequence of Borel sets such that C2 ,(A,) — 0
q’ q’

and L, = XQnA4,, then by Lemma 2.8-[19], there exists a unique moderate solution u,,,. Also in

view of Lemma 2.8-[19] we can prove that the sequence {u,, } is decreasing. Also by Proposition

5.17, we have w, < Ugna, — 0, since Cz ,(Q N Ap) — 0. Thus we have that w,, — 0 locally
q ’

uniformly and j, — 0 weakly with respect to Co(RY). Hence u(Q N A,) — 0. Thus polg is
absolutely continuous with respect to C'2 o 10 the strong sense.

Assertion (6.20)(a) follows from (6.15). It is clear that u, as defined by (6.19), is a measure.
Now if @ is T,-open set such that ;o(Q) < oo, then p(Q) < oo and both pp|g and plg are
regular. Since they agree on open sets, the regularity implies (6.20) (b).

If A is a Borel set such that 037 o (A) =0and Q is a T4-open set then @\ A is Tj-open and

consequently

Q) = po(Q) = no(Q\ A) = u(Q\ A).

Thus p is essentially absolutely continuous. By (6.20) (a) and the definition of i, we have that
pu is outer regular with respect to C2 ,. Thus p € M, (RY). O
q )

6.3 The initial trace on the regular set

Proposition 6.8 Let u € U, (Qr).
Q} There exists an increasing sequence of Tq-open sets {Qn} with the properties Qn C Rq(u),
Qn C? Quy1 and Ryp(u) := U2 Qn ~? R(u), such that the solution

v, = u A Ug, is moderate vn T VR, tr(vn) = pr,- (6.21)
(i)
vR, = sup{lulr : F C? Ry(u), F Ty—closed}. (6.22)

Thus vr, is o-moderate.

(iit) If [u]p is moderate and F' C? Ry(u), there exists a Ty-open set Q such that F C? Q, [u]g
is moderate solution and Q C Ry(u)

(iv) For every T,-open set Q, such that [u]g is a moderate solution, we have

1rXg = tr(lulg) = tr([vr,]Q)- (6.23)

Finally, pr, is Ty-locally finite on Rq(u) and o-finite on Rqo(u) := UQy.
(v) If {wy} is a sequence of moderate solutions such that wy, T ur, then,

pRr, = lm tr(wy,) := lm v,. (6.24)

n—o0 n—o0

(vi) The regularized measure AR, given by

Ar,(E) =inf{ug, (Q): ECQ, QT4-open, E Borel}, (6.25)
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is Tq-perfect.
(vii)
u %Rq (u) URq-
(viii) For every T,-closed set F' C9 Ry(u) :
[ulp = [vr,]F- (6.26)

If, in addition, pr,(F N K) < oo for any compact K C RV, then [u]r is moderate and

tr(fu]r) = pr,xF- (6.27)

(ix) If F' is a T4-closed set and Cqu,(F) > 0 then

pr,(FNK) < oo for any compact K C RY < [u]p is moderate. (6.28)

Proof. (i) For any z € R,(u) there exist a bounded T,-open set () C R,(u) such that

T
/ / ud(t, z)H> [xgldzdt < oo.
0 JrRN

The result follows by similar arguments as in Lemma 6.4. Also, we recall that for any
z € Ry(u) there exists a Ty-open set O, C Ry(u) such that

[u]o. (6.29)

is moderate.
Also we recall that v, = [vp4%]Q,, Vk € N and

1in(@Qn) = tntk(Qn) = iR, (Qn). (6.30)

(ii) The proof is same as the one of Lemma 6.5-a)

(iii) First we assume that F' is bounded. By definition and (6.29), every point in R,(u) possesses
a Tg-open neighborhood A such that [u]4 is moderate. Then by Proposition 2.9, for any ¢ > 0
there exists a T,-open set Q. such that C% ¢\ Qe) < € and [u]g. is moderate. Since F' is

bounded, we can assume that so is Q.. Let O be an open set containing F'\ Q. such that
q7

F.:=F\O.. (6.31)

Then F; is a T-closed set, F. C F, C2 q/(F \ F:) < 2e and F; C Q..
q7

Assertion 1. Let E be a T4-closed set, D a T,-open set such that [u]p is moderate and E C? D.
Then there exists a decreasing sequence of Tq-open sets {Gy} such that

E C9Gpi1 C Gnyr C1G, C9D, (6.32)
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and
[ulg, — [ulp in LY(K) for any compact K C Q. (6.33)

By Lemma 2.8 and Proposition 5.24-(iii), there exists a decreasing sequence of T -open sets
{G,} satisfying (6.32) and, in addition, such that [u]q, | [u]g locally uniformly in RY. Since
[u]g, < [u]p and the later is a moderate solution we obtain (6.33).

Now we assume that F' is T -closed set (possibly unbounded). Let z € F and B, =
B, (x); n € N. Set

E,= J(FnB,) .

1

where (F'N B,) 1 is the set in (6.31), if we replace F' by F'N B,, and € by 7. Also we assume
2m

without loss of generality that {F,} is an increasing sequence. Also set

ﬁc:

Qn = U in )
m=1
where Q” =(FNB ) . Also we may assume that the sequence of set {Q,} is increasing.

Therefore we have that E C E, Qp is T4-open, [u]g, is moderate and E,, C? @, and UE, =
E' ~4 F, since

Cz F\UE gz 2y FnB)\NUJE | + > Cz  (F N By)\ Er)
= k=1 j=1

k=n+1

1 1
< ot > o5 "neN.
k=n+1

Thus by Assertion 1, it is possible to choose a sequence of T,-open sets {V},} such that

E, Cc?V, C ‘7n 1 Qn; ||[U]Vn - [U]EnHLq(Bn(O))X(O,T] <27 (6-34)

We note here that since E,,, @, are bounded sets, the function [u]y;, [u]g, have compact
support with respect to variable ”z” in RV, thus we can take the norm in (6.34) in whole space
RN x (0, 7.

Because [u]p is moderate, there exists a Radon measure pup where pp = tr(ju]r). Moreover,
[u]p = [u]pr since F' ~? E’. Finally, we have by (5.35) and the fact that E,, C? F,

[u]g, = [uE.nr = [[UE,]F.

Using the above equality and the fact that [u]r is moderate, we have that tr([u|g,) = xE,1F-
Now since E,, T E' ~9 F, it implies that [u]g, 1 [u]r LI(K x [0,T]), for compact set K C RV,
Hence, we derive from by (6.34) that [u]y;, — [u]rp in LY(K x [0,7]) for each compact set
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K Cc RV,
Let {V},, } be a sequence such that

</1/ [ulv,,, — [U]F\qdmdt> T<ok (6.35)
0 JBy(0)

If Kis a compact set, there exist ky € N such that K C By(0), Yk > ko. Set W = ;2 V.,

then -
k=1

Thus we have

(/ / ] |qudt>; S i(/OT/KHU]VRk — [u]qud:cdt>
uly,, — [u]p|?dzdt ’
k= k0+1 By (0
(/ / |[u] ulv,, — F\qdmdt> +ki 9~k

=ko+1

IN

<

We recall that F' C? W and W is a T,-open set. Using the facts that [u]r is moderate, K is an
abstract compact domain and the above inequality, we obtain that [u]y is moderate. Thus by
Lemma 6.2 we have that W C R, (u).

(iv) Let @ be a T -open set and [u]g be a moderate solution, put pg = tr(fulg). If F is a
T4-closed set such that F' C? @) then, by Proposition 5.24-(ii),

trlu]p = tr([[ulq]r) = noxr. (6.37)
In particular the compatibility condition holds: if @, @’ are T,-open regular sets then
HQNQ" = HQXGng = HQ'Xong! (6.38)

With the notation of (i), [vp4k]Q, = vk and hence Hn+kX g, = Mk for every k € N.
Let F' be an arbitrary ¥,-closed regular subset of R,(u). Since [u]|r is moderate, we have by
(6.38)
[Un]F = [U]Fm@n 1 [u]p. (6.39)

In addition, [vg,]r > lim, soo[vn]rF = [u]F, jointly with vr, < u, leads to,
[ulp = [vr,]F- (6.40)
By (6.37) and (6.39), if F'is a T -closed subset of R,(u) and [u]p is moderate,

tr([u]F) = Tim tr([va]p) = lm pnxr = pr,XF, (6.41)

n—o0
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which implies (6.23).

Since Ry,0(u) has a regular decomposition, ur, is o-finite on Ry o(u). The assertion that ug,
is T4-locally finite on R4(u) is a consequence of the fact that every point £ € Ry(u) is contained
in a Tg-open set O¢ C Ry(u) such that [u]o, is moderate and thus pr,x0, < o0 .

(v) If w is a moderate solution and w < vg, and Tg-supp (w) C? Rq(u) then 7 := tr(w) < pg,.
Indeed

[wlg, < [vr,) = vn, [wlg, T w= tr(lwlg,) T < lim tr(u,) = jix,.

Now, let {wy, } be an increasing sequence of moderate solutions such that F,, := T -supp (w,) C?
Rq(u) and wy, T vr,. If v, := tr(wy), we have to prove that

v:= lim v, = ugR,. (6.42)

n—o0

By the previous argument v < ug,. The opposite inequality is obtained as follows. Let D be a
T4-open set, [u]p be moderate and let K be a compact subset of D such that C2 q,(K) > 0.
q7

wy, < [wp]|p + [wp|pe = vr, = lim w, < lim [w,]p + Upe.
n—oo n—oo

The sequence {[wy]p} is dominated by the moderate function [vg ]p. In addition tr([wy,]p) =
vnXp T VXp- Hence, vx 5 is a Radon measure which vanishes on sets with Cz o -Capacity zero.
q7

Also, [wy]p T Uy s s where the function Uyy 5 On the right is the moderate solution with initial
trace vy 5. Consequently

R =l n < g, + Upe

This in turn implies

<[qu]K - qu5>+ < inf(Upe, Uk).

Note that, in the previous relation, the function on the left being a subsolution and the one on
the right a supersolution, we obtain

(lomalx — ) < [Ulpelie = 0.

Thus, [vr,]x < Upy 5 and hence upx K < vxp. Further, if Q is a Tj-open set such that @ c?D
then, in view of the fact that

sup{ur, XK : K CQ, K compact} = pugr,xqQ

we obtain,
HRoXQ < VX - (6.43)
Applying this inequality to the sets @, Qm+1 we finally obtain

HRoXQm S VX3, 1 S VXQumyo-

Letting m — oo we conclude that pugr, < v. This completes the proof of (6.42) and of assertion

(v)-
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(vi) The measure p, is essentially absolutely continuous relative to C 2,q Clearly this assertion
follows now from Proposition 6.7.
(vii) By (5.34)
u < [ulg, +[ulqs-
Now since Q7 is Ty-closed and QF, | R z(u), we have by Proposition 5.24-(iii) that

o(u
[ulg 4 [ulre  (w)-

Hence

Jim (v —[ulg,) = u —vr, < [ulr: W),

therefore u © vg, ®g, () 0. Since vg, < u this is equivalent to the statement u ~r_ ) VR,
(viii) (6.26) follows by the previous statement. Now we assume that ug, (F)xx < oo for any

compact K C RY. Now set F, = F N Q,. By (5.34).
[ulp <[ulp, +[ulp\p, = lWE, + [Ulpg, <[ulr, +[umng,

Now since F'\ @ is a Tg-closed set and NF'\ @, = G with C2 ,(G) = 0, we have by Propo-
q7

sition 5.24-(iii) that [u]p\g, — [u]le = 0. Hence [u]p = lim,,,o0[u]F,, and tr([u]r,) = pr,xF, T
HR,XFy = IR XF- Since urxr is a Radon measure essentially absolutely continuous relative to
C2 ., [u]p is moderate and (6.27) holds.

q7

(ix) If pr, (F)xx < oo for any compact K C RY then, by (viii), [u]r is moderate. Conversely,
if [u]p is moderate, by (6.23), ur,(F)xx < oo for any compact K C RY. O

Example. We give below an example which shows that there exists u € Uy (Qr) such that

Rqy(u) = RY but u is not a moderate solution. Let 7 : [0,00) — [0,00) be a smooth function

such that n(r) > 0 for any » > 0 and lim,_,g+ n(r) = 0, (1 tends to 0 very fast, for example
1

n(r) =e +%). Let K be the close set
K ={(,xn) € RV : || < n(xp), zn > 0},

Then K is thin at the origin 0.
Set f(z) = - if z € K and f = 0 otherwise. We define the measure

)
w= fdx.

This measure possesses the following properties:

1. p is T4-locally finite.

2. u(Qn) < 0o where Q,, = Ba,(0) \ B1(0) and UQ,, ~7 RN

3. u(F) =0 for any F such that Cg7q/€F) =0.

4. There exists a non decreasing sec(fuence of bounded Radon measures u,, absolutely continuous
with C%’ ¢ such that

(a) Tg-supp (tn) C Quny pn(A) = pntr(A) for any A C Qp and any n, k € N.

(b) limy, 00 pin = 1

5. We can construct a solution u € Uy (Qr) with respect to this measure.

As we see later this solution is unique since it is o-moderate (see Proposition 6.12).
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Lemma 6.9 Let ;1 satisfying the conditions 1-4 as above. Then there exists an open set Ry ~9
RN such that the measure p is a Radon measure in R,.

Proof. We consider the ball Br(0) with R > 1. From [23, Lemma 2.5] there exists a sequence
of open sets {O 1 }77_; and n(m) € N such that C2 ,(01) < L and
m q7

Br(0)\ 01 © U @ (6.44)

Now since O 1 is open we have
m

C2 (01)=C:, q,(éi U@% Ney (0))) < C

2
ayq m

(01)<cC2 ,(01) =0,

2

67 q m q m
where e, (O) is the set of thin points of O.

Thus if € Br(0) \ Noo_; O there exist 7 > 0 small enough and N € N such that

N
B,(z) C Br(0)\ (] O
m=1

3=

Thus by the properties of p and (6.44) we have
(B (2)) < oc.

We define
Ry :={z € R : 37 > 0such that u(B,(z)) < oo}

Then the set R, is open and by the above argument, letting R go to infinity, we have that
Ry ~1 RY. Also by the definition of Ry, it is easy to see that p(K) < oo for any compact
K C R, and by the properties of u we can prove that u is Radon measure in R,. O

6.4 The precise initial trace

We are now in condition to define the precise initial trace.

Definition 6.10 Let ¢ > 1+ % and u € Uy (Qr).

a: The solution vg, defined by (6.22) is called regular component of u and will be denoted
by Upeg-

b: Let {v,} be an increasing sequence of moderate solutions satisfying condition (6.21) and put
HR, = HR,(w) := limy_so0 tr(vn). Then, the regularized measure fig, , defined by (6.25), is called
the regular initial trace of u. It will be denoted by trr, (u).

c: The couple (trg,(u),Sy(u)) is called the precise initial trace of u and will be denoted by
tré(u).

d: Let v be the Borel measure on RY given by

:{@WNWW)ﬁECmWL

V(E) =oc if ENS,(u) #0, (6.45)

for every Borel set E. Then v is the measure representation of the precise trace of u, to be
denoted by tr(u).
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Note that, by Proposition 6.8-(v), the measure ur, is independent of the choice of the sequence
{vn}.

Theorem 6.11 Assume that v € U (Qr) is a o-moderate solution, i.e., there exists an in-
creasing sequence {u,} of positive moderate solutions such that u,, 1T u. Let p, = lim, o tr(u,),
o = limy,_, o iy, and set, for any Borel set E,

p(E) =inf{po(Q): ECQ, Q Ty-open}. (6.46)

Then:

(i) p is the precise initial trace of u and p is Ty-perfect. In particular p is independent of the
sequence {uy} which appears in its definition.

(i) If A is a Borel set such that p(A) < oo, then u(A) = po(A).

(111) A solution u € UL (Qr) is o-moderate if and only if

u =sup{v € Uy (Qr) : v moderate, v < u}, (6.47)
which is equivalent to
—2.4mN b (N
u=sup{u, €U (Qr): TEW <URY)NM(RY), 7 <tr(u)}. (6.48)
() If u, w are o-moderate solutions,

tr(w) < tr(u) & w < u. (6.49)

Proof. The proof is an adaptation of the one in [23].
(i) Let @ be a Ty-open set and A a Borel set such that C2 ,(A) = 0. Then u,(A) = 0 so that
q7

po(A) = 0. Thus pyo is essentially absolutely continuous and, by Proposition 6.7, u is T -perfect.
Let {D,} be the family of T -open sets as in Proposition 6.8-(i). Put D], = R4(u) \ D, and
observe that D;, | E' where C: ,(E) = 0. Therefore, for fixed n,
q7

Upinx 40 when m — oo.

Thus there exist a subsequence, say {D)],}, such that

T 7
/ / Uy 1Tdzdt | <277
0 n(0) "

,U'n(Rq(u)) = UnXD, + HUn XDy,

Since,

it follows that
=0.

< lim u
— nooo  HnXDY

nhjgo Upnxrgu) ~ UnXDp

Thus
Up < Uiin XDy, + [U]Sq(u)'
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Hence

u— [u]s, () Sw:= lim u

= lim u < Upeg.
n—00 HnXDp — 779

BnXRg(u) — 0

This implies u © [u]s,(4) < Ureg- For the opposite inequality, by Proposition 6.8-(iv) we get
[U]Dn ) Ureg-

But by (5.46) and using the facts that D, C? Dy C Dpqq CY Ry(u), C% ¢ <5n+1 N Sq(u)) =
0,

[u]Dn < [[U]Sq(u)]Dn+1 + [u S/ [u]Sq(u)]Dn+1 = [u © [u]Sq(u)]Dn+1 Suo [U]Sq(u)'
Letting n — oo we derive teq < uS|ul Sqlu)- Therefore limy, o0 Uy, p, = Ureg- Thus the sequence
{up, v Dn} satisfies condition (6.21) and consequently, by Proposition 6.8-(iv) and Definition 6.10,

Mm pxp, = pr,,  trr,(w) =g, (6.50)

Next, we claim that, if £ € S,(u) then, for every T,-open bounded neighborhood @ of § 11, (Q) —

2 /
oo. Indeed let n € W (RV) N L°(RY) with T,-support in Q. Put h = Hp| and ¢(r) = riq .
Then by Proposition 5.7, Lemma 5.3 and in view of the proof of Lemma 5.2 we have

/OT /R (—un(@ip(h) + Ag(h))) + uho(h)dudr + /

RN

wnd(0)(T)do = [ o dp.
Q

In view of Lemma 5.2, we can prove

T
[ totidsar < c ([ a4 12y , 4+l
0 JRN Q wa

2 7
By Lemma 4.2 there exist n € W% (RV) N L®(RY) and a T,-open set D C Q such that n =1
on D, n =0 outside of @ and 0 < 7 < 1. Letting n — oo we have

n—oo n—oo

T
im [ [ s [XD]dxdecm)(nm [+ ,+unum),
0 RN Q wa?

the assertion follows by Lemma 5.4.

In conclusion, if £ € S;(u) then ,uo(@) = oo for every T, -open neighborhood of §. Conse-
quently p(€) = oo. This fact and (6.50) imply that p is the precise trace of w.
(ii) If u(A) < oo then A is contained in a T -open set D such that po(D) < oo and, by Propo-
sition 6.7, u(A) = po(A).
(iii) Let u € Uy (Qr) be o-moderate and put

u* :=sup{v : v moderate, v < u}. (6.51)
By its definition ©* < u. On the other hand, since there exists an increasing sequence of moderate
solutions {u,} converging to u, it follows that v < u*. Thus u = u*.

Conversely, if v € U (Qr) and u = u* then by proposition 3.4, there exists an increasing
sequence of moderate solutions {u,} converging to u. Therefore u is o-moderate.
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Since u is o-moderate there exist an increasing sequence of moderate solutions {u,} con-
verging to u. In view of the discussion at the beginning of subsection 5.1, for any u,, there exist

2
an increasing sequence of {wy,} such that w,, T u, and tr(w,) € W~ 4RY) 0% (RY). Thus

up <sup{u,: 7€ W_g’q(]RN) N (RY), 7 <tr(u)} =: .

Letting n — oo, we have u < uf.

On the other hand, if w is o-moderate, 7 € ng’q(RN) N9t (RY) and 7 < tr(u) then
(with p, and u, as in the statement of the Proposition), tr(u, © uy,) = (7 — pn)+ | 0. Hence,
Uy © up | 0, which implies, u, < u. Therefore ut < u. Thus (6.47) implies (6.48) and each of
them that w is o-moderate. Therefore the two statements are equivalent.

(iv) The assertion = is a consequence of (6.48). To verify the assertion < it is sufficient to show
that if w is moderate, u is o-moderate and w < wu, then tr(w) < u. Let {u,} be an increasing
sequence of positive moderate solutions converging to uw. Then u, V w < uw and consequently
up < up Vw T u. Therefore tr(u, Vw) 1 p < tr(u) so that tr(w) < tr(u). O

Theorem 6.12 Let u € U (Qr) and put v = tr(u).
(i) Ureg is o-moderate and tr(upey) = trr, (u).

(i) If v € Uy (Qr)
v <wu=tr(v) <tr(u). (6.52)

If Fis a T4-closed set, then
tr([ulr) < vxp. (6.53)

(iii) A singular point can be characterized in terms of the measure v as follows:

£eS(u) & rv(Q) = VQ: £ €Q, QT,-open. (6.54)

() If Q is a T4-open set then:

[u]g is moderate <« I Borelset A: C2 _,(A) =0, v(KnN Q\ A) < o0, (6.55)

24

for any compact K C RV,
(v) The singular set of u,eq may not be empty. In fact

e~ —

Sq(u) \ bg(Sg(u)) C Sg(treg) C Sy(u) NRy(u), (6.56)
where by(Sy(u)) is the set of Ca_,-thick points of Sg(u).
(vi) Put q
Spo(u) :={6eRY . v(Q\S,(u)) =00 VQ T,-open neighborhood of £}. (6.57)
Then,
Sy(ttreg) \ bg(Sq(w)) C Sg0(tt) C Sy(tireg) | ) bg(Sy(u)). (6.58)
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Remark. This results extends Proposition 6.8 which deals with the regular initial trace.

Proof. (i) By proposition 6.8-(ii) ¢4 is o-moderate. The second part of the statement follows
from Definition 6.10 and Proposition 6.11-(i).

(ii) If v < w then Ry(u) C Ry(v) and by definition v.eq < upeyg. By Proposition 6.11-(iv)
tr(vreg) < tr(ureq) and consequently tr(v) < tr(u). Inequality (6.53) is an immediate consequence
of (6.52).

(iii) If £ € Ry(u) there exists a T4-open neighborhood @ of ¢ such that [u]g is moderate. Hence
v(Q) = trr, (u)(Q) < oo. If £ € §y(u), it follows immediately from the definition of precise trace
that v(Q) = oo for every T -open neighborhood @ of &.

(iv) If [u]g is moderate then @ C R,(u). Proposition 6.8-(ix) implies (6.55) in the direction =.
On the other hand,

v(KnN Q \ A) < o0, ¥V compact K ¢ RN = Q ¢ Ry(u),

and pg, (K N @) = pr, (KN Q \ A) < oo. Hence, by Proposition 6.8-(ix), [u]g is moderate.
(v) Since Tg-supp (ureg) C Rq(u) and Ry(u) C Ry(treg) we have

Sy(treg) C Sq(u) N Rq(u).
Next we show that Sg(u) \ bg(Sy(u)) C Sg(treg)-
If £ € Sy(u) \ bg(Sy(w)) then Ry(u) U {&} is a Ty-open neighborhood of &. By (i) treq is
o-moderate and consequently (by Proposition 6.11-(i)) its trace is T -perfect. Therefore, if Qg
is a bounded ¥;-open neighborhood of ¢ and @ = Qo N ({£{} UR,(u)) then

tr(treg) (Q) = tr(ureg) (@ \ {€}) = tr(u)(Q \ {£}),

where in the last equality we have used the fact that Q \ {{} C R4(u). Let D be a T-open set
such that £ € D ¢ D € Q. If tr(u)(D \ {£}) < oo then, by (iv), [u]p is moderate and & € Ry(u),
contrary to our assumption. Therefore tr(u)(D \ {£}) = oo so that tr(ureg)(Qo \ {€}) = oo for
every Tg-open bounded neighborhood Qg of &, which implies £ € Sy(ureg). This completes the
proof of (6.56).

(vi) If € ¢ by(Sy(u)), there exists a T,-open neighborhood D of € such that (D \ {€})NSy(u) =0

and consequently

tr(treg) (D \ {€}) = tr(treg) (D \ Sg(u)) = tr(u)(D\ Sg(w))- (6.59)
If, in addition £ € S;0(u) then

() (D \ 8,(u)) = tr{treg) (D \ S,(w) = oc.

If @ is an arbitrary T,-open neighborhood of £ then the same holds if D is replaced by @ N D.
Therefore tr(ureq)(Q \ {{}) = oo for any such Q. Consequently & € Sy(ureg), which proves that
Sq.0(u) \ bg(Sq(u)) C Sq(treg)-

On the other hand, if £ € S;(ureg) \ bg(Sy(u)) then there exists a T,-open neighborhood D
such that (6.59) holds and tr(uyeq)(D) = 00. Since uyeq is o-moderate, tr(ureq) is Ty-perfect
so that tr(ureg)(D) = tr(ureg)(D \ {£{}) = oo. Consequently, by (6.59), tr(u)(D \ Sg(u)) = oo.
If @ is any T, -open neighborhood of {{} then D can be replaced by D N Q. Consequently
tru(Q \ Sy(u)) = oo and we conclude that £ € S, o(u). This completes the proof of (6.58). O
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Proposition 6.13 Let F' be a T4-closed set. Then Sy(Urp) = by(F).

Proof. Let € € RN such that F is C2 o~ thin at & Let @ be a T -open neighborhood of ¢ such
q b

that Q C? F°. Then [Ur]qg = Upng = 0- Therefore § € Ry(Up).
Conversely, assume that £ € F N'R,(Ur), thus there exists a T,-open neighborhood @ of £

such that [Ur]q is moderate. But [Up]g = Uj,,5 which implies C q/(Fﬂ@) =0and Q C R(u).
q7

Now, note that C%,q/(F) < C%,q/(F nNQ)+ C%’ o (Q°). Thus F is To-thin at £ O

6.5 The initial value problem

The following notations will be used in the sequel.

Notation 6.14 a: We denote by I (RY) the space of positive outer reqular Borel measure on
RV,

b: We denote by C,(RY) the space of couples (1, F) such that F is T,-closed, T € 9, (RY),
Ty-supp (1) C Fe and TXFe 15 Ty4-locally finite.

c: We denote by T : Co(RY) — 9, (RY) the mapping given by v = T(r, F) where v is defined
as in (6.45) with Rq(u), Sq(u) replaced by F, F¢ respectively. In this setting v is the measure
representation of the couple (1, F).

d: If (1, F) € Cy(RY) the set
E,={¢cRY: 7(Q\F) =00 VYQ T,-open neighborhood of ¢} (6.60)
is called the set of explosion points of T.

Remark. Note that F; C F' (because Txpe is T -locally finite) and F; C Fe (because T vanishes
outside this set). Thus
F, Cby(F°)NF. (6.61)

Proposition 6.15 Let v be a positive Borel measure on RY.
(i) The initial value problem

O — Au+ [Tt =0, u>0in Qs =RY x (0,T), tr(u)=vinRY x {0}. (6.62)

possesses a solution if and only if v € M, (RY).
(i) Let (1, F) € Co(RN) and put v := T(r, F). Then v € M (RY) if and only if

TEMRY),  F=by(F)|JFr. (6.63)

(iii) Let v € My(RY) and denote

&, {E : E %¥4-quasi-closed, v(E N K) < oo, V compact K C RN}
D, = {D: D T -open,D ~9 E for some E € £,}. (6.64)
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Then a solution of (6.62) is given by u = v ® Up where

G:= UD, F:=G° wv:=sup{u,xp: E€&}. (6.65)
Dy

Note that if E € &, then vx g is locally bounded Borel measure which does not charge sets of

C% g -capacity zero. Recall that if p is a positive measure possessing these properties, then u,

denotes the moderate solution with initial trace p.
(iv) The solution v = v & Up is o-moderate and it is the unique solution of problem (6.62) in
the class of o-moderate solutions. Furthermore, u is the largest solution of the problem.

Proof. The proof is similar to the one in [23].

(A) If uwelUi(Qr)
tr(u) = v = v € My(RY). (6.66)

By Proposition 6.8, uyeg is o-moderate and u &g, (y) Ureg- Therefore
(U)X R, (u) = 1 (Ureg) X R, (u)-
By Proposition 6.11, fig, = tr(urey) € M, (RY). If v is defined as in (6.65) then
v=sup{[ulp: F Tyclosed F' CT Ry(u)} = treg, (6.67)

where the second equality holds by definition. Indeed, by Theorem 6.12, for every T ,-open set
Q, [u]g is moderate if and only if v(K N Q\ A) < oo for some set A with capacity zero and
for any compact K subset of RY. This means that [u]q is moderate if and only if there exists
E € &, such that @ ~% F. When this is the case,

tr(fulQ) = ur,(W)xg = pr,(W)XxE = VXE-

Thus v > Upeq. On the other hand, if £ € £,, then E c4 Rq(u) and pg, (u)(KﬂE) = pR, (u) (KN
E) < oo for any compact K subset of RY. Therefore by Proposition 6.8-(ix), Eis regular, i.e,
there exist a T4-open regular set @ such that E C? Q. Hence u,y, < [u]g and we conclude that
v < Upeg. This proves (6.67). In addition, if ENS,(u) # 0 then v(E) = oo, by Definition 6.10.
Therefore v is outer regular with respect to T -topology.

Next we must prove that v is essentially absolutely continuous. Let @ be a T,-open set and
A a non-empty Ty-closed subset of @ such that Cz ,(A) = 0. Either v(Q \ A) = oo, in which
q7

case v(Q \ A) = v(Q), or v(Q \ A) < oo, in which case Q@ \ A C R,4(u) and
v(@Q\ A) =g, (Q\ A) = Tig,(Q) < 0.

Let £ € A let D be a T-open subset of  such that £ € D C D ct Q. Let B, be a T,-open
neighborhood of AN D such that C: ,(By) <27" and B, C? D. Then
q7

[ulp < [ulg, + [ulp,,  En=D\ By.
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Since lim,, o0 [u]p, = 0 it follows that [u]p = [u|g, . Now since E,, C Rq(u), v(E,) < v(Q\A) <
0o, we have by definition of v and Proposition 6.8-(ix) that [u]|g, is moderate. Also in view of
Lemma 2.8 and Lemma 2.7(ii)-[19], we have for some positive constant C

/T/ [u]f, dedt < Cv(E,) < Cv(Q\ A) < oo,
0o JK

for any compact K C RY. Therefore
T
ulhdrdt < oo vV K ¢ RY, K compact.
[ ]D ) p
0 K

which implies that [u]p is moderate and thus D C R,(u). Since every point A has a neighborhood
D as above we conclude that A C Ry(u) and hence v(A) = trr(u)(A) = 0. If A is any a non-

empty Borel subset of @ such that C2 ,(A) = 0, by inequality C2 ,(A4) C cC2 ,(A), we have
q’ q’ q’

that v is absolutely continuous and v € M, (RY).

Secondly we prove:
(B) Suppose that (1,F) € Cy(RYN) satisfies (6.63) and put v = T(r,F). Then the solution
u=v@Up, withv as in (6.65), satisfies tr(u) = v.

By (6.66), this also implies that v € M, (RY).

Clearly v is a o-moderate solution. The fact that 7 is T4 -locally finite in F'° and essentially
absolutely continuous relative to C' 2 g implies that

G:=F°CRy(v), tr(v)xe=r"c. (6.68)

It follows from the definition of v that F, C S,(v). Hence, by Proposition 6.13 and (6.56) we

have
F =by(F)| JF- € S(0) | JS,(Ur) C Sy(u) C F. (6.69)

Thus, Sg(u) = F, v = tpeg and 7 = tr(tpeg). Thus tr(u) = (7,F) which is equivalent to
tr(u) = v.

Next we show: (C) Suppose that (1,F) € Cy(RN) and that there exists a solution u such
that tr(u) = (1, F). Then

T = trr, (u) = tr(upeg), F = Sy(u). (6.70)

If U := Upeg ® Up then tr(U) = tr(u) and u < U. U is the unique o-moderate solution of
(6.62) and (1, F) satisfies condition (6.63). Assertion (6.70) follows by Proposition 6.8-(i) and
Definition 6.10. Since u,¢, is o-moderate, it follows, by Theorem 6.11, that 7 € M, (RY).

By Proposition 6.8 (vi), u &g, (u) Ureg- Therefore w := u © ey vanishes on Ry (u) so that
w < Up. Note that u — 1,y < w and therefore

U< Upeg Dw <UL (6.71)
By their definitions S, 0(u) = F and by Theorem 6.12 (vi) and Proposition 6.13,
Sq(U) = Sq(ureg) USq(UF) = Sg(Ureg) U be(Ur)
= Sgo(w) | Jog(Ur) = Fr | Jbg(UF). (6.72)
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On the other hand, Rq(U) D Ry(ur,) = Rq(u) and, as u < U, Ry(U) C Rq(u). Hence Ry (U) =
Ry(u) and S¢(U) = Sy(u). Therefore, by (6.70) and (6.72), F = Sy(U) = F; U by(Ur). Thus
(1, F) satisfies (6.63) and tr°(U) = (7, F'). The fact that U is the maximal solution with this
trace follows from (6.71).

The solution U is o-moderate because both u,., and U are o-moderate solutions (concerning
Ur, see Proposition 5.21).

The uniqueness of the solution in the class of o-moderate solutions follows from Proposition
6.11-(iv).

Finally we prove:

(D) If v € M (RY) then the couple (1, F) defined by
vi=supluyxe: E €&}, 1:=tr(v), F=Ry0v), (6.73)

satisfies (6.63). This is the unique couple in Cy(RN) satisfying v = T(r, F). The solution v is
o-moderate so that 7 € M, (RY).

We claim that u := v @ U is a solution with initial trace tr¢(u) = (7, F'). Indeed u > v so
that Ry(u) C Ry(v). On the other hand since 7 is T4-locally finite in R, (v) = F¢, it follows that
Sy(u) C F. Thus R4(v) C Rq(u) and we conclude that Ry(u) = Rq(v) and F = S;(u). This also
implies that v = Uyg.

Finally

Sq(u) = Sq(v) U be(Sq(Ur)) = by(F) U Fr,

so that F satisfies (6.63).

The fact that, for v € 9, (RY), the couple (7, F) defined by (6.73) is the only one in C,(R")
satisfying v = T(r, F') follows immediately from the definition of these spaces.

At end, statements A-D imply (i)-(iv). O

Remark. If v € M (RY) then G and v as defined by (6.65) have the following alternative
representation:

G=JE=JQ v:=swluxe: Qe F}, (6.74)
&y Fu
& ={Q: E T,open, v(QNK) < oo, Vcompact K C RN}. (6.75)

To verify this remark we first observe that Lemma 2.8 implies that if A is a T;-open set then
there exists an increasing sequence of T,-quasi closed sets {E,,} such that A = U2 | E,,. In fact,
in the notation of Lemma 2.8 (II)(i)-(ii), we may choose E,, = F,, \ L where L = A"\ A, is a set
of capacity zero.

Therefore

UpcleclJE=H
D, Fu &y

On the other hand, if £ € £, then pg, (u)(K N E) = pr,(W)(KNE)=v(KNE) < oo, for any

compact K C RY. By Proposition 6.8-(ix), E is regular, i.e., there exists a T,-open regular set
Q such that £ C? Q. Thus H = {Jp D.
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If D is a T4-open regular set then D = U | E,,, where {E,,} is an increasing sequence of
T 4-quasi closed sets. We infer

Upyyp = nh_)rrgo Upxp, -

Therefore

Sup{u,,XQ :QeD,} < sup{u,,XQ Qe F,}< Sup{u,,XQ QEE}
On the other hand, if F € &,, there exists a T -open regular set ) such that & C? (). Conse-
quently the equality follows.
7 The equation dyu — Au+ Vu=0

Let 0 < T <00, Qr :=RY x (0,T), C >0and V : Qr — [0,00) be a Borel function satisfying

0<V(z,t) < V(z,t) € Qr. (7.1)

In this section we prove a general representation theorem for positive solutions of
Ou—Au+Vu=0 in Qr. (7.2)

7.1 Preliminaries

We recall that M(RY) is the set of Radon measures on RY and 9, (RY) its positive cone.

Definition 7.1 Let € M(RY). We say that u is a weak solution of problem

ou—Au+Vu=0 in Qr

u(.,0) = p in RN, (73)

ifue L (Qp), Vue L} (Qr) and there holds

loc
— ¢y — A¢)dxd Vuddedt — L0)dy, 7.4
[ [ o sy [ [ vugasar= [ ooy (74)
for all ¢ € X(Qr), where

X(Qr) = {0 € Ce(RY x [0,T)), ¢+ Ad € Li5.(Qr)}-

Remark. The definition implies that for any ¢ € C2(RY), the function t — [ ((z)u(z,t)dz can
be extended by continuity on [0,7] as a continuous function and

lim (x)u(x,t)de = Cdp. (7.5)

t—=0 JpN RN

Therefore [Ju(.,?)[| () remains uniformly bounded on (0, T’) for any bounded open set {2 C RN,
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Lemma 7.2 Let i € 9, (RY) and assume that there exists a positive weak solution u of problem
(7.3) where V' satisfies (7.1). Then for any smooth bounded domain §) there ezists a unique
positive weak solution v of problem

ov—Av+Vv=0 in Q% =Qx (0,T)
v=0 on 9,Q% =0Q x (0,7T) (7.6)
v(.,0) = xap in Q,

where xq is the characteristic function on Q0 and there holds v < u in Q x (0,T).

Proof. Let {t;} be a decreasing sequence converging to 0, such that ¢; < T for all j € N. We
consider the following problem

v —Av+Vov=0 in Qx(t;,T)
v=0 on 9Q x (t;,T)
v(.,t) =u(., t;) in Q.

Since u(.,t;) € L'(Q) and 0 < V € L>®(Q x (t;,T]), there exists a unique positive weak solution
v; of the above problem, smaller than the solution H®[u(., #;)xq], where H is the heat operator
in Q¥ := Q x (0,00) with zero boundary condition furthermore v; < u in Q x (¢;,T) for all
j € N. By standard parabolic estimates we may assume that the sequence {v;} converges

locally uniformly in € x (0,7] to a nonnegative function v smaller than u. If ¢ € Cl’l?l(Q_,?«)
vanishes on 3162% and satisfies ¢(x,T") = 0, the following identity holds

T T
/tj /ij(—¢t—A¢)dxdt—|—/tj /Qijquxdt—i—/Q ¢($aT—tj)u($,T—tj)d$Z/QQS(x,O)u(x,tj)dx,

where, in the above equality, we have take as test function ¢(.,.—t;). It follows by the dominated
convergence theorem, that v is a weak solution of problem (7.6). g

Lemma 7.3 Assume (7.1) holds and let u be a positive weak solution of problem (7.4) with
€ ML (RN). Then for any (x,t) € RN x (0,7T], we have

lim ugp =u
R—o0 ’

where {ur} is the increasing sequence of the weak solutions of the problem (7.6) with @ = Br(0).
Moreover, the convergence is uniform in any compact subset of RN x (0,T].

Proof. By the maximum principle (see [19, Remark 2.5]),
UR S UR S U

for all 0 < R < R’. Thus ugp — w < u. Also by standard parabolic estimates, this convergence
is locally uniformly. Now by dominated convergence theorem, we have that w is a weak solution
of problem (7.3) with initial data u. We set w = v —w > 0. Then w satisfies in the weak sense

W —Aw+Vw = 0 in RYx(0,7),
w(z,t) > 0 in RN x(0,T)
w(z,0) = 0  in RY.
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Since w satisfies in the weak sense

w—Aw < 0 inRY x(0,7),
w(z,t) > 0 in RY x (0,7),
w(z,0) = 0 inRY,

We extend w by 0 for ¢ < 0, with the same notation and set w,, := w * J., where {J } is a
sequence of mollifiers in RV*1. Then @, < 0, therefore w = 0. O

Lemma 7.4 Let u € C>Y(RYN x (0,7T]) be a positive solution of
Ou—Au+Vu=0 in RY x (0,7).

Assume that, for any x € RN, there exists an open bounded neighborhood U of x such that

/OT /U u(y, )V (y, t)dadt < oo

Then v € LY (U x (0,T)) and there exists a unique positive Radon measure p such that

lim [ u(y,t)¢(x)de = [ ¢lx)dy ¢ € CO(RY).
t—=0 JrN RN
Proof. Since Vu € LY (U x (0,T)) the following problem has a weak solution v (see [19]).

ov—Av = Vu, in U x (0,77,
v(z,t) = 0 on OU x (0,7
v(z,0) = 0 in U.

Thus the function w = w + v is a positive solution of the heat equation, thus there exists a
unique Radon measure p such that

tin [ w6z = [ o@idn, 6 € CRU).
—VJu U

But the initial data of v is zero, thus the result follows by a partition of unity and Lemma 7.3.0J

7.2 Representation formula for positive solutions

Assume V satisfies (7.1) in Q7 and let u be a positive solution of (7.2). If v € C>Y(RY x (0,T7),
we set u(z,t) = e¥@y(x,t). Then v satisfies

O — Av —2VYVo — [V [P0 — 2A¢%v + (Y + A+ V)o =0 in  RY x (0,7].  (7.7)
We choose 1 to be the solution of the problem
—py—AY =V in RN x(0,T]
Y(x,T) = 0 in RN,
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Then T’
1 _lz—y?
= —_— 4(s—t V s d d . 78
vite) /t /RN anapyic ) ot (7

By a straightforward calculation we verify that
1.0<¢$<Chi,

2. |Vy| < C1(T) + Co(In 1),

Thus (7.7) becomes

n

O — Av — Z (2¢,0),, — V|20 = 0.

i=1

Since fol |Int|Pdt < oo for all p > 1, we verify by 1 and 2 that

T
/ sup |¢]9ds < My < oo Vg >1
0 xzeRN

and -
/ sup |V|lds < My < 0o Vg > 1.
0

z€RN
For A;; = 0;j, Ai = 2¢,, B; = 0 and C = |V1|* we see that the above operator satisfies the
condition H in [3] for Ry = oo and p = oo. Thus there exists a kernel I'(z, ¢;y, s), defined in
Q7 x Q7 satisfying the estimates

1 A, ol 1 Ay le—ul®
—€ =) <I'(z,t;y,s) < Co(T,n, My)——— e At=s)
(4m(t — s))

C1(T,n, M) (4n(t — 5))

Vs
[NIE]

(7.9)
where Ay, As > 0 depend on T, n, My with the property that v admits the following represen-
tation formula:

ot = [ oty 0)duty) (7.10)

where 1 is a uniquely defined positive Radon measure on RY, and there holds

lim / ) /R T, t:9.0)6(x)du(y)d = /R odn V6 e OREY).

t—0

Furthermore, if e‘”‘x‘Quo € L%(RY) for some v > 0, and if ug is continuous at y, then

lim I(x,t;y,0)ug(z)dr = up(y). (7.11)
t—0 RN
Finally we have
u(z,t) = ew(m’t)/ [(x,t;y,0)du(y). (7.12)
RN
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8 o-moderate solutions

8.1 Preliminaries

Proposition 8.1 Let u € U (Qr). Then
max(ur, [uls, ) < v < Ureg + [Uls, (u)- (8.1)

Proof. The principle of the proof is similar as the one in [16].

By Proposition 6.8-(vii), the function v = u & urey vanishes on Ry(u) i.e., Tg-supp (v) C Sy(u).
Thus v is a solution dominated by u and supported in S;(u), which implies that v < [u]s, () by
Definition 5.27. Since u — uyeg < v this implies the inequality on the right hand side of (8.1).
The inequality on the left hand side is obvious. g

Proposition 8.2 Let u € U (Qr) and let A, B be two disjoint T,-closed subsets of RN, If
Ty-supp (u) C AU B and [u]a, [u]p are o-moderate then u is o-moderate. Furthermore

w=[u]a @ ulp = [ula V [u]. (8.2)

Proof. The proof is same as in [16].
By Proposition 6.11-(iii) there exist two increasing sequences {7}, {7} C ng’q(]RN) N
M (RY) such that
ur, T[ula,  un 1 [ulb.
By proposition 5.26, T,-supp (7,) C? A and Ty-supp (73,) C? B. Thus C% o (Tq=supp(7,) N Ty-supp(7y,)) =
0, and

Ur, V U = U, DUy = Up, 477

By (5.34) and Definition 5.27,
max([u], [u]p) < u < [ula + [u]B. (8.3)

Therefore,
!/

max (tr,, , Uy,

) U= ur, 0 <.
On the other hand
U= U, 47, < [u]a —ur, + [ulp —urmy LO.

Thus

nh_)rrgo Uryy 47! = Uy (8.4)

so that u is o- moderate.
The assertion (8.2) is equivalent to the statements: (a) u is the largest solution dominated by
[u]a + [u]p and (b) u is the smallest solution dominating max([u]4, [u]g). Let

u<w:i=[ula®[up <[ua+[ulp.
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Thus we have [u]a < [w]a. But [w]ja <w < [u]a+[ulp = [w]a — [u]a < [u]p. By Notation 3.3
we have

that is
Tgsupp(v) CA  and  Tgsupp(v) C B.

But AN B = (), which implies v = 0 and [w]4 < [u]4. Similarly, we have [w]p < [u]p. Thus

By (8.3) and the fact that for any Borel E [u]g < [u] there holds

Bna T WEns
Sy(u) = Sy(w).
Let @ be a T -open regular set in R, (w), then @ € Ry (u). Using (5.34), (5.35) and the fact that
Tg-supp (w) C AN B, we derive
[wlg < [wlgna + )5 = (014l + [W]15)g = [ + WG

Since [w]g, [u]g are moderate solutions and AN B = (), we have [u]@mA @ [u]émB < [u]g, which
implies [w]g = [u]g. Thus by Proposition 6.8-(ii) wg, = ur,, and since v is o-moderate by
Proposition 6.15 and the remark below we get

u<w<uR, ® Ur.
By the uniqueness of - moderate solutions (Theorem 6.11-(iv)), w and u coincide. This proves

(a).

For the statement (b), we note that

U, 47!, = Ur, V Ut < [U]A \4 [U]Ba
since u,, < [u]a and u;r < [u]p. Thus the result follows by (8.4) and (8.3), by letting n tend to
infinity. g
8.2 Characterization of positive solutions of 0,u — Au+u? =0

The following notation is used throughout the subsection.
Let v € UL (Qr). Set
V =ui"t,

q—1
V< <L> L.
qg—1

Thus v € C*Y(RY x (0,T)] and satisfies

then

Ou—Au+Vu=0, in RN x(0,1]. (8.5)

65



Hence, by the representation formula (7.12), u satisfies

u(z,t) = ew/ [(x,t;y,0)du(y), Vi<T, (8.6)
RN

where p is Radon measure (see subsection 7.2). The measure p is called the extended initial
trace of u.
For any Borel set E set

UE = UXE and (Wg = ew/ Iz, t;y,0)dug, Vit<T.
RN

Lemma 8.3 Let F be a compact subset of R™. Then

(w)r < [u]F, Vvt <T.

Proof. We follow the ideas of [16], adapted to the parabolic framework.
Let A be a Borel subset of RV. Let 0 < 5 < % and let vg‘ be the positive solution of

ov—Av+Vu=0 in RY x (8,7

v(-, B) = ul., B)xal) in RV, (8.7)

Also let wg‘ be the positive solution of

ow — Aw + |w|9tw = 0 in RNV x (B,T]
w(,8) = xa(Ju(-8) iRV,

Then by the maximum principle wg < u, which implies

A
_ dwg

A Avg dwé A A

Thus wgl is a supersolution of (8.7), and by the maximum principle (see [3] or Lemma 7.3), we
have

v‘g < wg < u.
For any sequence {f\} decreasing to zero one can extract a subsequence {3, } such that {wé‘lC }

and {vé‘k } converge locally uniformly; we denote the limits w? and v respectively (the limits
may depend on the sequence). Then w? € U, (Qr) while v* is a solution of (8.5), and
v <wh < [U]Q’ VQ open, A C Q. (8.8)

The second inequality follows from the fact that T,-supp (wgl) C é for any .
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Now we set vgk = %7, where 1 is the function in subsection 7.2. Then ¥, is the solution
of

O — Av — 2VYpVo — |Vy2o — 28¢w + (P + A+ V)v =0 in RN x (B, T].
v(., Br,) :XA(-)/RN U(, Br,;y,0)du(y) in RN

Now using the representation formula in [3], we derive that for any open @ D A, there holds

i) = [ a0 ([ Do 0d) ) de

— /RN (/RN xa(z)D(z,t — ﬁkn;y,O)F(x,ﬂkn;y,O)dx> dzdpu(y)

IN

/RN </RN xQ@)L(@,t = Br,:y, 0)I'(@, Br, v, 0)dx> dzdp(y).

Therefore, by (7.11), estimate (7.9) and using the fact that I'(x,t — s;y,0) is a continuous
function for any s < t (see [3]), we can let k,, — oo in the above inequality and get

L ] -
r}LHéov" < /RN [ (z,t; y,O)d,uQ.

Hence
v < (u)@

We apply the same procedure to the set A° extracting a further subsequence of {f, } in
order to obtain the limits v4” and w*". Thus

v < wt” < [y VQ' open, A° C Q.

@7’
Note that

23 UAC S (U)N

v o =, vt < OF o

Therefore

v =u— v > (u)

Ty (8.9)

Now, given F' compact, let A be a closed set and O an open set such that FF C O C A. Note
that A°N F = (). By (8.9) with Q" = A°

vA > (u)o.
By (8.8)
v <wd < [U]Q V(@ open, A C Q,
and consequently
(W)r < (o < [ul. (8.10)
By Lemma 2.8, we can choose a sequence of open sets {@Q,} such that ﬂ@j = FE’' ~7 F, thus by
Proposition 5.24-(iii) [u]g, J [u]r. The result follows by (8.10). O

In the next lemma we prove that the extended initial trace of a positive solution of (3.1) is
absolutely continuous with respect to the C2 o, -capacity.
q )
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Lemma 8.4 Let u € U (Qr), pu its extended initial trace. If E is a Borel set and C2 ,(E) =0
q7
then u(E) = 0.

Proof. The proof is similar as the one in [16]. If F' is a compact subset of E, then C2 q,(F) =0
q b

and therefore by Proposition 5.17, Up = 0. But [u]p = u A Up = 0. Therefore, by Lemma 8.3
(u)p = 0. Consequently u(F') = 0. As this holds for every compact subset of E we conclude that
pw(E) =0. -

We recall that, if v € ng’q(RN ) NG (RY), then for any T > 0, there exists a constant
C > 0 independent on v (see Lemma 2.11-[22]) such that

C Wy 3y < I Lni@ny < CIML, 2. (s.11)

2
aY(RN (RN)’

where H][v] is the solution of the heat equation in @, with v as initial data.

Lemma 8.5 Let u € U (Qr), p its extended initial trace and v € W_g’q(]RN) N M (RY).
Suppose that there exists no positive solution of (3.1) dominated by the supersolution v =
inf{u,H[v]}. Then u L v.

Proof. Set V! =971, then v is a supersolution of
dw—Aw+V'w=0 in RYx(0,1T]. (8.12)

We first claim that there exists no positive solution of the above problem dominated by v. We
proceed by contradiction in assuming that there exists a positive solution w < v of (8.12). Then
w satisfies

Ow — Aw +w? < Ow — Aw + V'w = 0.

Since

vl zo(@r) < P saar) Wl 2.0gy

this implies that w is a positive moderate solution of (3.1) dominated by v, contrary to assump-
tion. Now for any ¢ < T, we have by representation formula (7.12),

inf{u, H[v]} = inf{ew /RN [(x,t; y,O)du(y),H[u]}
> inf{/RN L(z,t; y,O)du(y%H[V]}

> Cinf{H[p](AiQ

) (1)
> Cinf{H[M](mﬁ)aﬂ[ﬂ(ma@}7

where, in the above inequalities, we have used estimates (7.9) and the constants C' > 0, Ay > 0
therein.
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t
max(A2,1)’

there exists a positive Radon measure v such that

Now since inf {H[,u]( x), H[v] (m , :U)} is a supersolution of Oyw————+—Aw = 0,

max(A2,1)

lim [ o(z)inf {H[u](m,x),ﬁﬂ[u](m,x)} dr= | ol Vo CF@Y)

t—0 RN
Thus in view of Lemmas 7.3 and 7.4, there exists a positive weak solution v < v of the problem

Ohw—Aw+V'w = 0 in RN x (0, 7).
w(.,0) = v in RV,
and by the first claim it yields v = 0.
By the Lebesgue-Radon-Nikodym Theorem we can write dv = ¢du + do, where 0 < ¢ €

L} (RN u) and o L p. Thus we have
0 = lim [ é(x)infd H]u)(——— 2), HY)(———— 2) b dur
150 Jgw a max (A, 1) max(Ag, 1)’

> lim [ @(2)h(

150 Jan ma( Ay ) &) min{f L w)du(y)de

~ lim / 0y min{ . 11(y)du(y) =0,

t—0
where, we recall it, h(t,z,y) in the heat kernel in Q. Hence f =0 and v L u. ]

Lemma 8.6 Let u € U (Qr), p its extended initial trace and suppose that for every v €
2

MY (RY) N W™ YRY) there exists no positive solution of (3.1) dominated by v = inf(u, H[v]).

Then u = 0.

Proof. The proof is similar as the one in [16]. By Lemma 8.5,
2
plyv  YveWw oIRN) ML RY).
Suppose that 1 # 0. By Lemma 8.4, p vanishes on sets of C'2 o -capacity zero. Thus, there exists
q7

2
an increasing sequence {v} C W~ (RY) N MY (RY) which converges to u. Thus p L vy and
for every k € N there exists a Borel set A;, C RY such that

u(Ar) =0 and v (Af) =0.
Therefore, if A = U, Ay then
p(A) =0 and v(A°) =0 Vk.
Since vy, < p we have v (A) = 0 and therefore v, = 0. Contradiction. O

Lemma 8.7 Let u € U (Qr). Then [u]s, ) is o-moderate.
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Proof. To simplify the notations we put us = [us,(,) and denote F' := Ty-supp (us). Inciden-

tally, F' C S;(u); since if Sy(u) is thin at &, then S;(u)® U {{} is T4-open and Sy (u) U {{} ~4

Sq(w)¢. Thus by definition of F, we see that F' consists precisely of the C2 o~ thick points of
q7

Sy(u). The set Sy(u) \ F' is contained in the singular set of ug,.

2
For v € W~ Y(RN) n 9t (RY) we denote by u, the solution of (3.1) with initial trace v.
Put
* -2.9mN b (RN
u* i=sup{u, : ve W oYRY) NML(RY), u, < us}. (8.13)
By Lemma 8.6 the family over which the supremum is taken is not empty. Therefore u* is a
positive solution of (3.1) and, by Proposition 6.11-(iii), it is o-moderate, thus it is the largest o-
2
moderate solution dominated by us. We denote by {v,} € W~ «I(RV)NM’ (RY) an increasing

sequence such that v* = lim,, n — cou,,, .
Let F* = T -supp (u*). Then F* is Ty-closed and F* C F. Suppose that

C%,q/(F\F*) > 0

Then there exists a compact set £ C F'\ F* such that C: ,(E) > 0 and (F*)° =: Q" is a
q7

< 4-open sethontaining E. Furthermore by Lemma 2.7 there exists a T,-open set Q' such that
E C?Q C @ c?Q*. Since Q' C? Ty-supp (us), [us]gr > 0 and therefore by Lemma 8.6, there
exists a positive measure 7 € ng’q(RN ) NG (RY) supported in Q' such that u, < ug. As the
Tg-supp (1) is a Ty-closed set disjoint from F*, it follows that the inequality u* > u, does not
hold. On the other hand, since 7 € ng’q(RN) N (RY) and u, < ug, it follows that u, < u*.

This contradiction shows that B
C%,q/(F\F*) =0. (8.14)

Since wu,,, T u*, Tg-supp (uy,) C T4-supp (u*) := F*. Therefore there exists a T -closed set
Fy C F* such that Sy(u*) = Fjf and Ry(u*) = (F§)°. Suppose that

Let @ be a T -open subset of R, (u*) such that [us]g: is a moderate solution, then Q' ct Ry(u*)

and [u*]@v, is a moderate solution of (3.1), i.e.,

T
/ / WL (x)dedt < oo Vo € Co(RY), ¢ > 0.
o Jryo @

On the other hand @’ is a T4-open subset of F' = T,-supp (us); therefore the initial trace of
[u*]a, has no regular part, i.e.,

Ro([u"]g) = 0 and Sy([u"]5) = Tg-supp ([v']g5);

) Q

we say that [u*]a, is a purely singular solution of (3.1). It follows that v := [[ug]@ — [u*] is

a purely singular solution of (3.1).

ol
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Let v* be defined as in (8.13) with u replaced by v. Then v* is a singular o-moderate solution
of (3.1). Since v* is smaller than u and since it is o-moderate it is dominated by u*. On the
other hand, since v* is singular and T,-supp (v*) C? @7 C? R4(u*) it follows that u* is not larger
or equal to v*, i.e. (v* —wu*)y is not identically zero. Since both u* and v* are o-moderate,
it implies that there exists 7 € ng’q(RN) N9 (RY) such that u, < v*, and (u, — u*) is
not identically zero. Therefore v* < max(u*,u,). The function max(u*,u,) is a subsolution
of (3.1) and the smallest solution above it, denoted by Z, is strictly larger than u*. However
ur < v* < u* and consequently Z = u*.

This contradiction proves that C% (@) =0, for any set Q" C Ry(u”) such that [u]g is

moderate solution, that is C2 ,(R4(u*)) = 0 which implies
q7
Cg’q/(F\Fg) =0. (8.15)

In conclusion, u* is o-moderate, T,-supp (v*) C F and Fj = Sy(u*) ~9 F. Therefore, by
Proposition 6.15 and the remark below, u* = Up. Since by definition v* < v < Up, it follows
u* = u. O

Theorem 8.8 FEvery positive solution of (3.1) is o-moderate.

Proof. We borrow the ideas of the proof to [16]. By Proposition 6.8-(i), R4(u) has regular
decomposition {@,,}. Furthermore

vn = [u]g, T uRr,.
Thus the solution ug, is o-moderate and
uOuR, < [uls, (-

Put
Up = v @ [U]s, (u)-

By Lemma 8.7 we have that [u] S,(u) 18 o-moderate solution, thus by Proposition 8.2, as @n N
Sy(u) =0, it follows that uy, is o-moderate. As {uy,} is increasing it follows that u = lim,, .« uy,
is a o-moderate solution of (3.1). In addition

v V [uls, () = un = vn @ [uls, (u) = max(ur,, [uls,)) < U< ur, + [uls, (u)-
This further implies that S,(u) = S;(@). By construction we have
[ulg, = vn < [dq,
Letting n — oo we have by Proposition 6.8
uR, < UR, = UR, = UR,,

thus tr(u) = tr(u) and since u < u, we have by Proposition 6.15 and the uniqueness of o-
moderate solutions that u = w. O
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