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This article proposes a Bayesian analysis of a class of imperfect repair models,
the ARA models. The choice of prior distributions and the computation of posterior
distributions are discussed. The presentation is unified for all ARA models and many
kinds of possible priors. A numerical study on the quality of the Bayesian estimators
is presented, as well as a comparison with the maximum likelihood estimators.
Finally, the approach is applied to a real data set.

Keywords Bayesian inference; Imperfect repair; Maintenance efficiency; MCMC
algorithms; Repairable systems reliability; Virtual age.
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1. Introduction

The reliability of a repairable system depends on both the aging process and
the efficiency of repair. The basic assumptions on repair efficiency are known as
minimal repair or As Bad As Old (ABAO) and perfect repair or As Good As
New (AGAN). The corresponding stochastic models for the failure process are,
respectively, the Non Homogeneous Poisson Processes (NHPP) and the Renewal
Processes (RP). The reality is generally between these two extreme cases: standard
repair is better than minimal but not necessarily perfect. This is known as imperfect
repair.

Many imperfect repair models have been proposed. The most usual are Kijima’s
virtual age models (Kijima, 1989), where repair is assumed to rejuvenate the system.
Brown and Proschan (1983) assumed that repair is perfect with probability p and
minimal with probability 1− p. Doyen and Gaudoin (2004) proposed two classes
of models, the ARA and ARI models, based on a reduction of virtual age or failure
intensity.

Statistical inference is needed in order to estimate model parameters and
compute reliability indicators from failure data. Many results exist in the NHPP
and RP cases, but only a few articles deal with the statistical inference in imperfect
repair models. For virtual age models, empirical studies on maximum likelihood
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3916 Corset et al.

estimators (MLE) have been presented by Shin et al. (1996), Lim (1998), Kaminskiy
and Krivtsov (2000), Gasmi et al. (2003), Doyen and Gaudoin (2004), Veber et al.
(2008), Dijoux (2009), and Syamsundar and Naikan (2011). Theoretical results on
these estimators were derived by Peña et al. (2007) and Doyen (2010).

In practice, for reliable systems, only a few failures occur. So the asymptotic
results on MLE cannot be used. Moreover, the engineers knowledge about the
degradation and failure process could be very helpful to improve the estimations of
the model parameters. Thus, a Bayesian analysis of these models is an interesting
alternative to usual frequentist methods.

The Bayesian inference has been extensively studied in the NHPP case: Guida
et al. (1989, 1990), Guida and Pulcini (2006), Bar-Lev et al. (1992), Campodonico
and Singpurwalla (1995), Calabria et al. (1996), Kuo and Yang (1996), Beiser
and Rigdon (1997), Sen (2002), Ryan (2003), and Pievatolo and Ruggeri (2004).
Conversely, Bayesian analysis for imperfect repair models has been seldom studied:
Lim et al. (1998) for the Brown-Proschan model, and Pan and Rigdon (2009) for
the ARA1 and ARI1 models. With a different purpose, Sethuraman and Hollander
(2006) derived theoretical results for general virtual age models when the virtual
ages are known.

The aim of this article is to present a Bayesian analysis of the class of ARA
imperfect repair models. This class involves the ARA1 model studied by Pan and
Rigdon (2009) and also many others including the ARA� model.

This article is organized as follows. The ARA models are defined in Sec. 2.
The Bayesian analysis is developed in Sec. 3, with a discussion on the choice of
prior distributions and the computation of posterior distributions. Section 4 studies
the properties of the estimators by means of Monte-Carlo simulations. Finally, an
application to real data is presented in Sec. 5.

2. The ARA Imperfect Repair Models

Let �Ti�i≥1 be the successive failure times of a repairable system, starting from
T0 = 0. We assume that a repair task is performed after each failure and that repair
durations are negligible. Let �Xi�i≥1 be the times between failures �Xi = Ti − Ti−1�

and Nt be the number of failures observed up to time t.
Then, the failure process is a random point process. Its distribution can be

characterized by the failure intensity, defined as:

∀ t ≥ 0� �t = lim
�t→0

1
�t

P�N�t+�t�− − Nt− = 1 ��t−�� (1)

where �t− is the history of the failure process just before time t, i.e., the set of all
events occurred just before t. Nt− denotes the left-hand limit of Nt. In most cases, the
failure process is a self-excited process, i.e., �t is a function of the number of failures
and the failure times before t: �t = �t�Nt−� T1� � � � � TNt−�. In this case, the distribution
of the failure process is completely given by the intensity.

We assume that before the first failure, the intensity is a deterministic
continuous function of time, denoted ��t�, and called the initial intensity. The initial
intensity characterizes the intrinsic behaviour of a new unrepaired system. � is the
hazard rate of the first failure time T1 = X1. In the following, we assume, as in Pan
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Bayesian Analysis of ARA Imperfect Repair Models 3917

and Rigdon (2009), that the initial intensity is the intensity of a Power Law Process
(PLP):

��t� = 	
t
−1� 	 > 0� 
 > 0� (2)

In general, the system is ageing intrinsically, so ��t� is increasing and 
 > 1.
For the two basic models, the failure intensity of a NHPP (ABAO) is a function

of time:

�t = ��t� (3)

and the failure intensity of a RP (AGAN) is a function of the time elapsed since
last repair:

�t = ��t − TNt−�� (4)

The idea of the virtual age models proposed by Kijima (1989) is to assume that
there exists a sequence of random variables �Ai�i≥1, with A0 = 0, such that after the
ith repair, the system behaves like a new one having survived without failure until
Ai. This property can be written:

P�Xi+1 > x�Ai� X1� � � � � Xi� = P�Y > Ai + x � Y > Ai� Ai� for all x ≥ 0� (5)

where Y denotes a random variable with the same distribution as the first failure
time X1. Then, it can easily be proved that the failure intensity is:

�t = ��ANt− + t − TNt−�� (6)

The virtual age of the system at time t is ANt− + t − TNt− . Ai is the virtual age
just after the ith repair and is called the ith effective age. The NHPP is a virtual age
model with ∀i� Ai = Ti and the RP is a virtual age model with ∀i� Ai = 0.

This article is dedicated to the Arithmetic Reduction of Age (ARA) class of
imperfect repair models, defined in Doyen and Gaudoin (2004), which are particular
virtual age models. The Arithmetic Reduction of Age model with memory m,
denoted ARAm, is defined by its failure intensity:

�t = �

(
t − �

min�m−1�Nt−−1�∑
j=0

�1− ��jTNt−−j

)
� (7)

m reflects a Markovian property: it is the maximal number of previous failure
times involved in the failure intensity. � is a parameter which characterizes repair
efficiency and will be described later.

Two values of m are particularly interesting.

• m = 1. The failure intensity of the ARA1 model is:

�t = ��t − �TNt−�� (8)
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3918 Corset et al.

In this model, the effect of a repair is to reduce the virtual age just before
repair of a quantity proportional to the time elapsed since last repair:

Ai = Ai−1 + Xi − �Xi �⇒ Ai = �1− ��Ti�

The ARA1 model is similar to Kijima’s Type I model (Kijima, 1989)
with deterministic repair effects, and is also the same as the Proportional
Reduction of Age model proposed by Malik (1979).

• m = +�. The failure intensity of the ARA� model is:

�t = �

(
t − �

Nt−−1∑
j=0

�1− ��jTNt−−j

)
� (9)

In this model, the effect of a repair is to reduce the virtual age just before
repair of a quantity proportional to this virtual age:

Ai = �1− ���Ai−1 + Xi��

The ARA� model is similar to Kijima’s Type II model (Kijima, 1989) with
deterministic repair effects, and is also the same as the model proposed by
Brown et al. (1983).

In these models, the repair efficiency is measured by the value of �. Particular
values of � are:

• � = 1: perfect repair (AGAN);
• 0 < � < 1: efficient repair;
• � = 0: minimal repair (ABAO); and
• � < 0: harmful repair.

For the sake of simplicity, we will assume that repair cannot be harmful, so
� ∈ �0� 1. Of course, in practice, it is doubtful that repair efficiency is constant.
It is possible to take into account time-dependent (Fuqing and Kumar, 2012) or
random (Doyen, 2011) repair effects, but the corresponding statistical inference is
much more complex. So, we focus our analysis on the rather simple ARA models,
in which � can be understood as a mean repair efficiency. Note that the Bayesian
framework, in which a prior distribution is given on �, is a way of considering non
constant repair efficiency.

In this article, we derive all our results under the general framework of the
ARAm model. The interest is that these results will be valid, among others, for both
the ARA1 and ARA� models. For the ARA1 model, our work extends the results
obtained by Pan and Rigdon (2009). The results for the ARA� model are new.

For a point process model with parameter � (here � = �	� 
� ��), the general
expression of the likelihood function associated with the observation of n failures
up to time t of a single repairable system is (Cook and Lawless, 2007):

Lt��� n� tn� =
[

n∏
i=1

�ti

]
exp

(
−

n+1∑
i=1

∫ ti

ti−1

�sds

)
� (10)
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Bayesian Analysis of ARA Imperfect Repair Models 3919

where tn = �t1� � � � � tn� denotes the vector of observed failure times, t0 = 0 and tn+1 =
t. In this situation, the process is time-truncated at time t. For a process which is
failure-truncated after n failures, (10) is still valid by taking tn+1 = tn.

For the ARAm model with PLP initial intensity, the likelihood becomes, with
the same kind of notations as in Pulcini (2000):

Lt�	� 
� �� n� tn� = 	n
nV���
−1 exp �−	Z�
� ��� � (11)

where

V��� =
n∏

i=1

�ti − Si��� �

Z�
� �� =
n+1∑
i=1

��ti − Si����

 − �ti−1 − Si����


�

S1��� = 0 and ∀i ≥ 2� Si��� = �
min�m−1�i−2�∑

j=0

�1− ��jti−j−1�

Let 	̂t, 
̂t, and �̂t be the MLE of 	, 
, and �, obtained by maximizing (11). It is
easy to show that:

	̂t =
Nt

Z�
̂t� �̂t�
� (12)

However, numerical optimization procedures are necessary to compute 
̂t

and �̂t.

3. Bayesian Inference

In this article, we consider a single repairable system, which is so reliable that
only very few failures occur. Then, the quality of the MLE can be very poor.
The Bayesian analysis improves the accuracy of parameter estimations by adding
the expert knowledge to operation feedback data. In the Bayesian framework, the
parameters are considered as random variables. Their prior distributions reflect the
expert knowledge on the system aging and repair efficiency.

The ARA models have three parameters 	 > 0, 
 > 0, and � ∈ �0� 1. For a
given prior density ��	�
����	� 
� ��, the posterior density is obtained by:

��	� 
� � � n� tn� ∝ Lt�	� 
� �� n� tn���	�
����	� 
� ��� (13)

The choice of prior distributions for this kind of parameters has been discussed
in many articles. Non informative priors are used when no particular information
is known on the failure and repair process. When such information is available, it
is translated into informative priors. In practice, experts give an average behaviour
and a degree of uncertainty on this information, which can be converted into prior
mean and variance.

Since 	 and 
 are the parameters of a PLP, the prior distributions used in
the Bayesian analysis of the PLP can be chosen here. Non informative priors for
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3920 Corset et al.

	 and 
 are used by Guida et al. (1989), Bar-Lev et al. (1992), Calabria et al. (1996),
and Sen (2002). Informative priors are used either by considering expert knowledge
on the failure mechanism, or by using conjugate distributions. For 	, the gamma
distribution has been used by Kuo and Yang (1996), Pievatolo and Ruggeri (2004),
and Pan and Rigdon (2009). For 
, the uniform distribution has been used by Guida
et al. (1989), Sen (2002), and Pan and Rigdon (2009). The beta distribution has been
used by Sen (2002).

For the repair efficiency parameter of the Brown-Proschan model, Lim et al.
(1998) used the beta distribution. For the repair efficiency parameters of the ARA1

and ARI1 models, Pan and Rigdon (2009) also used the beta distribution.
In this article, we will choose informative, non informative, and semi

informative priors on the model parameters. Informative priors on reliability
indicators will also be considered.

3.1. Informative Priors on the Parameters

For the scale parameter 	, we choose the gamma distribution, denoted ��a� b�, with
density function:

�	�	� =
ba

��a�
	a−1 exp�−b	�� (14)

where ��a� = ∫ +�
0 ta−1e−tdt. The expectation and variance of this distribution are,

respectively, a/b and a/b2. We will see later that this is a conjugate prior for 	.
For the shape parameter 
, we choose the uniform distribution on �
1� 
2,

denoted ��
1� 
2:

�
�
� =
1


2 − 
1

��
1�
2
�
�� (15)


 is linked to the system aging in a Weibull framework. So experts are likely to give
plausible values for 
. 
1 and 
2 can be understood as, respectively, the lower and
upper bounds for these values. It is possible to take 
1 = 1 in order to assume that,
without repair, the system wears out.

For the repair efficiency parameter �, since we have assumed that � belongs to
�0� 1, we choose the beta distribution, denoted Be�c� d�, with density function:

����� =
��c + d�

��c���d�
�c−1�1− ��d−1� (16)

The prior expectation is c
c+d

and the prior variance is cd
�c+d�2�c+d+1� .

Finally, the priors are supposed to be independent, so the joint prior density is:

��	�
����	� 
� �� = �	�	��
�
������

∝ 	a−1 exp�−b	��c−1�1− ��d−1��
1� 
2�
�� (17)
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Bayesian Analysis of ARA Imperfect Repair Models 3921

3.2. Non Informative Priors

The usual non informative priors for 	 and 
 in the PLP case are:

�	�	� ∝
1
	

and �
�
� ∝
1


� (18)

For non harmful repair, � belongs to �0� 1. So a non informative prior in this
case is the uniform distribution ��0� 1.

Then, with the independence of priors, the joint non informative prior is:

��	�
����	� 
� �� ∝
1
	


� (19)

3.3. Unified Priors

Following Pulcini (2000), we can unify the informative and non informative cases
by making the following remarks.

• For 	, the non informative prior is a limit case of the ��a� b� distribution,
where a and b tend to zero.

• For 
, the ��
1� 
2 density and the non informative prior can both be
written:

�
�
� ∝ 
−���
1� 
2�
�� (20)

where � = 0 corresponds to the uniform distribution, and � = 1, 
1 = 0, and

2 = +� correspond to the non informative prior.

• For �, the ��0� 1 distribution is the same as the Be�1� 1� distribution, so it
is a particular case of the Be�c� d� distribution.

So we can define a unified prior as:

��	�
����	� 
� �� ∝ 	a−1 exp�−b	�
−��c−1�1− ��d−1��
1� 
2�
�� (21)

The informative prior (17) is obtained for � = 0 and the non informative
prior (19) is obtained for a = b = 0, � = 1, c = d = 1, 
1 = 0, and 
2 = +�.

It is also possible to use semi-informative priors. Indeed, the three parameters
of the ARA models have well-identified meanings. 
 is linked to the intrinsic
aging, � characterizes repair efficiency, and 	 is a scale parameter. In practice, it
is much easier to obtain prior information on 
 and � than on 	. Therefore, one
can consider, as in Pulcini (2000), to use the non informative prior for 	 and the
informative priors for 
 and �. This can be done by taking only a = b = 0 in (21).

3.4. Posterior Distributions

For the unified prior, the joint posterior distribution is derived using (13), (11),
and (21). The posterior density of �	� 
� �� is:

��	� 
� � � n� tn� ∝ 	n+a−1 exp �−�b + Z�
� ��	�


n−�V���
−1�c−1�1− ��d−1��
1� 
2�
�� (22)
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3922 Corset et al.

The conditional posterior densities of each parameter can also be derived as:

��	 � 
� �� n� tn� ∝ 	n+a−1 exp �−�b + Z�
� ��	� (23)

��
 � 	� �� n� tn� ∝ 
n−�V���
−1 exp �−	Z�
� ��� ��
1� 
2�
� (24)

��� � 	� 
� n� tn� ∝ V���
−1 exp �−	Z�
� ��� �c−1�1− ��d−1� (25)

Equation (23) proves that the posterior distribution of 	 given 
 and � is
the gamma distribution ��n+ a� b + Z�
� ���. Then the gamma distribution is a
conjugate prior for 	.

Because the parameter �	� 
� �� is multidimensional and there are no conjugate
priors for 
 and �, the posterior distributions will be derived by means of the Gibbs
sampling algorithm, with Metropolis-Hastings steps (Robert and Casella, 2004).
This Markov Chain Monte Carlo (MCMC) algorithm produces samples from the
joint posterior distribution, from which it is possible to compute all the features of
the posterior distributions. For instance, the posterior mean, median, and mode are
point Bayesian estimators of the parameters. With the posterior distribution, it is
also possible to give credibility intervals for the parameters.

We propose two versions of the algorithm, one for which a prior is proposed
for 	, and one for which 	 is derived from (12).

Algorithm 1 (Algorithm with a Prior for 	).

1. k ← 0. Choose initial values of 	0, 
0, and �0.
2. k ← k+ 1.
3. Sample 	k given 
k−1 and �k−1 from (23).
4. Sample 
k given 	k and �k−1 from (24).
5. Sample �k given 	k and 
k from (25).
6. While k < K, go to step 2.

Since it is not possible to sample directly from (24) and (25), we use the
Metropolis-Hastings algorithm in steps 4 and 5. For instance, in step 4, we sample

� from an instrumental distribution easy to simulate, with density q. Let

r = ��
� � 	k� �k−1� n� tn�q�
k−1 � 
��

��
k−1 � 	k� �k−1� n� tn�q�
� � 
k−1�
� (26)

Then, 
k will be equal to 
� with probability min�r� 1� and to 
k−1 otherwise. For a
symmetric transition, q�
k−1�
�� = q�
��
k−1�, so (26) becomes

r = ��
� � 	k� �k−1� n� tn�
��
k−1 � 	k� �k−1� n� tn�

� (27)

Here, we take for q a Gaussian distribution centered on the given value of 
.
As said before, it is not easy to give a prior on the scale parameter 	. A first

possibility is to choose a non informative prior by taking a = b = 0 in (21). Another
possibility is to use the fact that, in (12), the MLE of 	 is computed as a function
of the MLE of 
 and �. Then, we propose a second version of the algorithm, for
which priors are given only for 
 and �, and 	 is computed as a function of 
 and
�, according to (12).

Algorithm 2 (Algorithm with no Prior for 	).

1. k ← 0. Choose initial values of 
0 and �0.
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Bayesian Analysis of ARA Imperfect Repair Models 3923

2. Compute 	0 as a function of 
0 and �0 from (12).
3. k ← k+ 1.
4. Sample 
k given 	k−1 and �k−1 from (24).
5. Sample �k given 	k−1 and 
k from (25).
6. Compute 	k as a function of 
k and �k from (12).
7. While k < K, go to step 3.

3.5. Informative Prior on Reliability Indicators

Giving a prior is facilitated if the considered quantity has a clear physical meaning,
such as a reliability indicator. In the PLP case, Guida et al. (1989), Calabria et al.
(1996), and Sen (2002) proposed a gamma prior for the expected number of failures
E�Nt. With an informative prior on 
, it is possible to derive a prior for �	� 
�.

For the ARA model, the mean number of failures takes into account both
the intrinsic aging (through 	 and 
) and repair efficiency (through �). Since these
parameters can have compensating effects, it is not so easy to give a prior value for
E�Nt. Then, we propose to give a prior on an indicator which is linked only to the
intrinsic aging, the mean time to the first failure:

� = E�T1 =
1

	1/

�

(
1+ 1




)
� (28)

Since 	 appears at the denominator of �, we choose an inverse gamma prior,
denoted I��A� B�, for �. Then, the prior density is:

����� =
BA

��A�
�−A−1 exp

(
−B

�

)
� (29)

For A > 2, the expectation and variance of this distribution are, respectively, B
A−1

and B2

�A−1�2�A−2� .
The conditional prior density of 	 is derived thanks to a change of variables:

��	 � 
� = BA	A/
−1


��A���1+ 1


�A

exp

(
− B	1/


��1+ 1


�

)
� (30)

If we keep the informative priors ��
1� 
2 for 
 and Be�c� d� for �, the joint
prior distribution is:

�	�
���	� 
� �� = ��	 � 
���
� ��

∝ 	A/
−1


��1+ 1


�A

exp

(
− B	1/


��1+ 1


�

)
�c−1�1− ��d−1��
1� 
2�
�� (31)

and the joint posterior distribution is:

��	� 
� � � n� tn� ∝
	n+A/
−1

��1+ 1


�A


n−1�c−1�1− ��d−1V���
−1

exp

(
−	Z�
� ��− B	1/


��1+ 1


�

)
��
1� 
2�
�� (32)
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3924 Corset et al.

3.6. Posterior Distributions of Reliability Indicators

With the posterior distribution of the parameters, it is possible to determine the
posterior distribution of any quantity of interest, function of these parameters, such
as reliability indicators. First, we give the posterior distribution of the mean time
to the first failure � = E�T1 studied previously. Then, following Pulcini (2000), we
derive the posterior distribution of the failure intensity and the expected number
of failures. In this section, we do not consider the case where 	 is computed as a
function of 
 and �.

3.6.1. Posterior distribution of the mean time to the first failure. For the estimation
of � = E�T1 we consider two cases. In the first one, we use the prior distributions
on the parameters, and in the second one we use the prior distribution on �.

In the first case, from Eqs. (22) and (28) with a change of variables, the posterior
distribution of � is found to be:

��� � n� tn� ∝
∫ 
2


1

∫ 1

0

n−�+1V���
−1��1+ 1/
�
�n+a��c−1�1− ��d−1�−
�n+a�−1

exp

(
− �b + Z�
� ��

[
��1+ 1/
�

�

]
)
d�d
� (33)

Thus, the Bayesian estimator of � is the posterior mean:

E���n� tn =
1
C

∫ 
2


1

∫ 1

0

n−�V���
−1��1+ 1/
��c−1�1− ��d−1

��n+ a− 1/
�

�b + Z�
� ��n+a−1/
 d� d
� (34)

where

C =
∫ 
2


1

∫ 1

0

n−�V���
−1�c−1�1− ��d−1 ��n+ a�

�b + Z�
� ��n+a d� d
�

The integrals involved in these equations are computed by Monte Carlo
simulations. It is also possible to obtain credibility intervals for � from Eq. (33).

Secondly, we consider the case of Sec. 3.5, where the inverse gamma prior (29)
is chosen for �. With the informative priors ��
1� 
2 for 
 and Be�c� d� for �, the
posterior distribution of � is:

��� � n� tn� ∝
∫ 
2


1

∫ 1

0

nV���
−1��1+ 1/
�
n�c−1�1− ��d−1�−
n−A−1

exp

(
−Z�
� ��

(
��1+ 1/
�

�

)


− B

�

)
d�d
� (35)

The Bayesian estimator of � is the posterior mean.
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Bayesian Analysis of ARA Imperfect Repair Models 3925

3.6.2. Posterior distribution of the failure intensity. The failure intensity at a time
� ∈ti� ti+1 is

�� = 	
��− Si+1���

−1�

A change of variables in (22) leads to the posterior distribution of ��:

���� � n� tn� ∝
∫ 
2


1

∫ 1

0

V���
−1�c−1�1− ��d−1


a+���− Si+1���
�n+a��
−1�

�n+a−1
�

exp
(
− b + Z�
� ��


��− Si+1���

−1

��

)
d�d
� (36)

The Bayesian point estimator of �� is the posterior mean:

E��� � n� tn =
1
C

∫ 
2


1

∫ 1

0

V���
−1�c−1�1− ��d−1
n−�+1��− Si+1���

−1

�b + Z�
� ��n+a+1
d�d
� (37)

where C is a normalizing constant. The integrals involved in (37) are computed by
Monte Carlo simulations.

Credibility intervals for �� can also be obtained from (36). Then, computing
these values for each �, it is possible to draw a plot of the Bayesian point and
interval estimators of the failure intensity.

3.6.3. Posterior distribution of the expected number of failures. A usual result of the
theory of point processes is that the expected number of failures at any time � is
linked to the failure intensity by:

N� =
∫ �

0
�sds +M�� (38)

where �M���≥0 is a martingale. Having observed failure times t1 < · · · < tn, for � ∈
ti� ti+1, 1 ≤ i ≤ n, the cumulative failure intensity is:

�� =
∫ �

0
�sds =

i∑
j=1

∫ tj

tj−1

�sds +
∫ �

ti

�sds� (39)

For the ARA models, we obtain:

�� = 	Zi���
� ��� (40)

where

Zi���
� �� =
i∑

j=1

[
�tj − Sj����


 − �tj−1 − Sj����


]+ ��− Si+1����


 − �ti − Si+1����



(41)

Of course, Zn�t�
� �� = Z�
� ��.
Then, it is possible to make a Bayesian prediction of the expected number of

failures at time � by computing the posterior distribution of ��. For a given data
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3926 Corset et al.

set, comparing the prediction with the observed value of N� will give an indication
of the goodness-of-fit of the ARA model.

Note that the expression of �� is similar to that of �� = 	
��− Si+1���

−1. In

fact, the results for �� can be derived from those on �� by replacing 
��− Si+1���

−1

by Zi���
� ��.
Then, the posterior distribution of �� is:

���� � n� tn� ∝
∫ 
2


1

∫ 1

0

V���
−1�c−1�1− ��d−1
n−�

Zi���
� ��
n+a

�n+a−1
�

exp
(
−b + Z�
� ��

Zi���
� ��
��

)
d�d
 (42)

and the Bayesian point estimator of �� is the posterior mean:

E��� � n� tn =
1
C

∫ 
2


1

∫ 1

0

V���
−1�c−1�1− ��d−1
n−�Zi���
� ��

�b + Z�
� ��n+a+1
d�d
� (43)

where C is a normalizing constant.
For � = t and i = n, Zn�t�
� �� = Z�
� ��. With the non informative prior for 	

(a = b = 0), it is easy to check that E��t�n� tn = n.

4. Simulation Results

4.1. Comparison of MLE and Bayesian Estimators

Here, we compare the maximum likelihood and Bayesian estimators by means of
Monte Carlo simulations. We simulate 200 samples of size n ∈ �5� 10� 25� of both
ARA1 and ARA� models, with parameters equal to 	 = 0�01, 
 = 3, and � = 0�6.
These values are chosen in order to reflect the behaviour of a system with important
aging (
 = 3), good repair efficiency (� = 0�6) and a mean time of the first failure
around 4 (E�T1 = 4�14).

For each sample, we compute the MLE and several Bayesian estimators of
each parameter, corresponding to different choices of priors. We also compute the
estimators of E�T1.

The prior for 
 is non informative (� = 1� 
1 = 0� 
2 = +�) or uniform on �1� 4
(� = 0� 
1 = 1� 
2 = 4). This is a rather good prior since the prior mean is 2.5 and
the prior standard deviation is 0.87.

Three priors are chosen for �: the non informative (c = d = 1), a good one
(c = 1�652� d = 0�708 with a prior mean equal to 0.7), and a bad one (c = 0�708� d =
1�652 with a prior mean equal to 0.3). For both informative priors, the standard
deviation is 0.25.

For 	, we consider several possibilities:

• The non informative prior: a = b = 0.
• A good informative prior: a = 2�25� b = 150, with a prior mean equal to
0.015 and a prior standard deviation equal to 0.01.

• The estimator of 	 computed as a function of the estimators of 
 and �,
according to (12).

• The prior for 	 given 
 computed from a prior on E�T1, according to (30).
The prior for E�T1 is inverse gamma with A = 8�25 and B = 36�25, leading
to a prior mean equal to 5 and a prior standard deviation equal to 2.
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Bayesian Analysis of ARA Imperfect Repair Models 3927

Figure 1. ARA1–mse for 	.

The posterior distributions are derived by the MCMC algorithms with K =
10� 000 iterations. In the algorithms, the inital values of the parameters are the
MLE. The Bayesian point estimators are the posterior means of the last 1,000
obtained values. The empirical means and variances of the 200 samples are
computed for each estimator and for E�T1. Figures 1–8 give the corresponding
mean squared errors (mse) as functions of the sample size.

In these figures, the following notations are adopted. The corresponding values
of the hyperparameters are given in Table 1.

• MLE: Maximum Likelihood Estimator.
• NI: Non Informative prior on each parameter.
• GP: Good Prior for �, prior for 	.
• GC: Good prior for �, 	 Computed.
• GNI: Good prior for �, non Informative for 	.
• GT1: Good prior for �, prior on E�T1.
• BP: Bad Prior for �, prior for 	.
• BC: Bad prior for �, 	 Computed.
• BNI: Bad prior for �, Non Informative for 	.
• BT1: Bad prior for �, prior on E�T1.

The behavior of the estimators is essentially similar for the ARA1 and ARA�
models. The decrease of the MSE is not always true for so small samples. The worst
estimators are the non informative and the MLE. For both estimators of 
, the mse
is so large that it does not appear in Figs. 3 and 4. Both estimators overestimate
strongly 
, but the MLE is correct for 	 and �, while the non informative is correct
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3928 Corset et al.

Figure 2. ARA�–mse for 	.

Figure 3. ARA1–mse for 
.
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Bayesian Analysis of ARA Imperfect Repair Models 3929

Figure 4. ARA�–mse for 
.

Figure 5. ARA1–mse for �.
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3930 Corset et al.

Figure 6. ARA�–mse for �.

Figure 7. ARA1–mse for E�T1.
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Bayesian Analysis of ARA Imperfect Repair Models 3931

Figure 8. ARA�–mse for E�T1.

Table 1
Hyperparameter values for the Bayesian estimates

a b � 
1 
2 c d A B

NI 0 0 1 0 +� 1 1
GP 2.25 150 0 1 4 1.652 0.708
GC 0 1 4 1.652 0.708
GNI 0 0 0 1 4 1.652 0.708
GT1 0 1 4 1.652 0.708 8.25 36.25
BP 2.25 150 0 1 4 0.708 1.652
BC 0 1 4 0.708 1.652
BNI 0 0 0 1 4 0.708 1.652
BT1 0 1 4 0.708 1.652 8.25 36.25

only for �. As expected, the estimators are globally better when the prior on � is
good (G) than when it is bad (B).

The comparison of the ways to estimate 	 leads to the logic conclusion that
the best estimators are obtained for a good informative prior (P). The three other
estimators have similar behaviors, which slightly differ depending on the model
and parameters. The estimator with a prior on E�T1 (T1) can be used if a good
knowledge on this value is available. The estimator with a non informative prior on
	 (NI) and the estimator with 	 computed (C) do not need any kind of knowledge
on 	. Both need the MCMC algorithm. C is simpler to compute than NI because
the MCMC algorithm involves only two parameters instead of three.

D
ow

nl
oa

de
d 

by
 [

fr
an

ck
 c

or
se

t]
 a

t 0
5:

32
 1

8 
Se

pt
em

be
r 

20
12

 



3932 Corset et al.

Table 2
Relative mean squared error

	 
 � E�T1

ARA1 ARA� ARA1 ARA� ARA1 ARA� ARA1 ARA�

30 15 0.03 0.02 0.17 0.10 0.06 0.07

For the estimation of � in the ARA1 model, the prior has a strong impact. We
can see in Fig. 5 that the mse of all the estimators with good prior are much lower
than the mse of all the estimators with bad prior. For the ARA� model, this result
is still true for small n, but much weaker.

For the estimation of E�T1, it is interesting to note that the best estimator is
logically obtained when a prior on E�T1 is used (GT1). The worst estimator is the
MLE, followed by NI. Here again, the G estimators are better than the B estimators.

Table 2 gives the relative mean squared error for the model parameters and
for E�T1. For a quantity �, the relative MSE is MSE/�2, where mse is taken as an
average value of the MSE previously computed. The less this value is, the better � is
estimated. From this table, we see that 	 is much less well estimated than the other
parameters. But it doesn’t prevent E�T1 from being well estimated.

Finally, the Bayesian approach will be particularly profitable for the estimation
of 
 and E�T1. Of course, the greater is the knowledge on the parameters, the better
are the estimations. But Bayesian estimators are still satisfactory even with a bad
prior.

4.2. Study of One Data Set

In practice, one has to analyze one data set made of n successive failure times of a
repairable system. The first objective is to estimate the parameters of ARA models
and reliability indicators. Thanks to the Bayesian analysis, it is also possible to
compute credibility intervals on these quantities (the equivalent is not possible with
the MLE). We can also compare prior and posterior distributions. In this section,
we apply this approach to data simulated from the ARA1 model. In the next section,
it will be applied to a real data set for both ARA1 and ARA� models.

Table 3 presents n = 5 failure times simulated from the ARA1 model with
parameters 	 = 0�01, 
 = 3, and � = 0�6.

Tables 4–7 present point estimates of the parameters 	, 
, �, and of E�T1.
The considered estimators are the MLE and the Bayesian GP, GNI, BNI. For the
Bayesian estimators, the 80% credibility intervals and posterior standard deviations
are also given.

The MLE is naturally of bad quality since we have to estimate three parameters
with five observations. Indeed, the MLE of 	, 
, and E�T1 are very far from the

Table 3
Simulated data set from the ARA1 model

6.17 8.30 9.20 10.47 12.84
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Bayesian Analysis of ARA Imperfect Repair Models 3933

Table 4
One data set—ARA1—estimation of 	

Point estimate Lower limit Upper limit Standard deviation

MLE 0.00003
GP 0.0123 0.00360 0.0236 0.0086
GNI 0.0277 0.00095 0.0718 0.0648
BNI 0.0122 0.00053 0.0357 0.0270

Table 5
One data set—ARA1—estimation of 


Point estimate Lower limit Upper limit Standard deviation

MLE 5.869
GP 2.921 2.344 3.572 0.465
GNI 2.954 1.826 3.825 0.755
BNI 3.070 2.030 3.829 0.655

true values, but the MLE of � is quite good. The GP estimates (good priors for 	

and �) are always good, in mean and variance, as well as for the length of credibility
intervals. The GNI is a good estimate for 
 and �. The BNI is a good estimate for
	 and 
. For �, the BNI is highly biased, because it is close to the (bad) prior mean.

Figures 9 and 10 compare the prior density (solid line) and the posterior density
(histogram from the MCMC samples) of the GNI and BNI estimators of �. In
both cases, the posterior is brought closer to the MLE. The posterior distribution is

Table 6
One data set—ARA1—estimation of �

Point estimate Lower limit Upper limit Standard deviation

MLE 0.554
GP 0.605 0.339 0.821 0.192
GNI 0.538 0.242 0.818 0.214
BNI 0.317 0.040 0.629 0.215

Table 7
One data set—ARA1—estimation of E�T1

Point estimate Lower limit Upper limit Standard deviation

MLE 5.424
GP 4.619 3.5939 5.8197 0.9524
GNI 4.7645 3.2231 6.4155 1.2888
BNI 5.6575 3.8603 7.5476 1.4780
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3934 Corset et al.

Figure 9. GNI—Comparison of prior and posterior densities. (color figure available
online.)

naturally more concentrated around the true value � = 0�6 for the good prior than
for the bad prior.

Finally, the GNI Bayesian estimates of the failure intensity and expected
number of failures are plotted in Figs. 11 and 12. The solid line represents the
Bayesian point estimate, the credibility limits are in dashed (blue) lines. The true
value and maximum likelihood estimates of the functions are, respectively, plotted
in dash-dot (red) line and dotted (green).

These figures show that the Bayesian estimate provides a better fit than
the MLE: the blue line is closer to the red line than the green line. The real
intensity, cumulative intensity, and observed number of failures are always within
the credibility limits. In Fig. 12, the ML and GNI estimates are equal to n for t = tn.
For GNI, this property has been stated in Sec. 3. For the MLE, this property comes
from (12) and (40).

Figure 10. BNI—Comparison of prior and posterior densities. (color figure available
online.)
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Bayesian Analysis of ARA Imperfect Repair Models 3935

Figure 11. ARA1—GNI estimate of the intensity. (color figure available online.)

Figure 12. ARA1—GNI estimate of the expected number of failures. (color figure available
online.)

5. Application to Automobile Data

In this section, we present an application to automobile data studied by Ahn et al.
(1998) and Guida and Pulcini (2006). The data given in Table 8 are n = 18 failure
times of an AMC Ambassador car owned by the Ohio state government.

Table 8
AMC Ambassador data

202 265 363 508 571 755 770 818 868
999 1054 1068 1108 1230 1268 1330 1376 1447
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3936 Corset et al.

Table 9
AMC data—Maximum likelihood estimates and model selection criteria

	̂t 
̂t �̂t max ln� AIC AICc BIC

PLP 1�32 10−4 1.625 −95.15 194.29 195.09 201.86
ARA1 1�30 10−7 3.102 0.898 −92.00 189.99 191.71 201.33
ARA� 2�12 10−9 3.583 0.246 −92.68 191.36 193.07 202.70

The MLEs of the parameters for the PLP, ARA1, and ARA� models are
given in Table 9. Usual model selection criteria are also given. For a model with k
estimated parameters and n observed data, these criteria are defined as:

• max ln� is the maximal log-likelihood;
• AIC = −2max ln� + 2k;
• AICc = −2max ln� + 2kn

n−k−1 ; and• BIC = −2max ln� + 2k ln n.

The “best” model has the smallest AIC/AICc/BIC. For all the criteria, the
ARA1 model is found to be better than the PLP. For all the criteria except the
BIC, the ARA� model is also better than the PLP. The best model is ARA1. The
estimates of 
 are close to 3, indicating a strong intrinsic wear-out. The estimates
of 	 and � in the two models are very different. It is not surprising since the
models have different meanings (considerations of that kind are given in Doyen and
Gaudoin, 2004). Anyway, the estimates of � indicate a good repair efficiency.

Now we perform the Bayesian analysis of these data. Since we have no prior
knowledge on this system, the first idea is to use the completely non informative
Bayesian estimators. But it makes sense to assume that this automobile is wearing.
So we will also use the uniform prior on �1� 4 for 
. For �, it is interesting to
note that the MLE are relatively close to some values used as prior means in the
simulation study: for the ARA1 model, �̂t = 0�898 is not far from 0.7 (the GNI of
Sec. 4.1) and for the ARA� model, �̂t = 0�246 is close to 0.3 (the BNI of Sec. 4.1).
Then, we will also use the corresponding informative priors for �.

Tables 11–16 present point estimates, the 80% credibility intervals and posterior
standard deviations of the parameters 	, 
, and � for ARA1 and ARA� models.
In these tables, the following estimates are used. The corresponding values of the
hyperparameters are given in Table 10.

• MLE: Maximum Likelihood Estimator.
• NI: Non Informative prior on each parameter.
• NIU: Non Informative prior for 	 and �, uniform prior for 
.
• GNI: Non Informative prior for 	, uniform prior for 
, beta prior for � for
the ARA1 model.

• BNI: Non Informative prior for 	, uniform prior for 
, beta prior for � for
the ARA� model.

For the ARA1 model, the NI estimates are very different from the others,
especially for 
. They also have rather high standard deviation. The GNI estimates
are globally closer to the MLE than the NIU, with smaller standard deviation and
narrower credibility intervals. This is due to the fact that we have chosen a prior
close to the MLE. For the ARA� model, these properties are no longer true. The
NIU estimates are closer to the MLE than the BNI.
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Bayesian Analysis of ARA Imperfect Repair Models 3937

Table 10
Hyperparameter values for the Bayesian estimates

a b � 
1 
2 c d

NI 0 0 1 0 +� 1 1
NIU 0 0 0 1 4 1 1
GNI 0 0 0 1 4 1.652 0.708
BNI 0 0 0 1 4 0.708 1.652

Table 11
AMC data—ARA1—estimation of 	

Point estimate Lower limit Upper limit Standard deviation

MLE 1�30 10−7

NI 4�87 10−4 1�20 10−5 1�44 10−3 7�07 10−4

NIU 1�03 10−5 6�09 10−7 3�19 10−5 1�99 10−5

GNI 3�05 10−7 1�21 10−9 6�73 10−7 2�78 10−7

Table 12
AMC data—ARA1—estimation of 


Point estimate Lower limit Upper limit Standard deviation

MLE 3.102
NI 1.736 1.362 2.184 0.331
NIU 2.430 1.989 2.696 0.254
GNI 3.104 2.718 3.894 0.418

Table 13
AMC data—ARA1—estimation of �

Point estimate Lower limit Upper limit Standard deviation

MLE 0.898
NI 0.680 0.284 0.939 0.256
NIU 0.801 0.626 0.938 0.159
GNI 0.866 0.800 0.928 0.054

Table 14
AMC data—ARA�—estimation of 	

Point estimate Lower limit Upper limit Standard deviation

MLE 2�12 10−9

NI 2�60 10−6 2�00 10−7 8�20 10−6 4�41 10−6

NIU 2�73 10−7 5�41 10−9 8�41 10−7 6�79 10−7

BNI 4�12 10−5 4�83 10−6 1�09 10−4 4�79 10−5
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3938 Corset et al.

Table 15
AMC data—ARA�—estimation of 


Point estimate Lower limit Upper limit Standard deviation

MLE 3.583
NI 2.621 2.312 2.819 0.201
NIU 3.089 2.636 3.418 0.291
BNI 2.075 1.824 2.313 0.200

Table 16
AMC data—ARA�—estimation of �

Point estimate Lower limit Upper limit Standard deviation

LE 0.246
NI 0.352 0.176 0.567 0.148
NIU 0.281 0.164 0.428 0.114
BNI 0.356 0.109 0.674 0.212

The NIU estimates give coherent results and are not submitted to the subjective
choice of a prior for �, so we recommend them in this case.

Figures 13 and 14 present, respectively, the NIU Bayesian estimates of the
intensity and expected number of failures, for the ARA1 model. As before, the
Bayesian point estimate is in solid line, the credibility limits are in (blue)/dashed
lines and the MLE is in (blue)/dotted (green) line.

In these figures, the Bayesian estimates are very close to the ML estimates, even
if the estimates of the parameters are not close. In fact, this result is also true with
the NI and GNI estimates. Moreover, we can see in Fig. 14 that the estimates are

Figure 13. AMC data—ARA1—NIU estimate of the intensity. (color figure available
online.)
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Figure 14. AMC data—ARA1—NIU estimate of the expected number of failures. (color
figure available online.)

also very close to the observed number of failures. On the one hand, this means
that all the estimation methods manage to catch the behavior of the failure process
and to estimate correctly reliability indicators. On the other hand, the ARA1 model
provides a good fit to these data.

6. Conclusion and Future Work

In this article, we presented a unified approach of the Bayesian analysis of ARA
imperfect repair models, including all ARA models and many kinds of possible
priors. It allows to compute meaningful reliability indicators (with credibility
intervals) even when very few data are available. Other ideas can be explored in the
same framework: computing other reliability indicators such as predictive MTTF,
performing Bayesian tests, analyzing several data sets in parallel, etc.

Another promising area is the Bayesian inference of imperfect maintenance
models, where both preventive and corrective maintenance are performed. Until
now, this case has been studied by Pulcini (2000) and Sheu et al. (2001), with only
ABAO CM effects, and by Yu et al. (2008) with ARA1 CM and PM effects.
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