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This article proposes a Bayesian analysis of a class of imperfect repair models, the ARA models. The choice of prior distributions and the computation of posterior distributions are discussed. The presentation is unified for all ARA models and many kinds of possible priors. A numerical study on the quality of the Bayesian estimators is presented, as well as a comparison with the maximum likelihood estimators. Finally, the approach is applied to a real data set.

Introduction

The reliability of a repairable system depends on both the aging process and the efficiency of repair. The basic assumptions on repair efficiency are known as minimal repair or As Bad As Old (ABAO) and perfect repair or As Good As New (AGAN). The corresponding stochastic models for the failure process are, respectively, the Non Homogeneous Poisson Processes (NHPP) and the Renewal Processes (RP). The reality is generally between these two extreme cases: standard repair is better than minimal but not necessarily perfect. This is known as imperfect repair.

Many imperfect repair models have been proposed. The most usual are Kijima's virtual age models [START_REF] Kijima | Some results for repairable systems with general repair[END_REF], where repair is assumed to rejuvenate the system. [START_REF] Brown | Imperfect repair[END_REF] assumed that repair is perfect with probability p and minimal with probability 1p. [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF] proposed two classes of models, the ARA and ARI models, based on a reduction of virtual age or failure intensity.

Statistical inference is needed in order to estimate model parameters and compute reliability indicators from failure data. Many results exist in the NHPP and RP cases, but only a few articles deal with the statistical inference in imperfect repair models. For virtual age models, empirical studies on maximum likelihood estimators (MLE) have been presented by [START_REF] Shin | Estimating parameters of intensity function and maintenance effect for repairable unit[END_REF], [START_REF] Lim | Estimating system reliability with fully masked data under Brown-Proschan model[END_REF], [START_REF] Kaminskiy | G-renewal process as a model for statistical warranty claim prediction[END_REF], [START_REF] Gasmi | A general repair, proportional-hazards, framework to model complex repairable systems[END_REF], [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF], [START_REF] Veber | Generalized renewal process for repairable systems based on finite Weibull mixture[END_REF], [START_REF] Dijoux | A virtual age model based on a bathtub shaped initial intensity[END_REF], and [START_REF] Syamsundar | Imperfect repair proportional intensity models for maintained systems[END_REF]. Theoretical results on these estimators were derived by [START_REF] Peña | Semiparametric inference for a general class of models for recurrent events[END_REF] and [START_REF] Doyen | Asymptotic properties of imperfect repair models and estimation of repair efficiency[END_REF].

In practice, for reliable systems, only a few failures occur. So the asymptotic results on MLE cannot be used. Moreover, the engineers knowledge about the degradation and failure process could be very helpful to improve the estimations of the model parameters. Thus, a Bayesian analysis of these models is an interesting alternative to usual frequentist methods.

The Bayesian inference has been extensively studied in the NHPP case: [START_REF] Guida | Bayes inference for a non-homogeneous Poisson process with power intensity law[END_REF][START_REF] Guida | Bayes estimation of prediction intervals for a power-law process[END_REF], [START_REF] Guida | Bayesian analysis of repairable systems showing a bounded failure intensity[END_REF], [START_REF] Bar-Lev | Bayesian inference for the power-law process[END_REF], [START_REF] Campodonico | Inference and predictions from Poisson point processes incorporating expert knowledge[END_REF], [START_REF] Calabria | A reliability growth model in a Bayes decision framework[END_REF], [START_REF] Kuo | Bayesian computation for nonhomogeneous Poisson processes in software reliability[END_REF], [START_REF] Beiser | Bayes prediction for the number of failures of a repairable system[END_REF], [START_REF] Sen | Bayesian estimation and prediction of the intensity of the power-law process[END_REF], [START_REF] Ryan | Some flexible families of intensities for non-homogeneous Poisson process models and their Bayes inference[END_REF], and [START_REF] Pievatolo | Bayesian reliability analysis of complex repairable systems[END_REF]. Conversely, Bayesian analysis for imperfect repair models has been seldom studied: [START_REF] Lim | Bayesian imperfect repair model[END_REF] for the Brown-Proschan model, and [START_REF] Pan | Bayes inference for general repairable systems[END_REF] for the ARA 1 and ARI 1 models. With a different purpose, [START_REF] Sethuraman | Nonparametric Bayes estimation in repair models[END_REF] derived theoretical results for general virtual age models when the virtual ages are known.

The aim of this article is to present a Bayesian analysis of the class of ARA imperfect repair models. This class involves the ARA 1 model studied by [START_REF] Pan | Bayes inference for general repairable systems[END_REF] and also many others including the ARA model.

This article is organized as follows. The ARA models are defined in Sec. 2. The Bayesian analysis is developed in Sec. 3, with a discussion on the choice of prior distributions and the computation of posterior distributions. Section 4 studies the properties of the estimators by means of Monte-Carlo simulations. Finally, an application to real data is presented in Sec. 5.

The ARA Imperfect Repair Models

Let T i i≥1 be the successive failure times of a repairable system, starting from T 0 = 0. We assume that a repair task is performed after each failure and that repair durations are negligible. Let X i i≥1 be the times between failures X i = T i -T i-1 and N t be the number of failures observed up to time t.

Then, the failure process is a random point process. Its distribution can be characterized by the failure intensity, defined as:

∀ t ≥ 0 t = lim t→0 1 t P N t+ t --N t-= 1 t- (1)
where t-is the history of the failure process just before time t, i.e., the set of all events occurred just before t. N t-denotes the left-hand limit of N t . In most cases, the failure process is a self-excited process, i.e., t is a function of the number of failures and the failure times before t: t = t N t-T 1 T N t-. In this case, the distribution of the failure process is completely given by the intensity.

We assume that before the first failure, the intensity is a deterministic continuous function of time, denoted t , and called the initial intensity. The initial intensity characterizes the intrinsic behaviour of a new unrepaired system. is the hazard rate of the first failure time T 1 = X 1 . In the following, we assume, as in Pan Downloaded by [franck corset] at 05:32 18 September 2012 and Rigdon (2009), that the initial intensity is the intensity of a Power Law Process (PLP):

t = t -1 > 0 > 0 (2)
In general, the system is ageing intrinsically, so t is increasing and > 1.

For the two basic models, the failure intensity of a NHPP (ABAO) is a function of time:

t = t (3)
and the failure intensity of a RP (AGAN) is a function of the time elapsed since last repair:

t = t -T N t- (4) 
The idea of the virtual age models proposed by [START_REF] Kijima | Some results for repairable systems with general repair[END_REF] is to assume that there exists a sequence of random variables A i i≥1 , with A 0 = 0, such that after the ith repair, the system behaves like a new one having survived without failure until A i . This property can be written:

P X i+1 > x A i X 1 X i = P Y > A i + x Y > A i A i for all x ≥ 0 (5)
where Y denotes a random variable with the same distribution as the first failure time X 1 . Then, it can easily be proved that the failure intensity is:

t = A N t-+ t -T N t- (6) 
The virtual age of the system at time t is A N t-+ t -T N t-. A i is the virtual age just after the ith repair and is called the ith effective age. The NHPP is a virtual age model with ∀i A i = T i and the RP is a virtual age model with ∀i A i = 0.

This article is dedicated to the Arithmetic Reduction of Age (ARA) class of imperfect repair models, defined in [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF], which are particular virtual age models. The Arithmetic Reduction of Age model with memory m, denoted ARA m , is defined by its failure intensity:

t = t - min m-1 N t--1 j=0 1 -j T N t--j (7) 
m reflects a Markovian property: it is the maximal number of previous failure times involved in the failure intensity. is a parameter which characterizes repair efficiency and will be described later. Two values of m are particularly interesting.

• m = 1. The failure intensity of the ARA 1 model is:

In this model, the effect of a repair is to reduce the virtual age just before repair of a quantity proportional to the time elapsed since last repair:

A i = A i-1 + X i -X i ⇒ A i = 1 -T i
The ARA 1 model is similar to Kijima's Type I model [START_REF] Kijima | Some results for repairable systems with general repair[END_REF] with deterministic repair effects, and is also the same as the Proportional Reduction of Age model proposed by [START_REF] Malik | Reliable preventive maintenance scheduling[END_REF]. • m = + . The failure intensity of the ARA model is:

t = t - N t--1 j=0 1 -j T N t--j (9) 
In this model, the effect of a repair is to reduce the virtual age just before repair of a quantity proportional to this virtual age:

A i = 1 - A i-1 + X i
The ARA model is similar to Kijima's Type II model [START_REF] Kijima | Some results for repairable systems with general repair[END_REF] with deterministic repair effects, and is also the same as the model proposed by Brown et al. (1983).

In these models, the repair efficiency is measured by the value of . Particular values of are:

• = 1: perfect repair (AGAN); • 0 < < 1: efficient repair; • = 0: minimal repair (ABAO); and • < 0: harmful repair.

For the sake of simplicity, we will assume that repair cannot be harmful, so ∈ 0 1 . Of course, in practice, it is doubtful that repair efficiency is constant. It is possible to take into account time-dependent [START_REF] Fuqing | A general imperfect repair model considering time-dependent repair effectiveness[END_REF] or random [START_REF] Doyen | On the Brown-Proschan model when repair effects are unknown[END_REF] repair effects, but the corresponding statistical inference is much more complex. So, we focus our analysis on the rather simple ARA models, in which can be understood as a mean repair efficiency. Note that the Bayesian framework, in which a prior distribution is given on , is a way of considering non constant repair efficiency.

In this article, we derive all our results under the general framework of the ARA m model. The interest is that these results will be valid, among others, for both the ARA 1 and ARA models. For the ARA 1 model, our work extends the results obtained by [START_REF] Pan | Bayes inference for general repairable systems[END_REF]. The results for the ARA model are new.

For a point process model with parameter (here = ), the general expression of the likelihood function associated with the observation of n failures up to time t of a single repairable system is [START_REF] Cook | The Statistical Analysis of Recurrent Events[END_REF]:

L t n t n = n i=1 t i exp - n+1 i=1 t i t i-1
s ds (10) Downloaded by [franck corset] at 05:32 18 September 2012 where t n = t 1 t n denotes the vector of observed failure times, t 0 = 0 and t n+1 = t. In this situation, the process is time-truncated at time t. For a process which is failure-truncated after n failures, (10) is still valid by taking t n+1 = t n .

For the ARA m model with PLP initial intensity, the likelihood becomes, with the same kind of notations as in [START_REF] Pulcini | On the overhaul effect for repairable mechanical units: a Bayes approach[END_REF]:

L t n t n = n n V -1 exp -Z (11) 
where

V = n i=1 t i -S i Z = n+1 i=1 t i -S i -t i-1 -S i S 1 = 0 and ∀i ≥ 2 S i = min m-1 i-2 j=0 1 -j t i-j-1
Let ˆ t , ˆ t , and ˆ t be the MLE of , , and , obtained by maximizing (11). It is easy to show that:

ˆ t = N t Z ˆ t ˆ t (12) 
However, numerical optimization procedures are necessary to compute ˆ t and ˆ t .

Bayesian Inference

In this article, we consider a single repairable system, which is so reliable that only very few failures occur. Then, the quality of the MLE can be very poor. The Bayesian analysis improves the accuracy of parameter estimations by adding the expert knowledge to operation feedback data. In the Bayesian framework, the parameters are considered as random variables. Their prior distributions reflect the expert knowledge on the system aging and repair efficiency. The ARA models have three parameters > 0, > 0, and ∈ 0 1 . For a given prior density , the posterior density is obtained by:

n t n ∝ L t n t n (13) 
The choice of prior distributions for this kind of parameters has been discussed in many articles. Non informative priors are used when no particular information is known on the failure and repair process. When such information is available, it is translated into informative priors. In practice, experts give an average behaviour and a degree of uncertainty on this information, which can be converted into prior mean and variance.

Since and are the parameters of a PLP, the prior distributions used in the Bayesian analysis of the PLP can be chosen here. Non informative priors for Downloaded by [franck corset] at 05:32 18 September 2012 and are used by [START_REF] Guida | Bayes inference for a non-homogeneous Poisson process with power intensity law[END_REF], [START_REF] Bar-Lev | Bayesian inference for the power-law process[END_REF], [START_REF] Calabria | A reliability growth model in a Bayes decision framework[END_REF][START_REF] Sen | Bayesian estimation and prediction of the intensity of the power-law process[END_REF]. Informative priors are used either by considering expert knowledge on the failure mechanism, or by using conjugate distributions. For , the gamma distribution has been used by [START_REF] Kuo | Bayesian computation for nonhomogeneous Poisson processes in software reliability[END_REF], [START_REF] Pievatolo | Bayesian reliability analysis of complex repairable systems[END_REF], and [START_REF] Pan | Bayes inference for general repairable systems[END_REF]. For , the uniform distribution has been used by [START_REF] Guida | Bayes inference for a non-homogeneous Poisson process with power intensity law[END_REF], [START_REF] Sen | Bayesian estimation and prediction of the intensity of the power-law process[END_REF], and [START_REF] Pan | Bayes inference for general repairable systems[END_REF]. The beta distribution has been used by [START_REF] Sen | Bayesian estimation and prediction of the intensity of the power-law process[END_REF].

For the repair efficiency parameter of the Brown-Proschan model, [START_REF] Lim | Bayesian imperfect repair model[END_REF] used the beta distribution. For the repair efficiency parameters of the ARA 1 and ARI 1 models, Pan and Rigdon ( 2009) also used the beta distribution.

In this article, we will choose informative, non informative, and semi informative priors on the model parameters. Informative priors on reliability indicators will also be considered.

Informative Priors on the Parameters

For the scale parameter , we choose the gamma distribution, denoted a b , with density function:

= b a a a-1 exp -b (14) 
where a = + 0 t a-1 e -t dt. The expectation and variance of this distribution are, respectively, a/b and a/b2 . We will see later that this is a conjugate prior for .

For the shape parameter , we choose the uniform distribution on 1 2 , denoted 1 2 :

= 1 2 -1 1 2 (15)
is linked to the system aging in a Weibull framework. So experts are likely to give plausible values for . 1 and 2 can be understood as, respectively, the lower and upper bounds for these values. It is possible to take 1 = 1 in order to assume that, without repair, the system wears out.

For the repair efficiency parameter , since we have assumed that belongs to 0 1 , we choose the beta distribution, denoted Be c d , with density function:

= c + d c d c-1 1 -d-1 (16)
The prior expectation is c c+d and the prior variance is cd c+d 2 c+d+1 . Finally, the priors are supposed to be independent, so the joint prior density is:

= ∝ a-1 exp -b c-1 1 -d-1

Non Informative Priors

The usual non informative priors for and in the PLP case are:

∝ 1 and ∝ 1 (18)
For non harmful repair, belongs to 0 1 . So a non informative prior in this case is the uniform distribution 0 1 .

Then, with the independence of priors, the joint non informative prior is:

∝ 1 (19)

Unified Priors

Following [START_REF] Pulcini | On the overhaul effect for repairable mechanical units: a Bayes approach[END_REF], we can unify the informative and non informative cases by making the following remarks.

• For , the non informative prior is a limit case of the a b distribution, where a and b tend to zero. • For , the 1 2 density and the non informative prior can both be written:

∝ - 1 2 (20) 
where = 0 corresponds to the uniform distribution, and = 1, 1 = 0, and 2 = + correspond to the non informative prior. • For , the 0 1 distribution is the same as the Be 1 1 distribution, so it is a particular case of the Be c d distribution.

So we can define a unified prior as:

∝ a-1 exp -b -c-1 1 -d-1 1 2 (21)
The informative prior ( 17) is obtained for = 0 and the non informative prior ( 19) is obtained for a = b = 0, = 1, c = d = 1, 1 = 0, and 2 = + .

It is also possible to use semi-informative priors. Indeed, the three parameters of the ARA models have well-identified meanings.

is linked to the intrinsic aging, characterizes repair efficiency, and is a scale parameter. In practice, it is much easier to obtain prior information on and than on . Therefore, one can consider, as in [START_REF] Pulcini | On the overhaul effect for repairable mechanical units: a Bayes approach[END_REF], to use the non informative prior for and the informative priors for and . This can be done by taking only a = b = 0 in (21).

Posterior Distributions

For the unified prior, the joint posterior distribution is derived using ( 13), (11), and ( 21). The posterior density of is:

n t n ∝ n+a-1 exp -b + Z n-V -1 c-1 1 -d-1 1 2
(22) Downloaded by [franck corset] at 05:32 18 September 2012

The conditional posterior densities of each parameter can also be derived as:

n t n ∝ n+a-1 exp -b + Z (23) n t n ∝ n-V -1 exp -Z 1 2 (24) n t n ∝ V -1 exp -Z c-1 1 -d-1 (25) 
Equation ( 23) proves that the posterior distribution of given and is the gamma distribution n + a b + Z . Then the gamma distribution is a conjugate prior for .

Because the parameter is multidimensional and there are no conjugate priors for and , the posterior distributions will be derived by means of the Gibbs sampling algorithm, with Metropolis-Hastings steps [START_REF] Robert | Monte-Carlo Statistical Methods[END_REF]. This Markov Chain Monte Carlo (MCMC) algorithm produces samples from the joint posterior distribution, from which it is possible to compute all the features of the posterior distributions. For instance, the posterior mean, median, and mode are point Bayesian estimators of the parameters. With the posterior distribution, it is also possible to give credibility intervals for the parameters.

We propose two versions of the algorithm, one for which a prior is proposed for , and one for which is derived from (12).

Algorithm 1 (Algorithm with a Prior for ). 1. k ← 0. Choose initial values of 0 , 0 , and 0 . 2. k ← k + 1. 3. Sample k given k-1 and k-1 from (23). 4. Sample k given k and k-1 from (24). 5. Sample k given k and k from (25). 6. While k < K, go to step 2.

Since it is not possible to sample directly from ( 24) and (25), we use the Metropolis-Hastings algorithm in steps 4 and 5. For instance, in step 4, we sample from an instrumental distribution easy to simulate, with density q. Let

r = k k-1 n t n q k-1 k-1 k k-1 n t n q k-1 (26) 
Then, k will be equal to with probability min r 1 and to k-1 otherwise. For a symmetric transition, q k-1 = q k-1 , so (26) becomes

r = k k-1 n t n k-1 k k-1 n t n (27) 
Here, we take for q a Gaussian distribution centered on the given value of .

As said before, it is not easy to give a prior on the scale parameter . A first possibility is to choose a non informative prior by taking a = b = 0 in (21). Another possibility is to use the fact that, in (12), the MLE of is computed as a function of the MLE of and . Then, we propose a second version of the algorithm, for which priors are given only for and , and is computed as a function of and , according to (12).

Algorithm 2 (Algorithm with no Prior for ). 1. k ← 0. Choose initial values of 0 and 0 . Downloaded by [franck corset] at 05:32 18 September 2012 2. Compute 0 as a function of 0 and 0 from (12). 3. k ← k + 1. 4. Sample k given k-1 and k-1 from (24). 5. Sample k given k-1 and k from (25). 6. Compute k as a function of k and k from (12). 7. While k < K, go to step 3.

Informative Prior on Reliability Indicators

Giving a prior is facilitated if the considered quantity has a clear physical meaning, such as a reliability indicator. In the PLP case, [START_REF] Guida | Bayes inference for a non-homogeneous Poisson process with power intensity law[END_REF], [START_REF] Calabria | A reliability growth model in a Bayes decision framework[END_REF], and [START_REF] Sen | Bayesian estimation and prediction of the intensity of the power-law process[END_REF] proposed a gamma prior for the expected number of failures E N t . With an informative prior on , it is possible to derive a prior for . For the ARA model, the mean number of failures takes into account both the intrinsic aging (through and ) and repair efficiency (through ). Since these parameters can have compensating effects, it is not so easy to give a prior value for E N t . Then, we propose to give a prior on an indicator which is linked only to the intrinsic aging, the mean time to the first failure:

= E T 1 = 1 1/ 1 + 1 ( 28 
)
Since appears at the denominator of , we choose an inverse gamma prior, denoted I A B , for . Then, the prior density is:

= B A A -A-1 exp - B ( 29 
)
For A > 2, the expectation and variance of this distribution are, respectively, B

A-1 and

B 2 A-1 2 A-2 .
The conditional prior density of is derived thanks to a change of variables:

= B A A/ -1 A 1 + 1 A exp - B 1/ 1 + 1 (30)
If we keep the informative priors 1 2 for and Be c d for , the joint prior distribution is:

= ∝ A/ -1 1 + 1 A exp - B 1/ 1 + 1 c-1 1 -d-1 1 2 (31)
and the joint posterior distribution is:

n t n ∝ n+A/ -1 1 + 1 A n-1 c-1 1 -d-1 V -1 exp -Z - B 1/ 1 + 1 1 2
(32) Downloaded by [franck corset] at 05:32 18 September 2012

Posterior Distributions of Reliability Indicators

With the posterior distribution of the parameters, it is possible to determine the posterior distribution of any quantity of interest, function of these parameters, such as reliability indicators. First, we give the posterior distribution of the mean time to the first failure = E T 1 studied previously. Then, following [START_REF] Pulcini | On the overhaul effect for repairable mechanical units: a Bayes approach[END_REF], we derive the posterior distribution of the failure intensity and the expected number of failures. In this section, we do not consider the case where is computed as a function of and .

3.6.1. Posterior distribution of the mean time to the first failure. For the estimation of = E T 1 we consider two cases. In the first one, we use the prior distributions on the parameters, and in the second one we use the prior distribution on .

In the first case, from Eqs. ( 22) and ( 28) with a change of variables, the posterior distribution of is found to be:

n t n ∝ 2 1 1 0 n-+1 V -1 1 + 1/ n+a c-1 1 -d-1 -n+a -1 exp -b + Z 1 + 1/ d d (33) 
Thus, the Bayesian estimator of is the posterior mean:

E n t n = 1 C 2 1 1 0 n-V -1 1 + 1/ c-1 1 -d-1 n + a -1/ b + Z n+a-1/ d d (34) 
where

C = 2 1 1 0 n-V -1 c-1 1 -d-1 n + a b + Z n+a d d
The integrals involved in these equations are computed by Monte Carlo simulations. It is also possible to obtain credibility intervals for from Eq. ( 33).

Secondly, we consider the case of Sec. 3.5, where the inverse gamma prior ( 29) is chosen for . With the informative priors 1 2 for and Be c d for , the posterior distribution of is:

n t n ∝ 2 1 1 0 n V -1 1 + 1/ n c-1 1 -d-1 -n-A-1 exp -Z 1 + 1/ - B d d (35) 
The Bayesian estimator of is the posterior mean. Downloaded by [franck corset] at 05:32 18 September 2012 3.6.2. Posterior distribution of the failure intensity. The failure intensity at a time

∈ t i t i+1 is = -S i+1 -1
A change of variables in ( 22) leads to the posterior distribution of :

n t n ∝ 2 1 1 0 V -1 c-1 1 -d-1 a+ -S i+1 n+a -1 n+a-1 exp - b + Z -S i+1 -1 d d (36) 
The Bayesian point estimator of is the posterior mean:

E n t n = 1 C 2 1 1 0 V -1 c-1 1 -d-1 n-+1 -S i+1 -1 b + Z n+a+1 d d ( 37 
)
where C is a normalizing constant. The integrals involved in (37) are computed by Monte Carlo simulations. Credibility intervals for can also be obtained from (36). Then, computing these values for each , it is possible to draw a plot of the Bayesian point and interval estimators of the failure intensity.

Posterior distribution of the expected number of failures.

A usual result of the theory of point processes is that the expected number of failures at any time is linked to the failure intensity by:

N = 0 s ds + M (38)
where M ≥0 is a martingale. Having observed failure times t 1 < • • • < t n , for ∈ t i t i+1 , 1 ≤ i ≤ n, the cumulative failure intensity is:

= 0 s ds = i j=1 t j t j-1 s ds + t i s ds (39) 
For the ARA models, we obtain:

= Z i (40) 
where

Z i = i j=1 t j -S j -t j-1 -S j + -S i+1 -t i -S i+1 (41) 
Of course, Z n t = Z . Then, it is possible to make a Bayesian prediction of the expected number of failures at time by computing the posterior distribution of . For a given data Downloaded by [franck corset] at 05:32 18 September 2012 set, comparing the prediction with the observed value of N will give an indication of the goodness-of-fit of the ARA model.

Note that the expression of is similar to that of = -S i+1 -1 . In fact, the results for can be derived from those on by replacing -S i+1 -1 by Z i . Then, the posterior distribution of is:

n t n ∝ 2 1 1 0 V -1 c-1 1 -d-1 n- Z i n+a n+a-1 exp - b + Z Z i d d (42) 
and the Bayesian point estimator of is the posterior mean:

E n t n = 1 C 2 1 1 0 V -1 c-1 1 -d-1 n-Z i b + Z n+a+1 d d ( 43 
)
where C is a normalizing constant. For = t and i = n, Z n t = Z . With the non informative prior for (a = b = 0), it is easy to check that E t n t n = n.

Simulation Results

Comparison of MLE and Bayesian Estimators

Here, we compare the maximum likelihood and Bayesian estimators by means of Monte Carlo simulations. We simulate 200 samples of size n ∈ 5 10 25 of both ARA 1 and ARA models, with parameters equal to = 0 01, = 3, and = 0 6. These values are chosen in order to reflect the behaviour of a system with important aging ( = 3), good repair efficiency ( = 0 6) and a mean time of the first failure around 4 (E T 1 = 4 14).

For each sample, we compute the MLE and several Bayesian estimators of each parameter, corresponding to different choices of priors. We also compute the estimators of E T 1 .

The prior for is non informative ( = 1 1 = 0 2 = + ) or uniform on 1 4 ( = 0 1 = 1 2 = 4). This is a rather good prior since the prior mean is 2.5 and the prior standard deviation is 0.87.

Three priors are chosen for : the non informative (c = d = 1), a good one (c = 1 652 d = 0 708 with a prior mean equal to 0.7), and a bad one (c = 0 708 d = 1 652 with a prior mean equal to 0.3). For both informative priors, the standard deviation is 0.25.

For , we consider several possibilities:

• The non informative prior: a = b = 0.

• A good informative prior: a = 2 25 b = 150, with a prior mean equal to 0.015 and a prior standard deviation equal to 0.01. • The estimator of computed as a function of the estimators of and , according to (12). • The prior for given computed from a prior on E T 1 , according to (30).

The prior for E T 1 is inverse gamma with A = 8 25 and B = 36 25, leading to a prior mean equal to 5 and a prior standard deviation equal to 2. Downloaded by [franck corset] at 05:32 18 September 2012 In these figures, the following notations are adopted. The corresponding values of the hyperparameters are given in Table 1.

• MLE: Maximum Likelihood Estimator.

• NI: Non Informative prior on each parameter.

• GP: Good Prior for , prior for .

• GC: Good prior for , Computed.

• GNI: Good prior for , non Informative for .

• GT1: Good prior for , prior on E T 1 .

• BP: Bad Prior for , prior for .

• BC: Bad prior for , Computed.

• BNI: Bad prior for , Non Informative for .

• BT1: Bad prior for , prior on E T 1 .

The behavior of the estimators is essentially similar for the ARA 1 and ARA models. The decrease of the MSE is not always true for so small samples. The worst estimators are the non informative and the MLE. For both estimators of , the mse is so large that it does not appear in Figs. 3 and4. Both estimators overestimate strongly , but the MLE is correct for and , while the non informative is correct Downloaded by [franck corset] at 05:32 18 September 2012 only for . As expected, the estimators are globally better when the prior on is good (G) than when it is bad (B).

The comparison of the ways to estimate leads to the logic conclusion that the best estimators are obtained for a good informative prior (P). The three other estimators have similar behaviors, which slightly differ depending on the model and parameters. The estimator with a prior on E T 1 (T1) can be used if a good knowledge on this value is available. The estimator with a non informative prior on (NI) and the estimator with computed (C) do not need any kind of knowledge on . Both need the MCMC algorithm. C is simpler to compute than NI because the MCMC algorithm involves only two parameters instead of three. Downloaded by [franck corset] at 05:32 18 September 2012 For the estimation of in the ARA 1 model, the prior has a strong impact. We can see in Fig. 5 that the mse of all the estimators with good prior are much lower than the mse of all the estimators with bad prior. For the ARA model, this result is still true for small n, but much weaker.

For the estimation of E T 1 , it is interesting to note that the best estimator is logically obtained when a prior on E T 1 is used (GT1). The worst estimator is the MLE, followed by NI. Here again, the G estimators are better than the B estimators.

Table 2 gives the relative mean squared error for the model parameters and for E T 1 . For a quantity , the relative MSE is MSE/ 2 , where mse is taken as an average value of the MSE previously computed. The less this value is, the better is estimated. From this table, we see that is much less well estimated than the other parameters. But it doesn't prevent E T 1 from being well estimated.

Finally, the Bayesian approach will be particularly profitable for the estimation of and E T 1 . Of course, the greater is the knowledge on the parameters, the better are the estimations. But Bayesian estimators are still satisfactory even with a bad prior.

Study of One Data Set

In practice, one has to analyze one data set made of n successive failure times of a repairable system. The first objective is to estimate the parameters of ARA models and reliability indicators. Thanks to the Bayesian analysis, it is also possible to compute credibility intervals on these quantities (the equivalent is not possible with the MLE). We can also compare prior and posterior distributions. In this section, we apply this approach to data simulated from the ARA 1 model. In the next section, it will be applied to a real data set for both ARA 1 and ARA models.

Table 3 presents n = 5 failure times simulated from the ARA 1 model with parameters = 0 01, = 3, and = 0 6.

Tables 4-7 present point estimates of the parameters , , , and of E T 1 . The considered estimators are the MLE and the Bayesian GP, GNI, BNI. For the Bayesian estimators, the 80% credibility intervals and posterior standard deviations are also given.

The MLE is naturally of bad quality since we have to estimate three parameters with five observations. Indeed, the MLE of , , and E T 1 are very far from the These figures show that the Bayesian estimate provides a better fit than the MLE: the blue line is closer to the red line than the green line. The real intensity, cumulative intensity, and observed number of failures are always within the credibility limits. In Fig. 12, the ML and GNI estimates are equal to n for t = t n . For GNI, this property has been stated in Sec. 3. For the MLE, this property comes from ( 12) and (40). 

Application to Automobile Data

In this section, we present an application to automobile data studied by [START_REF] Ahn | Estimating parameters of the power-law process with two measures of time[END_REF] and [START_REF] Guida | Bayesian analysis of repairable systems showing a bounded failure intensity[END_REF]. The data given in Table 8 are n = 18 failure times of an AMC Ambassador car owned by the Ohio state government. The MLEs of the parameters for the PLP, ARA 1 , and ARA models are given in Table 9. Usual model selection criteria are also given. For a model with k estimated parameters and n observed data, these criteria are defined as:

• max ln is the maximal log-likelihood;

• AIC = -2 max ln + 2k;

• AICc = -2 max ln + 2kn n-k-1 ; and • BIC = -2 max ln + 2k ln n.

The "best" model has the smallest AIC/AICc/BIC. For all the criteria, the ARA 1 model is found to be better than the PLP. For all the criteria except the BIC, the ARA model is also better than the PLP. The best model is ARA 1 . The estimates of are close to 3, indicating a strong intrinsic wear-out. The estimates of and in the two models are very different. It is not surprising since the models have different meanings (considerations of that kind are given in [START_REF] Doyen | Classes of imperfect repair models based on reduction of failure intensity or virtual age[END_REF]. Anyway, the estimates of indicate a good repair efficiency. Now we perform the Bayesian analysis of these data. Since we have no prior knowledge on this system, the first idea is to use the completely non informative Bayesian estimators. But it makes sense to assume that this automobile is wearing. So we will also use the uniform prior on 1 4 for . For , it is interesting to note that the MLE are relatively close to some values used as prior means in the simulation study: for the ARA 1 model, ˆ t = 0 898 is not far from 0.7 (the GNI of Sec. 4.1) and for the ARA model, ˆ t = 0 246 is close to 0.3 (the BNI of Sec. 4.1). Then, we will also use the corresponding informative priors for .

Tables 11-16 present point estimates, the 80% credibility intervals and posterior standard deviations of the parameters , , and for ARA 1 and ARA models. In these tables, the following estimates are used. The corresponding values of the hyperparameters are given in Table 10.

• MLE: Maximum Likelihood Estimator.

• NI: Non Informative prior on each parameter.

• NIU: Non Informative prior for and , uniform prior for .

• GNI: Non Informative prior for , uniform prior for , beta prior for for the ARA 1 model. • BNI: Non Informative prior for , uniform prior for , beta prior for for the ARA model.

For the ARA 1 model, the NI estimates are very different from the others, especially for . They also have rather high standard deviation. The GNI estimates are globally closer to the MLE than the NIU, with smaller standard deviation and narrower credibility intervals. This is due to the fact that we have chosen a prior close to the MLE. For the ARA model, these properties are no longer true. The NIU estimates are closer to the MLE than the BNI. Downloaded by [franck corset] at 05:32 18 September 2012 The NIU estimates give coherent results and are not submitted to the subjective choice of a prior for , so we recommend them in this case.

Figures 13 and 14 present, respectively, the NIU Bayesian estimates of the intensity and expected number of failures, for the ARA 1 model. As before, the Bayesian point estimate is in solid line, the credibility limits are in (blue)/dashed lines and the MLE is in (blue)/dotted (green) line.

In these figures, the Bayesian estimates are very close to the ML estimates, even if the estimates of the parameters are not close. In fact, this result is also true with the NI and GNI estimates. Moreover, we can see in Fig. 14 that the estimates are also very close to the observed number of failures. On the one hand, this means that all the estimation methods manage to catch the behavior of the failure process and to estimate correctly reliability indicators. On the other hand, the ARA 1 model provides a good fit to these data.

Conclusion and Future Work

In this article, we presented a unified approach of the Bayesian analysis of ARA imperfect repair models, including all ARA models and many kinds of possible priors. It allows to compute meaningful reliability indicators (with credibility intervals) even when very few data are available. Other ideas can be explored in the same framework: computing other reliability indicators such as predictive MTTF, performing Bayesian tests, analyzing several data sets in parallel, etc.

Another promising area is the Bayesian inference of imperfect maintenance models, where both preventive and corrective maintenance are performed. Until now, this case has been studied by [START_REF] Pulcini | On the overhaul effect for repairable mechanical units: a Bayes approach[END_REF] and [START_REF] Sheu | A Bayesian approach to an adaptative preventive maintenance model[END_REF], with only ABAO CM effects, and by [START_REF] Yu | Parameter estimation for a repairable system under imperfect maintenance[END_REF] with ARA 1 CM and PM effects.
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  compare the prior density (solid line) and the posterior density (histogram from the MCMC samples) of the GNI and BNI estimators of . In both cases, the posterior is brought closer to the MLE. The posterior distribution is
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 9 Figure 9. GNI-Comparison of prior and posterior densities. (color figure available online.)naturally more concentrated around the true value = 0 6 for the good prior than for the bad prior.Finally, the GNI Bayesian estimates of the failure intensity and expected number of failures are plotted in Figs. 11 and 12. The solid line represents the Bayesian point estimate, the credibility limits are in dashed (blue) lines. The true value and maximum likelihood estimates of the functions are, respectively, plotted in dash-dot (red) line and dotted (green).These figures show that the Bayesian estimate provides a better fit than the MLE: the blue line is closer to the red line than the green line. The real intensity, cumulative intensity, and observed number of failures are always within the credibility limits. In Fig.12, the ML and GNI estimates are equal to n for t = t n . For GNI, this property has been stated in Sec. 3. For the MLE, this property comes from (12) and (40).
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 10 Figure 10. BNI-Comparison of prior and posterior densities. (color figure available online.)
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 13 Figure 13. AMC data-ARA 1 -NIU estimate of the intensity. (color figure available online.)
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 14 Figure 14. AMC data-ARA 1 -NIU estimate of the expected number of failures. (color figure available online.)

  

Table 1

 1 Hyperparameter values for the Bayesian estimates

		a	b		1	2	c	d	A	B
	NI	0	0	1	0	+	1	1
	GP	2.25	150	0	1	4	1.652	0.708
	GC			0	1	4	1.652	0.708
	GNI	0	0	0	1	4	1.652	0.708
	GT1			0	1	4	1.652	0.708	8.25	36.25
	BP	2.25	150	0	1	4	0.708	1.652
	BC			0	1	4	0.708	1.652
	BNI	0	0	0	1	4	0.708	1.652
	BT1			0	1	4	0.708	1.652	8.25	36.25

Table 2

 2 Relative mean squared error

	E T 1

Table 3

 3 Simulated data set from the ARA 1 model
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	6.17	8.30	9.20	10.47	12.84

Table 4

 4 One data set-ARA 1 -estimation of but the MLE of is quite good. The GP estimates (good priors for and ) are always good, in mean and variance, as well as for the length of credibility intervals. The GNI is a good estimate for and . The BNI is a good estimate for and . For , the BNI is highly biased, because it is close to the (bad) prior mean. Figures 9 and 10

	Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	0.00003			
	GP	0.0123	0.00360	0.0236	0.0086
	GNI	0.0277	0.00095	0.0718	0.0648
	BNI	0.0122	0.00053	0.0357	0.0270
			Table 5		
		One data set-ARA 1 -estimation of	
	Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	5.869			
	GP	2.921	2.344	3.572	0.465
	GNI	2.954	1.826	3.825	0.755
	BNI	3.070	2.030	3.829	0.655
	true values,				

Table 6

 6 One data set-ARA 1 -estimation of

	Downloaded by [franck corset] at 05:32 18 September 2012	Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	0.554			
	GP	0.605	0.339	0.821	0.192
	GNI	0.538	0.242	0.818	0.214
	BNI	0.317	0.040	0.629	0.215
			Table 7		
		One data set-ARA 1 -estimation of E T 1	
		Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	5.424			
	GP	4.619	3.5939	5.8197	0.9524
	GNI	4.7645	3.2231	6.4155	1.2888
	BNI	5.6575	3.8603	7.5476	1.4780

Table 9

 9 AMC data-Maximum likelihood estimates and model selection criteria

		ˆ t	ˆ	t	ˆ t	max ln	AIC	AICc	BIC
	PLP	1 32 10 -4	1.625		-95.15	194.29	195.09	201.86
	ARA 1 ARA	1 30 10 -7 2 12 10 -9	3.102 3.583	0.898 0.246	-92.00 -92.68	189.99 191.36	191.71 193.07	201.33 202.70

Table 10

 10 Hyperparameter values for the Bayesian estimates

		a	b		1	2	c	d
	NI	0	0	1	0	+	1	1
	NIU	0	0	0	1	4	1	1
	GNI	0	0	0	1	4	1.652	0.708
	BNI	0	0	0	1	4	0.708	1.652
				Table 11			
			AMC data-ARA 1 -estimation of		
		Point estimate	Lower limit		Upper limit	Standard deviation
	MLE	1 30 10 -7						
	NI	4 87 10 -4		1 20 10 -5		1 44 10 -3	7 07 10 -4	
	NIU	1 03 10 -5		6 09 10 -7		3 19 10 -5	1 99 10 -5	
	GNI	3 05 10 -7		1 21 10 -9		6 73 10 -7	2 78 10 -7
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			Table 12		
		AMC data-ARA 1 -estimation of	
		Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	3.102			
	NI	1.736	1.362	2.184	0.331
	NIU	2.430	1.989	2.696	0.254
	GNI	3.104	2.718	3.894	0.418
			Table 13		
		AMC data-ARA 1 -estimation of	
		Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	0.898			
	NI	0.680	0.284	0.939	0.256
	NIU	0.801	0.626	0.938	0.159
	GNI	0.866	0.800	0.928	0.054
			Table 14		
		AMC data-ARA -estimation of	
		Point estimate	Lower limit	Upper limit	Standard deviation
	MLE	2 12 10 -9			
	NI	2 60 10 -6	2 00 10 -7	8 20 10 -6	4 41 10 -6
	NIU	2 73 10 -7	5 41 10 -9	8 41 10 -7	6 79 10 -7
	BNI	4 12 10 -5	4 83 10 -6	1 09 10 -4	4 79 10 -5

t = t -T N t- (8) Downloaded by [franck corset] at 05:32 18 September 2012
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