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Abstract

This paper presents a case study of technical and economic optimization of the periodicity of predetermined
preventive maintenance actions carried out on a repairable industrial system from an EDF electric power
plant. This analysis is conducted with the MARS software tool (MARS for ”Maintenance Assessment of
Repairable Systems”), developed jointly by Grenoble University and EDF R&D. The innovative aspect of
this work lies in the integrated approach that is used, combining two steps. A first estimation step retrospec-
tively assesses maintenance effect on system reliability. A second simulation step predicts the behaviour of
the maintained system over the time period set as an objective by the operator.

Keywords: Repairable systems reliability, Imperfect repair, Maintenance efficiency, Maintenance
optimization, Failure intensity, Non-homogeneous Poisson process, Ageing

1. Introduction

Maintenance is carried out on repairable industrial systems throughout their life cycle to keep them in,
or restore them to, an operating state, while ensuring constraints related to safety, availability and costs.
Maintenance, by providing an essential contribution to the operational system reliability, plays a great part
in risk management and constitutes a crucial element in the performance of an industrial installation. That
is why the quantitative assessment of maintenance effect and its optimization are major strategic challenges
for an energy utility company such as EDF, which is a leading player in the European energy industry.
From a practical point of view, the process consisting in evaluating then optimizing maintenance efficiency
is made of two main successive and eventually iterative steps.

Step A Once the initial maintenance plan is devised and effectively carried out on the system, one must
retrospectively confirm its real quality, according to the constraints and objectives initially set by
the operator. In order to estimate the intrinsic system reliability and the maintenance efficiency, the
data related to the events observed during the system operation (deteriorations, failures and/or sur-
vivals) is required. Then one can decide if it is necessary to revise the maintenance plan. Depending
on the results of this evaluation, either the maintenance plan remains unchanged if satisfactory or
is modified, in which case one moves on to the next step.

Step B If the maintenance plan must (or can) be optimized, for instance by adjusting the frequency of the
periodic preventive maintenance actions, one must assess the possible consequences of the consid-
ered changes before the modifications are applied, in order to check if the new maintenance plan
will be more efficient than the current one, for example on technical and economic criteria. To that
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end, simulation techniques must be carried out to determine the potential impact of the upcoming
maintenance plan over the time period set as an objective by the operator. These techniques consist
in reproducing the future behaviour of the system on the basis of its intrinsic reliability and the
efficiency of the maintenance actions previously estimated in step A .

Thus, as presented in Figure 1, the process which leads to the assessment of the maintenance effect on the
system reliability can be seen as an iterative sequence of the two previous steps.

Figure 1: Process consisting in evaluating then optimizing maintenance efficiency

In order to help the plant operator to define efficient maintenance plans, Grenoble University and EDF R&D
developed a software tool to the attention of reliability engineers. This software, called MARS for ”Main-
tenance Assessment of Repairable Systems” [1], is an innovative and user-friendly freeware that offers an
integrated approach to the whole process of maintenance assessment and optimization previously described.
Indeed, by implementing imperfect maintenance models and methods for statistical estimation and stochastic
simulation, MARS allows to easily carry out both steps A and B and thus:

• on the one hand, to estimate the intrinsic wear-out of the system and to assess maintenance effect
on system reliability, in order to retrospectively check if the effective maintenance plan reaches the
initially set objectives,

• on the other hand, to carry out studies in order to optimize the frequency of the predetermined preven-
tive maintenance in a prospective way.

The aim of this paper is to present the details of this integrated approach and to underline its advantages on
an industrial case study. Sections 2 and 3 present theoretical elements about the modelling of maintenance
process and the estimation of intrinsic system behaviour and maintenance effect. The case study, carried
out on a repairable industrial system from an EDF electric power plant, is presented in depth in Sections 4
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to 7. The industrial context and the available OF data are described in Section 4. The probabilistic models
considered for the case study, the statistical estimation of their parameters and the calculation of predictive
reliability indicators are tackled in Section 5, while uncertainty estimation evaluation is discussed in Section
6. Finally, the numerical results obtained with MARS for the prospective optimization of the periodicity of
PM actions are presented in Section 7.

2. Maintenance process modelling

Let us consider a maintained industrial system and assume that a Corrective Maintenance (CM) action, or
repair, is carried out systematically after each failure. The repair times are supposed to be negligible or
not taken into account. Thus the successive random failure times, denoted Ti, i ≥ 1, are equivalently the
successive CM times. Let Xi, i ≥ 1, denote the inter-failure times, that is to say Xi = Ti − Ti−1 with
T0 = 0, and Nt, t ≥ 0, the (cumulative) number of failures observed up to time t. First, let us consider that
only CM is carried out on the system. In Section 2.6 we will present the generalization of the models to
take into account Preventive Maintenance (PM). From a mathematical point of view, {Nt}t≥0 is a stochastic
point process, fully characterized by its failure intensity defined as [2]:

λt = lim
∆t→0

1

∆t
P(Nt+∆t −Nt− = 1|T1, T2, ..., TNt−

), t ≥ 0 (1)

where Nt− is the left hand limit of Nt. Before the first maintenance action, the system failure intensity
is the failure rate of a new and non-maintained system. The failure rate is assumed to be a deterministic
and continuous function of time, called the initial intensity and denoted λ(t): it characterizes the intrinsic
system reliability, that is to say the one the system would have if it was not maintained. In order to model a
continuous behaviour of a system without maintenance, it is usual to consider a Weibull distribution for the
first failure time, so that the initial intensity is a power of time λ(t) = αβtβ−1, t ≥ 0, where α > 0 is the
scale parameter and β > 0 is the shape parameter characterizing the speed of the system wear-out:

• if 0 < β < 1, the state of the system improves with time (burn-in),

• if β = 1, the state of the system remains stable with time (useful life),

• if β > 1, the system wears out.

2.1. Minimal repair model

The minimal repair model assumes that the effect of maintenance is to leave the system in the same state
as it was just before failure. It characterizes a maintenance effect that neither improves nor damages the
system. This one is ”As Bad As Old” (ABAO) after maintenance. Then, the failure process is a standard
Non Homogeneous Poisson Process (NHPP), and the failure intensity equals the initial intensity:

λt = λ(t), t ≥ 0 (2)

With an initial intensity of the Weibull type, this failure process is called the Power Law Process (PLP).
When β = 1, one comes across the special case of the Homogeneous Poisson Process (HPP). Another usual
NHPP model is the log-linear one [2]. More complex initial intensity models can be considered, for instance
bathtub shaped models [3] which allow to take into account the three burn-in, useful life and wear-out periods
of the system.
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2.2. Perfect repair model
The perfect repair model assumes that each maintenance action perfectly repairs the system and leaves it
as if it was new. The latter is ”As Good As New” (AGAN) after maintenance. At time t, the system is
comparable to a similar new system put into operation just after the previous maintenance. The inter-failure
times are independent and have the same distribution. The failure process is a Renewal Process (RP) with
failure intensity:

λt = λ(t− TNt−
), t ≥ 0 (3)

2.3. Virtual age models
Obviously standard maintenance reduces failure intensity but does not systematically leave the system as
good as new: reality is between the two extreme cases previously presented. In literature, models enabling
to take into account a maintenance effect between ABAO and AGAN are known as imperfect maintenance
models [4]. Many models have been proposed and the most famous of them are the virtual age models [5].
They are characterized by a sequence {Ai}i≥1 of positive random variables, with A0 = 0, assuming that
after the i-th maintenance action, i ≥ 1, the system behaves as a new one having survived without failing
until time Ai. Thus the failure intensity of a virtual age model is:

λt = λ(t− TNt−
+ANt−

), t ≥ 0 (4)

Ai is called the effective age of the system after the i-th maintenance and t − TNt−
+ ANt−

is called the
virtual age of the system at time t. Therefore the effective age is the virtual age of the system just after repair.
The effect of maintenance with this kind of model is to reduce the virtual age of the system. As particular
cases of the virtual age model, one comes across the two standard models:

• if Ai = Ti, maintenance is minimal (ABAO model),

• if Ai = 0, maintenance is perfect (AGAN model).

There exist several virtual age models with imperfect effect, such as the Arithmetic Reduction of Age models
[6] or the Brown-Proschan model [7]. These models present the benefit of differentiating and explicitly
characterizing the intrinsic wear-out and the effect of maintenance on the system reliability, which facilitates
their physical interpretation, their use in a potential decision process and their appropriation by engineers.
Many other imperfect maintenance models, based on different assumption and modelling of the effect of
maintenance on the state of the system, have been developed: one can mention the reduction of failure
intensity models [6] or the trend-renewal processes [8]. These will not be addressed in this paper.

2.4. Arithmetic reduction of age model with infinite memory
The Arithmetic Reduction of Age model with infinite memory, denoted ARA∞, assumes that maintenance
reduces the virtual age of the system by an amount which is proportional to its age just before repair [6]. As
the virtual age of the system just before the i-th maintenance, i ≥ 1, is Ti − Ti−1 + Ai−1, the effective age
is:

Ai = (Ti − Ti−1 +Ai−1)− ρ(Ti − Ti−1 +Ai−1) = (1− ρ)(Xi +Ai−1) (5)

where ρ is the proportionality factor. It can be proved that the failure intensity of the ARA∞, model is:

λ(t) = λ

t− ρNt−−1∑
j=0

(1− ρ)jTNt−−j

 , t ≥ 0 (6)
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This model is a particular Kijima type II model [5] and is the same as the one introduced by Brown et al.
[9]. Parameter ρ characterizes the maintenance efficiency:

• if ρ = 1, maintenance is perfect (AGAN model),

• if 0 < ρ < 1, maintenance is efficient,

• if ρ = 0, maintenance is minimal (ABAO model),

• if ρ < 0, maintenance is harmful and damages the system.

2.5. Brown-Proschan model

The Brown-Proschan (BP) model assumes that the system is perfectly repaired (AGAN) with probability p
and minimally repaired (ABAO) with probability 1−p [7]. The effect of maintenance actions is characterized
by independent and identically distributed random variables Bi, i ≥ 1, following a Bernoulli distribution
with parameter p, equal to 1 if the i-th repair is AGAN and 0 if it is ABAO. It can be proved that the failure
intensity of the BP model is:

λ(t) = λ

t− TNt−
+

Nt−∑
j=1

Nt−∏
k=j

(1−Bk)Xj

 , t ≥ 0 (7)

Actually the BP model is a virtual age model with:

Ai =

i∑
j=1

i∏
k=j

(1−Bk)Xj (8)

Parameter p is called the average repair efficiency. As particular cases of the BP model, one comes across
the two standard models:

• if p = 0, maintenance is minimal (ABAO model),

• if p = 1, maintenance is perfect (AGAN model).

2.6. Taking into account the effect of PM

There exist several PM types. Systematic planned PM (also called predetermined PM) is carried out in
accordance with established intervals of time but without previous condition investigation: from a mathe-
matical point of view, PM times are considered to be deterministic. Condition based PM is PM based on
performance and/or parameter monitoring and the subsequent actions: therefore PM times are random.
Let us assume now that CM and predetermined PM actions are carried out on the industrial system. To
design a model, denotedM, characterizing the behaviour of the system, one must select:

• an initial intensity λ(t) to characterize the intrinsic behaviour of the unused system,

• a model to characterize the effect of CM: AGAN, ABAO, ARA∞, BP, ...

• a model to characterize the effect of PM: AGAN, ABAO, ARA∞, BP, ...
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For instance, the failure intensity for CM efficiency of the ARA∞ type with parameter ρCM and PM efficiency
of the ARA∞ type with parameter ρPM is [10]:

λt = λ

t− CKt−
+

Kt−∑
j=1

(1− ρPM)Mt−−MCj−1 (1− ρCM)Nt−−NCj−1Wj

 , t ≥ 0 (9)

where:

• {Mt}t≥0 is the counting process of PM,

• {Kt}t≥0 is the counting process of both kinds of maintenance (CM and PM) that is to say Kt =
Nt +Mt,∀t ≥ 0,

• Ci, i ≥ 1, are the successive maintenance times (CM and PM),

• Wi, i ≥ 1, are the successive inter-maintenances times, that is to say Wi = Ci − Ci−1 with C0 = 0.

In order to model condition based PM, one must use more complex models, for example in a generalized
competing risks framework [11], [12] that will not be addressed in this paper.

3. Retrospective assessment of intrinsic system behaviour and maintenance effect

Once modelM is defined and its failure intensity is written, one can jointly estimate the intrinsic behaviour
of the new and non-maintained system and the effect of maintenance actions from the available Operation
Feedback (OF). Assuming the system was observed over the time interval [t0 = 0; tOBS], OF data is made up
of:

• the n failure times ti, 1 ≤ i ≤ n, of the system (thus the CM times),

• the m predetermined PM times τj , 1 ≤ j ≤ m, when PM actions were carried out on the system.

dn,m = (t1, ..., tn, τ1, ..., τm) will denote the OF data observed over [0; tOBS]. If an initial intensity of the
Weibull type is assumed, λ(t) = αβtβ−1, t ≥ 0, the intrinsic behaviour of the unused and non-maintained
system is characterized by the two unknown parameters α and β. The efficiencies of CM and/or PM are
characterized by the unknown parameters ρCM and/or ρPM in the case of the ARA∞ model and by the unknown
parameters pCM and/or pPM in the case of the BP model. θ will denote the k = 3 and/or 4 dimensional vector
of the unknown parameters. These parameters can be estimated by using the classical statistical frequentist
framework.
This approach is only based on the OF data to estimate the values, fixed but unknown, of the parameter
θ in model M. The standard frequentist estimation method, and generally the most efficient one, is the
maximum likelihood method. It consists in maximizing the parametric likelihood function, or equivalently
its logarithm, which depends on the unknown parameters θ and can be written [2]:

log (LtOBS (dn,m;θ)) =

n∑
i=1

log(λti) +

∫ tOBS

0

λsds (10)

The maximum likelihood estimator θ̂
ML

of unknown parameters vector θ is then:

θ̂
ML

= argmax
θ

{log (LtOBS (dn,m;θ))} (11)
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Calculating θ̂
ML

is a non-linear optimization problem which requires the use of suitable numerical algorithms.
Two deterministic algorithms are classically applied [13]:

• Nelder-Mead, which is based on the simplex method and does not require the calculation of the gra-
dient of the function to be optimized,

• BFGS, which forms a part of the quasi-Newton methods class and iteratively constructs an approxi-
mate inverse of the Hessian of the function to be optimized.

The numerical convergence of these algorithms may noticeably depend on the initial parameter values chosen
by the user. In order to overcome this difficulty, it is wise to carry out a multi-grid strategy, that is to say
to apply these algorithms repeatedly by setting different initial values of the parameters at each iteration.
Moreover, there is no optimal algorithm since their efficiency depends on the function to be optimized. That
is why it is interesting to apply several optimization methods in parallel: if the same solution is obtained
with the different algorithms, it is a good numerical convergence indicator.
Note that this approach can be easily generalized to the analysis of maintenance data of several independent
systems by multiplying individual likelihood functions. It is implemented in MARS.

4. Description of the industrial context of the case study and the available OF data

4.1. Industrial context of the case study

The case study deals with the economiser of the boiler of an EDF coal-fired power station and more precisely
the welds at the stub to header and stub to tube locations. The welds are subjected to thermal fatigue leading
to the initiation then propagation of cracks that may generate leaks. These require the immediate shutdown
of the boiler, and consequently of the plant, which may be critical for the installation and electric power
transmission operators when the energy demand is huge and the power grid is over-stretched. In order to
manage the technical and economic risks, a specific maintenance plan is carried out:

• when a leak occurs during plant operation, the incriminated weld is repaired without delay to restart
the plant as soon as possible,

• scheduled preventive inspections of the hazard zones of the economiser are carried out periodically
and the detected cracks are scoured.

Of course the plant operator raises the two following questions:

• considering the operating historic of the economiser, is it possible to quantify the effect of the mainte-
nance plan and does the latter make it possible to manage the potential intrinsic wear-out of the system
(step A )?

• without modifying the nature and the content of the maintenance tasks (if previously considered effi-
cient), is it possible to optimize the periodicity of the predetermined maintenance actions (step B )?

The aim of the remainder of the paper is to illustrate in concrete terms how the models and the methods
previously described and the MARS software tool can be used and help to answer these questions from the
operator. All the figures shown in the following are screenshots of MARS.
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Table 1: Available OF data
Number of CS Maintenance type

25 PM
50 CM
93 CM

109 CM
114 PM
141 CM
163 CM
164 CM
195 CM
225 PM
264 CENS

4.2. Available OF data

The OF data was provided by the plant operator. Unfortunately it is not available since the commission date
of the plant: it only covers the operation period 1997-2006. Over this time interval, failure (CM) times and
scheduled preventive maintenances (PM) times are at our disposal. Table 1 shows this OF data.
The data is not expressed in calendar time, but in the (cumulative) number of cold starts (CS) over the
observation period of the plant: indeed, from a physical point of view, this operation parameter is known to
be one of the most influential on the wear-out of the economiser welds. Thus, considering year 1997 as the
time of reference:

• n = 7 leaks (CM) occurred, the first one after 50 CS and the last one after 195 CS,

• m = 3 scheduled preventive maintenance (PM) actions were carried out, with a mean periodicity of
100 CS,

• the ending time of the OF data (right censoring) is tOBS = 264 CS.

All in all, a sample of 11 OF data is available. If one considers the frequentist statistical estimation frame-
work, this number of data may seem too limited to accurately estimate the models presented in Section 2,
some of them depending on 4 unknown parameters. That is why it is necessary to be able to evaluate the
estimation uncertainty related to the fact that the study relies on a small data sample. This element will be
presented in Section 6.
Later on in this paper, we will assume that the economiser was new in 1997, as OF data has only been avail-
able since then. Consequently the presented results will characterize the relative wear-out of the economiser
since 1997 rather than its absolute one.
Figure 2 gives first qualitative elements about the management of the intrinsic wear-out of the economiser
by the maintenance plan which is carried out. It represents the (cumulative) number of failures depending
on the (cumulative) number of CS. The vertical dotted lines symbolize the PM times; the crosses on the
horizontal axis mark the CM times; the last cross marks the ending time of observation tOBS (right censor).
One cannot observe a notable trend in the evolution of the number of failures, neither upward nor downward.
In contrast, if the maintenance had not overcome the intrinsic wear-out of the economiser, one would have
noticed a convex curve typical of an acceleration of the number of leaks despite the CM and PM actions.
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Figure 2: Cumulative number of failures depending on the cumulative number of CS (solid step line)

One can also notice there is only 1 CS between the 5-th and 6-th failures that occurred. This may look
atypical compared with the other data and the applied maintenance plan. After checking the accuracy of
the data with the plant operator, it turned out that the two failures that occurred in quick succession are not
due to poor repair after the 5-th failure: one must set apart the two CM actions and they will be considered
separately in the study.

5. Models considered for the case study, estimation and predictive reliability indicators

The inherent physical degradation mechanism leading to the leak of the welds is thermal fatigue. Without
any maintenance, one can expect that the number of leaks of the economiser will naturally increase with
time. Thus the choice of an increasing function for the initial intensity seems relevant to model this likely
intrinsic wear-out of the economiser. One should keep in mind that this initial intensity is characterized by
two unknown parameters which must be estimated: scale parameter α > 0 and shape parameter β > 0, the
latter characterizing the wear-out speed of the system without PM. Under the assumption the economiser
intrinsically wears out, β will be higher than 1.
Concerning the maintenance effects, the CM which is carried out consists in repairing the weld that failed
without delay in order to restart the plant as soon as possible. Thus CM is very localized and one can think
that its effect on the reliability of the economiser is minimal. Conversely the aim of PM is to check all the
hazard zones of the economiser and to scour the detected cracks: PM must be close to a perfect maintenance
or at least be better than CM.
From these commonsense considerations, validated by the plant operator, we decided, among all the pos-
sibilities, to consider and test only the five following virtual age models, classified by increasing order
of complexity and modelling refinement: {CM ABAO ; PM AGAN}, {CM ARA∞ ; PM AGAN}, {CM
ABAO ; PM ARA∞}, {CM ABAO ; PM BP} and {CM ARA∞ ; PM ARA∞}. One must notice that the
{CM ABAO ; PM AGAN} model is nested within the four other models, since it can be derived from the
more complex models by taking particular values for the CM and/or PM efficiency parameters (see Sections
2.4 and 2.5).
Studying several models involves having quantitative indicators allowing to compare them and choose the
one among the five in competition which is the most appropriate to available OF data dn,m. Several indica-
tors for model selection are available in statistical literature. The ones retained for the study can be classified
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into two categories depending on their fundament, which justifies the interest of using them in parallel since
they are not based on the same grounds.

5.1. Model selection criteria based on information theory

The AIC (for ”Akaike Information Criterion”), developed by H. Akaike, is traditionally used [14]. For a
given modelM(θ), the value of the AIC is:

AIC (M(θ)) = −2 log
(
LtOBS

(
dn,m; θ̂

ML
))

+ 2k (12)

The AIC is grounded in the concept of information entropy, offering a relative measure of the information
lost when a given model is used to describe reality. The best model among those considered is the one
that minimizes the AIC. This one introduces a penalty term through the number of parameters in the model,
which balances the fact that log

(
LtOBS

(
dn,m; θ̂

ML
))

is an increasing function of k, which can be interpreted
as a number of degrees of freedom: indeed, the higher the number of parameters in a model is, the more
flexible the model is, the better it can fit the data sample. By construction, the best model based on the AIC
presents a good compromise between ”likelihood” and ”modelling complexity”.
As the AIC may perform poorly if there are too many parameters in relation to the size of the OF data
sample, a variant, called AICc, has been derived to give a greater penalty for extra parameters [14]:

AICc (M(θ)) = AIC (M(θ)) +
2k(k + 1)

n− k − 1
= −2 log

(
LtOBS

(
dn,m; θ̂

ML
))

+
2kn

n− k − 1
(13)

Even if the sample is made up of n + m data, AICc is computed by only considering the n failures (CM),
that is to say the number of data really observed, since in our case the PM actions are deterministic and can
be considered to be censored data [15]. The use of the AICc is strongly recommended when n is small with
respect to k.
The BIC (for ”Bayesian Information Criterion”), developed by G.E. Schwarz, is another common criterion
based on information theory. It can be seen as a generalization of the AIC in a Bayesian framework [16].
For a given modelM(θ), the value of the BIC is:

BIC (M(θ)) = −2 log
(
LtOBS

(
dn,m; θ̂

ML
))

+ 2k log(n) (14)

The BIC penalizes the number of parameters more strongly than the AIC does. The best model among those
considered is the one that minimizes the BIC.

5.2. Model selection criteria based on prediction errors

Two other criteria can be calculated. They are derived from empirical distribution function statistics usually
employed to test the goodness-of-fit of a random variable from a sample data to a hypothesized distribution
[17]:

Dsup (M(θ)) = sup
t∈{t1;t2;...;tn}

{
|Nt − E

θ̂
ML(Nt)|

}
(15)

and

D2 (M(θ)) =
∑

t∈{t1;t2;...;tn}

(
Nt − E

θ̂
ML(Nt)

)2
(16)
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Table 2: Estimations for the five considered models and model selection criteria

Initial intensity of the Weibull type

Considered models

{CM ABAO ; {CM ARA∞ ; {CM ABAO ; {CM ABAO ; {CM ARA∞ ;

PM AGAN} PM AGAN} PM ARA∞} PM BP} PM ARA∞}

Number k of parameters 2 3 3 3 4
in the model to be estimated

Number n of CM 7
Parameters Maximum likelihood estimations

Scale parameter α 1.02e-3 1.16e-5 1.02e-3 1.02e-3 1.16e-5
Shape parameter β 1.74 3.05 1.74 1.74 3.05

CM efficiency parameter ρCM or pCM - 0.56 - - 0.56
PM efficiency parameter ρPM or pPM - - 1 1 1

Maximum value of the -31.17 -29.48 -31.17 -31.17 -29.48
log-likelihood function

AIC 66.34 64.96 68.34 68.34 66.96
AICc 69.34 72.96 76.34 76.34 86.96
BIC 66.23 64.8 68.18 68.18 66.74
Dsup 2.31 2.14 2.31 2.31 2.14
D2 12.96 9.87 12.96 12.96 9.87

where Nt, t ≥ 0 is the cumulative number of failures observed up to time t and E
θ̂

ML(Nt) is the expected

cumulative number of failures observed up to time t under estimated modelM(θ̂
ML

), which can be evaluated
through Monte-Carlo simulations when it has no explicit analytical expression. These two criteria are based
on a supremum or quadratic difference, which can be interpreted as a prediction error, between the observed
trajectory of the counting process of CM and the expected trajectory of the counting process associated with
M(θ̂

ML
). The best model among those considered is the one that minimizes Dsup or D2.

5.3. Model estimation and predictive reliability indicators

Table 2 shows, for the different considered models, the estimations obtained with the OF data using the
maximum likelihood method. The two algorithms which were carried out, Nelder-Mead and BFGS, produce
strictly identical values for all the estimates: one can believe the optimization methods properly converged
and the obtained estimations are accurate from a numerical point of view. The five previous model selection
criteria are also given for each estimated model.
Whatever the considered model, the estimated shape parameter is strictly higher than 1, which confirms that
the economiser is subjected to an intrinsic wear-out. When it is estimated, the parameter related to CM effi-
ciency equals 0.56, which means that CM almost halves the virtual age of the economiser. PM is estimated
to be perfect, using either a BP or an ARA∞ model and whatever CM efficiency is, which explains the strong
similarities between the estimated parameters values in the five considered models.
From the model selection criteria, the ”best” model among those tested seems to be the {CM ARA∞ ; PM
AGAN} model, since it minimizes all the indicators whatever their basis, except for the AICc which is min-
imal for the simplest {CM ABAO ; PM AGAN} model. That is why the {CM ARA∞ ; PM AGAN} model
will be considered to be the most ”appropriate” one: it will be the reference later on in the case study and
will be denoted M̂OPT.
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Here one can notice the interest of having imperfect maintenance models such as the ARA∞ one, which
allow to take into account maintenance effects between the two extreme cases ABAO and AGAN and thus
enable us to model in a more accurate and realistic way the impact of the maintenance actions on the relia-
bility of the industrial system. This easily stands out in Figure 3, which plots the failure intensity function
of M̂OPT over the observation period. After a CM action (crosses on the horizontal axis), the failure intensity
decreases to a value comprised between 0 and the one it had just before failure, while after a PM action
(vertical dotted lines) the failure intensity returns to 0 as if the economiser was a new one.

Figure 3: Failure intensity function of the ”best” model M̂OPT depending on the cumulative number of CS (solid line)

Figure 4 overlays, over the observation period of the OF data, the (cumulative) number of observed fail-
ures (solid step line) and the mean (cumulative) numbers of failures assessed from the ”best” model M̂OPT

(continuous dashed line) and the {CM ABAO ; PM AGAN} model (continuous dotted line). It allows to
visualize how well the two estimated models fit the data set.

Figure 4: Comparison between the (cumulative) number of observed failures (step solid line) and the mean (cumulative) numbers of
failures assessed from M̂OPT (continuous dashed line) and the {CM ABAO ; PM AGAN} model (continuous dotted line)

From M̂OPT and the past of the CM-PM process, MARS enables us to assess predictive reliability indicators,
especially useful for decision making support. For instance, MARS provides the expected value and the
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standard deviation of the time to the next failure, for a given PM strategy in the future. With the current PM
periodicity of 100 CS, the estimated mean is 10.4 CS and the estimated standard deviation is 7.9 CS. These
values seem to be low, but in fact the system has been renewed for the last time in τm = 225 CS. Since no
maintenance occurred between 225 and tOBS = 264 CS, the system age at tOBS is 39 CS. Then it is likely that
a failure will occur not long after tOBS.

6. Uncertainty estimation evaluation

In Table 2, when the PM efficiency parameter is estimated, it is equal to 1, that is to say the supremum of
its domain of definition. This leads us to believe that if the model could allow it, the estimation would be
higher than 1, which would mean that PM leaves the economiser in a state ”better than new”.
This observation makes us suppose that the obtained estimates lack robustness from a statistical point of
view. Moreover, values 3.05 for the shape parameter and 0.56 for the CM efficiency parameter are higher
than the ones that could have been expected before the estimation and one may have the impression that these
estimates over-evaluate the ”true” values of the parameters. Two reasons may explain these observations.
The first one is wrongly considering that the economiser was new at the reference time from which the OF
data is available. Taking into account this left censoring is nowadays possible for some virtual age models
[18], but unfortunately not for all of them.
The second possible cause is that the data sample is too small and not informative enough to correctly
estimate the models with at least three parameters.

Figure 5: Principle of the parametric bootstrap procedure to evaluate the model estimation uncertainty

That is why it is advisable when possible to quantify the estimation uncertainty inherent in the manipulation
of a small data set, in order to assess the robustness of the obtained results. MARS enables us to evalu-
ate this estimation uncertainty by performing an intensive simulation procedure called parametric bootstrap
[19], whose principle is presented in Figure 5. The idea of this resampling process is to evaluate how the
estimations of the parameters could have been impacted if one had had another data set different from the OF
data sample but drawn from the same (estimated) underlying model, thus with identical (deterministic) PM
times, number of CM and maintenance effects. One applied the parametric bootstrap to the {CM ARA∞ ;
PM AGAN} model which seems to fit the OF data best.
Table 3 shows the results of the parametric bootstrap procedure, that is to say the mean and the standard de-
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Table 3: Results from the parametric bootstrap applied to {CM ARA∞ ; PM AGAN} model
Weibull type for the initial intensity / BFGS algorithm {CM ARA∞ ; PM AGAN} model

Parameters Bootstrap means Bootstrap standard deviations

Scale parameter α 8.3e-5 4.4e-4
Shape parameter β 3.5 0.65

CM efficiency parameter ρCM 0.61 0.19

viation of the NBOOT = 104 estimations of the 4 parameters obtained by performing the maximum likelihood
method on the NBOOT simulated data sets.
One can notice that the bootstrap mean of the estimation of the CM efficiency parameter is similar to the
estimation obtained exclusively with the observed OF data sample. On the contrary, the bootstrap means of
the shape and scale parameters are noticeably higher than the values used to sample the NBOOT bootstrap data
sets and which have been obtained only with the OF data, which means that the values of α and β presented
in Table 2 are probably over-estimated. The associated bootstrap standard deviations are not negligible ei-
ther.
The reason that can be propounded to explain these results is that the estimations obtained with the observed
OF data sample might be biased and significantly depend on the data set used to obtain them: the statistical
accuracy of these estimations might thus be questionable. Therefore, for practical purposes, the intrinsic
reliability might be in reality higher than initially envisaged in Section 5.3, which would concretely mean
that the maintenance plan globally manages the wear-out process of the economiser more efficiently. This
point can be simply illustrated by the expected value of the time to the next failure, which equals 0.3 CS
with the bootstrap estimations of the parameters against 10.4 CS with the parameters of M̂OPT.
We notice here one of the limits of the frequentist estimation approach, which is only based on the observed
data sample which in our case may be too small to be informative enough and provide robust estimations of
the parameters.
A promising alternative solution would be to use the statistical Bayesian framework [20]. This approach
makes it possible to balance a lack of OF data by merging two sources of information: the objective in-
formation from the available OF data and the subjective knowledge which is often expendable about the
behaviour of the system or the efficiency of the maintenance actions carried out. In practice this subjective
knowledge can be directly inferred from experts’ elicitation [21]. The Bayesian estimation approach has
been successfully applied in the context of imperfect maintenance models in [22], [23], [24] and [25] and it
is a major direction of future improvement for the current study.

7. Prospective optimization of the periodicity of the PM actions

Now that the retrospective estimation of the effective maintenance plan has been carried out (step A ) and
one has concluded that the latter overcomes on the whole the intrinsic wear-out of the economiser, one can
wonder if it is possible to optimize in a prospective way (step B ) the periodicity of the predetermined
(thus deterministic) preventive maintenance actions without modifying the nature and the content of the
maintenance tasks, thus without changing the CM and PM efficiencies which have just been estimated. To
that end, it is necessary to define a criterion that will allow to decide on the interest of modifying the PM
periodicity. For this case study, we decided to choose an economic indicator, as in [26] and [27].
Let us denote:
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• tREF ≤ tOBS the reference time for the PM periodicity optimization study. Generally, as the new main-
tenance plan will be established in the continuity of the current one, tREF will be chosen equal to the
last observed PM time, that is to say tREF = τm ,

• tOBJ > tOBS the operation time set as an objective by the plant operator and posterior to the ending time
of the OF data tOBS.

The predictive total maintenance cost (non discounted) over the analysis time interval [tOBS; tOBJ] has the
following mathematical expression:

CTOT(tOBS, tREF, tOBJ, ωPM) = (NtOBJ −NtOBS)× CCM + (MtOBJ −MtOBS)× CPM (17)

where:

• NtOBJ −NtOBS is the (random) number of CM actions carried out over the time interval [tOBS; tOBJ],

• CCM is the unit cost of a failure (assumed deterministic and non discounted),

• CPM is the unit cost of a PM action (assumed deterministic and non discounted),

• MtOBJ −MtOBS is the number of PM actions carried out over the time interval [tOBS; tOBJ]. It is a deter-
ministic number that is function of the predetermined PM periodicity ωPM > 0.

Figure 6: Proposed preventive maintenance plan depending on the value of the PM periodicity ωPM

MtOBJ −MtOBS is not simply equal to
⌊
tOBJ−tOBS
ωPM

⌋
, where b.c stands for the floor function, since PM planning

starts from tREF, not tOBS. Indeed as presented in Figure 6:

• if ωPM ≥ tOBS − tREF, the preventive maintenance policy plans no PM between tREF and tOBS. The first
PM action is planned beyond tOBS and all the predetermined PM can be carried out. Thus the number
of PM actions over the time interval [tOBS; tOBJ] is equal to MtOBJ −MtOBS =

⌊
tOBJ−tREF
ωPM

⌋
.
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• on the contrary if ωPM < tOBS− tREF, the preventive maintenance strategy plans PM actions between tREF

and tOBS. But no PM have been observed over this time interval (unless tREF is actually higher than or
equal to the time of the last PM). To compensate for these planned PM that have not been carried out,
it seems logical to carry out one as soon as possible, that is to say in tOBS. Therefore in this specific
case, we suggest the preventive maintenance strategy that consists first in carrying out a PM action in
tOBS and then from this date in resuming the predetermined PM with the periodicity ωPM. Consequently
the number of PM actions over the time interval [tOBS; tOBJ] is equal toMtOBJ−MtOBS = 1+

⌊
tOBJ−tOBS
ωPM

⌋
.

Finally we have:

MtOBJ −MtOBS =


⌊
tOBJ−tREF
ωPM

⌋
if ωPM ≥ tOBS − tREF

1 +
⌊
tOBJ−tOBS
ωPM

⌋
if ωPM < tOBS − tREF

(18)

Indicator CTOT is made of two factors: a random component related to the predictive number of failures over
the time interval [tOBS; tOBJ] and a deterministic component associated with the predictive number of PM set by
the periodicity of the new PM plan. Since CTOT is a random variable, one will focus on its expected value and
the ”optimal” PM periodicity ωOPT

PM will be the one minimizing the expected value of CTOT(tOBS, tREF, tOBJ, ωPM).
When a model is fully specified, the MARS software tool can simulate through a Monte-Carlo procedure
possible predictive trajectories of the CM and PM processes, thus allowing to obtain an estimation of the
expected value ofCTOT and determine the optimal periodicity of the PM actions. For this study, we considered
the ”best” model M̂OPT. N = 104 trajectories were drawn. The input data, fictitious but realistic, are the
following:

• tREF = τm = 225 CS,

• tOBS = 264 CS,

• tOBJ = 524 CS ≈ 2 × tOBS: we decided to make predictions over an analysis time interval no longer
than the observation period of the OF data,

• CCM = 120 keuros,

• CPM = 70 keuros,

• 5 ≤ ωPM ≤ 200 CS by step of 0.1 CS.

Because of the immediate shutdown of the plant due to one failure (leak), the unit CM cost is noticeably
higher than the PM one.
The mean predictive total maintenance cost function presented in Figure 7 shows a globally convex trend,
which ensures the existence of the sought-after optimal periodicity ωOPT

PM . The observed bend can be explained
as follows.
If the PM periodicity is too low, one might carry out PM actions too often compared with the intrinsic wear-
out process of the economiser. As the PM actions are efficient, CM actions are avoided, but PM is carried out
unnecessarily: one obtains a very low CM cost, but which is largely compensated by the over-dimensioned
PM cost as expressed in Equation 19:

CTOT(tOBS, tREF, tOBJ, ωPM)
ωPM→0∼

⌊
tOBJ − tOBS

ωPM

⌋
× CPM (19)
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Conversely if the PM periodicity is too high, the intrinsic wear-out of the economiser leads to an explosion
of failures and high associated costs, as the CM actions are not very efficient. Thus the predictive total
maintenance cost is driven by the CM cost as expressed in Equation 20:

CTOT(tOBS, tREF, tOBJ, ωPM)
ωPM→+∞∼ (NtOBJ −NtOBS)× CCM (20)

Figure 7: Mean predictive total maintenance cost depending on the PM periodicity

From Figure 7, the optimal periodicity ωOPT
PM is 32.8 CS with model M̂OPT, with a mean predictive total

maintenance cost of about 1016 keuros.
One notices that if there is a doubt, it is preferable to increase the PM periodicity (since the mean predictive
total maintenance cost slowly increases beyond ωOPT

PM ) rather than reducing it (since the mean predictive total
maintenance cost suddenly increases while moving from ωOPT

PM to lower periodicities).
One also observes a ”wavelet phenomenon” on the mean predictive total maintenance cost function. It is
due to the discontinuities implied by the floor function in the calculation of the number of PM carried out
over the time interval [tOBS; tOBJ] (see Equation 18). These discontinuities happen each:

• tOBJ−tREF
i for every i such that 0 < i ≤ tOBJ−tREF

tOBS−tREF
,

• tOBJ−tOBS
i−1 for every i such that tOBJ−tREF

tOBS−tREF
< i.

The height of the wavelets is constant and equal to CPM. Thus the optimal PM periodicity strongly depends
on tOBJ and small variations of the objective time can arbitrarily change the value of ωOPT

PM . In order to avoid
this phenomenon, one must tend tOBJ to infinity and then consider the mean predictive total maintenance cost
per unit of time, as it is usually done in literature [26]:

C̄TOT(tOBS, tREF, tOBJ, ωPM) =
CTOT(tOBS, tREF, tOBJ, ωPM)

tOBJ − tOBS

(21)

In this case, the height of the wavelets equals CPM
tOBJ−tOBS

which tends to 0 when tOBJ tends to infinity.
Figure 8 shows the impact of the choice of tOBJ on the shape of the curve of the mean predictive total main-
tenance cost per unit of time and on ωOPT

PM . Considering model M̂OPT, several curves of the mean predictive
total maintenance cost per unit of time are represented for several values of tOBJ. It is clear that the higher
tOBJ is, the smoother the curve is and the less sensitive to the variations of tOBJ the optimal PM periodicity is.
Thus ωOPT

PM will be obtained by tending tOBJ to infinity. In practice, we will take a value of tOBJ high enough: in
our case study, we chose tOBJ = 5240 CS and we obtained ωPM = 30 CS.

Figure 8: Impact of the objective time on the mean predictive total maintenance cost per unit of time

Finally we varied the values of the model parameters from M̂OPT in order to analyze how the model esti-
mation uncertainty impacts the optimization of the PM periodicity. So as to eliminate the ”wavelet phe-
nomenon” previously described, we considered a value of tOBJ high enough, equal to 5240 CS. In order to
set rational variations for the values of the model parameters, we used the estimations obtained from the
parametric bootstrap procedure (see Table 3). For parameters β and ρCM, we considered a variation from the
bootstrap mean within the range plus or minus the bootstrap standard deviation. For scale parameter α, one
systematically considered the value that maximized the log-likelihood function for the considered values of
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Figure 9: Impact of the variations of the model parameters on the mean predictive total maintenance cost per unit of time

Table 4: Optimal PM periodicity depending on the values of the model parameters
Scale Shape CM efficiency Optimal PM Minimal mean maintenance cost

parameter α parameter β parameter ρCM periodicity ωOPT
PM per unit of time C̄OPT

TOT

1.16e-5 3.05 0.56 30 3.65
3.16e-7 4.15 0.8 26 3.69
1.11e-7 4.15 0.42 33 2.89
3.53e-5 2.85 0.8 30 4.21
1.84e-5 2.85 0.42 33 3.43

β and ρCM. The mean predictive total maintenance costs per unit of time are plotted in Figure 9 and the
associated optimal PM periodicities are shown in Table 4.
One can notice that even if the mean maintenance cost functions are fairly different depending on the values
of the model parameters, the optimal PM periodicity is little influenced, with values close to 30 CS. Thus
even if the estimations of the model parameters seemed to be little accurate from a statistical point of view,
the calculation of ωOPT

PM looks robust.
The mean periodicity of the current maintenance plan is about 100 CS, which corresponds to a mean pre-
dictive total maintenance cost of about 1300 keuros for model M̂OPT. Thus the study demonstrates that from
a technical and economic point of view, it is beneficial to reduce the periodicity of the predetermined PM
actions by 70 CS to expect reducing the mean predictive maintenance costs by about 305 keuros, that is a
saving of about 25%. Sensitivity analyses to the input data (in particular the CM and PM costs) and estima-
tion of the uncertainty related to C̄TOT are considered further developments that could strengthen the current
results and be useful for decision making support.

8. Conclusions and prospects

The presented case study allowed to illustrate how the imperfect maintenance models can be carried out
and can help the plant operator to define efficient maintenance plans. It also showed the interest of using a
software tool such as MARS, which, by offering an integrated approach of the whole process of maintenance
assessment and optimization, easily enables us:

• on the one hand, to estimate the intrinsic wear-out of the system and to assess maintenance effect
on system reliability, in order to check retrospectively if the effective maintenance plan satisfies the
objectives set initially (step A ),

• on the other hand, to carry out technical and economic studies to optimize the periodicity of the
predetermined preventive maintenance actions (step B ).

In order to better represent real-life conditions and the complexity of the maintenance plans carried out on
the systems in the plants, several methodological extensions are possible. One can consider the use of bath-
tub shaped models for the initial intensity or generalized competing risks models for imperfect maintenance,
which would allow us to deal with condition based PM. This case study also pointed out the need to take into
account left censored data, as the OF data is not always available since the commission date of the system.
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We also mentioned the potential benefit of the Bayesian approach, when the OF data sample is too small to
ensure the accuracy of the estimations obtained with the classical frequentist approach. For instance, per-
forming Markov Chain Monte-Carlo [28], in order to sample the whole posterior distribution and provide
credibility intervals for the parameter estimations, would be a conceivable prospect. However, this would
first require making progress in the construction of prior distributions adapted to virtual age models and
the development of indicators dealing with the consistency, the agreement and the weighting [29] between
subjective knowledge from expertise and objective information from OF data.
Model validation and selection as well as introduction of covariates (for instance manufacturing conditions
or environmental and operation stress factors) are also two major directions of future research with a view
to improving the refinement and the predictive accuracy of the models developed so far.

Note: MARS is available upon request from the archive download site: https://www-ljk.imag.
fr/Mars/release_en.html
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