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Abstract

We establish the existence of stationary Gibbsian point processes for interactions that
act on hyperedges between the points. For example, such interactions can depend on
Delaunay edges or triangles, cliques of Voronoi cells or clusters of k-nearest neighbors.
The classical case of pair interactions is also included. The basic tools are an entropy
bound and stationarity.
Keywords. Gibbs measure, hypergraph, Delaunay mosaic, Voronoi tessellation, en-
tropy.
MSC.Primary 60K35; Secondary: 60D05, 60G55, 82B21.

1 Introduction

Recent developments in statistical physics, stochastic geometry and spatial statistics in-

volve Gibbs point processes with interactions depending on the local geometry of config-

urations in R
d. A prominent class of such interactions is based on the nearest-neighbor

graph coming from the Delaunay triangulation. In biology, such systems are used to

model interacting cells in tissues or foams [11], [20]. In spatial statistics and stochastic

geometry, structured point patterns, point processes lying along fibers or regular Delau-

nay tessellations have been studied via geometric Gibbs modifications; see [1], [6] and [21].

A probabilistic motivation comes from stationary renewal processes: Since these can be

characterized as Gibbs processes for interactions between nearest-neighbor pairs of points

[16, Section 6], Gibbs processes on R
d with Delaunay tile interaction can be viewed as a

multi-dimensional counterpart [8].

In this paper we consider general geometry-dependent interactions that are defined on

a hypergraph structure E . For every point configuration ω in R
d, E(ω) denotes a set of

hyperedges on ω, and the formal Hamiltonian of ω is given by

H(ω) =
∑

η∈E(ω)

ϕ(η, ω)
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with a potential ϕ(η, ω) which only depends on η and the points of ω in some neighborhood

of η. This locality of ϕ will be called the finite horizon property, see (2.1) below. This

general setting includes all the above-mentioned cases and also the classical many-body

interactions of finite range that are familiar from statistical mechanics [22].

There is a principal difference between the geometric interactions considered here and

the classical many-body interactions. Namely, suppose a particle configuration ω is aug-

mented by a new particle at x. In the case of a many-body interaction, this is only

influenced by an additional interaction term between x and the particles of ω, and the

interaction between the particles of ω is not affected by x. In other words, the classical

many-body interactions are additive. In our setting, the new particle at x typically al-

ters the hyperedges around x completely: some hyperedges are created and some others

are destroyed. This means that both E(ω ∪ {x}) \ E(ω) and E(ω) \ E(ω ∪ {x}) are non-

empty, so that H(ω∪{x}) and H(ω) each contain terms that are not present in the other.

This phenomenon blurs the usual distinction between attractive and repulsive interactions.

Moreover, if the potential ϕ(η, ω) is allowed to take the value ∞ (hard-exclusion case), we

arrive at the so-called non-hereditary situation that a configuration ω is excluded although

ω ∪ {x} is possible. This last case makes it difficult to use an infinitesimal characteriza-

tion of Gibbs measures in terms of their Campbell measures and Papangelou intensities.

Nevertheless, such an infinitesimal approach was first used to prove the existence of Gibbs

measures for Delaunay interactions by requiring geometric constraints on the interaction

[1, 2, 4, 6]. A quite different global approach, first used in [14] and based on stationarity

and thermodynamic quantities such as pressure and free energy density, recently allowed

to prove the existence of Gibbsian Delaunay tessellations for general bounded interactions

without any geometric restrictions [8], and a similar approach could also be applied to

quermass-interaction processes [7].

In this paper we address the existence problem for the general formalism of hypergraph

interactions introduced here. Our approach is global as in [7, 8] and leads to a significant

improvement of the existing results. In particular, we establish the existence of Gibbsian

Delaunay tessellations for non-bounded and hard-exclusion potentials. In the classical

context of stable many-body interaction of finite range, our results permit to relax the

superstability assumption. Basic ingredients of the proof are an entropy bound to exploit

the compactness of the level sets of the entropy density, and a somewhat delicate control

of the range of the interaction, which takes advantage of stationarity.

The general setting of Gibbs measures for hypergraph interactions is introduced in

Section 2. Section 3 contains our assumptions and the existence theorems. Section 4

offers a series of examples that includes many-body interactions of finite range as well as

interactions on Delaunay tiles and Voronoi cells and between k-nearest neighbors. The

proofs of the main results follow in Section 5, and an appendix is devoted to measurability

questions.

2 Preliminaries

2.1 Point configurations and hyperedge interactions

Consider the Euclidean space R
d of arbitrary dimension d ≥ 1. Subregions of R

d will

typically be denoted by Λ or ∆ and will always be assumed to be Borel with positive
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Lebesgue measure |Λ| resp. |∆|. We write ∆ ⋐ R
d if ∆ is bounded. A configuration is a

subset ω of Rd which is locally finite, in that ω∩∆ has finite cardinality N∆(ω) = #(ω∩∆)

for all ∆ ⋐ R
d. The space Ω of all configurations is equipped with the σ-algebra F that

is generated by the counting variables N∆ with ∆ ⋐ R
d. It will often be convenient

to write ω∆ in place of ω ∩ ∆. As usual, we take as reference measure on (Ω,F) the

Poisson point process Πz of an arbitrary intensity z > 0. Recall that Πz is the unique

probability measure on (Ω,F) such that the following holds for all ∆ ⋐ R
d: (i) N∆ is

Poisson distributed with parameter z|∆|, and (ii) conditional on N∆ = n, the n points in

∆ are independent with uniform distribution on ∆, for each integer n ≥ 1.

Next, let Ωf ⊂ Ω denote the set of all finite configurations ω (which means that

#(ω) < ∞), and Ff = F|Ωf
the trace σ-algebra of F on Ωf . The product space Ωf × Ω

carries the product σ-algebra Ff⊗F . For each Λ ⊂ R
d we write ΩΛ = {ω ∈ Ω : ω ⊂ Λ} for

the set of all configurations in Λ, prΛ : ω → ωΛ = ω ∩ Λ for the projection from Ω to ΩΛ,

F ′
Λ = F|ΩΛ

for the trace σ-algebra of F on ΩΛ, and FΛ = pr−1
Λ F ′

Λ ⊂ F for the σ-algebra

of all events that happen in Λ only. The reference measure on (ΩΛ,F ′
Λ) is Π

z
Λ := Πz ◦pr−1

Λ .

Finally, let Θ = (ϑx)x∈Rd be the shift group, where ϑx : Ω → Ω is the translation by the

vector −x ∈ R
d. By definition, N∆(ϑxω) = N∆+x(ω) for all ∆ ⋐ R

d.

The interaction of points to be considered in this paper will depend on the geometry

of their location. This geometry will be described in terms of a hypergraph, and the

interaction potential will be defined on the hyperedges.

Definition.

• A hypergraph structure is a measurable subset E of Ωf × Ω such that η ⊂ ω for all

(η, ω) ∈ E . If (η, ω) ∈ E , we say that η is a hyperedge of ω, and we write η ∈ E(ω).

• A hyperedge potential is a measurable function ϕ from a hypergraph structure E to

R ∪ {∞}.

• A hyperedge potential ϕ (or, more explicitly, the pair (E , ϕ)) is called shift-invariant

if

(ϑxη, ϑxω) ∈ E and ϕ(ϑxη, ϑxω) = ϕ(η, ω) for all (η, ω) ∈ E and x ∈ R
d.

• Let us say that ϕ (or the pair (E , ϕ)) satisfies the finite horizon property if for each

(η, ω) ∈ E there exists some ∆ ⋐ R
d such that

(2.1) (η, ω̃) ∈ E and ϕ(η, ω̃) = ϕ(η, ω) when ω̃ = ω on ∆.

We will assume throughout this paper that the hyperedge potential ϕ under consideration

is shift-invariant and exhibits the finite horizon property. Moreover, for notational conve-

nience we set ϕ = 0 on Ec. Since E is measurable, this does not affect the measurability

of ϕ.

The domain E of ϕ can be considered as a rule that turns each configuration ω into

a hypergraph (ω, E(ω)). Both E and ϕ are not affected by translations. Moreover, the

presence of a hyperedge η ∈ E(ω) and the value of ϕ(η, ω) can be determined by looking at

ω in a (sufficiently large but) bounded neighborhood ∆ of η, called the horizon of η in ω,

which in general depends on both η and ω. Note that in general there is no minimal such
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horizon. To obtain a standard choice of ∆ one can take the closed ball Bη,ω = B̄(gη, rη,ω)

with center at the gravicenter gη of η and radius rη,ω chosen smallest possible. Finally,

we note that the concept of hypergraph structure is similar to that of a cluster property

as introduced in [25]. Here are two examples the reader might keep in mind. Further

examples will follow in Section 4.

Example 2.1. Many-body interactions of bounded range. Let r > 0 and

LCr =
{

(η, ω) : η ⊂ ω, diam(η) ≤ r, ω ∈ Ω
}

be the locally complete graph. Thus, for each ω ∈ Ω, LCr(ω) consists of all hyperedges

between points of distance at most r. If we assume that ϕ(η, ω) only depends on η,

we are in the classical situation of many-body interactions of range r. The finite horizon

property for (η, ω) ∈ LCr then holds for arbitrary ∆ ⊃ η. If LCr is restricted to hyperedges

of cardinality two, we arrive at the familiar pair interactions of statistical mechanics.

Example 2.2. Delaunay potentials. The set Del of Delaunay hyperedges consists of all pairs

(η, ω) with η ⊂ ω for which there exists an open ball B(η, ω) with ∂B(η, ω) ∩ ω = η that

contains no points of ω. For k = 1, . . . , d+1 we write Delk = {(η, ω) ∈ Del : #η = k} for

the set of all Delaunay simplices with k vertices. Clearly, Del and Delk are hypergraph

structures. It is possible that the convex hull of a set η ∈ Del(ω) is not a simplex, namely

when η consists of four or more points on a sphere with no point inside. However, this

is an exceptional case, which occurs only with probability zero for our Poisson reference

measure Πz. Note that B(η, ω) is only uniquely determined when #η = d+1 and η is

affinely independent.

The simplest class of Delaunay hyperedge potentials consists of pair interactions of the

form ϕ(η, ω) = φ(|x − y|) for η = {x, y} ∈ Del2(ω). Such a ϕ satisfies the finite horizon

property (2.1) with ∆ = B̄(η, ω) for any ball B(η, ω) as above.

An example of a potential ϕ(η, ω) on Del2 which does not only depend on η but also on

ω is ϕ(η, ω) = φ(Vorω(x),Vorω(y)). Here we write Vorω(x) for the Voronoi cell associated

to a point x ∈ ω, viz. the set

(2.2) Vorω(x) :=
{

y ∈ R
d : |x− y| ≤ |x̃− y| ∀ x̃ ∈ ω

}

of all points of Rd which are closer to x than to all other points of ω. It is well-known

that the Voronoi cells form a tessellation [24]. Also, any two points of a configuration

are connected by a Delaunay edge if and only if their Voronoi cells have a non-trivial

intersection. That is,

(2.3) {x, y} ∈ Del2(ω) ⇐⇒ #(Vorω(x) ∩ Vorω(y)) > 1.

This reveals that the Delaunay graph is a nearest-neighbor graph. The potential above

satisfies the finite horizon property (2.1) with ∆ equal to the closure of the set
⋃

ξ∈Del(ω), ξ∩η 6=∅B(ξ, ω), provided the cells Vorω(x) and Vorω(y) are bounded. The pro-

viso is necessary because unbounded Voronoi cells, which can occur at the “boundary” of

ω, are not protected by the points in ∆. So we must exclude from Del2(ω) all edges {x, y}
for which Vorω(x) ∪ Vorω(y) is unbounded.
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2.2 Gibbs measures for hyperedge potentials

Our objective here is to introduce the concept of a Gibbsian point process for an activity

z > 0 and a hyperedge potential ϕ defined on a hypergraph structure E . First we will

introduce the Hamiltonian for a bounded region Λ ⋐ R
d with configurational boundary

condition ω ∈ Ω. This requires to consider the set of hyperedges η in a configuration ω

for which either η itself or ϕ(η, ω) depends on the points of ω in Λ. Specifically, we set

(2.4) EΛ(ω) =
{

η ∈ E(ω) : ϕ(η, ζ ∪ ωΛc) 6= ϕ(η, ω) for some ζ ∈ ΩΛ

}

.

Recall the convention that ϕ = 0 on Ec. So, if η ∈ E(ω) \ E(ζ ∪ωΛc) for some ζ ∈ ΩΛ then

either η /∈ EΛ(ω), or η is irrelevant for ω, in that ϕ(η, ω) = 0. The Hamiltonian in Λ with

boundary condition ω is then given by the formula

(2.5) HΛ,ω(ζ) :=
∑

η∈EΛ(ζ∪ωΛc )

ϕ(η, ζ ∪ ωΛc) for ζ ∈ ΩΛ,

provided this sum is well-defined. As usual, we also consider the associated partition

function

Zz
Λ,ω :=

∫

e−HΛ,ω(ζ)Πz
Λ(dζ) .

To ensure that these quantities are well-defined, we impose the following condition on the

boundary condition ω. Let ϕ− = (−ϕ) ∨ 0 be the negative part of ϕ.

Definition. A configuration ω ∈ Ω is called admissible for a region Λ ⋐ R
d and an activity

z > 0 if

H−
Λ,ω(ζ) :=

∑

η∈EΛ(ζ∪ωΛc)

ϕ−(η, ζ ∪ ωΛc) < ∞ for Πz
Λ-almost all ζ ∈ ΩΛ

(so that HΛ,ω is almost surely well-defined), and 0 < Zz
Λ,ω < ∞. We write ΩΛ,z

∗ for the set

of all these ω.

We note that, in contrast to the standard setting of statistical mechanics, the partition

function is not automatically positive because, in the present setting, HΛ,ω(∅) is not nec-
essarily finite. For ω ∈ ΩΛ,z

∗ , we can define the Gibbs distribution for (E , ϕ, z) in a region

Λ ⋐ R
d with boundary condition ω as usual by

(2.6) Gz
Λ,ω(F ) =

∫

ΩΛ

1F (ζ ∪ ωΛc) e−HΛ,ω(ζ)Πz
Λ(dζ)

/

Zz
Λ,ω ,

where F ∈ F is arbitrary.

Definition. Let E be a hypergraph structure, ϕ a hyperedge potential, and z > 0 an

activity. A probability measure P on (Ω,F) is called a Gibbs measure for E, ϕ and z if

P (ΩΛ,z
∗ ) = 1 and

(2.7)

∫

f dP =

∫

ΩΛ,z
∗

1

Zz
Λ,ω

∫

ΩΛ

f(ζ ∪ ωΛc) e−HΛ,ω(ζ)Πz
Λ(dζ)P (dω)

for every Λ ⋐ R
d and every measurable f : Ω → [0,∞[.
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The equations (2.7) are known as the DLR equations (after Dobrushin, Lanford and

Ruelle). They express thatGz
Λ,ω(F ) is a version of the conditional probability P (F |FΛc)(ω).

We will be particularly interested in Gibbs measures that are stationary, that is, invariant

under the shift group Θ = (ϑx)x∈Rd . We write PΘ for the set of all Θ-invariant probability

measures P on (Ω,F) with finite intensity i(P ) =
∫

N[0,1]d dP , and GΘ(ϕ, z) for the set

of all Gibbs measures for ϕ and z that belong to PΘ. We conclude this section with a

discussion of measurability questions.

Remark 2.1. Measurability. The quantities introduced above are not measurable with

respect to the underlying σ-algebras defined so far, but only with respect to their universal

completion. Specifically, for each σ-algebra A let A∗ be the associated σ-algebra of all

universally measurable sets, i.e., of the sets which belong to the P -completion of A for all

probability measures P onA; see [5, pp. 36 & 280]. It is then the case that, for each Λ ⋐ Rd,

the Hamiltonian (ζ, ω) 7→ HΛ,ω(ζ) is measurable with respect to (F ′
Λ ⊗ FΛc)∗. Likewise,

the partition function ω → Zz
Λ,ω is measurable with respect to F∗

Λc , and ΩΛ,z
∗ ∈ F∗

Λc .

Moreover, (ω,F ) → Gz
Λ,ω(F ) is a probability kernel from (ΩΛ,z

∗ ,F∗
Λc |ΩΛ,z

∗
) to (Ω,F). All

this will be proved in the appendix. We will therefore identify all probability measures in

this paper with their respective complete extension. This convention underlies already the

preceding definition of a Gibbs measure.

3 Hypotheses and results

Having defined the concept of Gibbs measure for a hyperedge potential we now turn to our

main theme, the existence of such Gibbs measures. Let us state the conditions we need.

In the subsequent section we will provide a series of examples for which these conditions

are met.

We begin with an assumption which says that hyperedges with a large horizon require

the existence of a large ball with only a few points. This will imply that the Hamiltonian

HΛ,ω depends only on the points of ω in a bounded region ∂Λ(ω), and can be viewed as

a sharpening of the finite horizon property (2.1).

(R) The range condition. There exist constants ℓR, nR ∈ N and δR < ∞ such that for

all (η, ω) ∈ E one can find a horizon ∆ as in (2.1) satisfying the following:

For every x, y ∈ ∆, there exist ℓ open balls B1, . . . , Bℓ (with ℓ ≤ ℓR) such that

– the set ∪ℓ
i=1B̄i is connected and contains x and y, and

– for each i, either diamBi ≤ δR or NBi
(ω) ≤ nR.

Note that (R) is trivially satisfied when all horizon sets can be chosen to have uniformly

bounded diameters. For instance, this holds in Example 2.1. The use of the range condition

(R) will be revealed by Proposition 3.1 below, which states that the following finite range

property holds almost surely for nondegenerate P ∈ PΘ.

Definition. Let Λ ⋐ R
d be given. We say a configuration ω ∈ Ω confines the range of ϕ

from Λ if there exists a set ∂Λ(ω) ⋐ R
d such that ϕ(η, ζ ∪ ω̃Λc) = ϕ(η, ζ ∪ ωΛc) whenever

ω̃ = ω on ∂Λ(ω), ζ ∈ ΩΛ and η ∈ EΛ(ζ ∪ ωΛc). In this case we write ω ∈ ΩΛ
cr. ∂Λ(ω) is

called the ω-boundary of Λ, and we use the abbreviation ∂Λω = ω∂Λ(ω).
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Given any ω ∈ ΩΛ
cr, we assume in the following that ∂Λ(ω) = Λr \ Λ, where Λr is the

closed r-neighborhood of Λ and r = rΛ.ω is chosen as small as possible. Moreover, for

ω ∈ ΩΛ
cr we have

(3.1) HΛ,ω(ζ) =
∑

η∈EΛ(ζ∪∂Λω)

ϕ(η, ζ ∪ ∂Λω),

and this sum extends over a finite set. This means that the first assumption in the

definition of admissibility for Λ is satisfied. Here is the proposition announced above. It

will follow from Proposition 5.4 below.

Proposition 3.1. Under (R), for each Λ ⋐ R
d there exists a set Ω̂Λ

cr ∈ FΛc such that

Ω̂Λ
cr ⊂ ΩΛ

cr and P (Ω̂Λ
cr) = 1 for all P ∈ PΘ with P ({∅}) = 0.

Our next assumption is stability, the standard assumption that ensures the finiteness of

all partition functions. In our setting, a somewhat modified definition turns out to be

suitable.

(S) Stability. The hyperedge potential ϕ is called stable if there exists a constant cS ≥ 0

such that

(3.2) HΛ,ω(ζ) ≥ −cS #(ζ ∪ ∂Λω)

for all Λ ⋐ R
d, ζ ∈ ΩΛ and ω ∈ ΩΛ

cr.

In Remark 3.4 below we will show that this definition is a natural extension of the familiar

concept of stability in statistical mechanics. Complementary to the lower bound provided

by stability, we will also need a further condition that provides at least a partial upper

bound for the Hamiltonians. This is because in the extreme case when ϕ is constantly

equal to ∞ we have Zz
Λ, · ≡ 0, so that the definition of Gibbs measures is meaningless.

Let M ∈ R
d×d be an invertible d× d matrix and consider for each k ∈ Z

d the cell

(3.3) C(k) :=
{

Mx ∈ R
d : x− k ∈ [−1/2, 1/2[d

}

.

These cells together constitute a periodic partition of Rd into parallelotopes. For example,

the columns M1, . . . ,Md of M might form an orthogonal basis of Rd or, for d = 2, define

the sides of an equilateral triangle. For brevity we write C = C(0). Let Γ be a measurable

subset of ΩC \ {∅} and

(3.4) Γ =
{

ω ∈ Ω : ϑMk(ωC(k)) ∈ Γ for all k ∈ Z
d
}

the set of all configurations whose restriction to an arbitrary cell C(k), when shifted back

to C, belongs to Γ. We call each ω ∈ Γ pseudo-periodic. The required control of the

Hamiltonian from above will then be achieved by the following assumption on the joint

behavior of E , ϕ and z. Recall that rΛ,ω was defined before (3.1).
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(U) Upper regularity. M and Γ can be chosen so that the following holds.

(U1) Uniform confinement: Γ ⊂ ΩΛ
cr for all Λ ⋐ R

d, and

rΓ := sup
Λ⋐Rd

sup
ω∈Γ

rΛ,ω < ∞.

(U2) Uniform summability: c+Γ := sup
ω∈Γ

∑

η∈E(ω): η∩C 6=∅

ϕ+(η, ω)

#(η̂)
< ∞,

where η̂ := {k ∈ Z
d : η ∩ C(k) 6= ∅} and ϕ+ is the positive part of ϕ.

(U3) Strong non-rigidity: ez|C|Πz
C(Γ) > ecΓ , where cΓ is defined as in (U2) with

ϕ in place of ϕ+.

Hypothesis (U1) states that the configurations in Γ confine the range of ϕ in a uniform

way. So, for ω ∈ Γ, the ω-boundary ∂Λ(ω) of a set Λ ⋐ R
d is contained in the rΓ-boundary

∂ΓΛ := ΛrΓ \ Λ, and the cardinality of ∂Λω ist not larger than that of ∂Γ
Λω := ω∂ΓΛ. On

the other hand, condition (U2) provides a uniform upper bound for the local Hamiltonians

HΛ,· on Γ. This bound is of order cΓ|Λ|, cf. (5.8) below. Finally, hypothesis (U3) holds

for all z in an interval of the form ]z0,∞[, provided that Πz
C(Γ) > 0 for some (and thus

all) z > 0. Indeed, since ∅ /∈ Γ it follows that

(3.5) ez|C|Πz
C(Γ) =

∞
∑

k=1

zk

k!

∫

C
· · ·

∫

C
1Γ({x1, . . . , xk}) dx1 . . . dxk

is then a strictly increasing function of z. We emphasize that condition (U) imposes

conflicting demands on Γ. While (U1) and (U2) suggest to choose the set Γ as small as

possible, (U3) requires that Γ is not too small. The point will be to choose a set Γ that

satisfies all requirements simultaneously. Here is our main existence theorem.

Theorem 3.2. For every hypergraph structure E, hyperedge potential ϕ and activity z > 0

satisfying (S), (R) and (U) there exists at least one Gibbs measure P ∈ GΘ(ϕ, z).

In some cases it is difficult to satisfy hypothesis (U3) when z is small. This occurs,

for example, when a hard-exclusion hyperedge interaction enforces a minimal number of

points per cell; see Proposition 4.2. But a slight variation of proof allows to establish the

existence of a Gibbs measure for every z > 0 also in this case. Assumptions (U1) and

(U3) are replaced by conditions (Û1) and (Û3) as follows.

(Û) Alternative upper regularity. M and Γ can be chosen so that the following holds.

(Û1) Lower density bound: There exist constants a, b > 0 such that #(ζ) ≥ a|Λ|−b

whenever ζ ∈ Ωf is such that HΛ,ω(ζ) < ∞ for some ζ ⊂ Λ ⋐ R
d and some

ω ∈ Γ.

(Û2) = (U2) Uniform summability.

(Û3) Weak non-rigidity: Πz
C(Γ) > 0.

Here is the modified existence theorem.
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Theorem 3.3. A Gibbs measure P ∈ GΘ(ϕ, z) exists also under the hypotheses (S), (R)

and (Û).

It is often natural to choose Γ as the set of all configurations that consist of a single

point in some Borel set A ⊂ C. So we define

(3.6) ΓA =
{

ζ ∈ ΩC : ζ = {x} for some x ∈ A
}

.

For Γ = ΓA, the assumptions (U) and (Û) are respectively called (UA) and (ÛA) . In

particular, (U2A) and (U3A) take the simpler form

(U2A) c+A := sup
ω∈Γ

A

∑

η∈E(ω): η∩C 6=∅

ϕ+(η, ω)

#(η)
< ∞ and

(U3A) z|A| > ecA .

We then have the following corollary of Theorems 3.2 and 3.3.

Corollary 3.4. A Gibbs measure P ∈ GΘ(ϕ, z) exists under the hypotheses (S), (R) and

either (UA) or (ÛA).

We conclude this section with a series of comments on our assumptions and on the

extension to marked particles.

Remark 3.1. Bounded horizons. The conditions (R) and (UA) hold as soon as ϕ({0}, {0})
is finite and (E , ϕ) has bounded horizons, in that there exists some rϕ < ∞ such that

rη,ω ≤ rϕ for all (η, ω) ∈ E . (The notation rη,ω was introduced after (2.1).) Indeed,

condition (R) holds trivially with δR = 2rϕ. As for (UA), let M = aE, where a > 2rϕ
and E is the identity matrix. Let A = B(0, b) be a centered ball of radius b < a/2 − rϕ.

For Γ = ΓA, condition (U1) holds with rΓ = rϕ. Moreover, by the choice of a and b, each

η ∈ E(ω) with ω ∈ Γ
A

must be a singleton {x}, so that ϕ(η, ω) = ϕ({x}, {x}). In view

of the shift-invariance of ϕ, this means that (U2A) holds with c+A = ϕ+({0}, {0}) < ∞.

Finally, (U3A) holds if a and b are in fact chosen so large that also πzb2 > eϕ({0},{0}).

Remark 3.2. Scale-invariant potentials. Suppose E and ϕ are scale-invariant in the sense

that (rη, rω) ∈ E and ϕ(rη, rω) = ϕ(η, ω) for all (η, ω) ∈ E and r > 0. Here, rη = {rx :

x ∈ η} and rω = {rx : x ∈ ω}. Then Theorem 3.2 is still valid when assumption (U3)

is replaced by (Û3). Indeed, the scale invariance of ϕ implies that the image of a Gibbs

measure for ϕ and z under the rescaling ω → rω is a Gibbs measure for ϕ and zr−d. So,

it is sufficient to have the existence of a Gibbs measure for large z, and this follows from

the remark around (3.5).

Remark 3.3. Stability via sublinearity of the hypergraph. We say that a hypergraph E is

sublinear if there exists a constant C < ∞ such that #E(ω) ≤ C#(ω) for every finite

configuration ω. In this case, the stability is ensured by requiring that the hyperedge

potential ϕ is bounded below, in that

(3.7) ϕ(η, ω) ≥ −cϕ

for some cϕ < ∞. If the sublinearity of the hypergraph structure fails, the stability can

simply be achieved by requiring that the potential ϕ is nonnegative (i.e., cϕ = 0). For

example, for d = 2 it follows from Euler’s formula that the cardinalities of the Delaunay

edges and triangles are sublinear [8], so that the stability follows directly from (3.7).
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Remark 3.4. Stability: comparison with the classical case. Consider the hypergraph struc-

ture E = LCr of Example 2.1 describing many-body interactions of range r. In contrast to

Example 2.2 where the Delaunay tiles depend on the presence of further particles, it is then

meaningful to define the energy of a finite configuration ζ ∈ Ωf by H(ζ) =
∑

η∈E(ζ) ϕ(η).

The classical stability condition asserts that H(ζ) ≥ −cS #(ζ) for all ζ ∈ Ωf ; see [22], for

example. This follows from (S) by choosing Λ ⊃ ζ and ω = ∅. Conversely, the Hamilto-

nian (2.5) is equivalent to the Hamiltonian H̃Λ,ω(ζ) := H(ζ ∪ ∂Λω) in the sense that the

associated Gibbs distributions coincide (at least when ϕ < ∞), and the classical stabil-

ity assumption for H gives (S) for H̃Λ,ω. This shows that hypothesis (S) is essentially

equivalent to the classical concept of stability.

Remark 3.5. Sub-hypergraph potentials. Consider a shift-invariant sub-hypergraph struc-

ture E ′ ⊂ E of E and a hyperedge potential ϕ on E , and let ϕ′ be its restriction to E ′. In

general, ϕ′ does not satisfy the finite horizon property, but let us assume it does. Which

of the assumptions (R), (S), (U) and (Û) on ϕ are inherited by ϕ′? It is clear that

assumptions (R), (U1), (U2) and (Û3) are hereditary. Assumption (U3) remains also

valid for ϕ′, but for a different range of values of z because the constant cΓ is different

in general. Assumption (S) is lost, but a positive exception is the case of Remark 3.3

when stability follows from the sublinearity of E and the lower boundedness of ϕ; these

properties are obviously inherited by ϕ′. Assumption (Û1) is lost in general.

Remark 3.6. Upper regularity in Delaunay models. For potentials acting on the Delaunay

graph, the matrix M and the set Γ in hypotheses (UA) and (ÛA) will be chosen as follows.

Let M be such that |Mi| = a > 0 for i = 1, . . . , d and ∢(Mi,Mj) = π/3 for i 6= j, and

let Γ = ΓA with A = B(0, b). If b ≤ ̺0a for some sufficiently small constant ̺0 > 0, the

Delaunay neighborhood of a point x in a configuration ω ∈ Γ contains a minimal number

of points denoted by γd. For d = 2 one can take ̺0 =
√
3/6 and has γ2 = 6, and the

Delaunay neighborhood of the unique point xk in ω ∩ C(k) consists of the unique points

xl in ω ∩C(l) with l− k ∈ {(−1, 0), (−1, 1), (0, 1), (1, 0), (1,−1), (0,−1)}. For d > 2, γd is

less easy to determine but it is clearly not larger than 3d − 1, the value corresponding to

the case M = aE.

Remark 3.7. Extension to the marked case. The preceding results can be easily extended

to the case of particles with internal degrees of freedom, or marks. Let Σ be an arbitrary

Polish space with Borel σ-algebra S and reference probability measure µ. Σ serves as the

space of marks. That is, each marked point is represented by a position x ∈ R
d and a

mark σ ∈ Σ, and each configuration ω is a countable subset of Rd × Σ having a locally

finite projection onto R
d. The role of the reference measure on the configuration space Ω

is taken over by the Poisson point process Πz with intensity measure zλ ⊗ µ, where λ is

Lebesgue measure on R
d. The translations ϑx act only on the positions of the particles

and leave their marks untouched. We do not discuss the further formal details here, which

are standard and can be found in [19] or [15], for example. What we want to emphasize

here is that all definitions and results above carry over to this setting without any change,

provided it is understood that all regions Λ or ∆ in R
d always refer to the positional part

of a configuration. For example: the notation ω∆ now stands for ω∩(∆×Σ); a set ∆ ⋐ R
d

is the horizon of (η, ω) ∈ E if (η, ω̃) ∈ E and ϕ(η, ω̃) = ϕ(η, ω) whenever ω̃ = ω on ∆×Σ;

and the condition in Remark 3.1 should now read supσ∈S ϕ({(0, σ), {(0, σ)}) < ∞ for some

Borel set S ⊂ Σ with µ(S) > 0.
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4 Examples

In this section we present a series of examples to illustrate our general existence results.

These examples satisfy the assumptions of Theorem 3.2 or 3.3 and many of them have

been introduced in practical or theoretical papers without justification or with justification

in some partial cases.

To sort the examples of this section we will distinguish whether or not the potential

ϕ(η, ω) depends explicitly on ω. If not, we speak of a pure hyperedge potential. Otherwise,

the finite horizon property implies that ϕ(η, ω) actually depends only on some points of

ω \ η close to η, which is expressed by speaking of a neighborhood-dependent hyperedge

potential. But note that this distinction is merely a matter of how the interaction is

represented. In the pure case, the extended potential (η, ω) → 1E(η, ω)ϕ(η) on Ωf × Ω

clearly does depend on ω, while in the other case one can often include the neighboring

points of a hyperedge into an enlarged hyperedge to obtain a pure hyperedge potential.

Most of the following examples are based on the Delaunay graph. For simplicity, we

will then often confine ourselves to the case d = 2, in which the stability is ensured by

Remark 3.3 as soon as ϕ is bounded from below. But the reader should note that analogous

results hold also in higher dimensions when ϕ is nonnegative, so that (S) is trivial.

4.1 Pure hyperedge interactions

In this subsection we consider examples of hyperedge potentials ϕ which only depend on

the first parameter, so that ϕ(η, ω) = ϕ(η, η) =: ϕ(η).

4.1.1 Many-body interactions of finite range

Let r > 0 and E = LCr be the locally complete graph of Example 2.1, and suppose

that ϕ(η, ω) = ϕ(η). Remark 3.1 then shows that a Gibbs measure exists as soon as the

potential ϕ is stable and ϕ({0}) < ∞. By Remark 3.4, the first condition is equivalent to

the classical stability assumption, and the second is necessary for defining Gibbs measures.

So, as was observed first in [14, Remark 4.2], the techniques used here allow to weaken the

superstability assumption of Ruelle’s classical existence result [23], provided the interaction

has finite range. But our techniques neither allow to treat the case of infinite range nor

to rederive Ruelle’s probability estimates.

An example of a stable but not superstable many-body interaction is the so-called

quermass interaction. In space dimension d = 2, the associated Hamiltonian for a con-

figuration ω is a linear combination of area, perimeter and Euler-Poincaré characteristic

of the union of all discs of fixed radius that are centered at the points of ω. By the

additivity of the Minkowski functionals, this Hamiltonian can be expressed in terms of a

many-body interaction of finite range. Its stability is proved in [18], but the superstability

fails. The existence of Gibbs processes for this interaction has been proved in [7] by the

same methods used here.

4.1.2 Delaunay edge interactions

Here we consider two classes of potentials ϕ on the hypergraph structure Del2 in R
2

which are bounded below and depend only on the length of the Delaunay edges, in that
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ϕ({x, y}) := φ(|x−y|) when {x, y} ∈ Del2. Such potentials have been studied in [1, 2, 3, 4].

We improve the existence results of these papers.

4.1.2.1 Polynomially increasing edge interactions. Suppose that

(4.1) φ(ℓ) ≤ κ0 + κ1ℓ
α for some constants κ0 ≥ 0, κ1 ≥ 0 and α > 0 .

Recall the definition of ̺0 in Remark 3.6.

Proposition 4.1. Let d = 2 and ϕ be a pure edge potential on Del2 which is bounded

below and satisfies (4.1). Then there exists at least one Gibbs measure for ϕ and every

activity

z > (1+2̺0)e
3κ0(3αe2κ1/2)

1/α/(π̺20).

Proof. We apply Corollary 3.4 with the assumption (UA). The stability condition (S)

holds because of Remark 3.3. We know further from Example 2.2 that every edge η ∈
Del2(ω) has the finite horizon B̄(η, ω). This shows that assumption (R) is satisfied.

Concerning assumption (UA), let M and ΓA be defined as in Remark 3.6 with b = ̺0a

and a to be chosen later. The assumptions (U1A) and (U2A) are then trivial. We also

find that cA ≤ 3
(

κ0 + κ1a
α(1+2̺0)

α
)

. So, (U3A) holds as soon as z > K0 e
K1aα/a2,

where K0 = e3κ0/(π̺20) and K1 = 3κ1(1+2̺0)
α. Optimizing over a we find the value

a = (2/αK1)
1/α, which gives the sufficient condition z > K0(αK1e

2/2)1/α.

The bound for z in Proposition 4.1 is certainly not the best possible. However, in the

bounded case κ1 = 0 it reduces to the trivial condition z > 0. As for condition (4.1), at

first sight it might seem surprising that φ(ℓ) does not necessarily converge to zero when

ℓ tends to infinity, but is even allowed to converge to ∞. However, φ(ℓ) should not be

compared with a pairwise interaction that must decay over large distances, but with a

nearest-neighbor interaction between oscillators that form an elastic lattice. A potential

like the harmonic interaction φ(ℓ) = ℓ2 is therefore quite natural.

4.1.2.2 Long-edge exclusion. Suppose there are constants 0 ≤ ℓ0 < ℓ1 ≤ ℓ2 such that

(4.2) sup
ℓ0≤ℓ≤ℓ1

φ(ℓ) < ∞ and φ(ℓ) = ∞ if ℓ > ℓ2.

Proposition 4.2. Let d = 2 and ϕ be a pure edge potential on Del2 which is bounded

below and satisfies (4.2). Then there exists at least one Gibbs measure for ϕ and every

z > 0.

Proof. We apply Corollary 3.4 with the assumption (ÛA). Hypotheses (S) and (R) follow

as in Proposition 4.1. Condition (Û1A) is satisfied since the long-edge exclusion condition

ensures a minimal density of points. The values a and b in the definition of M and Γ are

now chosen such that each {x, y} ∈ Del2(ω) (with ω ∈ Γ
A
) satisfies ℓ0 < |x − y| < ℓ1.

Then (Û2A) follows, and (Û3A) is obvious.

Since φ(ℓ) may be equal to ∞ for ℓ less than some r0 < ℓ0, the present example includes

the classical case of a hard-core interaction which forces the points to keep distance at

least r0 > 0 from each other.
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Remark 4.1. Let us consider whether or not Propositions 4.1 and 4.2 remain valid when the

Delaunay graph is replaced by a subgraph, as was discussed in Remark 3.5. One possible

subgraph is the Gabriel graph. By definition, the Gabriel edge set Gab2(ω) consists of all

edges {x, y} ∈ Del2(ω) for which the open disc with center (x+ y)/2 and radius |x− y|/2
contains no point of ω. Since Gab2 is shift-invariant and local, the restriction of ϕ to Gab2

remains a shift-invariant hyperedge potential satisfying the finite horizon property (2.1).

By Remark 3.3, (S) is inherited when we pass from Del2 to Gab2. In view of our choice

of M and Γ, the constant cΓ remains unchanged, so that (U3) is also inherited without

modification of the valid range for z. This means that Proposition 4.1 holds also for the

Gabriel graph. Unfortunately, condition (Û1A) is lost, so that Proposition 4.2 does not

carry over to the Gabriel graph. Another example of a Delaunay subgraph is the minimum

spanning tree graph. This is tailor-made to be non-local, so that our results cannot be

applied.

4.1.3 Delaunay tile interactions

In this subsection we deal with potentials on the hypergraph structure Del3 of all Delaunay

triangles in R
2, and we still assume that ϕ is bounded below and depends only on the

hyperedge and not on the remaining configuration. Such models have been considered

recently in [6] and [8]. We improve the existence results given there.

4.1.3.1 Polynomially increasing triangle interactions. The first example is specified by

assuming that the interaction of a Delaunay triangle η ∈ Del3 is controlled by its size as

in Proposition 4.1:

(4.3) ϕ(η) ≤ κ0 + κ1 δ(η)
α for some constants κ0 ≥ 0, κ1 ≥ 0 and α > 0,

where δ(η) is the diameter of the circumcircle of η. We then have a similar result.

Proposition 4.3. Let d = 2 and ϕ be a pure triangle potential on Del3 which is bounded

below and satisfies (4.3). Then there exists at least one Gibbs measure for ϕ and every

z >
(

(2/
√
3)+2̺0

)

e2κ0(αe2κ1)
1/α/(π̺20).

If ϕ is bounded above, so that κ1 = 0, we recover the existence result of [8].

Proof. The proof is identical to that of Proposition 4.1. One simply has to note that

δ(η) ≤ ((2/
√
3)+2̺0

)

a when η ∈ Del3(ω) for some ω ∈ Γ.

4.1.3.2 Shape-dependent triangle interactions. The shape of a Delaunay triangle can be

captured by its angles. So let β(η) and γ(η) respectively denote the smallest and the

largest interior angle of a triangle η. We assume that ϕ has the form

(4.4) ϕ(η) := φ(β(η), γ(η)) .

Proposition 4.4. Let d = 2 and ϕ be a pure triangle potential on Del3 bounded below and

satisfying (4.4). Suppose there exists some δ > 0 such that

sup
γ≥β>(π/3)−δ

φ(β, γ) < ∞ .

Then there exists at least one Gibbs measure for ϕ and every z > 0.
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Proof. We can again apply Corollary 3.4 with the assumption (UA). The hypotheses (S)

and (R) hold for the same reasons as in Proposition 4.1. The matrix M and the set ΓA

can be defined as before, except that b is now chosen so small that β(η) > (π/3)− δ for all

η ∈ Del3(ω) with ω ∈ Γ
A
. Conditions (U1A) and (U2A) are then obvious. By Remark 3.2,

it only remains to check (Û3A) because ϕ is scale invariant. But this is trivial.

The conditions of Proposition 4.4 include the hard-equilaterality model, in which

(4.5) φ(β, γ) =

{

∞ if β ≤ (π/3) − δ,

0 otherwise

for some 0 < δ < π/3. The associated Gibbs measure produces a random Delaunay

triangulation for which each triangle is almost equilateral in the sense that every angle

exceeds π/3− δ. This model is considered in [10] (Model 1, Section 2.3) as the crystallized

triangulation model.

4.2 Neighborhood-dependent hyperedge interactions

We now turn to examples of potentials ϕ for which ϕ(η, ω) does not only depend on η

but also on the points of ω in some neighborhood of η. In two of these examples, the

underlying hypergraph structure is based on the singleton graph

(4.6) SG =
{

({x}, ω) : x ∈ ω ∈ Ω
}

for which all hyperedges are singletons. Since this might seem trivial, we add immediately

that more complex hyperedges will be hidden in the horizons of the potentials.

4.2.1 Forced-clustering k-nearest neighbor interactions

In the k-nearest neighbors model on the space R
d of any dimension d, each point x ∈ ω

interacts with the k points of ω that are closest to x. This model was introduced in [1, 3].

We focus here on a non-hereditary variant, in which the k-nearest neighbors of x are forced

to keep within distance δ > 0 from each other. This model was mentioned in [9] without

precise justification of the proof, which is given here.

Let k ≥ 1 be some fixed positive integer. For each integer 1 ≤ i ≤ k, each configuration

ω ∈ Ω with #(ω) ≥ k+1, and each x ∈ ω we let xi:ω be the i-th nearest neighbor of x in

ω. More precisely, xi:ω is defined as the i-th element of ω in the total order <x on R
d, in

which y1 <x y2 if and only if

|y1 − x| < |y2 − x| or
(

|y1 − x| = |y2 − x| and y1 <d y2
)

.

Here, <d stands for the lexicographic order on R
d. We also set x0:ω = x.

Now let SGk =
{

({x}, ω) ∈ SG : #(ω) ≥ k+1
}

. We consider hyperedge potentials ϕ

on SGk of the form

(4.7) ϕ({x}, ω) =
{

φ(x0:ω, . . . , xk:ω) if diam{x0:ω, . . . , xk:ω} < δ,

∞ otherwise,

where φ : (Rd)k+1 → R is any bounded measurable function and δ > 0 a fixed constant. It is

clear that this interaction is non-hereditary in the sense that the removal of a particle from
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an allowed configuration can lead to a forbidden configuration. Since no kind of symmetry

is required of φ, the present formalism includes both the directed and undirected k-nearest

neighbor graphs.

Proposition 4.5. In the forced-clustering k-nearest neighbor model described above, there

exists at least one Gibbs measure for ϕ and every z > 0.

Proof. Let us apply Theorem 3.2. The hypergraph structure SGk is clearly sublinear and

ϕ is bounded below. The stability assumption (S) thus follows from Remark 3.3. Next,

for given ({x}, ω) ∈ SGk, the closed ball B̄(x, |xk:ω−x|) with center x and radius |xk:ω−x|
can serve as a horizon of ({x}, ω). Since the corresponding open ball contains at most k

points of ω, assumption (R) follows immediately. Concerning (U), let b > 0 be a number

to be specified later and M = aE as in Remark 3.1 for some a > 2(b+δ). We set

Γ =
{

ω = {x0, x1, . . . , xk} : x0 ∈ B(0, b), xi ∈ B(x0, δ/2) ∀ i = 1, . . . , k
}

.

For each ω ∈ Γ and x ∈ ω it then follows that |x− xk:ω| < δ. So (U1) holds with rΓ = δ,

and (U2) follows with c+Γ ≤ (k+1)‖φ‖∞. Finally, we have

ez|C|Πz
C(Γ) =

zk+1

(k+1)!

∫

C
. . .

∫

C
1Γ({x0, . . . , xk}) dx0 . . . dxk

≥ zk+1

(k+1)!
νk+1
d bd (δ/2)kd ,

where νd is the volume of the unit ball in R
d. This shows that (U3) holds as soon as b is

chosen large enough.

4.2.2 Voronoi cell interactions

Here we consider potentials that depend on the structure of the Voronoi cells. This type

of model was introduced first by Ord; see the discussion in [21]. The spatial dimension d

is arbitrary here. Specifically, let

SGb =
{

({x}, ω) ∈ SG : Vorω(x) is bounded
}

be the hypergraph structure of singletons with bounded Voronoi cells and ϕ be of the form

ϕ({x}, ω) = φ
(

Vorω(x)
)

for ({x}, ω) ∈ SGb.

For instance, φ might depend on the number of faces, the volume, or the surface area of

the Voronoi cells. The necessity of passing from SG to SGb was discussed in Example 2.2.

Each ({x}, ω) ∈ SGb has as finite horizon the bounded Voronoi flower

(4.8) ∆ =
⋃

ξ∈Del(ω): ξ∋x

B̄(ξ, ω).

The following proposition includes a result of [1].

Proposition 4.6. In the Voronoi cell interaction model with bounded φ, there exists at

least one Gibbs measure for ϕ and every z > 0.
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Proof. Let us apply Corollary 3.4 again. The stability comes from the sublinearity of

SGb(ω) and the lower boundedness of ϕ, cf. Remark 3.3. The proof of (UA) is essentially

the same as in Proposition 4.1 with κ1 = 0. Concerning the range condition (R), let

{x} ∈ SGb(ω) and y1, y2 any two points of the set ∆ defined in (4.8). Then there exist

ξ1, ξ2 ∈ Del(ω) such that y1 ∈ B̄(ξ1, ω), y2 ∈ B̄(ξ2, ω) and x ∈ B̄(ξ1, ω) ∩ B̄(ξ2, ω). The

latter means that the union of these two balls is connected. By definition, B(ξ1, ω) and

B(ξ2, ω) contain no point of ω. So, condition (R) holds with ℓR = 2, nR = 0 and arbitrary

δR.

In the above, the boundedness of φ was only assumed for simplicity. In analogy to

Propositions 4.1 and 4.3, one can consider potentials ϕ that are polynomially increasing

in the diameter of the cell’s flower (4.8). The existence result then holds only for suffi-

ciently large activity z. It is also straightforward to consider hard-exclusion models as in

Propositions 4.2 and 4.4. For example, let d = 2 and

(4.9) φ
(

Vorω(x)
)

=

{

0 if Vorω(x) has six edges (and vertices),

∞ otherwise.

It is then clear that Theorem 3.2 applies, and by scale invariance a Gibbsian point process

exists for all z > 0. The typical configurations of such a Gibbs process preserve the

topology of the triangular lattice but are less regular than those of the hard-equilaterality

model (4.5) for small δ. The model (4.9) may therefore be called the randomly distorted

triangular lattice.

4.2.3 Adjacent Voronoi cell interactions

Here we reconsider the potential presented in Example 2.2, which describes an interaction

between two adjacent Voronoi cells. That is, let d = 2 and the set of hyperedges of a

configuration ω ∈ Ω be given by

Del2,b(ω) :=
{

{x, y} ∈ Del2(ω) : Vorω(x) and Vorω(y) are bounded
}

.

Suppose the potential ϕ has the form

ϕ(η, ω) = φ
(

Vorω(x),Vorω(y)
)

for η = {x, y} ∈ Del2,b(ω).

For instance, ϕ(η, ω) can either depend on the length of the common edge or on the area

ratio of the cells Vorω(x) and Vorω(y). As noticed before, the Voronoi “doubleflower”

∆ =
⋃

ξ∈Del(ω), ξ∩η 6=∅

B̄(ξ, ω).

then serves as finite horizon of (η, ω) ∈ Del2,b. In this setting we have the following result

which can be proved in the same way as Proposition 4.6.

Proposition 4.7. In the adjacent Voronoi cell interaction model in two dimensions with

bounded φ, there exists at least one Gibbs measure for ϕ and every z > 0.

16



As in the case of Proposition 4.6, this example can easily be extended to the case when

φ is polynomially increasing in the diameter of the associated doubleflower, or when φ

exhibits a hard exclusion that permits the configurations in Γ
A
for a suitable choice of A.

A particular adjacent Voronoi cell interaction with hard exclusion was proposed in [10],

Model 3, Section 2.3. In this model, a hard exclusion forces the cells to be neither too

small nor too large, and a smooth contribution induces a competition between the areas

of adjacent cells.

4.2.4 Conclusion

The preceding series of examples presents only a selection of possible models and could

easily be extended. For instance, having dealt with interactions acting on single Voronoi

cells or pairs of adjacent Voronoi cells, we could proceed to triples of Voronoi cells with a

common point, which are indexed by Delaunay triangles, or even larger clusters of Voronoi

cells. On the other hand, the preceding interactions can be combined (i.e., added up) to

obtain models with a richer interaction structure. A further universe of models opens up

if one passes to marked configurations as in Remark 3.7. Future will show which kind of

interaction will prove suitable for modeling geometric structures in the plane or in space

that occur in the sciences. In any case, it should be evident that the conditions of our

theorems are flexible enough to guarantee the existence of Gibbsian point processes for a

large variety of geometric interactions.

5 Proofs of the theorems

Let E , ϕ and z be fixed throughout this section. Before we enter into the proofs of the

theorems, it is necessary to verify a basic ingredient of the theory of Gibbs measures,

namely the consistency of the finite-volume Gibbs distributions.

Lemma 5.1. Let Λ ⊂ ∆ ⋐ R
d and ω ∈ Ω∆,z

∗ . Then

Gz
∆,ω

(

ΩΛ,z
∗

)

= 1 and

∫

f dGz
∆,ω =

∫

(

∫

f dGz
Λ,ω̃

)

Gz
∆,ω(dω̃)

for all measurable functions f : Ω → [0,∞[.

Proof. Let Λ, ∆ and ω be fixed. Since Gz
∆,ω does not depend on ω∆, we can assume

for notational convenience that ω ⊂ ∆c. Consider any two configurations ζ ∈ ΩΛ and

ξ ∈ Ω∆\Λ. It follows straight from the definition that EΛ(ζ ∪ξ∪ω) ⊂ E∆(ζ ∪ξ∪ω). Hence,

H∆,ω(ζ ∪ ξ) is the sum of HΛ,ξ∪ω(ζ) and a term in R ∪ {∞} which does not depend on ζ.

So, H−
Λ,ξ∪ω(ζ) < ∞ when H−

∆,ω(ζ ∪ ξ) < ∞, and HΛ,ξ∪ω(ζ) < ∞ when H∆,ω(ζ ∪ ξ) < ∞.

On the other hand, it follows that

H∆,ω(ζ ∪ ξ) +HΛ,ξ∪ω(ζ
′) = H∆,ω(ζ

′ ∪ ξ) +HΛ,ξ∪ω(ζ)

for all ζ ′ ∈ ΩΛ. Taking the negative exponential and integrating over ζ ′ we thus find that

(5.1) e−H∆,ω(ζ∪ξ)Zz
Λ,ξ∪ω = e−HΛ,ξ∪ω(ζ) Zz

Λ,∆,ω(ξ) ,
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where Zz
Λ,∆,ω(ξ) =

∫

e−H∆,ω(ζ
′∪ξ)Πz

Λ(dζ
′) is the partial partition function for which the

configuration ξ is held fixed. SinceGz
∆,ω is concentrated on the set {H−

∆,ω < ∞,H∆,ω < ∞}
which is contained in {H−

Λ, · ∪ω < ∞, HΛ, · ∪ω < ∞}, we can conclude that

Gz
∆,ω

(

Zz
Λ, · = 0

)

= Gz
∆,ω ◦ pr−1

∆\Λ

(

Zz
Λ,∆,ω(·) = 0

)

= (Zz
∆,ω)

−1

∫

Zz
Λ,∆,ω(·)1{Zz

Λ,∆,ω
(·)=0} dΠ

z
∆\Λ = 0 .

Likewise, Gz
∆,ω

(

Zz
Λ, · = ∞

)

= 0 because
∫

Zz
Λ,∆,ω(·) dΠz

∆\Λ = Zz
Λ,ω < ∞. Combining

these results we obtain the first assertion of the lemma. As a consequence, we can divide

Eq. (5.1) by Zz
∆,ω Z

z
Λ,ξ∪ω to obtain the consistency equation Gz

∆,ω =
∫

Gz
Λ,ω̃ Gz

∆,ω(dω̃).

We now turn to the proof of Theorem 3.2. So we assume that the hypotheses (S),

(R) and (U) are satisfied. As usual, we construct a Gibbs measure as a limit of Gibbs

distributions in suitable boxes. We choose M and Γ as in hypothesis (U) and consider for

each n ≥ 1 the parallelotope

Λn =
⋃

k∈Ln

C(k) ,

where Ln = {−n, . . . , n}d. Let ω ∈ Γ be a fixed pseudo-periodic configuration with

supk∈Zd NC(k)(ω) < ∞; the last condition can be satisfied by letting ω be periodic. As-

sumption (U1) implies that ω ∈ ΩΛn
cr . Combined with (3.1), (S) and (U2&3), this shows

that ω is admissible for Λn and z; cf. (5.8) below. So we can define the Gibbs distribution

Gn = Gz
Λn,ω ◦ pr−1

Λn

in Λn with boundary condition ω and activity z, projected to Λn. Since we aim at con-

structing a shift-invariant Gibbs measure, we will introduce a spatial averaging of Gn, and

it is convenient to work directly on the set of all shift-invariant probability measures on

Ω.

So, let Pn be the probability measure on (Ω,F) relative to which the configurations

in the disjoint blocks Λn + (2n+1)Mk, k ∈ Z
d, are independent with identical distribution

Gn. We consider the averaged measure

(5.2) P̂n =
1

vn

∫

Λn

Pn ◦ ϑ−1
x dx,

where vn = |Λn| is the volume of Λn. By the periodicity of Pn, P̂n is shift-invariant.

Moreover, the intensity i(P̂n) =
∫

NΛn dGn/vn of P̂n is finite because

∫

NΛn e
−HΛn,ω dΠz

Λn
≤ ecS #(∂Λnω)

∫

NΛn e
cSNΛn dΠz

Λn
< ∞

by (3.1) and (S). So, P̂n ∈ PΘ.

We will show that the sequence (P̂n) has an accumulation point in a suitable topology.

As in [14], we will take the required compactness from the compactness of the level sets

of the specific entropy. Let us recall the necessary concepts.

A measurable function f : Ω → R is called local and tame if

f(ω) = f(ωΛ) and |f(ω)| ≤ aNΛ(ω) + b
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for all ω ∈ Ω, some Λ ⋐ R
d and suitable constants a, b ≥ 0. Let L be the set of all

local and tame functions. The topology of local convergence, or L-topology, on PΘ is then

defined as the weak* topology induced by L, i.e., as the smallest topology for which the

mappings P 7→
∫

f dP (with f ∈ L) are continuous. Note that the intensity P 7→ i(P ) is

continuous in the L-topology.
Next, for any P ∈ PΘ let PΛn = P ◦ pr−1

Λn
be the projection of P to ΩΛn and

I(PΛn |Πz
Λn

) =

{ ∫

f ln f dΠz
Λn

if PΛn ≪ Πz
Λn

with density f,

∞ otherwise

the relative entropy of PΛn with respect to Πz
Λn

; here, “≪” stands for absolute continuity.

The specific entropy of P (relative to Πz) is then defined by

(5.3) Iz(P ) = lim
n→∞

v−1
n I(PΛn |Πz

Λn
);

see [12] and [15] for the existence of the limit and further properties of Iz. Our key tool

is the following result of [13, Lemma 3.4], which is based on [15, Prop. 2.6].

Proposition 5.2. For all c1, c2 ≥ 0 and z > 0, the set

{

P ∈ PΘ : Iz(P )− c1 i(P ) ≤ c2
}

is relatively sequentially compact in the L-topology.

In view of this fact, the following entropy bound implies that the sequence (P̂n) has a

convergent subsequence.

Proposition 5.3. In the limit n → ∞ we have

(5.4) Iz(P̂n)− cS i(P̂n) ≤ |C|−1
(

cΓ − lnΠz
C(Γ)

)

+ o(1).

Proof. First of all, the definition of P̂n readily implies that

(5.5) Iz(P̂n) = v−1
n I(Gn|Πz

Λn
) ;

see the proof of [12, Proposition (16.34)]. Likewise, i(P̂n) = v−1
n

∫

NΛn dGn. By the

definition of Gn, we know further that

(5.6) I(Gn|Πz
Λn

) = −
∫

HΛn,ω dGn − lnZz
Λn,ω .

So we need to estimate the two terms on the right-hand side. As for the first term,

hypotheses (S) and (U1) give

(5.7)

∫

HΛn,ω dGn ≥ −cS

∫

NΛn dGn − cS #(∂Γ
Λn

ω) ,

and the assumption on ω implies that #(∂Γ
Λn

ω) = o(vn).

It remains to estimate the partition function ZΛn,ω. By (U1) we can find a number

m ≥ 1 such that ∂ΛΓ
n ⊂ Λn+m for all n ≥ 1. Fix any n and let ζ ∈ ΩΛn be such that

ζ̄ := ζ ∪ ωΛc
n
∈ Γ. We claim that

(5.8) HΛn,ω(ζ) ≤ cΓ#Ln + o(vn) ,
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where the error term is uniform in ζ. Indeed, since η ∈ EΛn(ζ̄) when η ∈ E(ζ̄) and

k ∈ η̂ ∩ Ln, we can write

HΛn,ω(ζ) =
∑

k∈Ln

∑

η∈E(ζ̄): η̂∋k

ϕ(η)

#η̂
+

∑

k∈Ln+m\Ln

∑

η∈EΛn (ζ̄): η̂∋k

ϕ(η)

#η̂
.

In view of (U2) and translation invariance, the first term on the right is not larger than

cΓ#Ln. Likewise, the second term is dominated by c+Γ #(Ln+m \ Ln). This proves (5.8)

and leads us to the estimate

(5.9) Zz
Λn,ω ≥

∫

1Γ(ζ̄) e
−HΛn,ω(ζ)Πz

Λn
(dζ) ≥ e−cΓ #Ln−o(vn) Πz

C(Γ)
#Ln .

Combining this with (5.5) to (5.7) we end up with (5.4).

The two propositions above imply that the sequence (P̂n) admits a subsequence that

converges to some P̂ ∈ PΘ in the L-topology. The limit P̂ is non-degenerate, in that

P̂ 6= δ∅. Indeed, in view of the lower semicontinuity of Iz (implied by Proposition 5.2)

and the continuity of the intensity i we obtain from (5.4) that

(5.10) Iz(P̂ )− cS i(P̂ ) ≤ |C|−1
(

cΓ − lnΠz
C(Γ)

)

.

But hypothesis (U3) ensures that the quantity on the right-hand side is strictly less than

z = Iz(δ∅)− cS i(δ∅).

It is natural to expect that P̂ is the Gibbs measure we are looking for. Unfortu-

nately, however, we are unable to show that P̂ is concentrated on the admissible config-

urations. However, since P̂ is non-degenerate, we can consider the conditioned measure

P = P̂ ( · |{∅}c) ∈ PΘ with P ({∅}) = 0 and apply Proposition 3.1. Let us give a more

precise statement of this proposition.

Let ℓR, nR, δR be the constants introduced in condition (R). Also, let δ− and δ+ be

the diameters of the largest open ball in C and of the smallest closed ball containing

C, respectively. Fix an integer m ≥ 6ℓRδ+/δ−. For each n ≥ 1, we decompose the

parallelotope Λ̂n := Λn+(2n+1)m into the (2m+1)d translates Λk
n := Λn+(2n+1)Mk of Λn,

where k ∈ Lm. For any Λ ⋐ R
d let nΛ ≥ 1 be the smallest number with ΛnΛ

⊃ Λ and

nΛ ≥ δR/6δ+. For all n ≥ nΛ we consider the events

(5.11) Ω̂Λ,n
cr =

{

min
06=k∈Lm

NΛk
n
> nR

}

∈ FΛ̂n\Λ

as well as Ω̂Λ
cr =

⋃

n≥nΛ
Ω̂Λ,n
cr ∈ FΛc . We then have the following result.

Proposition 5.4. Given any Λ ⋐ R
d, we have Ω̂Λ

cr ⊂ ΩΛ
cr and ∂Λ(ω) ⊂ Λ̂n when ω ∈ Ω̂Λ,n

cr

for some n ≥ nΛ. Moreover, P (Ω̂Λ
cr) = 1 for all P ∈ PΘ with P ({∅}) = 0.

Proof. Let Λ and n ≥ nΛ be fixed and consider any ω ∈ Ω for which the range of ϕ from

Λ is not confined within Λ̂n. Then there exists a configuration ω̃ ∈ Ω with ω̃ = ω on

Λ̂n \Λ, a configuration ζ ∈ ΩΛ and a hyperedge η ∈ EΛ(ζ ∪ωΛc) such that ϕ(η, ζ ∪ωΛc) 6=
ϕ(η, ζ ∪ ω̃Λc). So, every horizon ∆ of (η, ζ ∪ ωΛc) as in (2.1) hits Λ̂c

n. By (2.4), ∆ hits

Λ too. Now let ∆ be chosen as in (R). We pick some x ∈ Λ ∩ ∆ and y ∈ ∆ \ Λ̂n and,

as in (R), a chain of ℓ ≤ ℓR balls that hit each other successively and run from x to y.
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There is a first ball Bℓ′ hitting Λ̂c
n. Shrinking Bℓ′ if necessary, we find a connected chain

B1, . . . , Bℓ′ of at most ℓR balls that are all contained in Λ̂n, connect x to ∂Λ̂n, and have

either diameter at most δR or contain at most nR particles of ζ ∪ ωΛc . Since the distance

between x and ∂Λ̂n is at least m(2n+1)δ−, at least one ball Bi has a diameter exceeding

3(2n+1)δ+. As n ≥ δR/6δ+, this bound is larger than both δR and 3diamΛn. So there

exist at least two indices k, k′ ∈ Lm such that Λk
n and Λk′

n are included in Bi and thus hold

at most nR points of ζ ∪ωΛc. At least one of these parallelotopes is different from Λn, say

Λk
n. This proves that ω /∈ Ω̂Λ,n

cr and completes the proof of the first statement.

To prove the second claim let P ∈ PΘ be such that P ({∅}) = 0. We have

1− P (Ω̂Λ
cr) = P

(

⋂

n≥nΛ

(Ω̂Λ,n
cr )c

)

≤ inf
n≥nΛ

∑

06=k∈Lm

P
(

NΛk
n
≤ nR

)

.

By translation invariance, the last expression is equal to

(#Lm − 1) inf
n≥nΛ

P
(

NΛn ≤ nR

)

.

But this term vanishes because

P
(

NΛn ≤ nR

)

→ P
(

NRd ≤ nR

)

= P ({∅}) = 0

as n → ∞. The next to last identity comes from the well-known fact [19, 6.1.3] that

P (0 < NRd < ∞) = 0 when P is translation invariant. The proof is therefore complete.

The final step in the proof of Theorem 3.2 is as follows.

Proposition 5.5. The conditional probability P = P̂ ( · |{∅}c) ∈ PΘ is a Gibbs measure

for E, ϕ and z.

Proof. Since P̂ ∈ PΘ with P̂ ({∅}) < 1, P is well-defined and belongs to PΘ. To show

that P is a Gibbs measure we fix some Λ ⋐ R
d and consider the sets Ω̂Λ,p

cr defined in (5.11)

for p ≥ nΛ. We also set Ω̂Λ,≤p
cr =

⋃p
n=nΛ

Ω̂Λ,n
cr . It is sufficient to show that

(5.12)

∫

Ω̂Λ,≤p
cr

f dP̂ =

∫

Ω̂Λ,≤p
cr ∩ΩΛ,z

∗

fΛ dP̂

whenever f : Ω → [0, 1] is a local function and p ≥ nΛ is so large that f is FΛ̂p
-measurable.

Here, fΛ is defined by

fΛ(ω) :=

∫

f dGΛ,ω .

Indeed, letting p → ∞ and setting f = 1 we then find that P̂ (Ω̂Λ
cr∩ΩΛ,z

∗ ) = P̂ (Ω̂Λ
cr) and thus

P (ΩΛ,z
∗ ) = 1 by Proposition 5.4. For arbitrary f we obtain further that P =

∫

Gz
Λ,ω P (dω).

Since Λ is arbitrary, this means that P is a Gibbs measure.

To prove (5.12) let f and p ≥ nΛ be fixed. It will be convenient to replace the sequence

(P̂n) introduced in (5.2) by an alternative sequence of measures with the same limit P̂ .

Suppose n is so large that Λ̂p ⊂ Λn and let

Λ◦
n = {x ∈ R

d : Λ̂p + x ⊂ Λn}
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be the “Λ̂p-interior” of Λn, which coincides with the closure of Λn−p−(2p+1)m. We define

the (subprobability) measure

Ḡn :=
1

vn

∫

Λ◦
n

Gz
Λn,ω ◦ ϑ−1

x dx =
1

vn

∫

Λ◦
n

Gz
Λn−x,ϑxω dx ;

the equality comes from the shift-invariance of ϕ and the symmetry of Λ◦
n. The argument

in [15, Lemma 5.7] then shows that
∫

f dP̂n −
∫

f dḠn → 0 for all f ∈ L. This means

that P̂ can also be viewed as an accumulation point of the sequence (Ḡn). Now let

x ∈ Λ◦
n, so that Λ̂p ⊂ Λn − x. Using the consistency lemma 5.1 and the fact that

Ω̂Λ,≤p
cr ∈ FΛ̂p\Λ

⊂ F(Λn−x)\Λ we find

∫

Ω̂Λ,≤p
cr

f dGz
Λn−x,ϑxω =

∫

ΩΛ,z
∗ ∩Ω̂Λ,≤p

cr

(

∫

f dGz
Λ,ω

)

Gz
Λn−x,ϑxω(dω) ,

and averaging over x yields

(5.13)

∫

Ω̂Λ,≤p
cr

f dḠn =

∫

ΩΛ,z
∗ ∩Ω̂Λ,≤p

cr

fΛ dḠn .

The integrand of the integral on the left is measurable with respect to FΛ̂p\Λ
and thus

belongs to L. By (A.4) in the appendix, the integrand on the right of (5.13) is measurable

with respect to the universal completion F∗
Λ̂p\Λ

and thus can be squeezed between two

functions in L which coincide P̂ -almost surely; cf. [5], Proposition 2.2.3. So, (5.13) gives

(5.12) in the limit when n runs through a subsequence for which Ḡn tends to P̂ in the

L-topology.

The proof of Theorem 3.3 requires only two minor observations. First, we note that

(Û1) and (Û2) together with (R) imply (U1). Indeed, let ω ∈ Γ. Condition (Û2) then

shows that HΛm,ω(ωΛm) < ∞ for all m ≥ 1. If m is so large that avm − b > nR for

the constant nR in (R), the lower density bound (Û1) thus gives that each translate Λk
m,

k ∈ Z
d, contains more than nR points of ω. Hence, every ball with at most nR points has a

diameter no larger than 2 diam(Λm). Invoking the range condition (R), we can therefore

conclude that (U1) holds with rΓ ≤ ℓR max(δR, 2 diam(Λm)).

Next we note that the non-rigidity condition in its strong form (U3) was only used

below (5.10) when we showed that the accumulation point P̂ is non-degenerate; for all

other purposes, the weak form (Û3) was sufficient. However, the non-degeneracy of P̂ is

trivial under (Û1) because i(P̂n) ≥ a− b/vn and thus i(P̂ ) ≥ a > 0 by the continuity of i.

This completes the proof of Theorem 3.3.

Appendix: Measurability

Here we collect and prove the measurability properties we have used and add a further

comment on measurability. Let Λ ⋐ R
d be fixed.

Claim A.1. EΛ := {(η, ω) : η ∈ EΛ(ω)} ∈ (Ff ⊗F)∗.
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Indeed, consider the measurable functions fΛ(η, ζ, ω) = (η, ζ ∪ωΛc) and g(η, ζ, ω) = (η, ω)

from Ωf × ΩΛ × Ω to Ωf × Ω. Since E and ϕ are measurable by assumption, the event

ĒΛ := {ϕ ◦ g 6= ϕ ◦ fΛ} then belongs to Ff ⊗ FΛ ⊗ F , and EΛ is equal to the projection

image g(ĒΛ). Since FΛ is known [17, 19] to be the Borel σ-algebra for a Polish topology

on ΩΛ, one can apply Prop. 8.4.4 of [5] to conclude that EΛ is universally measurable, as

claimed.

Claim A.2. The functions (ζ, ω) → HΛ,ω(ζ) and (ζ, ω) → H−
Λ,ω(ζ) are measurable with

respect to (F ′
Λ ⊗FΛc)∗.

To see this, we observe first that the mapping fΛ in Claim A.1 is measurable from Ff⊗F ′
Λ⊗

FΛc to Ff⊗F , and therefore also from (Ff⊗F ′
Λ⊗FΛc)∗ to (Ff⊗F)∗; see [5], Lemma 8.4.6.

In view of Claim A.1, this means that the indicator function 1EΛ(η, ζ ∪ωΛc) is measurable

with respect to (Ff ⊗ F ′
Λ ⊗ FΛc)∗. Given any probability measure on Ωf × ΩΛ × ΩΛc ,

we can therefore squeeze this indicator function between two Ff ⊗F ′
Λ ⊗ FΛc-measurable

functions which coincide almost surely; cf. Proposition 2.2.3 of [5]. Writing

HΛ,ω(ζ) =
∑

η⊂ω

1EΛ(η, ζ ∪ ωΛc)ϕ(η, ζ ∪ ωΛc) ,

applying Theorem 5.1.2 of [19] repeatedly when the indicator function is replaced by one

of the squeezing functions and using Proposition 2.2.3 of [5] in the converse direction we

get the result.

Claim A.3. The partition function ω → Zz
Λ,ω is measurable with respect to F∗

Λc , Ω
Λ,z
∗ ∈

F∗
Λc, and Gz

Λ,ω(F ) is a probability kernel from (ΩΛ,z
∗ ,F∗

Λc |ΩΛ,z
∗

) to (Ω,F).

Let P be an arbitrary probability measure on FΛc . As in Claim A.2, we can squeeze

the function e−HΛ,ω(ζ) between two F ′
Λ ⊗ FΛc-measurable functions which coincide Πz

Λ ⊗
P -almost surely. Integrating these functions over ζ with respect to Πz

Λ we obtain two

functions of ω, which squeeze Zz
Λ,ω, are FΛc -measurable by the measurability part of

Fubini’s theorem, and coincide P -almost surely. As P was arbitrary, the first result follows.

In the same way one finds that the function ω → Πz
Λ(H

−
Λ,ω < ∞) is F∗

Λc-measurable. Hence

ΩΛ,z
∗ =

{

ω ∈ Ω : Πz
Λ(H

−
Λ,ω < ∞) = 1, 0 < Zz

Λ,ω < ∞
}

∈ F∗
Λc .

One also finds that the integral in (2.6) depends F∗
Λc-measurably on ω, which proves the

last statement.

Claim A.4. Let p ≥ nΛ be fixed and suppose condition (R) holds. Claims A.2 and A.3

remain valid with FΛ̂p\Λ
in place of FΛc as soon as all quantities are restricted to the set

Ω̂Λ,p
cr defined in (5.11). In particular, ΩΛ,z

∗ ∩ Ω̂Λ,p
cr ∈ F∗

Λ̂p\Λ
, and Gz

Λ,ω(F ) is a probability

kernel from (ΩΛ,z
∗ ∩ Ω̂Λ,p

cr ,F∗
Λ̂p\Λ

|
ΩΛ,z

∗ ∩Ω̂Λ,p
cr

) to (Ω,F).

Indeed, by Proposition 5.4 and (3.1) we have

HΛ,ω(ζ) =
∑

η∈EΛ(ζ∪ωΛ̂p\Λ
)

ϕ(η, ζ ∪ ωΛ̂p\Λ
) when ω ∈ Ω̂Λ,p

cr .

The counterpart of Claim A.2 is therefore obvious, and the analog of Claim A.3 follows as

before.
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Claim A.5. The use of universal measurability could be avoided by modifying the definition

of EΛ.

Namely, EΛ(ω) could be defined as the set of all η ∈ E(ω) for which either η ∩ Λ 6= ∅ or

Πz
Λ ⊗Πz

Λ

(

(ζ1, ζ2) ∈ Ω2
Λ : ϕ(η, ζ1 ∪ ωΛc) 6= ϕ(η, ζ2 ∪ ωΛc)

)

> 0 .

Then EΛ ∈ Ff ⊗ F by the measurability part of Fubini’s theorem, and Claims A.2, A.3

and A.4 would follow without the stars referring to universal extensions. This modified

definition, however, is less intuitive and destroys the simple monotonicity of EΛ(ω) in

Λ which was used in the proof of Lemma 5.1. One can still show that the required

monotonicity holds for Πz
∆\Λ-almost all ξ, but this is more involved. It is also necessary

to redefine ΩΛ
cr to obtain Proposition 5.4. We therefore decided to make use of universal

measurability.
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