
HAL Id: hal-00850248
https://hal.science/hal-00850248

Submitted on 5 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct Optimization of the dictionary learning problem
Alain Rakotomamonjy

To cite this version:

Alain Rakotomamonjy. Direct Optimization of the dictionary learning problem. 2013. �hal-00850248�

https://hal.science/hal-00850248
https://hal.archives-ouvertes.fr

1

Direct Optimization of the Dictionary Learning
Problem

Alain Rakotomamonjy?

LITIS, EA 4108 - Université/INSA de Rouen
Avenue de l’Université - 76801 Saint-Etienne du Rouvray Cedex

firstname.lastname@insa-rouen.fr

Abstract—A novel way of solving the dictionary learning
problem is proposed in this paper. It is based on a so-called direct
optimization as it avoids the usual technique which consists in
alternatively optimizing the coefficients of a sparse decomposition
and in optimizing dictionary atoms. The algorithm we advocate
simply performs a joint proximal gradient descent step over the
dictionary atoms and the coefficient matrix. After having derived
the algorithm, we also provided in-depth discussions on how the
stepsizes of the proximal gradient descent have been chosen. In
addition, we uncover the connection between our direct approach
and the alternating optimization method for dictionary learning.
We have shown that it can be applied to a broader class of
non-convex optimization problems than the dictionary learning
one. As such, we have denoted the algorithm as a one-step block-
coordinate proximal gradient descent. The main advantage of our
novel algorithm is that, as suggested by our simulation study, it
is more efficient than alternating optimization algorithms.

Index Terms—dictionary learning, non-convex proximal, one-
step block-coordinate descent .

I. INTRODUCTION

In the recent years, a lot of works have been devoted to
the problem of sparse representation of signals and images.
Several research communities [17], [26], [12] have focused on
this problem in order to develop some new tools for analyzing
signals or images, to select features for discrimination tasks
or to study the theoretical properties of sparse representation.
This large success of “sparsity” is essentially due to the
fact that many real-world signals or natural images can be
represented as a linear combination of few representative
elements, denoted as atoms or dictionary elements.

One of the key problems related to sparse representation is
the choice of the dictionary on which the signal of interest is
decomposed. One simple approach is to consider an off-the-
shelf dictionary such as wavelet basis, wavelet packet basis,
Gabor atoms or Discrete Cosine Basis. A recent trend which
has been shown to achieve state-of-the art results on many
low-level signal and image processing tasks is to learn the
dictionary from the data [11], [15], [18], [14], [10]. Several
algorithms for dictionary learning have been proposed and
most of them are based on an alternating optimization scheme
which involves a signal sparse coding step and a dictionary
optimization step [19], [15], [11], [17], [13], [25]. Recently,
approaches based on alternating optimization, which also
allows sparse code updates during the dictionary optimization
step, have been proposed [1], [9].

This paper deviates from this mainstream approach and
proposes a novel way of solving the dictionary problem by
means of what we call a “direct” optimization. Indeed, we
propose an algorithm which does not perform alternating
optimization but does at each iteration, jointly optimize both
the dictionary elements and the sparse coding of each signal.
This idea of joint optimization has already been explored in
[1] and [9] and the approach we present here goes farther
as we do optimize all the elements of the dictionary learning
problem at once, without restriction of coefficient supports.
The algorithm for this “direct” optimization is based on a

proximal gradient descent and it has been derived by casting
the dictionary learning problem into a recent non-convex
proximal splitting framework introduced by Sra [22]. We
show that, with slight additional constraints, the dictionary
learning problem satisfies all conditions necessary to ensure
convergence of the algorithm. A careful analysis of the stepsize
involved in the proximal gradient descent is also provided.
Interestingly, we also point out how our novel algorithm can
be related to alternating optimization approach like the one
proposed by Yaghoobi et al. [25]. In addition, we have cast
the algorithm in a broader framework and have shown that it
can actually solve a larger class of non-convex optimization
problems which involve a smooth function and a sum of
separable convex and possibly non-smooth functions. Because
of its specific nature, we have denoted the algorithm as a one-
step block-coordinate proximal gradient descent. The main
practical result achieved by our approach is that the dictionary
learning problem can be solved significantly faster compared
to other existing algorithms such as the one of Yaghoobi et al.
[25] which is already faster than methods like K-SVD [1].

The paper is organized as follows. Section II introduces the
dictionary learning framework we are dealing with and re-
views some related works. The non-convex proximal splitting
framework of Sra [22] is described in Section III as well as its
application to dictionary learning. Most parts of this section
also discuss some important algorithmic issues including step-
size selection. Section IV uncovers the relationship between
direct and alternating optimization approaches and explains
how the algorithm we propose for dictionary learning applies
to a larger class of problems. Experimental studies described
in Section V clearly establish the practical benefit of using
direct optimization of the dictionary learning problem. We
indeed show that such an approach is significantly faster than
alternating optimization without compromising quality of the

2

learned dictionary. The code used in this paper is available on
the author’s website.

II. DICTIONARY LEARNING

In this section, we formally state the dictionary learning
problem we are interested in and present the current state-of-
the-art methods for solving this problem.

A. Simultaneous Sparse approximation and dictionary learn-
ing

The problem of simultaneous sparse approximation (SSA)
[23], [20] consists in looking for a sparse decomposition, over
a fixed dictionary, of a set of signals under the constraint
that, to some extents, they all share the same sparsity profile.
Formally, this translates as follows. Suppose we have a set of L
signals X = [x1,x2, · · · ,xL], with X ∈ RN×L, a dictionary
D ∈ RN×M , then the SSA problem solves :

min
A∈RM×L

1

2
‖X−DA‖2F + λΩ(A) (1)

where Ω(A) is a sparsity-inducing regularizer on A and
λ a trade-off parameter that balances the data fitting term
(the square loss) and the regularization term. Typically, for
inducing a shared sparsity profile on the signal approximation,
which means that all xi should preferably be approximated by
the same set of dictionary elements, one can consider a mixed-
norm over the rows of A of the form :

Ω(A) =

(
M∑
i=1

‖Ai,·‖pq

)1/p

(2)

where typically p = 1 and q ∈ {2,∞} [8], [23]. Note that
for all matrices, we will respectively denote as Ai,· and
A·,j their i-th row and the j-th column. When the sparsity
profile is known to be different for each single signal to be
approximated, one instead may consider p = 1 and q = 1 [5]
which allows Ω(A) to decouple and thus untie coefficients of
A.

Dictionary learning problems go beyond simultaneous
sparse approximation by jointly optimizing over the coefficient
matrix A and the dictionary D leading then to the optimization
problem

min
A,D∈D

1

2
‖X−DA‖2F + λΩ(A) (3)

where D is a set that imposes some constraints on the
dictionary elements. This set is usually chosen according to
prior knowledge on the problem or chosen so as to help
in resolving the scale invariance of the problem. The most
frequent constraints imposed to D, and already used in other
works, are the one that induces each column of D to have unit
`2 norm or the one that enforces D to have an unit Frobenius
norm [11], [15], [25]. In a more general form, we can consider
the following problem for dictionary learning

min
A,D

Φ(A,D) =
1

2
‖X−DA‖2F+λAΩA(A)+λDΩD(D) (4)

Algorithm 1 : Alternating optimization for dictionary learning

1: set k=1, initialize A1, D1

2: repeat
3: Dk+1 = minD Φ(Ak,D)
4: Ak+1 = minA Φ(A,Dk+1)
5: k ← k + 1
6: until stopping criterion is met

where ΩA(·) and ΩD(·) are general regularizers on A and
D that can involve mixed terms (e.g non-negativity and
sparseness) or indicator functions that are related to projection
on convex sets defining some constraints. However, for a sake
of simplicity, we will consider for now on, the constraints on
D as the projection on the unit-norm ball, denoted as Π(D),
which imposes each dictionary atom norm to be bounded by
1, and the regularizer on A as λA‖A‖1 = λA

∑∑
|ai,j |.

B. Related works

Several methods for solving the dictionary learning problem
given in Equation (4) have been investigated in the last decade.
These algorithms usually solve problem (4) by means of an
alternating optimization procedure which is summarized in
Algorithm 1. Basically, this algorithm consists in alternatively
learning the sparse approximation when the dictionary is
considered fixed and then in updating the dictionary with
fixed matrix approximation A. For instance, Engan et al. [11]
consider the problem with no constraints on A and impose
unit-norm dictionary elements. Accordingly, the solution at
each step can be straightforwardly obtained by solving the
related least-square problem over A and D. For the D update,
this gives

Dk+1 = X(Ak)>
(
Ak(Ak)>

)−1
(5)

and unit-norm atoms are obtained by normalizing each column
of Dk+1. This results in an algorithm known as the method of
optimal directions (MOD) algorithm. In a similar way, Kreutz-
Delgado et al. have proposed an alternating optimization
algorithm that solves a Bayesian interpretation model of the
dictionary learning problem [15].

The recent work of Yaghoobi et al. investigates algorithms
for solving problem (4) when several types of constraints and
regularizations on D as well as sparsity-inducing regularizers
on A are in play. For instance, they consider both bounded
Frobenius norm or bounded `2 norm constraints on the dictio-
nary atoms jointly to sparsity-inducing regularizers of the same
form of the one given in Equation (2) for the coefficient matrix.
The main idea of their optimization algorithm is based on the
use of a surrogate function that majorizes the data fidelity term
‖X − DA‖2F in problem (4). For instance, when updating
the dictionary D, they replace the problem of minimizing
Φ(Ak,D) with respects to D by the following surrogate
problem :

minD
1
2‖X−DAk‖2F + Π(D) + CD‖D−Dk−1‖2F
− ‖DAk −Dk−1Ak‖2F

3

where CD > ‖(Ak)>Ak‖2 is a constant that ensures that the
majorization holds. Yaghoobi et al. solve this problem through
some Landweber iterations which first consist in updating D
according to a gradient descent step and then in projecting this
novel update on the convex set imposed by the constraints.
This surrogate approach helps them in dealing with several
types of constraints over the dictionary.

Still in this framework of alternating optimization on A and
D, several interesting research outcomes have also recently
been introduced by the machine learning community [16],
[17]. For instance, Jenatton et al. have investigated methods
that are able to exploit relationship between the dictionary
elements through the definition of appropriate regularizers
ΩA(A) [13]. They proposed algorithms that are able to learn
some structures on the dictionary elements [14].

The K-SVD of Aharon et al. [1] presents a different
perspective on the dictionary learning problem. Indeed, their
dictionary update step also involves some updates of the
approximation coefficients. This update is performed through
a SVD decomposition on a representation error matrix of
the set of signal X. The resulting decomposition redefines
a novel dictionary element and the approximation coefficient
related to an atom. This SVD decomposition is performed M
times (M being the dictionary size) for each dictionary update
in the alternating optimization algorithm (1). A recent work
of Dai et al. [9] extends the K-SVD algorithm by allowing,
in the dictionary update step, the simultaneous optimization
of several dictionary elements and the related approximation
coefficients. Owing to this possibility of optimizing several
atoms at a time, the running efficiency of their algorithm
is better than the one of K-SVD although still worse than
the one of MOD. It is also interesting to mention that two
works have lately investigated the problem of online dictionary
learning [21], [17]. At the contrary of the batch approaches
presented above, in the online framework, it is supposed that
signal examples {xi} are available on the fly. Skretting et al.
[21] proposes an extension of the method of optimal direction
based on recursive least-squares for dealing with this online
framework while Mairal et al. [17] introduce a stochastic
approximation algorithm that is able to take into account
constraints on A and D.

While most of the above-described works solve the dictio-
nary learning problem by means of alternating optimization
or block-coordinatewise descent, we take another route by
investigating an optimization method which addresses directly
the non-convex problem (4). The algorithm we advocate is
based on a proximal gradient descent that, at each iteration,
updates both the dictionary D and the coefficient matrix A.
While several studies concern the use of proximal methods
in the convex case (see for instance [6], [7] and references
therein), few works have addressed their applications in the
non-convex case. In particular, we can mention the seminal
works of Attouch et al. [2] and Sra [22] which both propose
a proximal framework for solving non-convex problems. In
this work, we will consider the framework introduced in
[22] since it is especially tailored for non-convex problems
with composite objective functions, one of which is smooth.
However, its application to dictionary learning poses some

issues regarding the choice of the stepsize. We propose several
ways of selecting this stepsize based on local estimation of the
objective function curvature. A backtracking of the stepsize
has also been introduced and convergence of the sequence of
objective values of (4) is discussed. From a practical point of
view, we show that this direct optimization approach is far
more efficient than alternating optimization methods since it
avoids unnecessary and costly updates at the early stage of the
learning process.

III. NON-CONVEX PROXIMAL SPLITTING FOR DICTIONARY
LEARNING

In this section, we first introduce the optimization frame-
work we will consider. We then discuss how it can be applied
to the dictionary learning problem (4). Technical aspects
related to the choice of the stepsizes for the proximal gradient
descent are also examined.

A. Non-convex proximal splitting algorithm

One of the main reasons for solving the dictionary learning
problem (4) using an alternating optimization algorithm is
that the global problem is not convex with respects to the
optimization variables whereas each alternating problem is.
Hence, it seems more beneficial to take into account this
property. We show in the sequel that direct optimization is
equally simple to implement and leads to a faster algorithm.

Our direct optimization algorithm is based on the framework
introduced by Sra [22] which aim is to solve problems of the
form

min
x∈Rd

f(x) + g(x) (6)

where f(·) is some non-convex function of x which has
Lipschitz gradient and g(x) a lower semi-continuous, possibly
non-smooth, convex function of the form ψ(x) + δ(x|X),
where δ(x|X) is the indicator function of a compact subset of
Rd denoted X :

δ(x|X) =

{
0 if x ∈ X
+∞ otherwise

The fact that the optimization variable x needs to lie in a
compact set is of primary importance for the convergence
analysis [22]. For the non-smooth function g, we define as
its proximity operator proxηg , parametrized by η > 0, the
mapping [7]

proxηg(y) : y 7→ arg min
x

1

2η
‖x− y‖2 + g(x)

The algorithm proposed by Sra for solving problem given
in Equation (6) is based on the following iterative scheme :

xk+1 = proxηkg(x
k − ηk∇f(xk) + ηkζ(xk)) (7)

where ζ(xk) is some perturbations that may occur on the
gradient computations and the stepsize ηk has to satisfy the
conditions :

0 < c ≤ ηk ≤ min(1, 2/L− c) with, 0 < c <
1

L
(8)

4

L being the Lipschitz constant of the function ∇f . Interest-
ingly, the following theorem proves convergence of the simple
iterative scheme (7) under some mild conditions.

Theorem 1: ([22]) Given a function f gradient Lipschitz on
some compact subset X of Rd, and f bounded from below,
given g lower semi-continuous and convex on X . Supposing
that the following condition on the perturbations holds, given
a fixed η̄

∀η ≤ η̄, η‖ζ(x)‖ ≤ ε̄, for some ε̄ ≥ 0,∀x ∈ X , (9)

then, the sequence {xk} generated by iterates (7) admits a
limit point x? and there exists a constant K > 0 such that

‖x? − proxg(x
? −∇f(x?))‖ ≤ Kε(x?) (10)

with ε(x?) being the level of perturbation at x?. �
Note that the condition on the perturbation given in Equation

(9) can be understood as an uniform bound on the perturba-
tion’s norm at any point x. It tells us that in some ways the
perturbation should not be too large. Instead, Equation 10 can
be interpreted as a measure of quality of the limit point with
respects to a stationary point. Indeed, from simple algebras [6,
Prop 3.1], a stationary point of the problem given in Equation
6 can be proven to satisfy the fixed-point condition :

x∗ = proxηg(x
∗ − η∇f(x∗)), for η > 0

and left-hand side of Equation 10 is obtained by choosing
η = 1 in the above equation. Hence, the theorem actually
gives us the guarantee that a sequence {xk}k generated by
the numerical scheme (7) with some perturbations on the
gradient computations still converges towards a limit point
which approximately satisfies the stationary condition defined
by Equation (10). It is worth mentioning that if the number of
perturbed gradient computations is finite or the perturbation
norms converge towards 0, then the sequence’s limit point is
an exact stationary point.

As shown in the sequel, in practice for the dictionary
learning problem, we will be able to compute the exact
gradient of the problem. However, the perturbations will be
in play essentially when bridging the gap between direct and
alternating optimization of the dictionary learning problem.

B. Application to dictionary learning

In order to apply the above-described framework to a
dictionary learning problem, Problem (4) must consider some
specific constraints, in particular, the fact that the variables
to be optimized must leave in some compact sets. Hence, we
consider Problem (4) with the following regularizers

ΩA(A) = λA‖A‖1 + δ(A|A)

and
ΩD(D) = Π(D) + δ(D|D)

where δ(A|A) and δ(D|D) are respectively the indicator
functions for the set A and D in which A ∈ RM×L and
D ∈ RN×M live. Note that for the dictionary element learning,
D can be chosen to be RN×M since Π(D) imposes the
dictionary atoms to be in the unit-norm ball which is a compact

set. For the coefficient matrix elements, we choose the set A
to be of the form

A = {ai,j ∈ R : |ai,j | ≤ Ba,∀i, j}

which is naturally compact. In practice, we set Ba to be very
large so that this indicator δ(A|A) has no influence on the
problem solution.

Now that our dictionary learning problem fits into the non-
convex proximal splitting framework of Sra, we consider as
the optimization variables all elements of D and A and define

f(D,A) =
1

2
‖X−DA‖2F

and g(D,A) = Π(D) + λA‖A‖1 + δ(A|A). According to
these definitions, it is easy to show that the gradient of f with
respects to D and A writes :

∇Df = −(X−DA)A> and ∇Af = −D>(X−DA)
(11)

and the full gradient of f is (with some slight abuse of
notations) :

∇D,Af =

(
∇Df
∇Af

)
The non-convex proximal splitting iterations given in Equation
(7) become :(

Dk+1

Ak+1

)
= proxηkg

((
Dk

Ak

)
− ηk∇D,Af

)
Now, since g(D,A) is separable in its parameters, these
iterations can be splitted in two parts. The iteration on D is

Dk+1 = PΠ(Dk + ηk(X−DkAk)(Ak))>) (12)

where PΠ defines the following projection on the convex set
defined by Π

PΠ(D) = {di}Mi=1 =

{
di if ‖di‖2 < 1
di

‖di‖2 otherwise (13)

and the iteration on A results to be

Ak+1 = proxηkλA‖A‖1+δ(A|A)(A
k + ηk(Dk)>(X−DkAk))

(14)
which boils down to

Ak+1 = SBa

ηkλA

(
Ak + ηk(Dk)>(X−DkAk)

)
(15)

with SBλ being the clipped soft-thresholding operator

SBλ (A) =

B if (ai,j − λ) ≥ B
−B if (ai,j + λ) ≤ −B

ai,j − λsign(ai,j) if λ < |ai,j |
0 otherwise

(16)

with B > λ.
These iterations on D and A lead to Algorithm 2. As stated

by the above theorem, this algorithm converges as soon as f is
gradient Lipschitz on a compact subset of RN×M+M×L. Note
that since we are able to compute the exact gradient of f ,
no perturbations occur. Hence, the proximal iterates converge
to an exact stationary point of the dictionary learning problem.

5

Algorithm 2 : Direct optimization for dictionary learning
1: set k=1, initialize A1, D1

2: choose ηk that satisfies Equation (8)
3: repeat
4: Dk+ 1

2 = Dk + ηk(X−DkAk)(Ak))>

5: Dk+1 = PΠ(Dk+ 1
2)

6: Ak+ 1
2 = Ak + ηk(Dk)>(X−DkAk)

7: Ak+1 = SBa

ηkλA

(
Ak+ 1

2

)
8: k ← k + 1
9: until stopping criterion is met

The remainder of the section now discusses on the gradient
Lipschitz property of f and how this constant L can be
estimated.

C. The Lipschitz constant

The Lipschitz constant of the function ∇f plays an im-
portant role in the algorithm since its existence guarantees
convergence of Algorithm 2 and its knowledge helps in
choosing a proper stepsize for the proximal gradient descent
(see conditions (8)). Its existence is proven from the following
proposition.

Proposition 1: For the twice differentiable order 4 loss
f(·, ·) whose entries belong to a compact subset X of
RN×M+M×L, there always exists a constant L so that the
Hessian of f satisfies the condition

‖∇2f‖2 ≤ L

and thus f is Lipschitz gradient of X .
Proof: After some algebras given in the appendix, one can

show that each entry of the Hessian of f(·, ·) is a continuous
function of the entries of A and D. Since these entries live in
a compact subset of R, the Frobenius norm of the Hessian is
thus bounded since it is a continuous function of these entries.
Thus, there exists L so that

‖∇2f‖2 ≤ ‖∇2f‖F ≤ L

Hence, the largest eigenvalue of the Hessian is bounded for
any D and A and thus the function f is gradient Lipschitz [4,
p. 48 and p. 54 1.2.5].

The above proposition does not give us any hint on the value
of L. Hence, we have left few options for retrieving L, since
computing the largest eigenvalue is rapidly intractable as the
Hessian is a matrix of M2(L+N)2 entries.

D. Local estimation of the Lipschitz constant

There exists several situations where even if the Lipschitz
constant of the gradient is known, it may be better to consider
local estimation of that constant.

Indeed, this Lipschitz constant usually defines the stepsize
of a (proximal) gradient descent algorithm and that constant
is related to the maximal curvature of the objective function.
Hence, if the function, at some point, is rather steep, the global
constant L will be large imposing the use of small stepsize
updates, even in regions where the function is flat. In such a

situation, it is easily understandable that adapting the stepsize
to the local function curvature may help in achieving faster
convergence.

In this paragraph, we will devise on two ways for estimating
the local Lipschitz constant (and thus a proper stepsize).
In addition, because, the resulting stepsize may not satisfy
conditions (8), we next introduce and discuss a modified non-
convex proximal algorithm, with backtracking of the stepsize.

One simple local estimate of the Lispchitz constant can be
straightforwardly derived from its definition. At iteration k,
given Ak, Ak−1, Dk, Dk−1, we define the constant Lk as

Lk =
‖∇f(Ak,Dk)−∇f(Ak−1,Dk−1)‖F√
‖Ak −Ak−1‖2F + ‖Dk −Dk−1‖2F

(17)

Another estimate of the Lipschitz constant can be obtained
from the eigenvalues of an approximation of the local Hessian.
As we have already stated, computing the largest eigenvalue
of the Hessian is intractable, however, it is possible to estimate
it, in a rather cheap way.

Indeed, ignoring the off-diagonal block terms B and B>
in the Hessian’s definition (see Equation 28) leaves us with a
nice block-diagonal matrix which components are either AA>

or D>D. Consequently, we can at iteration k estimate the
Lipschitz constant as

L̃k = max
(
‖Ak(Ak)>‖2, ‖(Dk)>Dk‖2

)
(18)

which results in the largest eigenvalue between those of AA>

and D>D.
Another simple estimate of the Lipschitz constant at an

iteration k is to use the estimation at previous iteration. This
has the advantage of having an estimation at zero cost and it
may be accurate enough if the curvature of the function f is
almost constant along some iterations.

E. Non-convex proximal splitting and backtracking

As we have stated, the above-given Lipschitz constants are
estimations that may be rough and thus they may not be
compliant to the stepsize conditions of the algorithm given
in Equation (8).

Consequently, we propose at each iteration to check whether
the estimation satisfies a condition, related to the descent
lemma [4] and update the current estimation of L if necessary.
That lemma states that :

Proposition 2: For a continuously differentiable function
h : Rn → R with gradient Lipschitz constant L and for any
L′ ≥ L, the following equation holds

h(x) ≤ h(y) + 〈x− y,∇h(y)〉+
L′

2
‖x− y‖2 ∀x,y ∈ Rn

For our dictionary learning problem and the function f(·, ·),
this descent condition at iteration k, can be translated as

f(D,A) ≤ f(Dk,Ak) + trace
(
(A−Ak)>∇Af

)
+ trace

(
(D−Dk)>∇Df

)
+ L′

2 ‖A−Ak‖2F + L′

2 ‖D−Dk‖2F
(19)

Again this inequality has been obtained owing to the separabil-
ity of the trace operator and the Frobenius norm with respect to

6

D and A. For backtracking the value of the Lipschitz constant
L, and consequently for choosing a correct stepsize, we define
a quadratic approximation of f + g at Dk and Ak as

Qη(D,A) = f(Dk,Ak) + g(D,A)
+ trace

(
(A−Ak)>∇Af

)
+ trace

(
(D−Dk)>∇Df

)
+ 1

2η‖A−Ak‖2F + 1
2η‖D−Dk‖2F

which is the sum of g(D,A) and the right-hand side of
Equation (19) with L′ = 1

η . Our choice of the stepsize η is
then the largest one for which the following condition holds :

f(Dk+1,Ak+1)+g(Dk+1,Ak+1) ≤ Qη(Dk+1,Ak+1) (20)

It should be noted that this backtracking strategy involves a
quadratic approximation of the function to be minimized and
this approximation needs an exact first-order approximation.
Hence, this strategy is possible only if the gradient can be
computed exactly, which is the case for our dictionary learning
problem.

From simple algebras and owing to the separability of
g(D,A), we can show that Dk+1 and Ak+1 as defined
in Equations (12) and (14) are actually the minimizers of
Qηk(D,A). This means that the qualification condition of a
stepsize ηk is based on whether the objective value at the novel
iterates Dk+1 and Ak+1 of our original optimization problem
is smaller than the minimum objective value of the quadratic
approximation Qηk(D,A). This kind of backtracking strategy
is exactly the one used by Beck et al. [3] for minimizing
the sum of two convex functions. The resulting numerical
scheme with backtracking step is given in Algorithm 3 and the
following proposition formalizes its convergence properties.

Proposition 3: Suppose that at each iteration k, the stepsize
ηk is initialized at 1

L̄k
and then backtracked until Equation

(20) holds. Define Dk+1 and Ak+1 as in Equations (12) and
(14) then the sequence {f(Dk,Ak) + g(Dk,Ak)}k is strictly
decreasing and it converges towards a limit point.

Proof: At first, we check that at each iteration the stepsize
ηk is lower bounded by a constant. This can be easily proven
since according to our algorithm, at each iteration the chosen
ηk = 1

βhi L̄k
is so that 1

βL ≤ ηk, (L being the Lipschitz
constant of f) and thus ηk is lower bounded. For showing
this, we first note that condition (20) is satisfied for any
ηk ≤ 1

L , L being the gradient Lipschitz constant of f , owing
to the descent lemma. Suppose now that the selected stepsize
ηk = 1

βhi L̄
is so that ηk ≤ 1

βL , then since 1
βL ≤

1
L it is always

possible to choose a smaller h′i so that

1

βL
≤ 1

βh
′
iL̄
≤ 1

L

with 1

βh′
i L̄

satisfying Equation (20). Defining the stepsize as

this value 1

βh′
i L̄

, we can conclude that the stepsize is lower
bounded since the Lipschitz constant L is finite. Hence, the
following inequalities hold for the stepsize ηk at any iteration :

1

βL
≤ ηk ≤

1

L̄

Algorithm 3 : Direct optimization with backtracking for
dictionary learning

1: set k=1, initialize A1, D1

2: choose β > 1
3: repeat
4: L̄k = estimation of Lk using either Equation (17) or

(18) or a L̄k−k′ , k′ > 0
5: hi = 0
6: repeat
7: ηk = 1

βhi L̄k

8: Dk+ 1
2 = Dk + ηk(X−DkAk)(Ak))>

9: Dk+1 = PΠ(Dk+ 1
2)

10: Ak+ 1
2 = Ak + ηk(Dk)>(X−DkAk)

11: Ak+1 = SBa

ηkλA

(
Ak+ 1

2

)
12: hi ← hi + 1
13: until (Ak+1,Dk+1) satisfies Equation (20) for ηk
14: k ← k + 1
15: until stopping criterion is met

Now, we show that the sequence of the objective value
f(Dk,Ak) + g(Dk,Ak) is strictly decreasing. This prop-
erty simply comes from Equation (20). Indeed, for a couple
{Dk+1,Ak+1} and ηk that satisfy Equation 20, we have

Qηk(Dk+1,Ak+1) < Qηk(Dk,Ak) = f(Dk,Ak)+g(Dk,Ak)

as Dk+1 and Ak+1 minimize Qηk(D,A) which is a strictly
convex function, ηk being non-zero and finite. Thus, we
naturally have

f(Dk+1,Ak+1)+g(Dk+1,Ak+1) < f(Dk,Ak)+g(Dk,Ak)

As the sequence {f(Dk,Ak)+g(Dk,Ak)} is lower bounded
and strictly decreasing, it is thus convergent.
Remark that by allowing backtracking of the stepsize, we have
lost some properties of the original Sra’s algorithm since the
convergence of the algorithm is now pertaining to the objective
value instead of the minimizers Dk and Ak.

F. Coordinatewise stepsize adaptation

The stepsize ηk we choose in Algorithm 3 is the same for
the proximal gradient descent step in D and A. However,
it is unlikely that this stepsize is adapted for both coordinate
descent. Hence, in order to further speed-up convergence, since
this stepsize is conservative, it may be useful to consider a
proper stepsize for each coordinate descent and thus we should
allow larger stepsize for the smoother coordinate.

To this end, in Algorithm 3 we propose to consider L̄k,D =
‖Ak(Ak)>‖2 and L̄k,A = ‖(Dk)>Dk‖2 instead of L̄k and
then define the stepsizes accordingly as

ηk,D =
1

βhiL̄k,D
and ηk,A =

1

βhiL̄k,A
(21)

which are respectively used in the dictionary and coefficient
matrix update. Note that as the stepsizes are coordinate-
dependent, the backtracking condition should now involve

7

Algorithm 4 : Alternating optimization for dictionary learning

1: set k = 1, initialize A1, D1

2: repeat
3: compute Lk,D
4: choose ηk ≤ 1

Lk,D

5: D1 = Dk

6: set n = 1
7: repeat
8: Dn+1 = PΠ

(
Dn + ηk(X−DnA

k)(Ak))>
)

9: n← n+ 1
10: until stopping criterion is met
11: Dk+1 = Dn

12: compute Lk,A
13: choose ηk ≤ 1

Lk,A

14: A1 = Ak

15: n = 1
16: repeat
17: An+1 = S∞ηkλA

(An + ηk(Dk+1)>(X−Dk+1An))
18: n← n+ 1
19: until stopping criterion is met
20: Ak+1 = An

21: k ← k + 1
22: until stopping criterion is met

ηk,D and ηk,A. In this case, the quadratic approximation of
f + g becomes

QηD,ηA(D,A) = f(Dk,Ak) + g(D,A)
+ trace

(
(A−Ak)>∇Af

)
+ trace

(
(D−Dk)>∇Df

)
+ 1

2ηA
‖A−Ak‖2F + 1

2ηD
‖D−Dk‖2F

and the backtracking condition is the same as in Equation
(20) with QηD,ηA replacing Qη . Note that the above proof of
convergence can be straightforwardly extended to handle this
coordinatewise stepsize situation.

IV. DISCUSSIONS

A. Relations with alternating optimization

Now that we have presented the direct optimization ap-
proach for dictionary learning, we discuss its relation with the
approach of Yaghoobi et al. [25] that is based on alternating
minimization over D and A as depicted in Algorithm 4. We
will make this relation clear by stating that the alternating min-
imization algorithm is actually a direct optimization approach
for which gradient computations are corrupted.

From Algorithm 4, we can see that the main difference
between alternating and direct optimization is that the former
considers several proximal updates for D and A at each main
iteration while direct optimization only uses a single update.
It is intuitive that a full optimization over A and D may be
useless at the early stage of the dictionary learning problem.
This point suggests that direct optimization should be far more
efficient than alternating optimization.

Let us now exhibit a more formal relation between these
two approaches. In the sequel, we focus only on the updates

of D. In alternating optimization, several updates of D are
performed during each main iteration. These updates can be
related to those of the direct approach in which the gradients
on A are perturbed so that Ak remains a fixed point. More
formally, consider the direct approach updates(

Dk+1

Ak+1

)
= proxηkg

((
Dk

Ak

)
− ηk

(
∇Df

∇Af + ζA

))
(22)

where ζA is the perturbation. If this matrix perturbation ζA is
so that the iterates lead to

Ak = proxλAηkΩA
(Ak − ηk∇Af − ηkζA) (23)

then these direct optimization updates (22) is exactly the D
updates of the alternating approach. In order to satisfy this
fixed-point equation (23), we can show, from the optimality
condition of a proximity operator, that the perturbation is so
that there exists a vector gA ∈ ∂ΩA that satisfies the equation

−ζA = ∇Af(Dk,Ak) + λAgA

with ∂ΩA being the subdifferential of ΩA.
By following the same reasoning for the updates of A, we

can conclude that alternating optimization of the dictionary
learning problem is equivalent to direct optimization with
perturbed gradients.

Another insight into the relation between alternating opti-
mization and direct optimization can be given. Indeed, one can
notice that if only a single update of Dn or An is allowed
for each alternating optimization step in Algorithm 4 then
algorithms 3 and 4 becomes very similar. Hence, our direct
optimization approach is strongly related to a special case of
an alternating optimization strategy in which early stopping is
allowed. The point that differs in the two algorithms occurs
in the gradient step of A which is computed at Dk for
our approach and at Dk+1 for the alternating optimization
approach. While one may argue that using Dk+1 should
accelerate convergence, the update based on Dk is derived
from the exact gradient of the non-convex cost function
f(·, ·) at {Dk,Ak}. This strong connection with alternating
optimization also suggests that the stepsizes based on Lk,D
and Lk,A as given in Equation (21) are accurate enough so
that few backtracking steps would be needed in Algorithm
3. We base this hypothesis on the fact that the alternating
optimization uses similar stepsizes and achieves monotone
descent.

According to this insight, we have also experimented with
a direct optimization with no backtracking of the stepsizes.
We have shown that such approach is able to achieve the
same recovery rate as with backtracking while being more
efficient. Proof of convergence of such approach has not been
derived yet and is left for future works but we believe that
this nice behavior is due to its resemblance with the alternating
optimization approach with a single update. Indeed, if Dk and
Dk+1 are close enough, then the gradient and the stepsize in
A of our direct approach is similar to the one of alternating
approach and such a step induces descent of the objective
value.

8

B. Generalization of the numerical scheme

The algorithm we propose for solving dictionary learning
problem can be extended to a more general setting. Suppose
that we want to solve the following optimization problem

min
{xi∈Rdi}

f(x1, · · · ,xm) +

m∑
i=1

Ωi(xi)︸ ︷︷ ︸
J(x1,··· ,xm)

(24)

where f is a smooth non-convex function from R
∑

i di 7→ R
with gradient Lipschitz of constant L and so that inf f > −∞
and Ωi(xi) a lower semi-continuous convex function that acts
as a regularizer on the component xi. Ωi(xi) is supposed to
be of the form Ωi(xi) = Ω′i(xi) + δ(xi|Xi) where Xi is a
compact subset of Rdi . When J(x1, · · · ,xm) has a special
structure (for instance, J is convex in each of its coordinate as
in our dictionary learning problem), block-coordinate descent
(BCD) algorithms can be considered especially when non-
smooth regularizers are in play [24]. For such BCD algorithms,
one usually fully optimizes the problem with respects to one
coordinate xi while keeping the others fixed and then follows
the same step for other coordinates.

For our direct approach, we can consider the following
iterates for any block-coordinate i

xk+1
i = proxνkΩi

(xki − νk∇xi
f(xk1 , · · · ,xki , · · · ,xkm)) (25)

which update each component xi, i ∈ 1, · · · ,m at iteration k
with a proximal gradient step. The stepsize νk should satisfy
conditions given in Equation (8). For simplicity, we have
supposed here that the gradients can be computed exactly.
This approach that we denote as a one-step block-coordinate
proximal gradient descent provides a solution of problem (24)
in the sense that the iterates defined by Equation (25) converge
toward an exact stationary point of (24). This last proposition
can be easily proved by following the same lines as for the
dictionary learning problem and by invoking Theorem 1.

This algorithm differs from those proposed in the literature
[24] by the fact that only a single proximal step is performed
along one component instead of a full optimization. While
we have not applied this algorithm to other problems than
dictionary learning problem, we conjecture that the one-step
block-coordinate proximal gradient descent is significantly
more efficient than classical block coordinate descent because
it avoids unnecessary updates while being far from the optimal
solution.

V. SIMULATION STUDY

In this section, we describe the study we have carried out
for showing the benefits of the algorithm we propose for
dictionary learning. Experiments on simulated data and on an
audio dataset are reported. They have been run on a Linux
machine with 24Gb of memory and a 8-core Intel Xeon E5530
processor clocked at 2.4GHz. All the codes have been written
in Matlab.

A. Experimental set-up

Evaluating performance of dictionary learning algorithms is
rather a difficult task unless the true dictionary is known. This
is why for this experiment we focus on synthetic signals built
from a known dictionary.

We have built these signals as follows. Let us define D? the
true dictionary composed of M elements. Signal {xi}Li=1 are
obtained as sparse linear combinations of dictionary elements
according to the model

X = D?A? + E

where E and A? are respectively a noise matrix and a sparse
coefficient matrix. Components of E have being drawn i.i.d
from a Gaussian distribution which variance is adjusted so that
each signal has a pre-defined signal-to-noise ratio (here 30).
For each signal, the T atoms which get non-zero weights are
randomly chosen and their absolute weight values are drawn
according to a uniform distribution in [0.2, 1]. The entries of
the dictionary D? is obtained from i.i.d random sampling of a
Gaussian distribution followed by a unit-norm normalization
of each column.

We have solved the dictionary learning problem (4) with
the matrix X as input, by means of our direct optimization
approach, the alternating method (MM) of Yaghoobi et al.
[25] and the MOD approach [11]. For constraints and reg-
ularizations, we have used an `1 norm for the coefficient
matrix. For the dictionary elements, we used the unit-norm
ball constraint for our approach and MM and the unit-norm
sphere constraint for MOD. We have evaluated the quality of
the learned dictionary atoms compared to the true ones and
the time needed for the two algorithms for solving problem
(4). For all algorithms, the stopping criterion is based on the
relative variation of the objective value which should be lower
than 10−5. For the inner problems of the alternating approach
and MOD, the same stopping criterion has been used with
a tolerance of 10−6. The maximal number of iterations for
the direct approach has been set to 30000 while the ones
of alternating optimization and MOD are fixed at 10000.
Performance results have been averaged over 10 trials and
all algorithms have been initialized from the same matrices
A1 and D1. Unless specified, the gradient Lipschitz constant
has been estimated according to Equation (21). We have
reported on three variants of our approach depending on
whether backtracking has been performed and on how often
the gradient Lipschitz constant has been estimated. We have
denoted them as
• Back : the approach where backtracking is performed

and stepsizes have been computed coordinatewise every
2 iterations.

• Back FewEig : the approach where backtracking is
performed and the stepsizes have been computed still
coordinatewise but every 10 iterations.

• NoBack : the approach where backtracking is not per-
formed and stepsizes have been computed coordinatewise
again every 2 iterations.

These three variants have been denoted in the figure as Dir B,
Dir FB and Dir NoB. We have also tried an approach which

9

performs backtracking and use a global stepsize defined as
min(ηk,D, ηk,A) obtained from the estimation of the Lipschitz
constant through Equation (18). Results of this variant has
not been reported since it was a bit less efficient than the
alternating approach of Yaghoobi et al. [25] which also adapts
the stepsize to each alternating step.

In these experiments, we have used as a measure of perfor-
mance the recovery rate of the true dictionary elements. This
rate has been computed as the number of atoms in D? that
also appear in the estimated dictionary. We say that an atom
D?
·,j of the true dictionary is present in an estimated dictionary

D̂ if
min(1− |D̂>D?

·,j |) < 0.01

where the min applies to coordinates of the resulting vector.

B. Comparing computational efficiency and dictionary recov-
ery

Computational efficiency of the direct approaches, the alter-
nating method and MOD have been reported in Figure 1 and
2 for two different settings of the dictionary learning problem
and for increasing number T of dictionary atoms involved in
the process of each signal.

Results for the first setting involving 1300 signals in di-
mension 50 are reported in in Figure 1. We notice that
performances on recovering the exact dictionary are rather
similar for all approaches, although a very slight advantage
goes to the MOD approach when few atoms compose the
signal and direct methods are slightly better in the phase
transition. Regarding objective values after convergence of
all algorithms, we can note that they all converge towards
a local minimal of the learning problem with very similar
objective values. Note that NoBack performs as well as the
other methods suggesting that the estimation of the gradient
Lipschitz constant using Equation (21) is rather accurate and
robust. This can be justified by the resemblance of the NoBack
approach to an alternating optimization method using early
stopping, as we have explained above.

The most important benefit of the direct approaches are
related to the gain in computational efficiency compared to
the alternating method and MOD as reported in right panel
of Figure 1. For the genuine approach Back the gain with
respect to alternating method varies between from 1.5 to 2.5
in regions where recovery rate is about 1. As the recovery rate
decreases, the running time of Back becomes slightly worse
than the one of MM. Compared to MOD, Back is about 2
times faster. Computing the stepsize less frequently as in Back
FewEig leads to slightly better computational efficiency than
Back, especially in regions with few atoms composing the
signals. When backtracking is not performed (NoBack), the
direct approach is always more efficient than MOD and MM
and the gain in running time is always more important than
those of other direct approaches (ranging from 3 to 8).

Interestingly, according to our results, MOD is more effi-
cient than MM when T is smaller than 8. This result is in
accordance with the one reported by Yaghoobi et al. [25].
However, as the number T of atoms in the signal increases,
MOD becomes far less efficient than the majorization method.

Figure 2 presents the same results for a larger-scale problem
(with 5000 signals and 200 dictionary elements to learn).
Recovery rates and objective values follow the same trends as
for the smaller-scale settings. Gain in computational efficiency
are still achieved by our direct approach in this setting. This
gain is about a factor of 2 in regions where T is small. Again,
when no algorithms are able to retrieve the correct dictionary
atoms, as the number of atoms composing the signals are too
large, our direct approaches, included NoBack, have a slightly
worse running time than MM. Interestingly, NoBack is always
more efficient than the other two variants. This is natural since
backtracking can be expensive.

These two experiments suggest us that our direct approaches
are efficient and robust and they can provided similar recovery
rate of the dictionary atoms to those of the majorization
method or MOD while being more efficient, at least when
atoms can be recovered. In term of efficiency, NoBack is the
best performing algorithm while Back and Back FewEig are
just slightly worse when some true dictionary elements can
be retrieved. However, these two latter algorithms have the
advantage of being provided with some proofs of convergence.

C. Influence of the sparsity-inducing hyperparameter λA
It is well known that algorithms solving sparse approxima-

tion problems using `1 norm sparsity-inducing regularizer get
less efficient as the related hyperparameter decreases leading
thus to solutions that are not very sparse [12]. In this ex-
periment, we investigate the gain in efficiency brought by our
direct optimization approach as the hyperparameter λA related
to ΩA(A) =

∑
i,j |ai,j | varies. Note that we have increased

the maximal number of iterations of MM and MOD to 30000.
Figure 3 depicts the recovery rates, the objective values and
the computational efficiency of all algorithms with respects to
parameter λA. We can note that recovery rate is better when
solutions get denser and at some points (for λA = 0.02) the
majorization method sometimes fails to recover the correct
atoms while MOD never achieves in getting these dictionary
elements. As depicted by the objective value plots, For MOD,
this is essentially either to lack of convergence after the
30000 iterations or because the iterates are trapped in bad
local minima. For MM, as its objective values are rather
similar to those of our direct approaches, we think that these
failure are essentially due to lack of convergence after the
maximal number of iterations. For course, we could have made
MM properly converge by increasing this maximal number
of iterations, but we think that it is an interesting point to
highlight this slow convergence behaviour of MM. Gain in
computational efficiency brought by our direct optimization
with backtracking approach is about 1.5 in regions where
competing algorithms have reached proper convergence. We
can again highlight the practical benefit of not backtracking
the stepsize as the gain raises to about 3.

D. Comparing the Lipschitz constant estimations

Up to now, all the experiments have been carried by
estimating the stepsizes in Algorithm 3 through the spectral
norm given by Equation (21). We have made this choice

10

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
a

c
t

re
c
o

v
e

ry
 r

a
te

of atoms composing the signal

MM
MOD

Dir NoB

Dir FB
Dir B

0 5 10 15 20 25
10

2

10
3

10
4

of atoms composing the signal

O
b

je
c
ti
v
e

 v
a

lu
e

MM

MOD

Dir NoB

Dir FB

Dir B

0 5 10 15 20 25

10
1

10
2

10
3

of atoms composing the signal

R
u

n
n

in
g

 t
im

e
 (

s
)

MM

MOD

Dir NoB

Dir FB

Dir B

Fig. 1. (left) Recovery rate of different parametrizations of our direct approach and a baseline algorithm which is the alternating method of Yaghoobi
et al. (middle) Averaged objective values at convergence. (right) computational running time of our direct optimization approach compared to the baseline
algorithms. All performances and gains are evaluated with respects to the number of non-zero elements composing the signals. Other settings of the dictionary
learning problem are N = 50, L = 1300, M = 100, λA = 0.1 and ΩA(A) =

∑
i,j |ai,j |

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
a

c
t

re
c
o

v
e

ry
 r

a
te

of atoms composing the signal

MM
MOD

Dir NoB

Dir FB
Dir B

0 5 10 15 20 25 30 35 40
10

3

10
4

of atoms composing the signal

O
b

je
c
ti
v
e

 v
a

lu
e

MM

MOD

Dir NoB

Dir FB

Dir B

0 5 10 15 20 25 30 35 40

10
2

10
3

10
4

of atoms composing the signal

R
u

n
n

in
g

 t
im

e
 (

s
)

MM

MOD

Dir NoB

Dir FB

Dir B

Fig. 2. (left) Recovery rate of different parametrizations of our direct approach and a baseline algorithm which is the alternating method of Yaghoobi
et al. (middle) Averaged objective values at convergence. (right) computational running time of our direct optimization approach compared to the baseline
algorithms. All performances and gains are evaluated with respects to the number of non-zero elements composing the signals. Other settings of the dictionary
learning problem are N = 100, L = 5000, M = 200, λA = 0.2 and ΩA(A) =

∑
i,j |ai,j |

0 0.05 0.1 0.15 0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
x
a
c
t
re

c
o
v
e
ry

 r
a
te

Regularization parameter λ

MM

MOD

Dir NoB

Dir FB

Dir B

0 0.05 0.1 0.15 0.2
10

2

10
3

Regularization parameter λ

O
b
je

c
ti
v
e
 v

a
lu

e

MM

MOD

Dir NoB

Dir FB

Dir B

0 0.05 0.1 0.15 0.2
10

1

10
2

10
3

Regularization parameter λ

R
u
n
n
in

g
 t
im

e
 (

s
)

MM
MOD

Dir NoB

Dir FB
Dir B

Fig. 3. (left) Comparing recovery rate of different parametrizations of our direct approach and a baseline algorithm which is the alternating method of
Yaghoobi et al. (right) Gain in computational time of our direct optimization approach compared to the baseline. All performances and gains are evaluated
with respects to the choice of the hyperparameter λA. Recovery Rate and Gain in computational time for varying values of hyperparameters λA and for 11
non-zero elements composing each signal. The other settings are the same of those used in Figure 1.

because these estimations empirically appeared to be more
robust than the estimations obtained using Equation (17).
Figure 4 gives an example, for T = 2, N = 50, M = 100
and L = 1300 of how the coordinate-wise stepsizes evolve
across iterations in both cases. For producing this figure, we
have used the same experimental set-up as above and both
algorithms have the same stopping criterion. We clearly note
that the stepsizes computed from the gradient definition clearly
tends to oscillate. At some point, due to too small stepsizes,
the algorithm meets its stopping criterion and finishes before
a proper convergence. For instance, for this figure, the learned
dictionary has not recovered any atom from the true dictionary.
Detailed performances have not been reported because the

gradient-based Lipschitz constant estimation performs very
poorly with, for instance, a recovery rate of less than 0.55
for T = 2, which drops at 0.4 for T = 6 and 0 for T = 10.

E. Application on Audio data

We have compared the efficiency of our direct approaches
and the alternating optimization approach of Yaghoobi et al.
[25] on a real signal processing application. The audio dataset
we use is the one considered by Yaghoobi et al. [25]. This
dataset is composed of an audio sample recorded from a BBC
radio session which plays classical music. From that audio
sample, 8192 pieces of signal have been extracted, each being

11

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8
Evolution of the stepsizes

0 100 200 300 400 500
0

1

2

3

4

Iterations

Gradient

Spectral

Gradient

Spectral

Fig. 4. Evolution of stepsizes along the iterations. (top) stepsize on the
dictionary update. (bottom) stepsize on the weight update. ”Gradient” denotes
the stepsize as computed by coordinatewise version of Equation (17) while
“Spectral” denotes the one obtained through Equation (21).

10
1

10
2

10
3

10
4

10
5

10
2

10
4

10
6

10
8

10
10

Time (s)

O
b
je

c
ti
v
e
 V

a
lu

e

MM

DirB 5

DirB 1

Fig. 5. Evolution of the objective value along time. (MM) majorization
method. (dir B) direct optimization with backtracking and evaluation of the
stepsize at each iteration (dirB 1) and every five iterations (dirB 5).

composed of 1024 time samples. Details about the dataset can
be found in [25].

Our objective is to learn 2048 dictionary atoms from this
set of signals and we have run the MM algorithm for 1000
iterations while allowing only 20 iterations for each inner
problems. Two variants of the direct optimization approach
have been compared : they respectively evaluate the stepsize
coordinatewise using Equations (21) at every single and every
five iterations. These variants have been run for 2000 and
3000 iterations. These maximal number of iterations have
been chosen in order to allow these approaches to reach
similar objective values than the MM approach. Note that
all algorithms have been initialized with the same Gaussian
random dictionary and λA has been set to 0.1. Figure 5 depicts
the evolution the objective values of all algorithms with respect
to the running time. We can see that our direct optimization

200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

11

Samples

A
to

m
s

200 400 600 800 1000
0

1

2

3

4

5

6

7

8

9

10

11

Samples

A
to

m
s

Fig. 6. Examples of learned atoms from the audio data. (left) alternating
optimization. (right) direct optimization with backtracking and evaluation of
the stepsizes at every iteration. The presented atoms are among those that are
the most frequently used by the sparse coding step.

approaches achieve faster convergence. Interestingly, these
methods yield to a rapid decrease of the objective value and
then reach a plateau. This means that the methods we advocate
is able to provide “reasonable” dictionary atoms rapidly. This
is an interesting feature if one want to solve a dictionary
learning problem on a budget of time. Figure 6 shows the
learned dictionary atoms for both the MM method and one of
our direct optimization method. We note that both algorithms
were able to retrieve dictionary atoms that oscillate at some
specific frequencies.

VI. CONCLUSION

Departing from the mainstream approach for solving dictio-
nary learning problems, we have proposed in this paper a more
direct approach based on the so-called one-step block coordi-
nate proximal gradient descent. This algorithm is tailored for
the resolution of an optimization problem involving a smooth
non-convex function and a sum of separable and convex
functions. The dictionary learning problem we address fits into
this framework and we show that this novel algorithm allows
direct resolution of the non-convex optimization problem.
The choice of the stepsize of the proximal gradient descent
is an issue that we have addressed by proposing a method
which first roughly estimates the stepsize and then adapts
it by backtracking. Simulation studies show that our novel
optimization method is more efficient than usual alternating
optimization methods.

VII. APPENDIX

A. Computing the components of the Hessian
For proving that the gradient of the cost function is Lips-

chitz, we need a closed-form expression of its components .
In the sequel, we derive that expression as well as those of
the Hessian since f is twice differentiable. We have :

f(D,A) =
1

2
‖X−DA‖2F =

1

2

∑
i,j

(
xj,i −

∑
k

dj,kak,i

)2

12

Hence, we can derive :

∂f

∂dm,n
= −

∑
i

an,ixm,i +
∑
k,i

dm,kak,ian,i

which gives for the second-order partial derivatives

∂2f

∂dm,n∂ds,t
=

{
0 if m 6= s∑

i at,ian,i otherwise (26)

and

∂2f

∂dm,n∂as,t
=

{
dm,san,t if n 6= s

−xm,t + dm,san,t +
∑
k dm,kak,t otherwise

In a similar way, we have

∂f

∂am,n
= −

∑
j

dj,mxj,n +
∑
k,j

dj,kak,ndj,m

∂2f

∂am,n∂as,t
=

{
0 if t 6= n∑

j dj,sdj,m otherwise (27)

and

∂2f

∂am,n∂ds,t
=

{
ds,mat,n if t 6= m

−xs,n + ds,mat,n +
∑
k ds,kak,n otherwise

According to these equations, we can note that the Hessian
of f has a specific structure. Indeed, if we suppose that the
variables are sorted as d1,1, · · · , d1,M , d2,1, · · · , dN,M and
then a1,1, · · · , aM,1, a1,2, · · · , aM,L, the Hessian is of the
form (

A B
B> D

)
(28)

where A and D are block-diagonal matrices where, according
to Equation (26), for A each block is AA> and for D is D>D
as given by Equation (27).

REFERENCES

[1] M. Aharon, E. Elad, and A. Bruckstein, “K-svd : and algorithm for
designing overcomplete dictionaries for sparse representations.” IEEE
Trans. on Signal Processing, vol. 54, no. 11, pp. 4311–4322, 2006.

[2] H. Attouch, J. Bolte, and B. F. Svaiter, “Convergence of descent methods
for semi-algebraic and tame problems: proximal algorithms, forward-
backward splitting, and regularized gaussseidel methods,” Mathematical
Programming, vol. 137, no. 1-2, pp. 91–129, 2013.

[3] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, pp. 183–202, 2009.

[4] D. Bertsekas, Nonlinear programming. Athena scientific, 1999.
[5] J. Chen and X. Huo, “Sparse representations for multiple measurements

vectors (mmv) in an overcomplete dictionary,” in Proc IEEE Int. Conf
Acoustics, Speech Signal Processing, vol. 4, 2005, pp. 257–260.

[6] P. Combettes and V. Wajs, “Signal recovery by proximal forward-
backward splitting,” Multiscale Modeling and Simulation, vol. 4, pp.
1168–1200, 2005.

[7] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in
signal processing,” in Fixed-Point Algorithms for Inverse Problems in
Science and Engineering, H. H. Bauschke, R. Burachik, P. L. Combettes,
V. Elser, D. R. Luke, and H. Wolkowicz, Eds. Springer-Verlag, 2010.

[8] S. Cotter, B. Rao, K. Engan, and K. Kreutz-Delgado, “Sparse solutions
to linear inverse problems with multiple measurement vectors,” IEEE
Transactions on Signal Processing, vol. 53, no. 7, pp. 2477–2488, 2005.

[9] W. Dai, T. Xu, and W. Wang, “Simultaneous codeword optimization
(simco) for dictionary update and learning,” IEEE Trans. on Signal
Processing, vol. 60, no. 12, pp. 6340–6353, 2012.

[10] M. Elad and M. Aharon, “Image denoising via sparse and redundant rep-
resentations over learned dictionaries,” IEEE Trans. Image Processing,
vol. 54, pp. 3736–3745, 2006.

[11] K. Engan, S. Aase, and J. Hakon-Husoy, “Method of optimal directions
for frame designs,” in Proc of the International Conference on Acoustics,
Speech and Signal Processing, 1999.

[12] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse
reconstruction: application to compressed sensing and other inverse
problems,” IEEE Journal of Selected Topics in Signal Processing:
Special Issue on Convex Optimization Methods for Signal Processing,
vol. 1, no. 4, pp. 586–598, 2007.

[13] R. Jenatton, J. Mairal, G. Obozinski, and F. Bach, “Proximal methods for
sparse hierarchical dictionary learning,” in Proceedings of International
Conference on Machine Learning, 2010.

[14] R. Jenatton, G. Obozinski, and F. Bach, “Structured sparse principal
component analysis,” in Proceedings of the International Conference on
Artificial Intelligence and Statistics, 2010.

[15] K. Kreutz-Delgado, J. Murray, B. Rao, K. Engan, T. Lee, and
T.Sejnowski, “Dictionary learning algorithms for sparse representation,”
Neural Computation, vol. 15, pp. 349–396, 2003.

[16] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding
algorithms,” in Advances in Neural Information Processing Systems,
2007.

[17] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” Journal of Machine Learning Research,
vol. 11, pp. 19–60, 2010.

[18] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, “Supervised
dictionary learning,” in Proceedings of Neural Information Processing
Systems, 2008.

[19] B. Olshausen and D. Field, “Sparse coding with an overcomplete basis
set: A strategy employed by v1?” Vision Research, vol. 37, pp. 3311–
3325, 1997.

[20] A. Rakotomamonjy, “Surveying and comparing simultaneous sparse
approximation (or group lasso) algorithms,” Signal Processing, vol. 91,
no. 7, pp. 1505–1526, 2011.

[21] K. Skretting and K. Engan, “Recursive least squares dictionary learning
algorithm,” IEEE Transactions on Signal Processing, vol. 58, no. 4, pp.
2121–2130, 2010.

[22] S. Sra, “nonconvex proximal splitting : batch and incremental algo-
rithms,” in Advances in Neural Information Processing Systems (NIPS),
2012.

[23] J. Tropp, “Algorithms for simultaneous sparse approximation. part II:
Convex relaxation,” Signal Processing, vol. 86, pp. 589–602, 2006.

[24] P. Tseng, “Convergence of block coordinate descent method for nondif-
ferentiable minimization,” Journal of Optimization Theory and Applica-
tion, vol. 109, pp. 475–494, 2001.

[25] M. Yaghoobi, T. Blumensath, and M. Davies, “Dictionary learning for
sparse approximations with the majorization method,” IEEE Transaction
on Signal Processing, vol. 57, no. 6, pp. 2178–2191, 2009.

[26] H. Zou, “The adaptive lasso and its oracle properties,” Journal of the
American Statistical Association, vol. 101, no. 476, pp. 1418–1429,
2006.

