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1. Introduction

Recently, various microstructur e-based models have been developed for simulatin g hardenin g response of metallic aggre- 
gates subjected to simple or complex strain paths. Yoon et al. (2005), Cheong et al. (2005), Vincze et al. (2005), Rauch et al.
(2007), Beyerlein and Tomé (2007), Shiekhelsou k et al. (2009), Proust et al. (2009), Kysar et al. (2010), Lee et al. (2010),
Rossiter et al. (2010), Hamelin et al. (2011), M’Guil et al. (2011), Rauch et al. (2011), Brown et al. (2012), and Segurado 
et al. (2012). The model proposed by Rauch et al. (2011), which was formulated for a continuous medium, follows the evo- 
lution of average dislocation populations divided in forward, latent and reversible. The motivatio n for the model is a key 
experimental observation, done in Al alloys and low carbon steels, of massive dislocatio n dissolution upon strain reloads,
independen tly of temperature and of the character of the dislocation structure formed during preload.

The purpose of this paper is to reformulate the model proposed by Rauch et al. (2011) (referred to as RGBV from now on),
within a crystallograph ic framework able to incorporate slip directionali ty at the grain level, texture effects, and an implicit 
way to account for strain path changes (as opposed to ‘telling’ the model when a path change occurs). The latter is an impor- 
tant feature, which should allow us to deal with multiple and arbitrary path changes.

The equations of the model are designed to capture the physical processes of dislocation accumulati on/annihilation while 
remaining as simple as possible and converging towards the ‘continuum’ equations of RGBV for the case of monotonic load- 
ing. We avoid introducing detailed dislocatio n–dislocation interactions which are common in some crystallogra phic dislo- 
cation models (i.e. Franciosi et al., 1980; Tabourot et al., 1997; Lopes et al., 2003; Kubin et al., 2008; Devincre and Kubin,
fax: +351 234 370 953.
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2010; Bacroix and Brenner, 2012 ) because the corresponding hardening paramete rs and their evolution with strain become 
difficult to adjust independen tly. For this reason we keep the number of empirica l paramete rs to a minimum while, at the 
same time, try to retain their connection with physical dislocation features. On the other hand, there are in the literature 
phenomeno logical attempts to mimic the material response under strain path changes (Barlat et al., 2011 ). The approach 
presented here represents a compromi se between simplicity and retaining the crystallogra phic basis of plastic deformation.

2. The RGBV model

It is useful, before presenting our crystallograph ic model, to summarize the main concepts and equations associate d with
the RGBV. The model assumes an effective critical shear s for activating dislocatio ns, which hardens as a function of the accu- 
mulated shear C in the grain, and is the same for every system of every grain. s and C are connected to the macroscopic flow
stress and the strain increment through the average Taylor factor M, as:
R ¼ M s
dC ¼ M de

ð1Þ
The multiplici ty and orientati on of crystallograph ic systems is not accounted for, and texture is accounted for through the 
Taylor factor, but is not explicitly included in the model. The threshold stress is assumed to depend on the average disloca- 
tion density (the same in every grain) through the usual Taylor law 
s ¼ s0 þ alb
ffiffiffiffi
q
p ð2Þ
The evolution of the dislocation density is given by the classic Kocks–Mecking law, with an athermal storage term and a
temperature dependent recovery term 
dq ¼ dC
bK
� fqdC ð3Þ
where K is the dislocatio n mean free path. When a path change takes place, the reverse movement of most of the disloca- 
tions is temporarily facilitated leading to enhanced recovery . The model captures such effect by ‘converti ng’ a fraction p of
the dislocations present into ‘reversible’ dislocations:
qfor ¼ ð1� pÞqfor;0

qrev ¼ pqfor;0

ð4Þ
where qfor;0 is the dislocatio n density before reverse reload. The evolution of the dislocation densities is different for forward 
and reverse populations and is given by 
dqfor ¼
1

bK
� fqfor

� �
dC

dqrev ¼ �
1

bK
qrev

qfor;0
dC

ð5Þ
The forward dislocation population evolves as before, with storage and recovery, but the reversible dislocations can only 
decrease. The other extreme case of strain path change is ‘orthogonal’ reloading, and ideally correspond s to the case when,
upon reload, the previously active systems become inactive, and previously non-active systems become active. In this case,
the ‘forward’ dislocations become instantaneo usly ‘latent’ upon reload, as follows:
qfor ¼ 0
qlat ¼ qfor;0

ð6Þ
Upon reload, the forward dislocations evolve as before, and the latent dislocatio ns only annihilate, as follows:
dqfor ¼
1

bK
� fqfor

� �
dC

dqlat ¼ �fqlatdC
ð7Þ
When the reload is neither exact reversal or ideally orthotrop ic, RGBV’s model uses a conversion between forward, revers- 
ible and latent dislocatio ns based on a ‘path change index’ initially proposed by Schmitt et al. (1994). The ‘path change index’
is defined as the projection of the reload strain tensor upon the preload tensor, and varies from 1 (no path change) to �1
(path reversal), passing through 0 (orthogonal path change). In the most general case the threshold stress depends on all 
the dislocation populations as 
s ¼ s0 þ alb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfor þ qrev þ Lqlat

p
ð8Þ
where L is a latent hardening paramete r, usually larger than one. Observe that the decision about converting dislocation pop- 
ulations is made using a criterion based on changes in the macroscopicall y imposed strain rate.
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Fig. 1. Schematic illustration defining direct and opposite systems s+ and s�.
3. Crystallograph ically based dislocation model

The crystallograph ic version of the RGBV model presented here relies on the same conceptu al idea that strain path
changes progressively ‘erase’ the previously stored dislocations , independen tly of the specific structure s that were formed 
previously. The crystallo graphic model defines similar parameters as the continuous model, but differs from the latter in that 
it follows forward and reversible dislocations in the individual slip systems of the grain. While the math is slightly more in- 
volved, the advantage is that texture and directionali ty effects are accounted for by accounting for grain orientati on, and 
reversible or latent dislocations are explicitly related to the shear activity in each slip system.

In order to consider reversible dislocation densities, we associate with each slip system two systems s+ and s� that have 
the same slip plane normal n, but opposite (arbitrarily defined) slip directions b and �b (see Fig. 1). In our model these con- 
jugate systems cannot be simultaneou sly active, and the assignment of s+ and s� is arbitrary, since the sense of shear will 
vary depending on the deformation mode imposed to the aggregate. We define the dislocation density on a system s as
the sum of a forward 1 density, comm on to s+ and s�, and a reversib le density specific to s+ and s�:
1 Wh
‘forwar
called ‘
qs ¼ qs
for þ qsþ

rev þ qs�
rev ð9Þ
The total dislocation density in a grain is given by the sum of forward and reversible on all systems 
q ¼
X

s

qs

q ¼ qfor þ qrev ¼
X

s

qs
for þ

X
s

qsþ
rev þ qs�

rev

� � ð10Þ
The CRSS of slip system s is related to dislocation density through the usual Taylor law 
ss ¼ s0 þ alb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qs þ L

X
s0–s

qs0
r

ð11Þ
where L is a latent hardening parameter. We would like to point out that Eq. (11) assumes that any dislocation s0 that is not 
on system s will interact with s independently of their relative configurations. This is clearly not correct for non-cubic mate- 
rials, and even for cubic structure s this is a rough approximation . Some authors (Peeters et al., 2000, 2001a,b; Kubin et al.,
2008) have explored more complex interactions of the form 
ss ¼ s0 þ lb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
assqs þ

X
s0–s

ass0qs0
r

ð12Þ
While certainly more accurate, Eq. (12) adds 6 parameters for FCC (Madec and Kubin, 2008 ), 5 parameters for BCC 
(Queyreau et al., 2009 ) and 15 parameters for HCP (Capolungo, 2011 ). Such number of parameters and their possible 
evolution with strain are difficult to assess independen tly and conspire against the simplicity of the model. In addition,
Eq. (11) assigns the same threshold stress for activation of s+ and s� dislocations. This amounts to disregarding internal back 
stresses in the grain which induce an apparent lowering of the CRSS when the sense of shear is reversed, and lead to a
ile the expression non-reversible dislocations would also be appropriate, in what follows we will refer to those dislocations ‘locked’ inside the grain as 
d’ dislocations, and use the subscript ‘for’ to designate them (not to be confused with ‘forest’ dislocations, which is a different concept). The dislocations 
reversible’ are those that can glide (and recombine) in the opposite direction following an inversion of the resolved shear that generated them.
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Bauschinger effect upon unloading. The Bauschinger effect takes place in a small strain interval (about 1–2%), is driven by 
internal stresses, and has associated a large elasto–plastic hardenin g rate. Our model does not attempt to capture the elas- 
to–plastic portion of the reload curve. Instead, it focuses on the reload response characterized by a large strain plateau with a
low or even zero hardening rate.

In what follows we define the mean free path for dislocations as 
1
K
¼

ffiffiffiffiqp
K
þ 1

D
ð13Þ
D is the grain size and K is the average number of immobile dislocatio ns that a mobile dislocatio n will cut through before 
itself becoming immobile. Observe that we use the total dislocatio n density in Eq. (13) because mobile dislocations will cut 
both, forward and reversible non-coplanar dislocations. We define the total shear increment in the grain as the sum over the 
shears contributed by every active system 
dC ¼
X

s

dcs�� �� ð14Þ
For forward dislocatio n densities, the evolution law is given by the classic Kocks–Mecking expression containing a crea- 
tion and an annihilat ion term. For reverse dislocation densities, the evolution law should account for the creation of poten- 
tially reversible dislocations in the active system and for the annihilat ion of reversible dislocations in the opposite system,
provided that the latter are present. Three different situation s are possible for the evolution of dislocations associated with 
system s:
Case1 : dcsþ > 0ð) dcs� ¼ 0Þ

dqs
for ¼ ð1� pÞ dc

sþ

bK
� fqs

fordC

dqsþ
rev ¼ p

dcsþ

bK
� fqsþ

revdC

dqs�
rev ¼ �

1
bK

qs�
rev

qs
0

dcsþ

ð15Þ
We use dC instead of dcsþ in the recombinati on term, because activity in systems other than s will induce ‘indirect recom- 
bination’ in s by an amount proportional to the density of s-dislocation s, and to the shear taking place on those other systems 
(Rauch et al., 2011 ). Observe that Eq. (15) partitions the dislocatio ns created into ‘forward’ and ‘reversible’, through the pro- 
portionality factor ‘p’. In the case of monotonic loading, forward and reversible add up to the total dislocatio n density and are 
indistinguishab le as far as hardening is concerned. During ‘forward’ loading dcsþ > 0 we allow for the simultaneou s creation 
in the grain of potentially reversible dislocatio ns qsþ

rev (which will be ‘used’ during ‘reverse’ loading dcs� > 0) and for the 
recombinati on of reversibl e dislocations qs�

rev (which may be left from previous activity dcs� > 0). It seems logical that the 
rate of recombination of reversible dislocations is assumed to be proportio nal to the shear dcsþ. The ‘utilization factor’
0 6 qs�

rev=qs
0 6 1 is proportional to the updated reversibl e density qs�

rev and inversely proportional to the total density qs
0 that

was present when the shear was reversed in system ‘s’. The effect of this term is to reduce the total dislocation density in the 
grain and so to reduce the threshold stress (Eq. (12)) for the system. The physical justification for this normalization is given 
in RGBV: the ‘unstorage’ rate promoted by dislocations moving backward is bounded by the storage rate they produced 
when they were moving forward (Rauch et al., 2007 ). For example, a gliding segment leaves loops surrounding the obstacles 
located on the slip plane. When glide is reversed, the same segment will fully or partially destroy the same loops. Conse- 
quently, the reverse annihilation process scales with the forward storage. RGBV use the forward density previous to reload- 
ing in the denominator , and we use the total density previous to shear inversion. Since p = 1 up to moderate strains, it turns 
out that both expressions are equivalent: for us the total equals the reversible if p = 1, and RGBV convert all the forward pop- 
ulation into reversibl e if p = 1.
Case2 : dcs > 0 ð) dcsþ ¼ 0Þ

dqs
for ¼ ð1� pÞ dc

s�

bK
� fqs

fordC

dqsþ
rev ¼ �

1
bK

qsþ
rev

qs
0

dcs�

dqs�
rev ¼ p

dcs�

bK
� fqs�

revdC

ð16Þ
This case, which is the equivalent of Case 1 when shear takes place on s�, is listed here separately in order to reflect the 
fact that numerica lly one needs to keep track separately of dcsþ > 0 and dcs� > 0. We generate reversibl e dislocatio ns on s�

and simultaneously use available reversible dislocations on s+.
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Case3 : dcsþ ¼ 0; dcs� ¼ 0
dqs

for ¼ �fqs
fordC

dqsþ
rev ¼ �fqsþ

revdC

dqs�
rev ¼ �fqs�

revdC

ð17Þ
In this case systems s+ or s� are not active, but ‘indirect’ annihilation due to activity in other systems will reduce both, the 
forward and the reversible densities on them. This is a conseque nce of making annihilation proportio nal to the total slip 
activity dC. Another consequence of this assumption concerns the recombin ation factor ‘f’. Observe that we do not propose 
a different factor flatent in Eq. (17) because in Eqs. (15) and (16) ‘f’ already stands for all the annihilation events, not only ‘self- 
annihilation ’.
3.1. The monotoni c loading case 

Here we apply the equations above to the case of monotonic load. When load is initially applied we can arbitrarily label 
all active shears in the grain as s+, such that all dcsþ > 0 and dcs� ¼ 0. In addition, because initially qsþ

rev ¼ qs�
rev ¼ 0, the evo- 

lution laws lead to a monotonic build-up of dislocations qsþ
rev P 0 and qs�

rev ¼ 0. These conditions are represented by Cases 1
and 3. Adding Eqs. (15) and (17) for all systems we get the total increment for the grain:
dq ¼
X

s

dqs ¼
X

s

ðdqs
for þ dqsþ

revÞ

dq ¼ ð1� pÞ
bK

X
s active

dcsþ � fdC
X

s active

qs
for þ

p
bK

X
s active

dcsþ � fdC
X

s active

qsþ
rev � fdC

X
s inactive

qs
for � fdC

X
s inactive

qsþ
rev

dq ¼ 1
bK

X
s active

dcsþ � f
X

s active

qs
for þ

X
s inactive

qs
for

!
dC� f

X
s active

qsþ
rev þ

X
s inactive

qsþ
rev

!
dC

ð18Þ
In this limit case (we assume no previously stored dislocatio ns in the currently inactive slip systems) we recover the sim- 
pler evolution equation of the continuum model (RGBV, Eq. (13)) proposed for the representat ive medium 
dq ¼ 1
bK

dC� f ðqfor þ qrevÞdC ð19Þ
This conclusion is reassuring, since such simple form could already explain several features associated with reloading.
What our new model adds is the directionali ty associated with tracking dislocations densities in individua l planes and with 
the crystallogra phic orientati on of the crystal with respect to the loading axis. In addition, reversibility and latent hardening 
are implicitly included in the model through the activity of the slip systems.
3.2. Recombinatio n parameter f

As discussed above, we use a unique recombination paramete r ‘f’. This of course is a simplification, since one would ex- 
pect this parameter to depend on the relative orientation and character of the dislocation segments that recombine. For 
example, one may expect recombination by cross slip of screw components of the same system to be more efficient than 
recombinati on between non-colinear slip systems. A systemati c characteri zation of these processes would require a basic 
dislocation interaction analysis and would increase substantially the complexity of the model. We expect this parameter 
to play a more critical role in hexagonal than in cubic materials, because the reactions between the different deformation 
modes (such as prism, basal, pyramidal) can be expected to be very different. The reader can consult papers by Kubin
et al. (2008), Madec and Kubin (2008), Queyreau et al. (2009), Balint et al. (2008), Weinberger (2011), Capolungo (2011)
for Molecular Dynamics and Discrete Dislocati on Dynamics estimate s of coupling parameters in cubic and hexagona l
crystals.
3.3. Reversibility parameter p

The reversibility parameter ‘p’ represents the fraction of the stored dislocations which are loosely tangled and can be acti- 
vated in the opposite sense upon shear stress reversal on the system. While the continuous model of RGBV assigns a constant 
value to the reversibi lity parameter ‘p’, it is evident that as strain accumulate s more obstacles (debris) are left in the grain 
which will hinder the capability of dislocations to glide in the opposite sense. As a consequence, p should evolve monoton- 
ically with strain from p = 1 towards p = 0. The former case applies to small strains, when all stored dislocations can be re- 
versed, and the latter case corresponds to large strain, when debris prevents dislocations to annihilate when gliding in the 
opposite sense.

It is possible to estimate this fraction and its evolution with strain using shear reversal tests. Basically, the value of p is
related to the strain shift required to superimpose the monotonic stress–strain curve with the one associated with shear 
5
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Fig. 2. (a) Empirical estimate of the reversibility parameter for the case of shear/reverse shear (see Appendix A for details); (b) dependence of the 
reversibility parameter p with debris density.
reloads in the opposite direction. The procedure is detailed in Appendix A where the shear results related to low carbon steel 
are used. Such result suggests that reversible dislocatio ns are still formed up to shear strains close to one (see Fig. 2a).

Here we argue that the movement of dislocations is impeded by debris. Since debris is produced by incomplete annihi- 
lation, then the rate of debris accumulation should scale with the dislocation recovery term ðf qdCÞ in the evolution equa- 
tions (Eqs. (15)–(17)). A loose estimate of debris density would be given by:
qdeb ¼
Z e

0
qdC ¼

Z e

0

X
s

qs

 !
dC ð20Þ
This estimate is similar to the one proposed by Rollett et al. (1987) for explaining Stage IV work hardening. In addition, we 
know that the recovery factor should decrease monotonica lly as debris increases, in the fashion shown in Fig. 2a. As a con- 
sequence, in this paper we propose an empirical sigmoid dependence of the recovery parameter with qdeb, of the form 
PðqdebÞ ¼ 0:5� 0:5 tan h 3
qmax þ qmin

qmax � qmin

� �
qdeb � qinfl

qinfl

� �� 	
ð21Þ
This function is plotted in Fig. 2b. Here qinfl ¼
qmaxþqmin

2 , and qmax;qmin are characteristic densities where p effectively de- 
parts from 1 and where it becomes effectively zero, respectively . They may be regarded as material propertie s, although here 
we assign values based on experiment fits to the empirical estimate of Fig. 2a. The value of p controls how rapidly each grain 
goes from generating mostly reversibl e dislocations to shutting down the production of reversible dislocatio ns.

Eq. (20) tells us that, even if the dislocation density saturates (as is the case with the Kocks–Mecking law), qdeb will keep 
increasing with deformation . The empirical law equation. (21), on the other hand, guarantees that in such a case p will go 
asymptotical ly to zero anyway. Notice that this is the only use of the debris density in the model, and we do not explicitly 
6



account for it in the evolution equations. If one were to do so one would obtain a Stage IV hardening at large strains asso- 
ciated with the non-zero debris production. A model accounting for the effect of debris (as defined by Eq. (20)) on hardening,
but without reversible dislocations , was proposed recently by Beyerlein and Tomé (2008) for hexagonal materials.

Another characterist ic of the model presente d here is that the factor p will evolve different ly from grain to grain, depend- 
ing on the history of slip activity in the grain. For such reason, in what follows we present results for the grain average of p,
and for the standard deviation of p within the grain population forming the aggregate. If we call pg the value of p in grain g,
and if xg is the volume fraction associated with the grain, the standard deviation is given by 
rP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

g

ðpg � �pÞ2xg

s
ð22Þ
4. Visco-plastic self-consist ent polycrystal model

The single crystal formulat ion discussed in Section 3 relates the threshold stress on the slip systems of the crystal to the
associated dislocation densities (Eq. (11)), and relates the evolution of the dislocation densities to the shear activity of the 
different systems (Eqs. (15)–(17)). In this section we relate the deformat ion (due to crystallogra phic shear) of the individual 
grain to the macroscopic strain imposed to the polycrystal. Here, we implement the single crystal hardenin g law into the 
visco-plastic self-consiste nt (VPSC) polycrystal model originally proposed by Molinari et al. (1987) and later extended to 
fully anisotropic behavior and arbitrary crystal symmetry by Lebensohn and Tomé (1993). Only a brief qualitative descrip- 
tion of the model is given below. A compreh ensive description can be found in Lebensohn et al. (2007).

4.1. Brief description of VPSC 

A polycrystal model represents the material as a collection of crystal orientations with assigned weights: the orientati ons 
represent grains and the weights represent the associated volume fractions. The latter are chosen to reproduce the initial 
texture of the material. Within the VPSC model each grain is treated as an ellipsoidal visco-plastic inclusion embedded in 
an effective visco-plastic medium which represents the ‘average’ environment ‘seen’ by each grain. Both, inclusion and med- 
ium, have fully anisotropic properties. The grain deforms by shear on slip systems activated by a Resolved Shear Stress, and 
the deformation of the grain follows from its interactio n with the effective medium. Lineariza tion of the constitutive re- 
sponse guarantees us that stress and strain rate are uniform within the ellipsoida l domain, although they are different for 
different grains, depending on the relative anisotropy between grain and medium.

The strain rate of the grain is given by the sum of shear rates _cs over the active systems. The latter are described by a
visco-plastic non-linea r constituti ve equation:
_eg
ij ¼

X
s

ms
ij 

_cs ¼ _co

X
s

ms
ij 

ms
kl r

g
kl 

ss

� �n

ð23Þ
In the above expression ss is the threshold stress required to activate system s, and its evolution with strain is the focus of 

this paper; ms
ij ¼ 1

2 ns
i b

s
j þ ns

j b
s
i

� �
is the symmetr ic Schmid tensor associated with slip system s; �ns and �bs are the normal and 

Burgers vector of the system, _eg
ij and rg

kl are the deviatoric strain-rate and stress of the grain; _co is a normalizati on rate and n
is the rate-sensitivity exponent, taken here as 1/s and 20, respectively . The linearized form of the single crystal response is:
_eg
ij ¼ Mg

ijkl ðr
gÞrg

kl þ _e0;g
ij ð24Þ
where Mg
ijkl and _eo;g

ij are the viscoplastic compliance and the back-extrapol ated term of grain g, respectively . The linearization 
chosen for our simulation is neff = 10, which gives a response in between the stiff secant and soft tangent approximat ions 
(Lebensohn et al., 2007 ). Performing homogeniza tion on this linearized heterogeneous medium consists in assuming a linear 
relation analogous to Eq. (24) at the effective medium (polycrystal) level:
_Eij ¼ MijklRkl þ _Eo
ij ð25Þ
where _Eij and Rij are the macroscopic rate and stress, and Mijkl and _Eo
ij are the macroscopic viscoplastic compliance and back 

extrapolated term, respectivel y. The latter moduli are unknown a priori and need to be adjusted self-consi stently.

4.2. Simulation conditions 

In the simulations, deformation is imposed incrementally by enforcing a macroscopic velocity gradient Lij ¼ @ _Ui=@Xj dur-
ing a time interval Dt. For axial tension we enforce L11 ¼ 10�3s�1, Dt ¼ 1s, and stress-free conditions R22 ¼ R33 ¼ 0 on the 
lateral surfaces of the sample. For shear test simulations we enforce L12 ¼ 10�3s�1, the remaining Lij ¼ 0, and Dt ¼ 1s.

In the case of the rolled and recrystallized low carbon steel analyzed here we use 1000 grains to represent the aggregate.
The initial texture associated with this collection of grains is depicted in Fig. 3 as pole figures.
7



Fig. 3. Pole figures associated with the 1000 grains used in this work as starting texture for LC.
At the crystal level we assume that deformation is accommodated by slip on the {1 10} h111i and {1 12} h111i slip modes 
characterist ic of BCC structures. Each mode comprises 12 slip systems and the correspond ing hardening parameters, ad- 
justed to the experimental data, are listed in Table 1.

Although these parameters may be different for each mode, here only the initial threshold stress s0 in each system (Eq.
(11)) is allowed to vary from mode to mode. The reason is two-fold: we want to keep the model as simple as possible, and we 
do not have sufficient microstructural informat ion for linking the parameters to specific dislocation reactions and 
interactions .

We use two sets of available strain-path- change experime nts for benchmarki ng our model: the first set consists of three 
shear experiments done on samples cut from rolled LC steel, to preloads of e12 ¼ c12=2 ¼ 10%, 20%, 30%, followed by shear in 
the opposite sense (axis 1 is the RD and axis 2 is the TD of the sheet). The stress–strain response is shown in Fig. 4 (Rauch
et al., 2007 ).
Table 1
Parameters of the hardening model for LC steel #1 and LC steel #2.

Dislocation model Steel #1 (shear/shear) Steel #2 (tension/shear)

l (Elastic shear modulus) 85 GPa 85 GPa 
B (Burgers vector) 2.46 10 �10 m 2.46 10 �10 m
D (Grain size) 30 10 �6 m 30 10 �6 m
a (Dislocation–dislocation interaction) 0.50 0.50
s0 (Initial CRSS for {1 10} h111i) 55 MPa 38 MPa 
s0 (Initial CRSS for {1 12} h111i) 55 MPa 40 MPa 
K (Mobile-to-storage parameter) 320 950
f (Recombination parameter) 1.7 1.7
L (Latent hardening parameter) 1.6 2.1 
qmin (Lower reversibility threshold) 4 10 12 m�2 4 10 12 m�2

qmax (Upper reversibility threshold) 260 10 12 m�2 260 10 12 m�2

Fig. 4. Stress–strain response associated with 10%, 20% and 30% shear preload in the Rolling Direction followed by reverse shear.
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The second set consists of three tensile experiments done on flat dog-bone specimens with a large gauge section, to pre- 
loads of e11 ¼ 5%, 10%, 20% (axis 1 is the RD of the sheet). Shear samples were cut from each of the preloaded gauge regions at 
45�, 90 �, 135 � and a shear strain e12 ¼ c12=2 was imposed along the longitudina l axis of the samples. The stress–strain re- 
sponse is shown in Fig. 5 (Rauch and Schmitt, 1989 ). It is unfortunate that each set of experiments was performed on LC 
steels of different pedigree, which means that some of the hardening parameters differ between set #1 and set #2 (see
Table 1).

The first set of experiments , shear/reverse shear, is the most straightforwar d case of strain reversal. In what concerns the 
second set, a state of tension along 1 with contraction along 2 and 3 represents shear when rotated by 45 � around axis 2 or 3.
The 135 � shear reload amounts to a reversal in the 1–2 plane (but not in the 1–3 plane), the 90 � case represents ‘orthogonal 
Fig. 5. Shear stress vs. shear strain, following preloading in tension along the RD by (a) 5%; (b) 10%; (c) 20%. In each case shear reloads were imposed at 45 �,
90 � and 135 � with respect to the preload direction.
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loading, where active systems during pre-load become non-active (and vice versa), and the 45 � case represents ‘quasi- 
monotonic’ shear in the 1–2 plane. As can be seen from the experime nts the 135 � reloads exhibit the most softening, and 
the orthogonal reloads the most hardening, as one would expect.
5. Results and discussion

In addition to the stress–strain response of the aggregate, a polycrystal simulation provides information about stress, slip
activity and dislocation density in individual grains. Polycrystal models also provide information about texture and overall 
dislocation density evolution, which can be compared to experime ntal measureme nts. In our simulations we follow the dis- 
location density associated with each system in each grain, but here we only report averages of ‘forward’ and ‘reversible’
dislocations . We also report the relative contribution to deformation of slip modes {1 10} and {1 12}, averaged over all grains.

The visco plastic model used here does not account for elastic effects or internal back-stresses. As a consequence, the 
simulations do not capture the elasto–plastic transition and the Bauschinger effect that takes place during the initial few 
Fig. 6. Evolution of the reversibility ‘p’ and its standard deviation with strain for the case of (a) 30% shear preload followed by reverse shear; (b) 10% tension 
preload along RD followed by shear reload at 90 �.
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percents of reload strain. Therefore, in order to compare predicted and measured stress–strain curves, we arbitrarily define
the end of the elasto–plastic transition as the strain at which the experimental flow curve has a slope of 1 GPa, and shift the 
predicted flow curves by such amount (see Figs. 4 and 5).
5.1. Shear preload followed by reverse shear 

Fig. 4 shows the measured and predicted stress response for the three shear reversals. The simulatio n captures very well the 
extended plateau in the reload curves. According to our calculations, such response can be explained only if the totality of dis- 
locations generated during preload can be reversed (i.e., p = 1), even after 30% preload strain. Figs. 6 and 7a illustrate the case:
only after 30% the reversibility parameter starts to decrease and ‘forward’ dislocations start being generated. Two things hap- 
pen following load reversal ðdcs� > 0Þ : previously generated reversibl e dislocatio ns qsþ

rev recombine while forward dislocations 
qs

for and reversibl e dislocations qs�
rev are simultaneou sly being generate d. The balance is such that it prevents the flow stress 

from increasing for about 20% reload strain (see Fig. 4). Eventually, the qsþ
rev are being exhausted and the flow stress increases.

However, the qs�
rev would be able to recombine and keep the flow stress from increasing if a second shear reversal would be ap- 

plied to the sample. The decrease with strain of the p parameter, will favor the production of forward dislocations and diminish 
the formation of reversible dislocations , with the consequence that stress–strain plateaus will tend to disappear during shear 
cycling. Observe that the standard deviation in the p parameter is roughly 13% at its maximum , indicating that, despite the 
nearly ‘plastically isotropic ’ character of the BCC lattice, the population of reversible dislocations varies with grain orientati on.

Fig. 8a depicts the relative contributi on of the two slip modes, and shows how the presence of an initial texture biases the 
slip activity. Observe that both, forward and reverse shear, are mostly accommodated by {1 1 0} h111i slip (�70%), despite 
the fact that {1 12} h111i slip (�30%) also comprises 12 slip systems. It seems apparent, then, that the response associated 
with this case is mostly controlle d by {1 10} systems and their associate d hardenin g parameters.
Fig. 7. Evolution of forward and reverse dislocation density during (a) 30% shear preload followed by reverse shear; (b) 10% tensile preload along RD 
followed by shear reload at 90 �.
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a

b

Fig. 8. Relative contribution of {1 10} and {1 12} slip to deformation during (a) 30% shear preload followed by reverse shear; (b) 10% tension preload 
followed by shear at 45 �, 90 �, 135 �.
Concerning texture, Fig. 9a–c shows the formation of characteristic shear components during the 30% shear preload, a
reversal towards the initial rolling texture after 30% reverse shear reload, and the formatio n of shear components after extra 
30% reverse shear.
5.2. Tension preload followed by shear 

Fig. 5 shows the experime ntal and predicted stress–strain response for 9 different cases: tensile preloads of 5, 10 and 20%
along the RD, each followed by shear reload at 45 �, 90 � and 135 � with respect to the RD.

The 135 � reload amounts practicall y to a reversal of the previous shear (associated with tension) in the 1–2 plane. More 
precisely the closeness between full strain reversal and the 135 � reload is characterized by the ‘path change index’ that 
equals-1 for full reversal and that reaches a value of �0.92 in the present case (Raphanel et al., 1987 ). This leads to a plateau 
in the flow curve of Fig. 5 similar to the one obtained for reverse shear (Fig. 4). The 90 � reload amounts to ‘cross-loadi ng’ and 
is the one with highest flow stress. The 45 � reload amounts, to some extent, to a continua tion of the stress state associated 
12



Fig. 9. Texture evolution after (a) 30% forward shear followed by (b) 30% reverse shear and (c) 60% reverse shear; (d) 10% RD tension followed by (e) 30%
shear at 90 � and (f) 60% shear at 90 �. For (e) and (f) SD is shear direction and SPN shear plane normal.
with tension (the path change index is 0.92). The model slightly overpredicts the flow stress for the 45 � and 135 � reloads, but 
still captures the plateau in the 135 � reload associated with reversals, the relative ordering of the three tests, and the asymp- 
totic hardening at large strain.

The evolution of dislocation densities (Fig. 7b) shows about the same evolution for the three cases. Essentially, because 
the ‘reversibility parameter’ p is close to one until an accumulated strain of 40% (Fig. 6b), only reversible dislocations can be 
generated until then. The cases of 45 � and 90 � reloads involve little reversibi lity while for the 135 � shear test there is max- 
imum reversibility and so dislocatio n recombinati on. As a consequence the associated reversibl e dislocation density remains 
smaller than the other two upon reload. Past 40% accumulated strain forward dislocations start to be generated.

The system activity associated with these strain path changes is very different from the one associate d with shear/reverse 
shear (Fig 8b). The {1 12} h111i systems are more active (�60%) during tension, but a discontinuo us transition takes place at 
reload and the {1 10} h111i systems contribute about 70% of the deformation, independently of the shear angle. Texture 
(Fig. 9d–f)) does not evolve substanti ally during the 10% tensile preload, but develops clear shear components after 30%
and 60% reverse shear. We verified that suppressing texture evolution impacts not only the flow curve, as is to be expected,
but also the evolution of forward and reversible dislocations.

6. Conclusions

We present here a crystallo graphic hardenin g model specifically developed for addressing strain path changes. The model 
is motivated by a previous continuum model (Rauch et al., 2011 ) with good predictiv e capability despite its simplicity. The 
continuum model is based on the observation that strain path changes tend to erase the previousl y formed dislocatio n struc- 
ture independen tly of its details, and its predictive capabilities are quite good. The corollary is that one does not need to pre- 
dict the details of the dislocation structure , but just get the dislocation densities right, at least for cubic materials. The main 
assumption of the model is that the dislocation population can be separated into reversible and forward (i.e., non-reversible)
types, and that the former ones can be activated by reverse shear, so contributing to strain and being annihilat ed in the pro- 
cess. In the present model we follow the evolution of reversibl e and forward dislocations in each slip system of each grain.
Accounting for grain orientati on and crystallograph y allows us to account explicitly for several mechanism , not available to 
the continuu m approach, such as: (1) the effect of texture evolution over the stress–strain response (geometric hardening)
and the effect of grain rotation on switching on–off slip in specific systems; (2) there is no need to decide a priori what pro- 
portion of the dislocation population is to be converted into reversible or latent upon reload, since those categories follow 
from direction and amount of shear in each system.

The model relies on relatively few parameters, such as the reversibility , the latent hardening, the recombinati on, and the 
dislocation interactio n strength. And we have, on purpose, assigned the same parameters to {1 10} and {1 12} slip in order to 
keep them to a minimum. An advantag e of using a crystallo graphic framewor k is that the meaning and value of those param- 
eters can be addressed with lower scale tools, such as Molecular Dynamics or Discrete Dislocation Dynamics. Another advan- 
tage of this formulation is that it provides virtual polycrystal responses needed for developing continuum constitutive 
models that account for deformation path changes during forming processes , such as the distortional hardening approach 
described in Barlat et al. (2011). In fact, continuu m models with macrosco pic constituti ve descriptions are more convenient 
13



and time-efficient in numerica l simulatio ns of industrial forming processes in which loading is highly non-proportional .
However, the identification of the relevant coefficients and the validation of the constitutive behavior are limited by the 
number and complexity of non-proporti onal loading experiments required for this purpose. Thus, the more physical hard- 
ening approach develope d in the present work is particular ly suitable to provide the virtual input data and the understand- 
ing necessary for the identification, validation and fine tuning of the macroscopic constitutive model.
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Appendix A

It has been pointed out by Hasegawa et al. (1986) and Takahashi and Shiono (1991) that forward and reverse stress–strain
curves may be partly superimposed by shifting the curves on the strain axis. This is illustrated on Fig. A1 for a 40% shear 
prestrain. The fraction p of dislocation converted into reversible segments is directly related to the shift Dc required to make 
the final parts of the curves coincident.
Fig. A1. Monotonic and reverse shear-stress data plotted (a) as measured and (b) shifted to make the final part of the curves coincident.
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Table A1 
Fraction p of dislocation converted into reversible segments obtained from measurements done in a low carbon steel subjected to increasing shear prestrains.

Prestrain 0.06 0.13 0.25 0.35 0.5 0.65 0.88
Dc ð�0:02Þ �0.02 �0.01 �0.01 0.02 0.08 0.21 0.5
Parameter p 1 1 1 0.95 0.8 0.52 0.2
If Dc equals the prestrain, then p = 0. In such a case, strain is entirely cumulative or, in other words, there is no annihi- 
lation of previously stored defects. The surprisin g point is that Dc may vanish. This was observed to occur even for non-neg- 
ligible prestrains (Rauch, 1991 ) and leads to p = 1, which means that all the prestrain history is gradually ‘erased’ at 
reloading. More generally, because the parameter p gives a measure of the dislocations that are permanentl y captured in 
the structure at reloading, an estimate may be obtained using the RGBV model. Indeed, the model gives a unique connection 
between dislocation density q and shear strain q ¼ f ðcÞ , with f obtained by integrating numerically Eq. (3). The same rela- 
tionship holds between the density of dislocation at reloading qfor and the shift Dc, i.e., following Eq. (4):
qfor ¼ ð1� pÞqfor;0 ¼ f ðDcÞ
This equation, combined with the material parameters related to low carbon steel (Rauch et al., 2007 ), give the trend de- 
picted in Table A1 and illustrated in Fig. A1 a.
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