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Ab initio investigation of the Peierls potential of screw
dislocations in bcc Fe and W
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The easy, hard and split core configurations of the h111i screw dislocation and the energy pathways between them are studied in 
body-centered cubic (bcc) Fe and W using different density functional theory (DFT) approaches. All approaches indicate that in 
Fe, the hard core has a low relative energy, close to or even below that of the saddle configuration for a straight path between two 
easy cores. This surprising result is not a direct consequence of magnetism in bcc Fe. Moreover, the path followed by the 
dislocation core in the (1 1 1) plane between easy cores, identified here using two different methods to locate the dislocation 
position, is almost straight, while the energy landscape between the hard core position and the saddle configuration for a straight 
path is found to be very flat. These results in Fe are in contrast with predictions from empirical potentials as well as DFT 
calculations in W, where the hard core has an energy about twice that of the maximum energy along the Peierls barrier, and where 
the dislocation trajectory between easy cores is curved. Also, the split core configuration is found to be unstable in DFT and of 
high energy in both Fe and W, in contrast with predictions from most empirical potentials.

Keywords: DFT calculation; Screw dislocation; Peierls potential; Body-centered cubic metals

1. Introduction

It is well known experimentally in body-centered cubic
(bcc) Fe [1–4], and more generally in all bcc transition met-
als [5–7], that non-screw dislocations have a much higher
mobility than screw dislocations, and that the
h111i{110} slip system dominates at low temperature.
The unusual low-temperature plastic behavior of the
h111i screw dislocations in bcc transition metals has long
been attributed to their core structure, which offers a high
lattice-friction stress. The lower mobility of screw disloca-
tions and their {110} glide plane have recently been cor-
roborated by in situ transmission electron microscopy
tensile experiments in ultra-high-purity a-Fe [8].

The h111i screw dislocations in bcc transition metals
have been modeled using various atomistic schemes such
as pair potentials [9,10], N-body potentials [11–18], bond-
order potentials [19,20] and density functional theory
(DFT) methods [21–30]. Two types of cores can be
obtained by centering the dislocation in between three
h111i atomic columns, depending on the sign of the Bur-
gers vector, or equivalently on the orientation of the trian-
gle formed by the three h111i columns: an easy core, where
the chirality of the h111i columns is reversed compared to
outside the core, and a hard core, where the h111i columns
are at the same level. All the above-mentioned atomistic
simulations exhibit the easy core configuration as the most
stable. All DFT studies performed so far in pure metals
have evidenced that the easy core structure is symmet-
ric—or non-degenerate—i.e. close to elasticity theory [21–
24,26,28,31], at variance with most empirical potentials.
However, it should be noted that alloying W with Re was
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recently predicted to induce a symmetry breaking of the
core, yielding a degenerate core structure [27,29]. A third
type of dislocation core morphology was proposed using
interatomic row potentials, the so-called ‘split’ core
[32,33]. It corresponds to a configuration where the 3-fold
symmetry is broken and the relative displacements of
the three atomic columns around a hard core triangle are
b/2, b/2 and 0, where b is the Burgers vector. The dislocation
center determined from the elastic strain field away from
the core region is then situated in the immediate vicinity
of an atomic column. Takeuchi et al. found, using param-
eterized interatomic row potentials, that the split configu-
ration is systematically metastable when the easy core is
non-degenerate, while it is unstable when the easy core is
degenerate [33].

The elementary process associated with dislocation glide
in a {110} plane corresponds to a translation between two
easy core positions. DFT calculations of the corresponding
Peierls barrier in Fe have evidenced a single hump barrier, at
variance with the Takeuchi rule mentioned above [28,30,34]
(indeed, the Peierls barrier adopts a ‘camel-hump’ shape
with a local minimum between Peierls valleys when the split
core is metastable, see below for details). Other DFT
calculations of the Peierls barrier that exhibit a single hump
shape were reported in bcc W andW alloys [35,36]. We note
that the Takeuchi rule holds for pair and embedded-atom
method (EAM) potentials in most cases [28,37,30,34], but
is not a consequence of the lack of angular dependence of
interatomic potentials since it has recently been found possi-
ble to parameterize EAM potentials for Fe and W, which
reproduce the expected single-hump Peierls barrier with a
non-degenerate core structure [35,18]. The single hump
shape of the Peierls barrier has important consequences, in
particular on the kink-pair formation mechanism [38].

The above studies focused on the one-dimensional path
of the screw dislocation between stable configurations. The
aim of the present paper is to gain insight into the
two-dimensional Peierls potential, which governs plastic
anisotropy [39], by characterizing from first-principles
calculations the energetics of the easy, hard and split cores
as well as the energy pathways between them. Due to the
symmetry of the bcc lattice, the easy, hard and atomic
row positions are expected to be energy extrema, assuming
that the two-dimensional Peierls potential is continuous
and differentiable. Easy cores are clearly minima, but the
nature of the extremum at the hard core position and the
topology of the Peierls potential near the split core are
unclear. In the simple two-dimensional sinusoidal Peierls
potential model of Edagawa et al. [40], if hard cores are
maxima, then the saddle configuration between easy cores
is necessarily close to a h111i column, i.e. close to a split
configuration. However, the actual shape of the Peierls
potential is obviously more complex. For instance, DFT
calculations in Fe rule out the split configuration as a sad-
dle point [30], and in Ta they suggest that the hard-core
configuration might be a local minimum [41,21]. Moreover
the metastable split configuration is degenerate with three

variants, thus invalidating a simple single-valued Peierls
potential near the split-core configuration.

In order to explore the two-dimensional Peierls potential
and notably the possible pathways for the dislocation to
move from one minimum to the next, the energies of the
easy, hard and split cores, along with the energy pathways
between them, are investigated in Fe using DFT methods.
Central to this study is an accurate determination of the
dislocation position, allowing the Peierls stress to be esti-
mated from the slope of the Peierls potential. Here we pro-
pose and compare two methods to locate the dislocation
core. In addition, three empirical potentials for Fe are
benchmarked against the DFT two-dimensional energy
landscape, namely the Mendelev and Gordon EAM poten-
tials [42,43], and a newly developed EAM potential
denoted MCM2011 hereinafter [18]. The surprising results
obtained in Fe are then compared to similar DFT calcula-
tions performed in bcc W.

2. Methodology

The present first-principles electronic structure calcula-
tions were performed within the DFT framework using
mostly the PWSCF plane-wave code [44], with the pro-
jected augmented wave (PAW) method in Fe and the ultra-
soft pseudopotential scheme in W. A wavefunction cut-off
of 40 Ry (respectively 20 Ry) was used in Fe (respectively
W). Additional calculations were performed using the
DFT SIESTA code [45], as in a preliminary study in Fe
[28]. This code was chosen for its efficiency stemming from
the use of localized basis sets to investigate the robustness
of the DFT results with respect to cell size and boundary
conditions. We treated the 4s, 4p and 3d (respectively 6s,
6p and 5d) states of Fe (respectively W) as valence states.
The SIESTA pseudopotentials and basis sets for Fe and
W have previously been validated by comparison with
the generalized stacking fault energies and point defect cal-
culations obtained with PWSCF [46,47]. The calculations
in Fe are spin-polarized (ferromagnetic Fe) and the Per-
dew–Burke–Ernzerhof generalized gradient approximation
(GGA)—which is known to perform better for the bulk
properties in Fe—is compared to the local density approx-
imation (LDA) with PWSCF and SIESTA. The Hermite–
Gauss scheme to broaden the electronic density of states
was used with a smearing of 0.3 eV. Residual forces after
relaxation are smaller than 0.01 eV/Å.

Most of the dislocation calculations presented here were
performed using a periodic array of dislocation dipoles
[48], after comparison with a cluster geometry. Within
the cluster model, a single dislocation is placed at the center
of a finite cylinder and the surface atoms are fixed to the
positions predicted by the anisotropic elasticity theory.
The main drawback of this geometry lies in the difficulty
within DFT to separate the energy due to surface contribu-
tion from the energy due to dislocation contribution. Thus
the use of a cell, which guarantees that the surface
contribution does not change along the path, or at least
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between the initial and final states, was favored in the pres-
ent work. Within the dipole approach, the use of tri-peri-
odic boundary conditions is rather advantageous for
electronic structure calculations and the elastic interactions
between dislocations can be modeled by anisotropic elastic-
ity [49,50]. The energetics is therefore well controlled within
this geometry. Moreover, convergence is reached for a sim-
ilar number of atoms per cell compared to the cluster
approach. It is indeed at first sight doubled but more atoms
are needed at the boundary in the cluster approach.

Two types of dipole geometries have been proposed for
the h111i screw dislocation in bcc metals: the triangular
[24] and quadrupolar [51,52,21] periodic arrays of disloca-
tion dipoles. The former strictly preserves the 3-fold sym-
metry of the bcc lattice, while the latter leads to zero
stress at any dislocation center thanks to the resulting
square-like superposition of the elastic stress fields
[48,31]. The quadrupolar arrangement actually appears to
be the most appropriate to extract dislocation properties
from supercell simulations with high accuracy [53,51,31].
In the present study, we used cells containing 135 and
273 atoms (Fig. 1). The cell vector length along the disloca-
tion line is set to one Burgers vector b ¼

ffiffi

3
p

2
a0, where a0 is

the equilibrium lattice constant, i.e. b � 2.47 Å within the
PWSCF GGA in Fe. Within this quadrupolar geometry,
the dislocations constituting the dipole in the 135 (respec-
tively 273) atom supercell in Fe are separated by approxi-
mately 17 Å (respectively 24 Å) in their glide plane.

The supercell vectors for the easy core configuration
within a periodic quadrupolar arrangement (corresponding
to ~b ¼ 1

2
½111� in Fig. 1) are defined from the unit vectors
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2
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expressions:
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components along~a3 come from the
ffiffi

2
p

6
a0

shift along ½1�10� of the centers of gravity of the upward-
and downward-pointing triangles. The 135 (respectively
273) atom supercell corresponds to integers (n, m) = (15,
9) (respectively (n, m) = (21, 13)), as explained in Ref.
[28]. The hard-core configuration can be obtained from
the easy core one, either by changing the sign of the Bur-
gers vector (~b ¼ 1

2
½�1�1�1� in Fig. 1), or by keeping the same

sign of the Burgers vector and displacing the two disloca-
tions to the adjacent triangles in the same ½�1�12� direction.
In the former case the components of C

!
1 and C

!
2 along

~a3 are reversed, while in the latter case one must account
for the small homogeneous strain induced by the displace-
ments perpendicular to ½�1�12�, of opposite signs and magni-
tude

ffiffi

2
p

6
a0 that both dislocations undergo when changing

triangles. In this case the cell vectors are:
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Convergence of the Peierls barrier with respect to the
k-point grid was investigated with SIESTA and a 135-atom
supercell, using 1 � 2 � 16,2 � 2 � 16 and 3 � 3 � 16
shifted k-point grids. The 1 � 2 � 16 grid yields Peierls bar-
rier energies converged within 1 meV/b, and it was there-
fore used for this study.

In agreement with previous DFT calculations in Mo,
Ta, Fe and W bcc metals [27,26,24,41,23,28,30], the stable
core structure of the h111i screw dislocation in Fe and W is
the non-degenerate easy core structure, for both exchange–
correlation functionals, GGA and LDA. The core is
completely unpolarized and no metastable polarized core
is evidenced [46].

Given the complexity of the energy landscape, the possi-
ble impact of methodological choices on the calculation of
the Peierls barrier was evaluated, in particular the localized
basis set used for the DFT calculations in Ref. [28] is

Fig. 1. Schematic representation of the unit cell and periodicity vectors within the quadrupolar arrangement (273 atoms). Atomic positions are

represented by three different colors to emphasize the fact that they belong to three different h111i planes before introduction of the dislocations. The

dislocation dipole is visualized by its differential displacement map. The upward-pointing triangle corresponds to �~b dislocation core and the downward-

pointing triangle, to ~b dislocation core. ~b ¼ 1
2
½111� for the easy core configuration and ~b ¼ 1

2
½�1�1�1� for the hard core configuration.
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compared with plane-wave basis sets. The energy barrier
calculations joining two adjacent easy core configurations
(denoted E1 and E2 in Fig. 2) were performed by displacing
simultaneously the two dislocations such that their separa-
tion distance remains constant. The minimum energy path
was then obtained using the reaction coordinate method
[54], whereby the path was discretized in nine replicas ini-
tially linearly interpolated between the initial and final con-
figurations, and the energy of each image was minimized in
the hyperplane perpendicular to the initial path.

As shown in Fig. 3, all DFT approaches lead to single-
hump Peierls barriers, thus confirming previous DFT
results [28]. Note, however, that the amplitudes of Peierls
barriers obtained with the different DFT approaches differ
from one another. The effect of the exchange–correlation
functional is unusually large near the saddle configuration:
with PWSCF the Peierls energy is reduced by approxi-
mately 40% from GGA to LDA. The origin of this surpris-
ingly strong effect, which is likely to be coupled to
magnetism, as described in Section 4, requires further
investigation. Within SIESTA, the effect of the exchange–
correlation functional is reversed. A similar discrepancy

between the PWSCF and SIESTA results on the effect of
the exchange–correlation functional was also observed
when calculating the generalized stacking faults [46]. Also,
it is seen that the SIESTA results, previously published in
Ref. [28], underestimate the Peierls barrier, probably
because the use of reduced localized basis sets and the
pseudopotential approximation lead to a less accurate
description of magnetism. The best estimate of Peierls
energy is 40 ± 5 meV/b (PWSCF GGA).

As shown in Ref. Appendix A, we checked the validity
of the simple reaction coordinate method used here [54],
which is sometimes questioned [43], by comparing the
resulting minimum energy path with the more computa-
tionally demanding nudged elastic band (NEB) method
[55]. In the case of the present paths, which are rather sim-
ple and straight in configuration space in comparison, for
example, to kink formation processes [56], the reaction
coordinate method determines correctly the energy path.
A difference remains between the reaction coordinate and
NEB paths, but the latter is within the uncertainty range
of the present calculations (about 5 meV/b). The reaction
coordinate method, which is easier to implement than the
NEB method, makes the calculations up to one order of
magnitude faster because: (i) only half of the Peierls barrier
needs to be computed; (ii) the relaxation over every image
is more efficient thanks to the use of conjugate gradient
type methods; and (iii) it allows a sequential minimization
of the images along the path rather than a global minimi-
zation. As a result, we will mostly use this method in the
following.

The effect of cell geometry and size was also investigated
using the SIESTA GGA. The Peierls barrier was calculated
within the cluster approach, centering the cluster supercell
on the S point, as defined in Fig. 2, so as to ensure that the
surface contribution to the energy is the same for the initial
and final states assuming that its variation can be neglected
in between. The SIESTA result using a 261-atom cluster is
compared to the Peierls barrier obtained in the dipole
approach using 135 and 273 atoms (Fig. 4). Neither the

Fig. 2. Schematic representation of the three directions of the Peierls

potential that were sampled: the energy barrier joining two neighboring

easy-core positions (denoted E1 and E2); the energy barrier going from an

easy- to a hard-core position (denoted H); and the energy barrier going

from a hard-core position to a split-core position. The S point denotes the

position halfway through the vector joining the two easy-core positions.

The points A1, A2 and A3 are centered on h111i atomic columns.
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single-hump shape nor the barrier amplitude change signif-
icantly with the size and geometry of the simulation cell,
the energy differences remaining within the uncertainty
range of the calculations.

3. Two-dimensional Peierls potential in Fe

3.1. Peierls barrier

The DFT calculations of the one-dimensional Peierls
barrier in Fe evidenced a single-hump Peierls barrier with
no intermediate metastable core configuration. Three rep-
resentative empirical potentials for Fe were benchmarked
against the present DFT results, namely the widely used
EAM potential obtained by Mendelev et al. [42], which
includes DFT point defect properties in its fit, the more
recent EAM potential developed by Gordon et al. [43],
who supplemented the fitting properties with a DFT Peierls
barrier, and the newly developed MCM2011 EAM poten-
tial, which correctly reproduces the expected single-hump
Peierls barrier, as described in the supplementary materials
of Ref. [18]. As shown in Fig. 5, the Mendelev potential
yields a Peierls barrier, a factor of 4 smaller than the
PWSCF GGA, and with a double-hump shape and a half-
way metastable core configuration, which corresponds to
the split-core configuration, as reported in the literature
[57,37,58,38,43], and in agreement with the Takeuchi rule
mentioned in the Introduction. Gordon potential does
not improve significantly the Peierls barrier: the intermedi-
ate metastable state is less pronounced but the height of the
Peierls barrier is in similar disagreement with the DFT cal-
culations. The split configuration has an energy about
6 meV/b (respectively 11 meV/b) higher than the easy core
with Mendelev (respectively Gordon) potential. In order to
investigate whether a similar local minimum exists on the
DFT Peierls potential, a relaxation was performed using
SIESTA, starting from the atomic positions of the split
core obtained with Mendelev potential. During the relaxa-
tion, the dislocation spontaneously transformed into an

easy core, thus confirming that the local minimum at the
metastable split core configuration is an artifact of these
potentials. On the other hand, the MCM2011 potential
does not exhibit such an intermediate metastable configu-
ration, showing that a metastable split configuration is
not a necessarily corollary of a non-degenerate core mod-
eled with an EAM potential. The Peierls barrier with this
potential, which was fitted using the SIESTA GGA results,
is about 28 meV/b (see Fig. 3).

3.2. Hard-core configuration

The nature of the extrema at the hard-core position
(denoted H in Fig. 2) was investigated within DFT. The
hard core, even if unstable, can be stabilized numerically.
A constrained minimization was performed such that the
positions along~b of the three central atomic columns con-
stituting the hard-core structure were kept fixed, while all
other degrees of freedom were relaxed [30]. If, following
this pre-relaxation, the constraint is released in order to
fully relax the hard-core configuration, depending on the
energetic model, the hard-core may relax to an easy-core
configuration, but it may also remain in a hard-core posi-
tion with an energy decrease of less than 1 meV/b. The
pre-relaxed configuration can therefore be considered as a
good approximation of the relaxed hard-core
configuration.

The energy differences between the hard- and easy-core
structures obtained in Fe within DFT are given in Table 1.
They are compared to the saddle-point energy obtained
from the Peierls barrier calculation; as shown in Section 3.4,
this saddle configuration is positioned close to the S point
in Fig. 2. Within DFT, a significant scatter is observed as a
function of the calculation scheme, but it is striking to see
that, for a given calculation scheme, the energies of both
the hard-core position and saddle configuration for the
straight path are very close and within the numerical uncer-
tainty estimated at ±5 meV/b, as reported in Ref. [30].

The hard-core structure is often regarded as irrelevant
for dislocation motion because its energy is expected to
be much higher than the Peierls energy, an assumption
based on steric considerations corroborated by empirical
potential calculations. The present investigation shows,
on the contrary, that the hard-core and saddle configura-
tion energies are similar in Fe according to DFT.
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Fig. 5. Peierls barrier calculated in Fe with PWSCF GGA using the

reaction coordinate method, compared to EAM potential calculations

using Mendelev [42], Gordon [43] and MCM2011 potentials [18], with the

NEB method.

Table 1

Energy (in meV/b) of the hard-core, saddle and split-core configurations

with respect to the easy-core configuration, in Fe using the different

energetic models. The DFT energies are given ±5 meV/b.

Hard Saddle Split

PWSCF GGA 39 40

PWSCF LDA 23 22

SIESTA GGA 23 29 79

SIESTA LDA 45 40

Mendelev 2003 176 12 6

Gordon 2011 115 12 11

MCM2011 63 28 33
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With the Mendelev and Gordon potentials, on the other
hand, the hard-core configuration is highly unfavorable,
while it is less unfavorable with the MCM2011 potential,
as shown in Table 1. The energy difference between easy-
and hard-core structures is indeed overestimated by a fac-
tor of more than 4 with the Mendelev potential, and by
almost 3 with the Gordon potential, compared to the
PWSCF GGA result. The MCM2011 potential yields a
more satisfactory agreement with DFT estimate, with an
overestimation of approximately 50%.

More insight into the energy variation around the hard-
core position was gained by investigating the pathway
going from an easy-core configuration to a neighboring
hard-core configuration. In this calculation, the cell shape
was kept fixed between the initial state, the easy-core con-
figuration centered on the E1 point, and the final state, the
hard-core configuration centered on the H point (Fig. 2).
Thus the elastic strain between the initial and final states
is different. The resulting elastic contribution to the energy
estimated using anisotropic elasticity theory is, however,
less than 5 meV/b for the 135-atom cell, and therefore
within numerical uncertainty. The energy barriers obtained
with DFT, as well as with empirical potentials, are repre-
sented in Fig. 6a. In the DFT case, the energy variation
is similar to that along the Peierls barrier. In particular,
no local minimum is found around the hard core, unlike
what was reported for Ta in Ref. [41]. In the case of the
Mendelev and Gordon potentials, the hard core corre-
sponds to an energy maximum so high that within the
dipole approach, the relaxed path deviates from the high
symmetry line joining the easy and hard cores (both with
the reaction coordinate and NEB methods). For this rea-
son, in Fig. 6a the Mendelev and Gordon potential results
are plotted using the cluster approach, where this difficulty
does not arise for symmetry reasons. This problem did not
appear with MCM2011, the hard core corresponding to a
lower energy maximum. Fig. 6a evidences a better agree-
ment with DFT of the MCM2011 potential results than
the Mendelev and Gordon potential results.

3.3. Split-core configuration

When taking the atomic arrangement into account, the
topology of the Peierls potential around atomic row posi-
tions, noted Ai (i = 1, 2, 3) in Fig. 2, appears to be quite
complex, and a detailed description is beyond the scope
of the present paper. With the Mendelev and Gordon
potentials, three different variants of the 2-fold symmetry
metastable split core are centered very close to a given
atomic row. The Peierls potential can therefore be viewed
as multivalued near the Ai point, depending on the variant
considered.

An estimate of the energy close to the atomic rows was
obtained from the split-core configuration [30]. The split
core was generated from the hard core by adding a relative
displacement along~b of b/6 to A2 and �b/6 to A3 (Fig. 2),
in order to have no relative displacement between these two

columns, which is a characteristic of the fully split core.
The same constrained minimization as the one used to sta-
bilize the hard core was then used to relax the split-core
structure, i.e. by freezing the displacements along ~b of
A1, A2 and A3. As shown in Table 1, SIESTA GGA calcu-
lations evidence a high split-core energy, with an excess
energy with respect to the easy-core structure of
79 ± 5 meV/b in a 273-atom cell, in agreement with other
DFT calculations [30]. The split-core configuration there-
fore has a much higher energy than the easy-core structure
within DFT. On the other hand, the same calculations per-
formed with the Mendelev and Gordon potentials yield
excess energies very close to that of the metastable split
core, i.e. about 6 and 11 meV/b respectively. The
MCM2011 potential is again closer to DFT, with an excess
energy of about 33 meV/b, i.e. close to the Peierls energy.

The energy variation along the ridge separating the
energy basins centered on E1 and E2 was investigated from
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Fig. 6. Energy variation in Fe between (a) the easy- and hard-core

structures and (b) the hard- and split-core structures calculated within

DFT using SIESTA and compared to empirical potential calculations

using the Mendelev, Gordon and MCM2011 potentials, within the

quadrupolar arrangement. The reaction coordinate in (b) is defined as:

1� dz
b=3
, where dz is the relative displacement along~b between columns A2

and A3 (Fig. 2), so that dz = 0 for the split core and dz = b/3 for the hard

core. The elastic correction was neglected.
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the pathway going from the hard-core to the split-core con-
figurations. The energy along the path was obtained by a
minimization using the same constraint as for the hard
and split cores, i.e. by fixing the components along ~b of
A1, A2 and A3. The DFT energy landscape is shown to
be rather flat between the hard-core and saddle configura-
tions, at variance with the EAM potentials (Fig. 6b). Again
the MCM2011 potential is in better agreement with DFT,
although like the other EAM potentials, it predicts a higher
energy for the hard-core configuration than for the split-
core configuration. The DFT energy landscape therefore
suggests that the dislocation may have similar probabilities
of passing anywhere between the hard core and the straight
path between easy cores. The hard core may even be the
lowest in energy, and it cannot be ruled out that it is the
true saddle point. This would then correspond to a so-
called monkey-type saddle [59].

The DFT results suggest that there should be maxima of
the Peierls potential at the atomic row positions, Ai. It is
striking that the same conclusion was proposed by Edaga-
wa et al. [39] in order to account for the absence of asym-
metry in the crystal orientation dependence of the critical
flow stress observed experimentally in Fe at low tempera-
ture [60]. Second-order harmonic terms were included in
the Fourier expansion describing the two-dimensional Pei-
erls potential in order to obtain this feature.

3.4. Dislocation core position

The Peierls stress is related to the maximum derivative
of the Peierls barrier with respect to the dislocation core
position. This implies that the Peierls barrier has to be
sought as a function of the dislocation core position, which
a priori does not correspond exactly to the reaction
coordinate used in the constrained relaxation. Methods
to identify the dislocation core position have been pro-
posed [57,61,62]. Here the position of the dislocation center

was determined using two different methods described in
Ref. Appendix B. The first method consists in comparing
the relative displacements of the five most displaced
h111i atomic columns [61] with that of the anisotropic
elastic displacement field Section B.1. The resulting cost
function defined in Eq. (B.1) is minimized with respect to
the dislocation core position in the (111) plane. We consid-
ered another method, which consists in comparing the dis-
registry that corresponds to the difference of displacement
between the two {110} atomic planes situated directly
above and below the glide plane with solutions of an elastic
model similar to the Peierls–Nabarro model Section B.2.
The disregistry in the direction of the Burgers vector com-
puted with DFT was adjusted to Eq. (B.6) through the fit-
ting parameters x1 and y1, i.e. the dislocation core position
in the (111) plane.

These two methods were first tested on the linear inter-
polation of Cartesian atomic coordinates between initial
and final positions, two neighboring easy-core positions,
obtained within anisotropic elasticity prior to relaxation.
The resulting dislocation core positions in the glide plane
(projection on the ð1�10Þ plane) are represented in Fig. 7a
as a function of the reaction coordinate. It should be noted
that the two fitting procedures naturally find exactly the
easy-core position in the initial and final states. On the
other hand, the dislocation-core position obtained with
both methods deviates from the dislocation-core position
proportional to the reaction coordinate.

The cost and disregistry function methods were then used
to determine the dislocation-core position in the glide plane
after relaxation from the DFT atomic positions along the
Peierls barrier shown in Fig. 3. Both methods predict the
same dislocation path, with non-negligible deviations from
the dislocation core position proportional to the reaction
coordinate (Fig. 7b). The DFT relaxation reverses the devi-
ation in such away that the dislocation core prefers to remain
within the energy minima in the energy landscape [61].
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Fig. 7. Dislocation-core position as a function of the reaction coordinate in Fe extracted from (a) linear interpolation of atomic coordinates between

initial and final positions obtained within anisotropic elasticity prior to relaxation, and (b) the PWSCF GGA results after relaxation using the reaction

coordinate method with the 135-atom cell. The method to determine the dislocation-core position using the cost function method (squares) is compared to

the disregistry function method (diamonds). The dashed line shows the dislocation-core position along the glide plane proportional to the reaction

coordinate. The dislocation-core position is normalized by
ffiffi

2
3

q

a0.

7



The trajectory obtained for the dislocation center in the
(111) plane as the dislocation translates from one easy-
core position to another easy-core position is almost a
straight line in Fe within DFT, as shown in Fig. 8a and c
for both methods for finding the dislocation-core position
and for all DFT schemes. In particular halfway along the
path, the dislocation is centered close to the middle of E1

and E2, denoted S in Fig. 2.
The same approaches applied to the Mendelev potential

yield a trajectory that is not straight, but curved with a
cusp halfway along the path (Fig. 8b and d). This is
because the path passes through the split configuration as
mentioned above, which is centered close to the A1 point.
However, it should be noted that with the cost function
method, the associated value of the cost function is higher
by about 2 orders of magnitude compared to its value in
the initial and final states, indicating a significant deviation
from elasticity. For comparison, the midway cost function
value within DFT is of the same order of magnitude as at
the initial and final states. The estimation of the dislocation
core position is therefore less reliable in the case of the
Mendelev potential. Nonetheless the two methods for find-
ing dislocation core positions evidence a deviation of the
dislocation core trajectory from the DFT straight line,
related to the double-hump Peierls barrier and the metasta-
ble split-core configuration.

From these fitting procedures, the Peierls barrier can be
represented as a function of the dislocation-core position.
The two fitting methods result in comparable Peierls barri-
ers as a function of the dislocation-core position, shown in
Fig. 9. On the other hand, the shape of the Peierls barrier is
significantly different when the energy is plotted as a func-
tion of the reaction coordinate.

The Peierls stress can be estimated from the maximum
slope of the Peierls barrier, based on the hypothesis that
the stress dependence of the Peierls barrier can be neglected
[57]. This straightforward method was applied to the Pei-
erls barriers represented in Fig. 9. The estimated Peierls
stress extracted from the PWSCF GGA results amounts
to 1.4 ± 0.1 GPa with both disregistry and cost-function
methods. These results are all consistent with one another
and evidence the usual discrepancy between atomistic and
experimental estimates of the Peierls stress, i.e. about
400 MPa at 5 K [63]. Ref. [18] suggests that this discrep-
ancy is due to quantum effects. It should be noted that
by fitting the Peierls barrier with a sinusoidal function,
the Peierls stress also amounts to about 1.4 GPa. This sim-
ple approximation is thus relevant in this high-symmetry
case, for which we do not expect any asymmetric shape
or subsidiary minimum in the Peierls barrier. Comparable
Peierls stresses of 1.1 ± 0.1 GPa were obtained with the
SIESTA GGA either within the sinusoidal approximation
or using the maximum slope of the Peierls barrier. Since
hard-core and saddle-point configurations have similar
energies, as seen previously, the Peierls stress was also esti-
mated from the maximum slope of the energy barrier
between the hard- and easy-core configurations, calculated
as a function of dislocation-core position, and amounts to
about 1.1 GPa with the SIESTA GGA, i.e. in the same
range as the value extracted from the energy barrier
between two easy-core configurations. This result again
does not rule out the hard-core configuration as a potential
saddle point for dislocation motion in Fe.

4. Specific behavior in Fe

4.1. Comparison between bcc Fe and W

In view of the unexpected results obtained within DFT
for Fe, in particular the low relative energy of the hard
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Fig. 8. Trajectory followed by the dislocation center in the (111) plane in

Fe when passes over the Peierls barrier calculated using the cost function

minimization from (a) the PWSCF GGA and (b) the Mendelev potential

results, and using the disregistry function method from (c) the PWSCF

GGA and (d) the Mendelev potential results. The atomic positions and the

differential displacement maps correspond to the dislocation core structure

halfway along the path. The difference obtained on these maps between

DFT and the Mendelev potential is related to a dislocation core centered

either on the S or the A1 point.
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core, and because of the large discrepancies observed
between DFT and empirical potentials, the main calcula-
tions were repeated in W, in order to discriminate between
what is likely to be either specific to Fe or common to all
bcc transition metals.

First, the energy barrier joining two adjacent easy-core
configurations in W has, as in Fe, a single hump shape
according to DFT (Fig. 10). The Peierls barrier amplitude
amounts to about 90 meV/b (respectively 70 meV/b) using
the PWSCF GGA (respectively SIESTA GGA), in good
agreement with another estimate of the Peierls barrier from
DFT calculations [36]. The effect of the exchange–correla-
tion functional is less pronounced than in Fe: with
SIESTA, the Peierls energy is about 10% larger with
LDA than with GGA (Fig. 10). The trajectory followed
in W by the dislocation center in the (111) plane is less
straight than in Fe, probably to avoid the hard-core posi-
tion, which has a higher relative energy, as seen in Table 2
(inset of Fig. 10). The Peierls stress was estimated in the
same way as in Fe, i.e. from the maximum slope of the Pei-
erls barrier as a function of the dislocation-core position,
and using both methods for finding the dislocation-core
position. DFT Peierls barriers yield comparable Peierls
stresses ranging from 1.9 to 2.2 GPa. As already pointed
out in Fe, the atomistic estimates of the Peierls stress in
W evidence the usual discrepancy with the experimental
value, i.e. about 800 MPa at 26 K [64].

The hard-core energy was calculated with DFT and the
results are summarized in Table 2. They show that the

excess energy of the hard core amounts to about twice
the saddle point with both exchange–correlation function-
als. This result is different from the case of Fe, where these
two energies are similar. Finally, the energy of the split core
was estimated with SIESTA GGA and amounts to
176 ± 5 meV/b with respect to the easy-core configuration,
i.e. three times the Peierls barrier value. As seen previously
for Fe, the split core in W has therefore a much higher
energy than the easy core.

4.2. Magnetism in Fe

Magnetism is often regarded as the driving force for
explaining the specificity of the properties of Fe with
respect to non-magnetic bcc transition metals [65]. We
therefore investigated the local magnetic moments for var-
ious core configurations in Fe within DFT.

The local atomic magnetic moments are expected to be
weakly perturbed by the presence of the screw dislocation
since the coordination numbers and bond lengths are less
affected than for other defects such as vacancies, intersti-
tials or surfaces. This was corroborated by the analysis of
the change in the local magnetic moment concentrating
on the h111i atomic columns around the dislocation core
in Fe, calculated using the Mulliken and Löwdin popula-
tion analysis, within SIESTA and PWSCF, respectively,
performed on 135-atom cells. We found that using PWSCF
GGA the local magnetic moment close to the dislocation
core is increased with respect to the bulk value (2.18 lB/
atom) by 0.18 lB/atom in the easy-core configuration, as
represented in Fig. 11a. A similar increase of the local
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Fig. 10. Peierls barrier calculated in W with the SIESTA and PWSCF

GGA (and also LDA for SIESTA). The calculations were performed using

135 (respectively 273) atoms and the NEB method (respectively the

reaction coordinate method) for PWSCF (respectively SIESTA) calcula-

tions. The inset corresponds to the position of the dislocation when

passing over the Peierls barrier calculated using the disregistry function

method from the SIESTA GGA.

Table 2

Energy (in meV/b) of the hard-core, saddle and split-core configurations

with respect to the easy-core configuration in W using the SIESTA GGA

and LDA. The DFT energies are given ±5 meV/b.

Hard Saddle Split

SIESTA GGA 157 70 176

SIESTA LDA 153 77

Fig. 11. Variation of the magnetic moment per atom, in Bohr magneton

units, calculated in Fe within PWSCF in a 135-atom quadrupolar cell due

to the presence of the dislocation in the easy-core configuration using (a)

GGA and (b) LDA, (c) in the hard-core configuration with GGA and (d)

in the halfway position with GGA.
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magnetic moment was obtained with the SIESTA GGA,
i.e. 0.20 lB/atom with respect to the bulk magnetic moment
(2.32 lB/atom). This weak increase of about 0.2 lB/atom
obtained both with the PWSCF GGA and the SIESTA
GGA is in relatively good agreement with locally self-con-
sistent multiple scattering calculations performed recently
in bcc Fe [66]. The same analysis in the hard-core and sad-
dle configurations evidences a similar weak increase of
respectively 0.17 lB/atom and 0.18 lB/atom with the
PWSCF GGA (Fig. 11c and d), and 0.22 lB/atom and
0.23 lB/atom with the SIESTA GGA. The total magnetic
moment for these three configurations also evidence a weak
increase from the bulk total magnetic moment of about
3 lB with the PWSCF GGA and 5 lB with the SIESTA
GGA in the 135-atom supercell containing the dislocation
dipole.

The effect of the exchange–correlation functional is sig-
nificant. The PWSCF LDA and SIESTA LDA results
reveal also a weak perturbation of the local atomic
moments around the dislocation core, but with reversed
sign: the magnetic moments around the easy-core structure
are reduced with respect to the bulk value by about 0.2 lB/
atom with the PWSCF LDA (Fig. 11b) and 0.1 lB/atom
with the SIESTA LDA. A similar weak decrease of the
magnetic moments was obtained around the hard-core
and saddle configurations with both the PWSCF LDA
and the SIESTA LDA. Other DFT calculations in Fe have
also shown a reduction of the magnetic moment using the
LDA approximation [24]. These reversed trends between
the GGA and LDA approximations are compatible with
the effect of the exchange–correlation functional on the
change in total magnetic moment due to stacking faults
[46]. Indeed, it was shown using both PWSCF and SIESTA
that the average magnetic moment due to stacking faults in
the {110} plane is enhanced with respect to the bulk in the
GGA approximation, while it is reduced in the LDA
approximation.

The easy-core, hard-core and saddle-point configura-
tions were found to exhibit similar behaviors, suggesting
that magnetism is not at the origin of the low energy of
the hard-core configuration. On the other hand, the two
exchange–correlation functionals predict opposite changes,
with respectively a small increase and a small decrease of
the magnetic moment with respect to the bulk. The cou-
pling with magnetism may therefore explain part of the
scatter observed in Fe between the LDA and GGA results
in Table 1.

5. Conclusion

The work presented in this paper providesa quantitative
description of the most relevant cross-sections in the two-
dimensional Peierls potential of the h111i screw disloca-
tion in bcc Fe and W from first-principles calculations.
All DFT approaches yield a single-hump Peierls barrier
with no intermediate metastable core configuration in Fe.
In Fe, the Peierls barrier amounts to 40 ± 5 meV/b with

a plane-wave approach, higher than previous estimate
based on a localized basis approximation. As the disloca-
tion passes over the energy barrier between two adjacent
easy-core configurations, its position in the (111) plane
exhibits a nearly straight trajectory. The energy landscape
between the hard-core and saddle positions is very flat.
The DFT results do not preclude the hard-core as a poten-
tial saddle point in Fe and the dislocation may have com-
parable probabilities to pass anywhere in between the
hard core and the straight path between easy cores. The
unexpected low energy of the hard core suggests that this
configuration has to be regarded as essential for dislocation
motion in Fe. On the other hand, the split core exhibits a
high energy in DFT calculations (about 79 meV/b).

The Mendelev and Gordon EAM potentials for Fe give
the correct non-degenerate core structure but suffer from
three main inadequacies: the Peierls barrier is low (about
12 meV/b); the hard-core structure is a high-energy maxi-
mum of the Peierls potential (110–180 meV/b); and the dis-
location trajectory is not straight but passes through the
split-core configuration, resulting in a double-humped Pei-
erls barrier. The trajectory of the dislocation center when
passing over the Peierls barrier deviates significantly from
the DFT straight line, with a midway intermediate position
that corresponds to the split-core configuration. Admit-
tedly the dip of the camel hump obtained with the Gordon
potential is less pronounced than with the Mendelev poten-
tial, but regarding the height of the Peierls barrier and the
energy of the hard-core structure, these two empirical
potentials show similar behaviors. In comparison, the
MCM2011 potential for Fe is clearly in more satisfactory
agreement with the DFT results, with a single-hump Peierls
barrier of about 28 meV/b and an energy of the hard-core
configuration of about 63 meV/b, although it is a maxi-
mum of the Peierls potential, at variance with DFT.

Comparison with the DFT Peierls potential of another
bcc metal, W, shows two common features: the single-
hump shape of the Peierls barrier, which amounts to
90 ± 5 meV/b, and the large energy of the split core. On
the other hand, in W the energy of the hard-core configu-
ration is about twice the Peierls energy. The low energy
of the hard core is thus likely to be specific to Fe.

Comparable changes of the local magnetic moment were
found around the easy-core, hard-core and saddle-point
configurations in Fe. Therefore, magnetism alone does
not explain directly the low energy of the hard-core config-
uration in Fe. Some discrepancies were evidenced between
LDA and GGA on the local magnetic moment around the
dislocation core, with respectively a small increase and a
small decrease relative to the bulk.

The present DFT work shows that care must be taken
when modeling the two-dimensional Peierls potential with
a parameterized sinusoidal model, as proposed by Edaga-
wa et al. [40] and recently employed by Gröger et al. to
analyze BOP calculations [67]. Indeed, with this representa-
tion, if the hard core is a maximum of the Peierls potential,
the dislocation path between easy cores passes necessarily
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near atomic row positions. These constraints are not com-
patible with the present results in Fe, where the hard core
has a low relative energy and the dislocation path runs
approximately straight between easy cores. Qualitatively
in Fe, the topology of the DFT Peierls potential is reversed
compared to the simple two-dimensional sinusoidal model:
the location of saddle point and maximum are indeed
inverted or nearly inverted with unexpected flat regions.
Higher-order harmonics should therefore be included in
the two-dimensional Peierls potential representation to
reflect the DFT results, including in W where the split core
has also a high energy [39].
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Appendix A. Saddle-point finding methods

Two methods for finding transition pathways and saddle
points are compared using the PWSCF code: the reaction
coordinate method (or drag method) [54] and the NEB
method [55]. Within the reaction coordinate method, the
Cartesian coordinates of all atoms in the system are used
to define a reaction coordinate constraining the system to
relax in the hyperplane perpendicular to the vector joining
the initial and final states. The transition pathway is con-
structed starting from a discrete set of configurations inter-
polating between initial and final configurations, and
carrying out a constrained minimization over the remain-
ing degrees of freedom of the system. Within the NEB
method, a chain of images is generated between initial
and final states, with intermediate images connected
between first neighbors with springs, and a global relaxa-
tion is performed. Relaxation was stopped when the forces
perpendicular to the path are smaller than 0.02 eV/Å. The
NEB method has already been used to calculate Peierls
barriers using first-principles methods, e.g. in silicon [62].
In both methods the results were plotted as function of
the reaction coordinate of the drag method, denoted n

hereinafter. It is defined as the projection of the vector join-
ing the current state to the initial state on the vector joining
the final state to the initial state, normalized so as to vary
between 0 and 1 along the reaction pathway. The Peierls
barriers obtained with the reaction coordinate and the
NEB methods are identical to within an uncertainty of
about 5 meV/b, as shown in Fig. A.12.

Appendix B. Determination of the dislocation-core position

B.1. Cost-function method

We define a cost function within the periodic distribu-
tion of dislocation dipoles based on the Volterra field to
determine the centers (x1, y1) and (x2, y2) of the two dislo-
cations constituting the dipole:

Cðx1; y1; x2; y2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

dzi � delzi ðx1; y1; x2; y2Þ
� �2

s

: ðB:1Þ

In this expression, delzi ðx1; y1; x2; y2Þ is the anisotropic elastic
displacement field of atom i induced by the dislocation di-
pole positioned at (x1, y1) and (x2, y2) and by its periodic
images along the x and y directions, and dzi is the displace-
ment field as obtained in the atomistic simulations. The
two dislocation cores are assumed to have simultaneous
and equivalent displacements, i.e. (x2, y2) is set to

x1 þ L
2
;�y1

� �

, where L is the length of the simulation cell

along the glide plane L ¼ n

ffiffi

2
3

q

a0

� �

. In the calculation of

the energy barrier when going from E1 to E2 (Fig. 2), the
relative displacements of the five most displaced h111i
atomic columns [61] are compared with the anisotropic
elastic displacement field through the minimization of the
cost function defined in Eq. (B.1) with respect to (x1, y1).

B.2. Disregistry function method

The disregistry corresponds to the displacement differ-
ence between the planes just above and below the disloca-
tion glide plane. When fitting the disregistry, one has to
take care of the way it is extracted from the atomistic cal-
culations. Because of the atomic nature of matter, displace-
ments can only be defined on discrete points. The upper
and lower planes used to define the disregistry are located
at a distance h

2
of the dislocation glide plane, where

h ¼ a0
ffiffi

2
p

2
is the distance between {110} planes

(Fig. B.13). One also needs to consider the offset e ¼ a0
1
ffiffi

6
p

in the h211i glide direction corresponding to the distance
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in the glide direction between two neighboring h111i
atomic columns belonging to the upper and lower planes
(Fig. B.13). We therefore define the disregistry as:

Duatz ðxÞ ¼ uat;þz xþ e

2

� �

� uat;�z x� e

2

� �

; ðB:2Þ

where uat;þz ðxÞ and uat;�z ðxÞ are displacements calculated
respectively in the upper and lower planes.

To obtain a simple expression of the disregistry, we
assume isotropic elasticity in the following. The displace-
ment field of the screw dislocation along the Burgers vector
direction is simply given by uz ¼ b h

2p
. The angles of the two

upper and lower atomic planes with respect to the cut plane
are represented in Fig. B.14. For the dislocation D1 located
in (x1, y1), these angles are defined by:

hþ1 ðxÞ ¼ þ p

2
� arctan

x� x1
h
2
� y1

� �

þ arctan
4y1
L

� �

;

h�1 ðxÞ ¼ � p

2
þ arctan

x� x1
h
2
þ y1

� �

þ arctan
4y1
L

� �

;

ðB:3Þ

where y1 = 0 for the dislocation lying in its glide plane, i.e.
at equal distance from the two neighboring {110} planes.
The disregistry induced by this dislocation is given by:

Duz;1ðxÞ ¼ � b

2p
hþi xþ e

2

� �

� h�i x� e

2

� �h i

¼ � b

2
þ b

2p
arctan

2x� 2x1 þ e

h� 2y1

� �	

þ arctan
2x� 2x1 � e

hþ 2y1

� �


: ðB:4Þ

It should be noted that the angle gap in Eq. (B.3),
h0 ¼ arctan 4y1

L

� �

, comes from the angle of inclination be-
tween the cut plane and the {110} glide plane. Thus it van-
ishes within the differences hþ1 � h�1 and this angle gap has
no effect on the disregistry. Interestingly one obtains the
same disregistry as predicted by the Peierls–Nabarro mod-
el, when the dislocation is exactly located in its glide plane
(y1 = 0), and when there is no offset in the h211i glide direc-
tion between atomic columns belonging to the upper and
lower planes (e = 0). Then the quantity h

2
corresponds to

the dislocation spreading in the Peierls–Nabarro model.
Assuming that the distance in the glide plane between

the two dislocations constituting the dipole is constant,
the dislocation D2 is located in x1 þ L

2
;�y1

� �

(Fig. B.14).
It induces a disregistry given by:

Duz;2ðxÞ ¼ þ b

2
� b

2p
arctan

2x� 2x1 � Lþ e

hþ 2y1

� �	

þ arctan
2x� 2x1 � L� e

h� 2y1

� �


: ðB:5Þ

Finally, we take into account the fact that we have a peri-
odic array of dislocation dipoles with period L along the x
direction. The resulting disregistry function becomes:

DuzðxÞ ¼
X

þ1

n¼�1
½Duz;1ðx� nLÞ þ Duz;2ðx� nLÞ�: ðB:6Þ

We end up with an expression of the disregistry function
with two fitting parameters, x1 and y1, i.e. the dislocation
core position in the (111) plane.

The resulting adjustment based on Eq. (B.6) halfway
along the path is shown in Fig. B.15 using DFT atomic
positions. The fitting expression accurately reproduces the
disregistry computed from DFT calculations in the direc-
tion of the Burgers vector.
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