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Abstract: The space D} of distributions having their wavefront sets in a closed
cone I has become important in physics because of its role in the formulation
of quantum field theory in curved spacetime. In this paper, the topological and
bornological properties of D and its dual £/ are investigated. It is found that
D’ is a nuclear, semi-reflexive and semi-Montel complete normal space of distri-
butions. Its strong dual £’ is a nuclear, barrelled and (ultra)bornological normal
space of distributions which, however, is not even sequentially complete. Con-
crete rules are given to determine whether a distribution belongs to D7, whether
a sequence converges in D7 and whether a set of distributions is bounded in D/

1. Introduction

Standard quantum field theory uses Feynman diagrams in the momentum space.
However, this framework is not suitable for quantum field theory in arbitrary
spacetimes because of the absence of translation invariance. In 1992, Radzikowski
[6970) showed the wavefront set of distributions to be a key concept to describe
quantum fields in curved spacetime. This idea was developed into a rigorous
renormalized scalar field theory in curved spacetime by Brunetti and Freden-
hagen [8], followed by Hollands and Wald [42]. This approach was rapidly ex-
tended to deal with Dirac fields [54\40,T6LT7L75.73], gauge fields [4126127] and
even the quantization of gravitation [9].

This tremendous progress was made possible by a complete reformulation of
quantum field theory, where the wavefront set of distributions plays a central
role, for example to determine the algebra of microcausal functionals, to define
a spectral condition for time-ordered products and quantum states and to give
a rigorous description of renormalization.

In other words, the natural space where quantum field theory takes place is
not the space of distributions D’, but the space D’ of distributions having their
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wavefront set in a specified closed cone I'. This space and its simplest properties
were described by Hoérmander in 1971 [43]. Since D} is now a crucial tool of
quantum field theory, it is important to investigate its topological and functional
properties. For example, renormalized time-ordered products are determined as
an extension of a distribution to the thin diagonal. Since this extension is defined
as the limit of a sequence, we need simple criteria to determine the convergence of
a sequence in D). The ambiguity of renormalization is determined, among other
things, by the way this distribution varies under scaling. Scaled distributions are
defined with respect to a bounded set in D’-. Thus, we need simple tests to know
when a set of distributions is bounded. The purpose of this paper is to provide
tools to answer these questions in a simple way.

The wavefront set of distributions plays also a key role in microlocal anal-
ysis, to determine whether a distribution can be pulled back, restricted to a
submanifold or multiplied by another distribution [44] Chapter 8]. Therefore,
the wavefront set has become a standard subject in textbooks of distribution
theory and microlocal analysis [44120135,131[72128][80,B181221[86]. However, to
the best of our knowledge, no detailed study was published on the functional
properties of Df-.

Many properties of D} will be deduced from properties of its dual. Thus, we
shall first calculate the dual of D)., denoted by &, which turns out to be the
space of compactly supported distributions having their wavefront set included
in an open cone A which is the complement of I" up to a change of sign. Such a
space &'y is used in quantum field theory to define microcausal functionals [26].

We now summarize our main results. Although they are both nuclear and nor-
mal spaces of distributions, D}. and &’y have very contrasted properties; (i) D is
semi-reflexive and complete while &) is not even sequentially complete; (ii) &) is
barrelled, and ultrabornological, while D’ is neither barrelled nor bornological.
For applications, the most significant property of D/ is to be semi-Montel. In-
deed, two steps involving D). are particularly important in the renormalization
process described by Brunetti and Fredenhagen [8]. The first step is a control
of the divergence of the relevant distributions near the diagonal: there must be
a real number s such that the family {A\"%ux}o<a<1 is a bounded set of dis-
tributions, where u) is a scaled distribution. This proof is facilitated by our
determination of bounded sets:

Proposition 1 A set B of distributions in D is bounded if and only if, for
every v € £, there is a constant C,, such that |(u,v)| < C, for all uw € B. Such
a weakly bounded set is also strongly bounded and equicontinuous. Moreover, the
closed bounded sets of D' are compact, complete and metrizable.

The second step is the proof that the extension of a distribution can be defined
as the limit of a sequence of distributions in D’.. For this we derive the following
convergence test:

Proposition 2 If u; is a sequence of elements of D} such that, for any v €
&'y, the sequence (u;,v) converges in C to a number \,, then u; converges to a
distribution w in D} and (u,v) = X\, for allv € &Y.

We now describe the organization of the paper. After this introduction, we
determine a pairing between D} and £/ and we show that this pairing is com-
patible with duality. Then, we prove that D/ is a normal space of distributions.



: : /
Functional properties of DT, 3

The next section investigates several topologies on £/ and shows their equiva-
lence. Then, the nuclear and bornological properties of D7 and £’; are discussed.
Bornology enables us to prove that D’ is complete and it is relevant to the prob-
lem of quantum field theory on curved spacetime because some isomorphisms
of the space of sections of a vector bundle over a manifold are stronger in the
bornological setting than in the topological one (see section[]). These results are
put together to determine the main functional properties of D} and its dual.
Finally, a counter-example is constructed to show that &£ is not sequentially
complete. This will imply that D} and its dual do not enjoy all the nice prop-
erties of D'.

2. The dual of D}

In this section, we review what is known about the topology of D} and we
describe the functional analytic tools (duality pairing and normal spaces of dis-
tributions) that enable us to investigate the dual of D}

2.1. What is known about D}.. Let us fix the notation. Let 2 be an open set
in R™, we denote by T*f2 the cotangent bundle over 2, by UT*2 = {(z;k) €
T*2;|k| = 1} (where |k| is the standard Euclidian norm on R™) the sphere
bundle over 2 and by 7*2 = T*2\{(x;0) ; = € 2} the cotangent bundle without
the zero section. We say that a subset I" of 7*§2 is a cone if (x; \k) € I" whenever
(z;k) € I' and X > 0 and such a cone is said to be closed if it is closed in 7 £2.
For any closed cone I', Hérmander defined [43, p. 125] the space D} to be the
set of distributions in D’({2) having their wavefront set in I". He also described
what he called a pseudo-topology on D', which means that he defined a concept
of convergence in D}- but not a topology (as a family of open sets). His definition
was equivalent to the following one [44] p. 262]: a sequence u; € D} converges
to u € D if

(i) The sequence of numbers (u;, f) converges to (u, f) in the ground field K
(i.e. R or C) for all f € D(2).

(ii) If V is a closed cone in R™ and x is an element of D({2) that satisfy (supp x x
V)N T =0, then sup,cy (1 + |k))V|u;x(k) — ax (k)| — 0 for all integers N,

where a hat over a distribution (e.g. @) denotes its Fourier transform (the
Fourier transform of f € D(£2) being defined by f(k) = [, e™** f(x)dz).

Hormander then showed that D(£2) is dense in D». More precisely, for every
u € D). there is a sequence of functions u; € D({2) such that u; converges to u
in the above sense [44] p. 262]. This concept of convergence is compatible with
different topologies. The topology of D used in the literature [3TL1TL20,34135]
1], which is usually called the Hérmander topology [881L79]), is that of a locally
convex topological vector space defined by the following seminorms:

(i) ps(u) = [(u, f)] for all f € D(£2).
(i) ||ulln,v,y = supgey (1 + |k)V|@x(k)], for all integers N, all closed cones V/
and all y € D(£2) such that (suppx x V)N I = 0.

We immediately observe that D7, is a Hausdorff locally convex space because u =
0 if p;(u) = 0 for all its seminorms p; [46 p. 96]. Indeed, if ps(u) = |(u, f)] =0
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for all f € D(£2), then u = 0. When we speak of “all the seminorms” of a locally
convex space F, we mean all the seminorms of a family of seminorms defining
the topology of E [83], p. 63].

2.2. Duality pairing. Mackey’s duality theory [B8[575960] is a powerful tech-
nique to investigate the topological properties of locally convex spaces [3L[46].
The first step of this method is to find a duality pairing between two spaces.

Let us take the example of the duality pairing between D’(2) and D({2).
Any test function v € D(£2) can be paired to any f € D(f2) by (u, f) =
S u( x)dz. The density of D(£2) in D'({2) implies that this pairing can be
uniquely extended to a pairing between D’(£2) and D(2), also denoted by (u, f),
that can be written

1 e ~
(0.1) = G [ TR F(—H)k )

where the function ¢ € D({2) is equal to 1 on a compact neighborhood of the
support of f. Indeed, (u, f) = (pu, f) [78, p. 90] and pu has a Fourier transform
because it is a compactly supported distribution [44, p. 165]. This pairing is
compatible with duality, in the sense that any element « in the topological dual
of D(£2) can be written «(f) = (u, f) for one element u of D’'(§2), by definition
of the space of distributions.

We would like to find a similar pairing between D} and another space to be
determined Grigis and Sjostrand [31), p. 80] showed that the pairing (u,v) =
Jou x)dz between C* (§2) and D(§2) extends uniquely to the pairing defined
by eq (EI]) between D’ and every space EL of compactly supported distributions
whose wavefront set is contained in 5, where = is any closed cone such that
I"'nZ =0, where I'" = {(z;k) € T*Q2; (x;—k) € I'} (see also [13 p. 512] for a
similar result).

We need to slightly extend their definition by pairing D} with the space &'y,
where A is now the open cone A = (I')°. Note that this space is the union of
the ones considered by Grigis and Sjostrand. The next lemma does not contain
more information than their result, but, for the reader’s convenience, we first
show that this extended pairing is well defined.

Lemma 3 If I is a closed cone in T*2 and A = (I'")® = {(x; k) € T*2;
I'}, then the following pairing between Dy and £y = {v € £'(§2); WF(
is well defined:

(z,—k) ¢
v) C A}

1

{u, v} = (2m)™

[ @i,
RTL

where u € D, v € &) and ¢ is any function in D(§2) equal to 1 on a compact
neighborhood of the support of v. This pairing is separating and, for anyv € &,
the map A : D — K defined by A(u) = (u, v) is continuous.

Proof. We first consider the case where I is neither empty nor 7*2. A distri-
bution v € & is compactly supported and its wavefront set is a closed cone
contained in A, which implies WF(v) N I = . The product of distributions
uv is then a well- deﬁned distribution by H'(')rmander’s theorem [44] p. 267]. We
estimate now (u,v " [up(k k)dk.
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By a classical construction [22] p. 61], there is a finite set of non-negative
smooth functions v, such that > y w?- = 1 on a compact neighborhood K of
the support of v and there are closed cones V,; and V;; that satisfy the three
conditions: (i) Va,;N(=Vi;) = 0, (i) suppy; x V,5;NI" = @ and (iii) supp ¢, x V,5;N
WEF(v) = 0. As a consequence of these conditions, we have I'| g C U; (supp); x
Vij) and WF(v) C Uj (suppyp; x Vij). If we choose ¢ = 37, Y7 we can write
(u,v) = X, I, where I; = (2m) " [ uh; (k)vib; (—k)dk.

Following again Eskin [22] p. 62], we can define homogeneous functions of
degree zero a;; and ; on R"™, which are smooth except at the origin, measurable,
non-negative and bounded by 1 on R" and such that supp «; and supp 3; are
closed cones satisfying the three conditions (i), (ii) and (iii) stated above, with
a; =lonV,; and B; = Lon V,;. Then we insert 1 = (a;+(1—a;)) (8;+(1—8;))
in the integral defining I; and we obtain I; = I; + Iz; + I3; + 145, where

L, = (20" / gy (—R)dgu(—k) B, (k) b50(k) dk.

Iy = (27)~" / o (—k)Pyu(—k) (1= B;(k)) o (k) dk,

Iy = (2m)~" / (1= ay(=R)dgul=k) B (k)b (k) d,

Iy = @) [ (1= ag(-R)Tu(-k) (1 = B5(0)dy(k)

We first notice that I;; = 0 because (—supp a;) Nsupp 3; = 0. We estimate ;.
The function £; was built so that (1 — ;) = 0 on V,; and supp¢; x supp (1 —
B;) NWF(v) = (0. Then, for any integer N,

(1= B(k)yo(k)| < vl v, 1+ KDY,

where Ug; = supp (1 — ;). Similarly

(1= a; (k) yulk)] < [[ullagva, v, (L + k)M, (2)
where U,; = supp (1 — ;). Thus, for N + M > n,

[ Laj | < [l a,00; 0 101 0 0 T T
3 ¥ Bi Y3

)

where I = (27)~" Jpn (L + |k|)~Ndk.
For Is; we use the fact that, 1;v being a compactly supported distribution,

there is an integer m and a constant C' such that |¢;v(k)| < C(1 + |k|)™ [44]
p. 181]. When this estimate is combined with eq. [2)) we obtain for M > n + m,

[Zs;] < ||wl|a1,0; 0, CIY ™,

For the integral I; we proceed differently because we want to recover a seminorm
of Df.. If we define f;(k) = a;(—k)(1 — B;(k))h;v(k), then

I = (2m)™" / biu(—k) f;(k)dk.
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We call fast decreasing a function f(k) such that, for every integer N, |f(k)| <
Cn(1 4+ |k|)=N for some constant Cy. Note that our fast decreasing functions

are different from Schwartz rapidly decreasing functions. The function fj (k) is
fast decreasing because a; and J3; are bounded by 1, ¢;v(k) is fast decreasing
outside the wavefront set of v and (1 — 3;(k)) cancels ¢;v(k) on this wavefront

set. The function fj is also measurable because it is the product of measurable
functions. Thus, by a standard result in the spirit of [28, p. 145], its inverse
Fourier transform f; exists and is smooth. We can now rewrite Io; = (¢;u, f;) =
(u,; f;), which is well defined because 1; f; is smooth and compactly supported.
Finally |I2;] < py, s, (u), where py, s, (u) = |(u, v, f;)|, and we obtain

)] £ D7 (puys; () + lllag.0 0, T

J

10,y 5 101 0,02, T ). (3)

Thus, (u,v) is well defined because all the terms in the right hand side are finite
and the sum is over a finite number of j. Note that py, s, (u) and |[ul|r,v,; v,
are seminorms of D, because ¢; f; € D(£2) and, by construction, U,; is a closed
cone and supp ¢); X Uy; N I" = (. Equation (3) shows that, for any v € &/, the
map u — (u, v) is continuous.

The second case is I' = T*§2 and A = (), so that D}, = D'(£2) and £, = D(12).
The seminorm |(u,v)| = p,(u) is then a seminorm of D). since v € D(S2). The
last case is when I' = () and A = T*2, so that D}, = C°°(2) and &, = £'(2). If
we use the fact that the usual topology of C*°(£2) is equivalent with the topology
defined by || - ||n,v,x for all closed cones V and all x € D(£2) [6], then we see
that the elements of £'(£2) are continuous maps from C*°(2) to K [78] p. 89].

Finally, the pairing is separating because, if (u,v) = 0 for all v € &/, then
(u, f) = 0 for all f € D(12) because D(£2) C & and a distribution v which is
zero on D(£2) is the zero distribution. Similarly, v = 0 if (u,v) = 0 for all u € D)
because D(£2) C D

To simplify the discussion, we used Eskin’s a; and 3; functions to build maps
from v € &) to f; € C*°(2). This can be improved by defining maps from &/
to the Schwartz space S of rapidly decreasing functions (see section [).

2.3. Normal space of distributions. The usual spaces of distribution theory (e.g.
D,S,C>, D, S8, &), are normal spaces of distributions [(7, p. 10], which enjoy
useful properties with respect to duality. They are defined as follows:

Definition 4 A Hausdorff locally convexr space E is said to be a normal space
of distributions if there are continuous injective linear maps i : D(2) — E and
j: E — D), where D'(£2) is equipped with its strong topology, such that:
(i) The image of i is dense in E, (i) for any f and g in D(£2) (joi(f),g) =
Jo f(@)g(x)dz [46, p. 319].

To transform D} into a normal space of distributions we need to refine its

topology. In the case of D). condition (ii) is obviously satisfied because the
injections ¢ and j are the identity. The fact that j is a continuous injection
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means that the topology of D must be finer than the topology induced on
it by the strong topology of D'(£2) [83, p. 302]. Therefore, we now equip D/
with the topology defined by the seminorms pp(u) = sup;c g [(u, f)| of uniform
convergence on the bounded sets B of D({2) (instead of only the seminorms
ps = |{u, f)|) and we keep the seminorms ||u||n,v,, defined in section Il Since
pp are the seminorms of D’(£2), D has more seminorms than D’((2), the identity
is a continuous injection and its topology is finer than that of D’(2) [46, p. 98].
We call this topology the normal topology of D', while the usual topology will be
called the Hormander topology of D). Note that D). is Hausdorff for the normal
topology because it is Hausdorff for the coarser Hormander topology. It remains
to show that

Lemma 5 The injection of D(§2) in D} is continuous.

Proof. We have to prove that the identity map D(f2) — D} is continuous.
Because of the inductive limit topology of D({2), we must show that, for any
compact subset K of {2, the map D(K) — D/ is continuous for the topology
of D(K) [18, p. 66]. Recall that D(K) is the set of elements of D(§2) whose
support is contained in K. Its topology is defined by the seminorms mp, x(f) =
SUD| | < SUPe K |0° f(2)].

Continuity is proved by showing that all the seminorms of D). are bounded
by seminorms of D(K) [46} p. 98]. Let B be a bounded set of D({2) and pp(f) =
supyep [(f, 9)| with (f,g) = [, f(x)g(x)dz. The function f(z) is bounded by
7o,k (f) and all the g(x) in B are bounded by a common number My because B
is bounded [78, p. 69]. Thus, pp(f) < |K|Momo k(f), where |K| is the volume
of K.

We still must estimate the seminorms || f||n,v,y = supgey (1 + |k|)N|f)\<(k)|

By using (1 + |k|) < (1 + |k[?), with 8 = (1 + v/2)/2, we find
(1+ DN | Fx (k)| < ﬂN](l + IkIQ)N/e“”f(:c)x(w)dz’
<oV [ et - AN (s

We expand (1 — A)N = 32N (M) (—A)" and we estimate each |AY(fy)(z)| <
niﬁgNﬁK(fx). This gives us (1 + [N [fx (k)| < ((1 + n)ﬂ)N|K|7r2N7K(fx). To
calculate mon k(fx) we notice that, for any multi-index « such that |a| < m,

we have

oerol = ¥ (§) 101 = X (5 )rmrc Dm0

BLa BLla
< 2" ik ()7, i (X)- (4)
Thus,
(1 + KDY Fx ()] < (4(n + 1)B8)N K |man, x () T2n,x (f), (5)

with a bound independent of k and || f||n,v.y < Cman,x(f), where C = (4(n +
1)B)N|K|man i (x)- The proof that the identity is continuous is complete.
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It is now clear that D} with its normal topology is a normal space of distri-
bution because D({2) is dense in D (since sequential convergence for the weak
and strong topologies of D'(2) are equivalent [78, p. 70] and from Hérmander’s
density result [44] p. 262]). From the general properties of normal spaces of
distributions we obtain:

Proposition 6 If we (temporarily) denote by Dr the dual of D}, then

(i) The restriction map induces an injection Dp — D' (§2) [46], p. 259]

(i1) If Dr is equipped with the strong topology B(Dr,D}.), then the injection
Dr — D'(Q2) is continuous [46, p. 259]

(1ii) If Dr is equipped with the topology k(Dr,Dy) of uniform convergence on
the balanced, convex, compact sets for the normal topology of D). (also called
Arens topology [2]), then Dr is a normal space of distributions [16], p. 259]
and the dual of Dr is D [46], p. 235]

(iv) A distribution v € D'(£2) belongs to Dr if and only if it is continuous on
D(2) for the topology induced by Dy [46, p. 319]

(v) D(£2) is dense in Dr equipped with any topology compatible with dual-
ity [77, p. 10]

We are now ready to prove

Proposition 7 The dual of D for its normal topology is £;.

Proof. We already proved that &, < Dp because, by lemma [8 any v € &)
defines a continuous map D — K (for the Hérmander and thus for the normal
topology) and the injectivity is obvious by density of D(£2) in D). It remains to
show that any continuous linear map A : D — K defines a distribution in &.
By item (i) of proposition [l we know that X is a distribution. We first show that
this distribution is compactly supported, then that its wavefront set is included
in A.

Since the map A is continuous for the normal topology of D/, there exists a
finite number of seminorms p; and a constant M such that |A(u)| < M sup, p;(u)
for all w in D). [46, p. 98]. In other words, there is a bounded set B in D({2) (one
is enough because sup; pp, < pp where B = U;B;), and there are r integers IV;,
r functions y; in D(£2) and r closed cones V; such that supp x; x V; N I" = {) and

Aw)] < Msup(pp(w), [[ull vy vixas s llullv,vioxe)-

We first show that A is a compactly supported distribution. Indeed, B is a
bounded set of D({?) if and only if there is a compact subset K of {2 and constants
M,, such that all ¢ € B are supported on K and 7, x(9) < M, [(8 p. 68].
According to the definition of the support of a distribution [44] p. 42], (u,g) =0
if suppu Nsuppg = 0. Thus pp(u) = sup,cp|(u,g)| = 0 if suppunN K = (.
Similarly, [|u||n,,vix; = 0 if suppu N supp x; = 0. Finally, for any f € D(£2)
whose support does not meet K, = U;supp x; U K, we have |A(f)| = 0. This
implies that the support of A is included in the compact set K [44] p. 42].

Then we show that WF(X) C Ay = UM supp x; x (—V;). We fix an integer
N, a function ¢ € D({2) and a closed cone W such that suppy) x W N Ay = 0
and we define fi, = (1+ |k|)Ver, where ej(z) = e™**. Hence,

M v,we = sup (1+ [K)V [XP(k)] = sup [A(fi)l,
keW keWw
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where we used the fact that the Fourier transform of the compactly supported
distribution A\ is A(vey) [44] p. 165]. Since, by continuity, |A(fx)| < M sup; p;(fx),
where po = pp and p; = || - ||n,,v; . » it suffices to bound each supycy pi( fx)-

We first estimate pg(fi). Since B is a bounded set in D({2), the support of
all g € B is contained in a common compact set K [78] p. 88] and

[(frs )] = (L [EDN | (er, g)] = (1 + [K])N[dg(k)]
< (4(n+ 1)B)N |K|man, x (9)m2n k (),

where we used eq. (Bl). Moreover, all the seminorms of elements of B are bounded [78|
p. 88]. Thus, there is a number My such that mon x(g) < Moy for all g € B and
we obtain |(fi,g)| < (88)N|K|man k() May. Since this bound is independent
of k, we obtain our first bound supycgn pa(fi) < 0o.

Consider now the second type of seminorms and calculate p; (fx) = || fx!|N;, Vi xi -
We have two cases:

(i) If (supp ¥ Nsupp x;) = 0, then sup,cr» pi(fr) = 0 and we are done.

(ii) If supp ¢ Nsupp x; # 0, we want to estimate

[ fullvvios = sup (L4 [a)™ [ frxi(g)] = sup (1 + [a))™ (1 + k)™ |ertoxi(a)].
qeV; qeV;

We have e?zb\xi(q) = (exeq, VXi) = Jx\z(k + q). Since we chose W such that
(=V;) N W = (), by compactness of the intersection of V; and W with the unit
sphere, there is a 1 > ¢ > 0 such that |k — ¢|/|k| > ¢ and |q — k|/|q| > ¢ for all
ke W and q € —V;. We thus deduce:

frllvevin < ¢V Nosup (14 [k + g) YNy (k + q).

o q€eV;

The function 1y, is smooth and compactly supported. We can use eq. ({) again
to show that the right hand side of this inequality is bounded uniformly in k.

This concludes the proof of WF(A) C Ap. Finally, suppx; x ;NI =0
implies supp x; X (=V;) C A and Ay C A. Thus, WF(A) C A and since A is
compactly supported we have A € &.

In the following, we shall use &£/ (instead of Dr) to denote the dual of Df.
Note that a similar proof shows that £’ is the topological dual of D). equipped
with the Hérmander topology. Indeed, lemma [3 shows in fact that the pairing is
continuous for the Hérmander topology because py, f, in Eq. @) is a seminorm of
the weak topology of D'(£2), and the proof of the reverse inclusion just requires
to replace pp by a finite set of py,.

3. Topologies on &)

Our purpose in this section is to show that, if (£/,8) denotes the space &/
equipped with the strong 8(€/;, D) topology, then the topological dual of (£/;, 8)
is D. This implies immediately that D} is semi-reflexive and &’; is barrelled.
However, we shall not work directly with the strong topology G(E/, D). It will
be convenient (especially to show that &£ is nuclear and D/ is complete) to
define a topology on &y as an inductive limit. Then, we prove that the induc-
tive topology is compatible with duality and we conclude by showing that this
inductive topology is equivalent to the strong topology.
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3.1. Inductive limit topology on E',. We want to define a topology on &) as the
topological inductive limit of some topological spaces E;. We shall first determine
the vector spaces Ey, then we equip them with a topology.

Let us express &'y as the union of increasing spaces Ey. Inspired by the work of
Brunetti and coll. [7], we take E; to be a set of distributions whose wavefront set
is contained in some closed cone, that we denote by A;. To determine A, we notice
that A is an open set and the projection m; of a product space into each of its
coordinate spaces is open [51], p. 90]. Thus, 71 (A) is an open subset of 2. On the
other hand, the singular support of v € &' (i.e. X(v) = m (WF(v)) [44] p. 254)) is
closed [28|, p. 108]. It is even compact because it is a closed subset of the support
of v, which is compact. Hence, if we exhaust 71 (A) by an increasing sequence of
compact sets Ky we know that, for any v € &), X(v) will be contained in K,
for ¢ large enough (because X'(v) C m1(A) implies that the distance between the
compact set X'(v) and the closed set 1 (A)€ is strictly positive). Let us define Ky
to be the set of points that are at a distance smaller than ¢ from the origin and
at a distance larger than 1/¢ from the boundary of {2 and from the boundary of
m(A): Kp={x € 2;|z| <L,d(x,2°) > 1/¢,d(x,0m1(A)) > 1/L}, where Om1(A)
is the boundary of 7 (A) and d(x, A) = inf{|x—y|,y € A} is the distance between
a point x and a subset A of 2. If A is empty, we consider that d(z, A) = +o0.
The sets K, are obviously compact (they are intersections of closed sets with a
compact ball), K, C K,q1 and m (A) = UR, K. Indeed, £2° is closed because 2
is open and 97y (A) is a closed set disjoint from 7 (A) because 71 (A) is open [51]
p. 46]. Thus, any point of 7 (A4) is at a finite distance €; from §2°, €5 from 07 (A)
and M from zero. Then x € K, for all integers ¢ greater than 1/e1, 1/e2 and M.

We can now build the closed cones Ay, that will be subsets of 7 (K,) at a
finite distance from I": Ay = {(2;k) € T*Q;2 € Ky, d((z;k/|k]), ") > 1/¢}.
This set is clearly a cone because it is defined in terms of k/|k| and it is closed
in 7" because it is the intersection of two close sets: 71 '(K;) and {(z;k) €
T*02; d((z; k/|k|), ") > 1/}. The first set is closed because K is compact and
m is continuous and the second set is closed because the function (z;k) —
d((x; k/|k[),I") is continuous on 0.

For some proofs, it will be useful for the support of the distributions to
be contained in a fixed compact set. Therefore, we also consider an increasing
sequence of compact sets {L}sen exhausting 2 and such that L, is a compact
neighborhood of KyUL;_1 (Lo = 0). Finally, we define Fy, = Sjle (L¢) to be the set
of distributions in &’(§2) whose support is contained in L, and whose wavefront
set is contained in Ay. Note that E, will be equipped with the topology induced
by DIAZ as a closed subset (it is closed because, by definition of the support of a
distribution, Ey is the intersection of the kernel of all continuous maps u +— (u, ¢)
where supp ¢ C L§).

This is an increasing sequence of spaces exhausting &';. It is increasing because
Ly C Ly and Ay C Agyq imply &) (L) C Elel(LgH). To show that it is
exhausting, consider any v € £/;. Since the support of v is compact, it is contained
in some Ly, and then in L, for all £ > {y. To show that WF(v) C A, for
some {1, consider the set S, = {(x;k);|k| = 1 and (x;k) € WF(v)}. Tt is
compact because it is closed and bounded (the support of v being compact).
Since WF(v) € A and ANI" = (), we have S, N I = (). There is a number
§ > 0 such that d((z;k),I") > 6 for all (z;k) € S, because S, is compact and
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I"" is closed. Thus, S, C Ay for £ > 1/4. Since both S, and A are cones we have
WF(v) C Ay. Finally, v € E; for all £ larger than ¢y and 1/0.
We obtained the first part of

Lemma 8 If A is an open cone in T*(2, then

&y = G Ey,
=1

where Ey = &) (Lg) is the set of distributions in £'(§2) with a wavefront set
contained in Ap and a support contained in Ly. If Ey is equipped with the topol-
ogy induced by D'y, (with its normal topology) we define on &) the topological
inductive limit

I
SA 71141)11Ee

This topology will be called the inductive topology on &/;.

Proof. The inductive limit of E; defines a topology on &’ iff the injections
Ey < FEgyq are continuous [52, p. 221]. Since £, C D), we can equip FEj
with the topology induced by D , which is defined by the seminorms pp(v)
for all bounded sets B of D(§2) and || - ||n,vy, where supp x x VN A, = 0. We
prove that Fy < FEy;1 is continuous by showing that E;, has more seminorms
than Eyi1. We have A, C Agqy. Thus, Af D A7, suppx x VN A, = 0 if
supp X X V' N Ag1 = 0 and all the seminorms |[v|[n,v,x on &}, are also semi-
norms on &),. The seminorms pp are the same for £  —and &, because the
sets B are identical (i.e. the bounded sets of D({2)).

This inductive limit is not strict if the open cone A is not closed. Indeed,
if the inductive limit were strict, then the Dieudonné-Schwartz theorem [46]
p. 161] would imply that each bounded set of &, is included and bounded in an
Ey, which is wrong when A is not both open and closed, as we shall prove in
section

3.2. Duality of the inductive limit. In this section, we show that the inductive
topology on &', is compatible with the pairing:

Proposition 9 The topological dual of &'y equipped with its inductive topology
is Dp.

Proof. We first show that D — (£/). We already know that, for any u € D/,
(u,v) is well defined for all v € E, because E, C &/. Note that injectivity is
obvious since smooth compactly supported functions, which form a separating
set for distributions, are in £’;. A linear map from an inductive limit into a locally
convex space is continuous if and only if its restriction to all E; is continuous [52]
p. 217]. Therefore, we must show that, for any ¢, the map A : v — (u,v) is
continuous from F; to K. The proof is so close to the derivation of lemma[3]that it
suffices to list the differences. We define a finite number of compactly supported
smooth functions t; such that 3 y 1/1]2 = 1 on a compact neighborhood of L,
(here we use the fact that the support of all v € Ey is contained in a common
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compact set) and closed cones V,,; and V,,; satisfying the three conditions (i)
Vaug N (=Vis) = 0, (ii) supp ¢; x V,; NWEF (u) = 0 and (iii) supp ¢; x V;5; N A = 0.
The integral I»; is calculated as Is; in lemma [3]if we interchange v and v, o and
B: | Loj] < lJv||n,us, .0, CIN ™™, where m is the order of v, and Is; is bounded as
Ip; in lemma Bt |135] < py, g, (v), where g;(k) = B;(k)(1 — o (—k))ju(—k). We
obtain

()] £ D7 (Do, (0) + [0]l3,070, 0, CIY ™
J

101,y 0 101 072y T2 ),

for any N > m + n (the condition N + M > n being then satisfied for any
nonnegative integer M). This shows the continuity of A because the right hand
side is a finite sum of terms involving seminorms of D’ , which induce the
topology of Ej.

Conversely, to prove that (£,)’ < D', we show that any element A of (£/,)
defines by restriction to D(f2) a distribution and then that its wavefront set is
contained in I". This will be enough since by density of D(2) in £ the restriction
then extends uniquely to £y and is thus the inverse of the reverse embedding. A
linear map A : &y — K is continuous if its restriction to all E; is continuous. In
other words, for each Ejy there is a bounded set B in D({2) and there are smooth
functions y; and closed cones V; such that suppx; x V; N Ay = 0 and

AW < Msup(pp(0), [[v][nyvixas - l0l[we,vox)- (6)

We first prove that A is a distribution, i.e. a continuous linear map from D({2)
to K. Recall that the space D({2) is the inductive limit of D(L;) because Ly is
an increasing sequence of compact sets exhausting {2 [78 p. 66]. Thus, a map
A is a distribution if the restriction of A to each D(Kj) is continuous. For any
f € D(K,), we must show that all the seminorms on the right hand side of
eq. [@ can be bounded by some m,,(f). But this is a consequence of the fact
that D(§2) — D/;, is continuous, which was established in lemma

Since A is a distribution, it has a wavefront set. To prove that WF(X) C I’
consider a smooth compactly supported function ¢ and a closed cone W such
that supp® x W NI = 0, ie. suppt x (—=W) C A. Since the restriction of
supp ¥ x (—W) to the unit sphere is compact, there is an ¢ such that supp ¢ x
(—=W) C Ay. Note also that supp e C m1(A¢) C Ly so that fr, = (14 |k|)N ey, is
in E,. We can now repeat the same reasoning as for the proof of proposition[7] to
show that ||A||n,w,¢ = supgew |A(fx)| is bounded. This shows that WF(\) C I,
which implies A € D}, and (£))" C Df..

This completes the proof that (£/,)" = DI

3.3. The strong topology on E'). We showed that the coupling between &’y and
D’ is compatible with duality. Thus, the inductive topology on &' is coarser
than the Mackey topology [3, p. IV.4]. The strong topology (€, Df) is always
finer than the Mackey topology [3, p. IV.4]. Therefore, if we can show that the
inductive topology is finer than the strong topology, we prove the identity of the
inductive, Mackey and strong topologies.
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Lemma 10 The inductive, Mackey and strong topologies on &' are equivalent.

Proof. To show that the identity map, from £/, with the inductive topology to
&', with the strong topology, is continuous, we must prove that the identity map
is continuous from all Ey to £/, with the strong topology. In other words, for any
bounded set B’ of D}, we must show that pp/(v) = sup,ep |(u,v)| is bounded
on F; by some seminorms of Ej.

We proceed as in the proof of lemma [Bl From the fact that I" N A, = (
and suppv C Lg we can build a finite number of smooth compactly supported
functions v; such that Zj 7,/)]2 = 1 on a compact neighborhood K’ of Ly, and
closed cones V,; and V,; satisfying the three conditions (i) Vi; N (—=V,;) = 0,
(ii) supp; x V,&; N I" = 0 and (iii) suppep; x V;5; N A¢ = 0. The support of all
1; is assumed to be contained in a common compact neighborhood K of K.
Then, we define again homogeneous functions «; and 3; of degree 0, measurable,
smooth except at the origin, non-negative and bounded by 1 on R", such that
the closed cones supp «; and supp ; satisfy the three conditions (i), (ii) and
(iii), with a;j = 1 on V,,; and §; = 1 on V,; and, as in the proof of lemma [3]
we write (u,v) = 3 (I1j + Iaj + I3j + Is;). We have again I1; = 0 because the
supports of aj and 8; are disjoint, and |Ly;| < ||ul|ar,0., 4, ||v]|N,Us, 0, I T for
any integers N and M such that N 4+ M > n. It is important to remark that v;,
a; and ; depend only on I', L, and A, and not on u and v.

To estimate I>; and I35, we need to establish some properties of the bounded
sets of D}.. The continuity of the injection D} — D’'({2) implies that a set
B’ which is bounded in D/ is also bounded in D’(§2) |46, p. 109]. According
to Schwartz [78, p. 86], a subset B’ is bounded in D’(£2) iff, for any relatively
compact open set U C {2, there is an integer m such that every u € B’ can
be expressed in U as u = 9*f, for || < m, where f, a continuous function.
Moreover, there is a number M such that |f,(z)] < M forallz € U and u € B’.
The elements of F, are supported on Ly, and we need only consider bounded
sets of D' that are defined on the compact neighborhood K of L,. Thus, we can
take for U any relatively compact open set containing K.

To calculate Iy;, as in the proof of lemma B we define §;(k) = a;(—k)(1 —
B;(k))¢jv(k) and we obtain I; = (2m)~" [u(—k)g;(k)dk = (u,;g;). At
this stage one might apply the Banach-Steinhaus theorem but we shall use an
equivalent method using u = 0% f,:

(u,159;) = (0% fus595) = (=)W fu, 0% (1095)) = (1) "N fu, 0*(10;95)),
where ¢ is a smooth function, equal to 1 on K and supported on U. Thus

—

(w,095) = (~1)l(2m) ™ / o Fu (k)0 (79, (k) dk

n

—iel(em) " [ SRRk gy (k).

We must estimate @(k) =2m)7" [on ’17);(16 —q)7;(¢)dg. The functions a; and
(1 — ;) are bounded by 1 and Jﬁ) is fast decreasing on Ug; = supp (1 — ;).

Thus, |7;(q)| < ||v||§,Us;.0, (1+]g]) =Y for all integers N. In the proof of lemmal[5]
we estimated the Fourier transform of a smooth compactly supported function:
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[k —q)| < CJN/(l + |k — )™ for all integers N', where CJN/ = ((1+

n)B)N' | K |mont k (¥;). If we take N = n+m + 1, where m = |a| is the degree of
0%, and N’ = 2N we obtain

9595 (k)| < (27T)7"||U||N,Ugj,xz;jC?N/]R (L+ [k —gl) >N (1 +|ql) "V dg
< N0l v,va;, CF N Ly (1 + K]~

where we used (1+|g))™N < (1+]k—q)N (1 + k)~ [22 p. 50]. This estimate
enables us to calculate

1ol = Vs < 2™ [R50

. K™
< (2n) O ol 0, 2V il

—————dk
re (14 [K[)rtmtt

< UM ||v||n,us, 00, CININ I

where N =n + m + 1, |U| is the volume of U and we used the obvious bound
lpfu(=F)| < |U|M.

For the estimate of I3; we start from Is; = (2m)~ fg] k)dk where
g (—k) = (1—a;(—k)B;(k )z/Jj (=k). Thus [I3;| = [(¢;g},v >| can be bounded
by pp,(v) = supgep, [(f, v)| if the set Bj = {¢;g}';u € B’} is a bounded set in
D(£2). It is clear that all f € B; are supported on K = supp®; and that all
¥;g; are smooth because 1; is smooth and the Fourier transform of g} is fast

decreasing. It remains to show that all the derivatives of ¢;g}" are bounded by
a constant independent of u. For this we write

0 (09} = (2m) " (=) [ Gy,

If || < m, we use the estimate of @ obtained in the previous section and we
interchange v and v, a;; and f3;

5% (k)] < Nl §,va,0, CFN I (1 4+ )N

where N = n+m + 1. A set B’ is bounded in D} iff it is bounded for all the
seminorms of Dy [46l p. 109]. In particular, there is a constant My v, y, such
that ||ul|nv.; 0, < MNu.,w, for all u € B'. Thus, for all f € Bj, |]?(k:)| <
My vy, CFV I (L + [K]) ™ and

0 1@ < a7 [ FGE < My, GV

where N = n+m+1 as for the estimate of I3;. In other words, for any + there is a
constant C|,| such that |97 f| < O, for all f € B;. Thus, 7,,(f) < supg<j<y, Ck
is bounded independently of f, and we proved that B; is a bounded set of D({2).
Hence, |I3;] < pp,(v) where pp, is a seminorm of Df..
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If we gather our results we obtain
(v) < M, ||l I+ M| CHNIY It
pPB'\V) > n,Uqj, 5 1 |1V|In,Ugj,b5dn VIINUg;,p; &5 dn dn
J

95, (v)). (7)

where the sum over j is finite and N = n 4+ m + 1 where m is the maximum
order of the distributions of B’. The proof is complete.

4. Nuclearity

In this section we investigate the nuclear properties of the spaces studied in this
paper. To prove that D} with the normal topology is nuclear, we use a theorem
due to Grothendieck [33, Ch. II, p. 48] that can be expressed as follows [66]
p. 92]:

Theorem 11 Let E be a locally convex space and (f;)icr a family of continuous
linear maps from E to nuclear locally convex spaces F;. If the topology of E is
the initial topology for the maps f;, then E is nuclear.

We recall that, if the topology of F; is defined by the seminorms (p},)ac.s,, then
the initial topology of E is defined by the seminorms (p;i o fi)ielaies; 140,
p. 152].

The simplest case to prove is

Proposition 12 The space D} with the normal topology is nuclear.

Proof. We first construct the spaces F; and the linear maps f;. For ¢ = 0 we
take Fy = D'(£2) and fy the continuous inclusion D} < D'(2) where D'({2),
equipped with its strong topology, is nuclear [83] p. 53]. For each i = (V)
where (supp x X V)N I = 0, the target space F; will be the Schwartz space S of
rapidly decreasing functions on R™ equipped with the family of seminorms [46]
p. 90].

1flINm = sup sup (1+ [k f(k)|-

|a|<m kER™

The space S is nuclear [83] p. 430]. To build the linear maps, we choose a real
function h € D(R™) such that h(k) = 1 for |k| < 1, h(k) = 0 for |k| > 2 and
0 < h(k) <1 for all k, and a nonnegative function v € D(R™) which is bounded
by 1, equal to 1 on V' N.S™~1 and such that (supp x x supp~y) NI = 0. We define
the homogeneous function ((k) = v(k/|k|), which is smooth outside the origin
and bounded by 1. The function g = (1 — h)¢ is smooth on R™. By using the
homogeneity of ¢ and the fact that h and « are in D(R™), we see that for any
integer m there is a constant Cy, such that |0%g(k)| < C, for all |a| < m.

We can now define f; : D} — S by fi(u) = g ux. The functions f;(u) are in S
because @y is in S by definition of the wavefront set and g is supported on the
cone W = {\k;k € supp~y, |[k| = 1,A > 0} and (suppx x W) NI = . To show
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that f; is continuous, we must estimate ||f;(w)||n m in terms of the seminorms
—_—

of u in D}-. By noticing that *uyx = (iz)*ux we obtain

a —_—
1)l < sup (14 KDY sup 3 (ﬂ)cmuﬁux(kzn <C sup Ilullywans.
B

sup
kew o] <m la|<m

We have shown that all f; are continuous. Thus, the topology of D} is finer
than the initial topology defined by the family f;. To show that the two topologies
are equivalent, it remains to prove that every seminorm defining the topology of
D’ can be bounded with seminorms of the initial topology.

This is obvious for the seminorms of D’'(2) because they are the same in D/..
For the seminorms || - [|n,v,, we note that uy = hux + (1 — h)uy. The function
g = (1 — h)¢ corresponding to i = (V, x) enables us to write ux = hux + gux =
hix + fi(u) on V and we obtain

lullvvx < Ifi(@)llno + 2161‘13(1 + kD™ A(k)ux (k). (8)

We just need a bound for the last term. We notice that uwy(k) = (u, xex), where
ex(r) = e*®, so that supyey (1 + |k|)V|h(k)ux(k)| < pp(u), where B = {(1 +
|k[)N xer ; k € V Nsupp(h)}. Thus, the equivalence is proved if pp is a seminorm
of the strong topology of D’'({2), i.e. if B is bounded in D({2). All the elements
of B are supported on K = supp x. It remains to show that they are bounded
for all seminorms 7, x but this is obvious by Eq. @) and 7, x (ex) < |k|™.

We emphasize an interesting structural consequence of the proof above for D..
Recall that the class of (PLS)-spaces is the smallest class stable by countable pro-
jective limits and containing strong duals of Fréchet-Schwartz spaces. Since such
strong duals are known to be inductive limits of Banach spaces with compact
linking maps, they are also called (LS)-spaces and since they are bornological,
their associated convex bornological space is sometimes called a Silva space [38]
39]. This class appeared recently as useful in applications of homological algebra
to functional analysis (see e.g. [87]) having applications to parameter dependence
of PDE’s [19]. It is known that any Fréchet-Schwartz space is a (PLS)-space. See
more generally [I8] for a review. It is also known that the strong dual of a
(PLS)-space is an (LFS)-space (see below), i.e. a countable inductive limit of
Fréchet-Schwartz spaces. Moreover, both are well-known to be strictly webbed
spaces in the sense of De Wilde (using general stability properties of these spaces,
see e.g. [63, §35]) and thus they satisfy corresponding open-mapping and closed
graph theorems. Recall also that the classical sequence space s is known to be
isomorphic to the Fréchet nuclear space S (see e.g. [85] pp. 325 and 413]) hav-
ing universal properties for nuclear spaces in the sense that any nuclear locally
convex space is a linear subspace of s! for some set I.

Corollary 13 D} with its normal topology is isomorphic to a closed subspace
of the countable product (s")N x (s)N, and thus it is a (PLS)-space and its strong
dual &' is an (LFS)-space.

Proof. By [85, p. 385] D'(£2) is known to be isomorphic to (s')N. Moreover, we
showed in ref. [6] (see alternatively [31), p. 80]) that the additional seminorms of
D'-(£2) could be chosen in a countable set {py, ;n € N}. Thus, the proof of our
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previous lemma gives an embedding of D(£2) in (') x (s)N. Finally, one can

either prove directly that this subspace is closed (and deduce in this way that
D'-(£2) is complete) or merely use the completeness of D)-.(£2) proved below in
Corollary to deduce that it is necessarily closed as any complete subspace
of a Hausdorff space. Finally, it is known (see e.g. [87, p. 96]) that a closed
subspace of a (PLS)-space is again a (PLS)-space. The fact that the dual is an
(LFS) space is also well-known but we recall the argument by lack of an explicit
reference. Since a complete Schwartz space is semi-Montel, its strong dual is also
its Mackey dual, since closed subspaces of (LS) spaces are still (LS) spaces, we
can assume the projective limit of (LS)-spaces to be reduced, so that one can
apply [62] §22.7.(9) p 294] to get its Mackey dual as an inductive limit of Mackey
duals. But an (LS) space is known to be a Montel space thus this Mackey dual
is also its strong dual which is known to be a Fréchet-Schwartz space (see e.g.
[12, Prop 8.5.26 p 293] or [39, p 28]).

The fact that D is also nuclear for the Hormander topology was stated by
Fredenhagen and Rejzner [26]. However, since the proof was only sketched, we
demonstrate it for completeness.

Proposition 14 The space D} with the Hérmander topology is nuclear.

Proof. The map fo : Dy — D/'(£2) goes now from D} with the Hérmander
topology to D'({2) with the weak topology, which is also nuclear (every locally
convex space being nuclear for its weak topology [39, p. 202]). The end of the
previous proof cannot be used because the seminorm pp is not available in the
weak topology. Instead we define, for each j = (K, x) where K is the image
of [0,1]™ by an invertible linear map L such that (suppx x K) NI = (), the
additional map g; : D — C*°(K), where C*°(K) is the space of functions
f € C®(K) such that f and all its derivatives have continuous extensions to
K. The space C*(K), equipped with the seminorms m,, , is a nuclear space
because K = L([0,1]"), where L is a linear change of variable, and C*°([0,1]™)
is nuclear [85] pp. 325 and 378] or [65].

We define g;(u) = huy|k (i-e. the restriction to K of the smooth function
huy). The maps g; are continuous because mp, i (hx) < 2™y, k (h)Tm, Kk (WX)
and 7,k (UX) < SUP|q < |10, v,zey With V' =R, K. Conversely, for V' a closed
cone such that (suppx x V)N I = 0, there is a finite set of Ky, = Ly([0,1]")
such that (supphNV) C U?Zlf(g and (suppx X K¢) N I"' = (). Indeed, for every
k € (supph NV), there is parallelepiped Kj = Lg([0,1]™), with one vertex at
zero, such that k € K, and (supp x X Kj) NI = 0. Thus, (supphNV) C UpKj
and we can extract a finite covering because supp hNV is compact. To estimate
(1+ |k])N |h(k)ux (k)| in the right hand side of inequality (&), we can take |k| < 2
because h(k) = 0 for |k| > 2 and, for every k € supph NV, we have |hux(k)| =
ge(u)(k) if k € Ky and |hux (k)| = 0 if k ¢ Ky, where g¢(u) = |hux|k,. Thus, for
all ke V,

.....

and

.....
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Thus, the Hormander topology is nuclear because it is the initial topology of

(fi) and (g;).
To complete this section, we show that

Proposition 15 The space £ with the strong topology is nuclear.

Proof. Each FEy is nuclear because it is a vector subspace of the nuclear space
D!y, with the normal topology [83, p. 514]. Thus, £} is nuclear since it is the

countable inductive limit of the nuclear spaces Ey [83] p. 514].

5. Bornological properties

We study the bornological properties of D} because they enable us to prove that
D’ is complete and because they have a better behaviour than the topological
properties with respect to the tensor product of sections. More precisely, if I'.(E)
is the space of compactly supported sections of a vector bundle E over M, then
there is a bornological isomorphism between I.(F®F) and I'.(E) ®g°°(M) I'(F),

where F' is another vector bundle over M [63]. As a consequence, there is also
a bornological isomorphism between the distribution spaces I.(E ® F') and

T(E*) @ apy Te(F)' [63).

5.1. Bornological concepts. We start by recalling some elementary concepts of
bornology theory [38].

Definition 16 A bornology on a set X is a family B of subsets of X satisfying
the following axioms:

B.1: B is a covering of X, i.e. X =UpepB.
B.2: B is hereditary under inclusion: if A € B and B C A, then B € B.
B.3: B is stable under finite union.

A pair (X, B) is called a bornological set and the elements of B are called the
bounded subsets (or the bounded sets) of X.

To define a convex bornological space we need the concept of a disked hull [38]
p. 6]. We recall that a subset A of a vector space is a disk if it is convex and
balanced (i.e. if x € A and A € K with |[A| <1, then Az € A) [38| p. 4].

Definition 17 If E is a vector space, the disked hull of a subset A of E, denoted
by I'(A), is the smallest disk containing A.

Definition 18 Let E be a vector space on K. A bornology B on E is said to be
a convex bornology if, for every A and B in B and every t € K, the sets A+ B,
tA and I'(A) belong to B. Then E or (E,B) is called a convex bornological space.

We shall also need to define the convergence of a sequence in a convex
bornological space [55], p. 12]:

Definition 19 Let E be a convex bornological space. A sequence x, in E is
said to Mackey-converge to x if there exist a disked bounded subset B of E and
a sequence ., of positive real numbers tending to zero, such that (x, —x) € a, B
for every integer n.
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One writes an—%x to express the fact that the sequence x,, Mackey-converges
to x. Note that we could equivalently define Mackey convergence in terms of a
bounded subset B which is not disked, because the disked hull of a bounded set
is bounded by definition of convex bornological spaces.

A convex bornological space is called separated if the only vector subspace of
B is {0}. A convex bornological space is separated iff every Mackey-convergent
sequence has a unique limit [38] p. 28].

5.2. Completeness of D.. The set of bounded maps from a convex bornological
space F to K is called the bornological dual of E and is denoted by E*.
A powerful theorem of bornology states [38, p. 77].

Theorem 20 If a convex bornological space E is regular (i.e. if E* separates
points in E [38, p. 66]), then its bornological dual E*, endowed with its natural
topology, s a complete locally convex space.

We are now going to build a bornological space E such that E* with its
natural topology is equal to D). with its normal topology. This implies the com-
pleteness of Df..

Recall that Ey is the space &), (L) of the distributions compactly supported
on L, whose wavefront set is included in Ay, where the family (L;) exhausts 2
and the family (A;) exhausts A. To every locally convex space E; we associate
the convex bornological space ®E, which is the vector space E; equipped with its
von Neumann bornology (i.e. the bornology defined by the bounded sets of the
locally convex space Ey) [38] p. 48]. Let E be the bornological inductive limit of
YEy, which is the vector space &, equipped with the bornology defined by the
bounded sets of E; for all integers ¢ [38, p. 33].

The bornological dual E* of a convex bornological space E is a locally convex
space for the natural topology defined by the bounded sets of E. In other words,
the seminorms of E* are of the form pp/(u) = sup,cp |(u, v)|, where B’ runs
over the bounded sets of E.

We start by three lemmas, undoubtedly well-known to experts :

Lemma 21 If F is a quasi-complete, Hausdorff locally convex space whose strong
dual is a Schwartz space, then the Mackey-convergence of a sequence in E is
equivalent to its topological convergence. In particular, this is the case for D'(£2)
and Di.

Proof. In a locally convex space, every Mackey-convergent sequence (for the
von Neumann bornology) is topologically convergent [38, p. 26]. We have to
prove that, conversely, any topologically convergent sequence is also Mackey
convergent. Grothendieck [32] showed that this holds if the strict Mackey con-
vergence condition is satisfied: In a Hausdorff topological vector space E, the
strict Mackey convergence condition holds if, for every compact subset K of FE,
there is a bounded disk B in E such that K is compact in Ep = Span(B)
(normed with the gauge of B, see [38 p. 26], [12, p. 158],[46, p. 285], [30]).

To show that this condition is satisfied with the hypotheses of the lemma,
we use the following theorem due to Randtke [7I]: Let E be a locally convex
Hausdorff space whose strong dual is a Schwartz space. Then, for each precom-
pact set A of E, there is a balanced, convex, bounded subset C of E such that C



20 Yoann Dabrowski, Christian Brouder

absorbs A and A is a precompact subset of E¢. Thus, there is an o > 0 such that
A C aC and, if we denote aC' by B, we have a balanced, convex and bounded
subset B of E such that A C B and A is precompact in Fp = E¢.

Consider a compact set K in a locally convex space E that satisfies the
hypotheses of the lemma. According to Randtke’s theorem, there is a balanced
convex and bounded subset B containing K for which K is precompact in Ep.
The closure B of B is a balanced, convex, bounded and closed subset of E such
that the injection Ep < Ep is continuous [3, p. II.26]. Moreover, K is also
precompact in Ez. Indeed, K is precompact in Ep iff it is totally bounded, i.e.
for every neighborhood V' of zero, equivalently V = eB,e > 0 , there is a finite
number of points (z;)1<i<m of Ep such that K C U™, (z; + V) [0, p. 145].
Since Ep C Ep, the points x; also belong to Eg and K C U™, (x; + €B) is
precompact in Ez. The closed bounded set B is complete because E is a quasi-
complete Hausdorff locally convex space [46, p. 128]. As a consequence, Ej is
complete [46], p. 207] and K is compact in Ez because every precompact set is
relatively compact in a complete space [46, p. 235] and K is closed in Eg (it
is the inverse image of K under the continuous injection Ez — E [76] p. 97]).
Therefore, E satisfies the strict Mackey convergence condition and the first part
of the lemma is proved.

It remains to show that the conditions of the lemma are fulfilled for D’(£2) and
D’.. We know that D’(£2) is quasi-complete for the weak topology and complete
for the strong topology. Its strong dual is D({2), which is a Schwartz space [46]
p. 282]. Therefore, the Mackey and topological sequential convergence coincide
in D'(2) with the weak and strong topologies.

We proved that D7 is quasi-complete with the Hérmander topology (prop. 23]
and is complete with the normal topology (cor. 2H). Its strong dual &) is a
Schwartz space because it is nuclear [55, p. 581]. Therefore, the Mackey and
topological sequential convergence coincide in D} with the Hérmander and nor-
mal topologies.

Lemma 22 D({2) is Mackey-sequentially-dense in E.

Proof. Take u € "Ey = £ (Ly). It suffices to find u,, € D(£2) such that u, — u
tends bornologically to 0 in &, | (Le+1).

From the proof of Hormander’s density Theorem [44] p. 262] we see that there
exists a sequence u,, € D({2) with supp (u,) C Le+1 such that u, — win Dy, |
and thus in SAHI(LZH) = Eyt1. The (topological) convergence of w,, in Fyyq
implies its convergence in D’((2) and, by lemma 2]} its bornological convergence
in D'(2). Thus, there exists a sequence «,, of positive real numbers tending to
zero and a disked bounded set B in D’({2) such that (u, —u) € a, B for every
integer n.

However, we only know that B is bounded in D’({2), while we need to find
a set which is bounded in Fyy; to show that w is the bornological limit of a
sequence of test functions in Fy41. In other words, we still have to show that B
is bounded for the additional seminorms || - ||n,v,y-

We already used in the proof of corollary that these additional semi-
norms could be chosen in a countable set {p,;n € N*}. We can extract a
subsequence v, from w, such that, for all & < n, px(v, — u) < 1/n. Hence,
for every seminorm pg, we have pg(v, —u) < My/n for all positive integers
n, where My = sup, ., {nps(v, — u),1} is finite. If we define the sequence
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Brn = max(ay,,1/n) of positive real numbers tending to zero, the Mackey
convergence of wu, in D’({2) implies that, for every integer n, there is an el-
ement b, of B such that v, — u = an,b, = Bunlan, /Br)bn = Bncn, where
¢n = (an, /Bn)bn € B because an, /B, < 1 and B is balanced. Moreover,
pr(vn — u)/Bn < 1/(nBn) My < My. Thus, for every n, (v, — u)/fB, belongs to
the set C' = {ax € BN Epq1;pr(x) < My, for every integer k}, which is balanced
and bounded in Eyy.

Finally, we have showed that any distribution u € E, is the Mackey-limit in
E;11 of a sequence of elements of D({2) and the lemma is proved.

Lemma 23 Let B be a bounded set in D'({2), then for every f € D(§2) there
exists M such that

sup sup (1 + [¢)) ™M fu(€)] < oo.
uEB £ERM

Proof. This lemma is an obvious consequence of uniform boundedness principle.
Consider (T,)uep the family of maps T, : C°°(£2) — C defined on the Fréchet
space C*°(£2) by Tu(g) = u(fg). Since fg € D(£2) and B is weakly bounded,
Vg € C>(£2),3C,; < o0,Yu € B, |Ty(g)| < Cy. Thus by the uniform boundedness
principle, there exists a seminorm p; of C*°(£2) such that

sup [Tu(g)| < Cpi(g)-
ueB

Since V¢ € R, pi(eg) < c(1 + |€])M for some constants ¢ and M, this con-
cludes.

Proposition 24 If E is the bornological inductive limit of the spaces °E; as
above, then E* = D' and its natural topology is equivalent to the normal topol-

ogy of Df.

Proof. From lemma[3] and proposition[@ any u € D% defines a continuous linear
form on each Ey and thus a bounded linear form of *Ey, i.e. an element of (E)*.
This gives an embedding D} — (E)* since injectivity comes from the fact
D(2) C E.

Conversely, we want to prove that each bounded linear form A on E: (i) defines
a distribution when restricted to D(§2) C F; (ii) has a wavefront set contained
in .

This will be enough to conclude the computation of the bornological dual
since, from lemma [22] and the fact that a bounded linear functional is Mackey-
continuous [36, p. 10], the restriction of a bounded linear functional to D(f2) has
a unique extension to E, proving that the second map above is injective.

To prove that A restricts to a distribution, we notice that the injection
D(Ly) — Ey is continuous because Ey is a normal space of distributions. Any
bounded set B of D(§2), which is actually in some Ej, is bounded in Ey thus in
E because the image of a bounded set by a continuous linear map is a bounded
set [46] p. 109]. Thus, X is also a bounded map from D(£2) to K. It is well-known
that D(2) is bornological [46, p. 222]. Hence, A is a continuous map from D({2)
to K because any bounded map from a bornological locally convex space to K
is continuous [46], p. 220]. In other words, A is an element of D'({2).



22 Yoann Dabrowski, Christian Brouder

We still have to show that A € D/, i.e. that for any x € D(£2) and any closed
convex neighborhood V' such that supp x x VN I" = (), the seminorm ||\||n v,y
is finite for all integers N. For this we use again the remark made in the proof
of proposition [T that [|A||n,v.y = supgey [A(fx)], where fr = (1 + k)N xex.
Thus, if B’ = {fi;k € V} is a bounded set in E, then we know that pp/(\) =
supgcy |A(fx)| < 400 because the image of the bounded set B’ by the bounded
map A is bounded. It remains to show that B’ is a bounded set of some E,. We
proceed as in the proof of lemma [T0l

First, supp x is a compact subset of the open set m1(A). Therefore, there is
an integer ¢ such that Ly is a compact neighborhood of supp x and U*£2 N A,
is a compact neighborhood of U*2 N (supp x X (—=V')) because L, exhausts {2
and A, exhausts A. This space E,; contains B’ because each f}, is smooth and
compactly supported and we want to show that B’ is bounded in this E,.

Consider ||fx||n’,w,y where suppy x W N A, = 0. If suppy Nsupp x = 0,
then || fi||n/,w,p = 0. If supp ¢ Nsupp x # 0, then W N (=V) = 0 and thus, by
compactness of the intersections of these cones with the unit sphere, there is a
¢ > 0 such that |k +q|/|g| > cand |k+¢q|/|k| > c for all k € V,q € W. We follow
the proof of proposition [7 to show that

|l wy < e NN sup (L+ 1k + gDV x(k + q)l.
qe

According to eq. (@), there is a constant Cnyn7 4y such that || fi]|n/ we <
—N-N’
keV.

To conclude the proof of the boundedness of B’ in Ey, we show that pg(fx)
is bounded for all bounded sets B C D(§2). We know that D({2) is a Montel
space [83 p. 357]. Thus, it is barrelled and it is enough to show that B’ is
weakly bounded: i.e. that, for any g € D(£2), (fk, g) is bounded. Indeed we have
()] = (1 -+ DN (e xg)] = (1+ KDV Tg(k)], which is bounded uniformly
in k € R", as seen from eq. (@).

Finally, we have shown that B’ is bounded in E;, which implies that B’ is
bounded in E and that ||A||n, v,y = pp/(A) < 400 for all integers N and all V, x
such that supp x x V N I" = (. This concludes our proof of WF(\) C I

Moreover, this also shows that the natural topology of E* is finer than the
normal topology of D}.. Indeed, we proved that, for any seminorm || - ||,v,y of
D, there is a bounded set B’ in E such that ||-||x,v,y = pp’ and the seminorms
pp, where B is bounded in D({2) are both in D} and E*. In other words, E*
has more seminorms than D/..

It remains to show the converse, i.e. the continuity of the injection D} — E*.
For this we have to describe more precisely E*, which is the bornological dual
of a bornological inductive limit. In the topological case, it is well known that
the dual of an inductive limit is a projective limit [74, p. 85][52, p. 290]. We
have a similar result for the bornological case. Indeed, ®E, is the vector space
E, = 5;1[ (L¢) equipped with the bornology B, whose elements are the subsets
of Ey, which are bounded in D/, . The injection jo : YE, — "By, is bounded
because it is continuous. Thus, F = UyEy is a convex bornological space whose
bornology is B = UyB, [38, p. 33] [88 p. 195].

By duality, EX = Ng(*E)* as a vector space. The (algebraic) dual map

ji :PE), = "E is the inclusion. It is continuous if every (*Ez)* is equipped

CN+nN' py- Therefore, || fi||n7,w,y is uniformly bounded for all values of
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with its natural topology (since B, C Byt1, every seminorm pp of *E; where
B € By is also a seminorm of bEéXH). Therefore, E* is the topological projective
limit of the locally convex spaces (*Fy)* [52, p. 230]. To show that the injection
D/ — E* is continuous, we just have to prove that each injection D} < (®E,)*
is continuous [88, p. 149].

Said otherwise, we have to show that the bound (B]) we obtained in lemma[3]
can be made uniform in v € B for some bounded set B in F,. First note that the
choices of functions v, o, 8 can be made uniformly for v € B, B a bounded set in
E,y. Second, using lemma 23] one sees that the constants m,C uie\d in the proof
of the bound (@) can be made uniform in v € B so that sup,¢p [vy); (k)| < C(1+
|k[)"™. Moreover, by definition of boundedness sup,¢ g ||v]|N,v,;.9; < MN,U,; 0,5

We thus obtain:

pis(u) = sup [, 0)| < 3 (p; ) + lfullas o, CT
ve ;
J

100,y 0, M3, T ), (9)

where B 1= {1; f} ;v € B} with f}(k) = a;(—k)(1—B;(k))i;v(k). To prove the
expected continuity, it thus only remains to show that B’ is bounded in D(£2)
so that pp is a seminorm of D..

But, let K; = supp;, we deduce:

v, (Vi f)) < 287k, (V)T (fF)

< 2%y, (15)(2m) 7" sup | dk(kY ) (—k) (1 = B;(k))i;v(k)]

IvISN  Jsupp g}
< 2N7rN7Kj (%)ISHHM |N+n+1,Ugj,¢ja

and the last seminorm is a seminorm in E, since Ug; = supp(l — 3;) has
been chosen (in the process of choosing ¥, o, 8) independent of v € B, so that
supp () x supp (1 — 3;) N Ay = (. The above estimate thus concludes.

Corollary 25 D). with its normal topology is complete.

Proof. From theorem 20 it remains to check that E, as a convex bornological
space, is regular. From our computation of the dual, it was already proved in
lemma B that E* separates points in E. Thus, E is a regular convex bornolog-
ical space and its dual D} is complete with its normal topology, because it is
equivalent to the natural topology.

5.8. &) is ultrabornological. A locally convex space is bornological if its bal-
anced, convex and bornivorous subsets are neighborhoods of zero [46, p. 220].
Bornological spaces have very convenient properties. For example, every linear
map f from a bornological locally convex space E to a locally convex space F' is
continuous iff it is bounded (i.e. if f sends every bounded set of E to a bounded
set of F') [0 p. 220].

Proposition 26 &', is a bornological locally conver space.
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Proof. By a standard theorem [46, p. 221], a locally convex Hausdorff space F
is bornological iff the topology of F is the Mackey topology and any bounded
linear map from E to K is continuous. We already know from lemma [I0l that the
inductive topology on &, is equivalent to the Mackey topology. Thus, it remains
to show that a linear map X : £ — K is continuous if sup,cp/ [A(v)| < oo for
every bounded subset B’ of £/. Since A\ is a fortiori bounded for the coarser
bornology of E, we know from proposition that it defines by restriction on
D(£2) an element of D}.. Then this element extends to a continuous linear form
on &) and since, by lemma 22 D(£2) is Mackey dense in E and a fortiori in &/,
the extension has to coincide with the original A (which is bounded thus Mackey
sequentially continuous). Therefore, A is continuous.

Note that the previous argument says £/, has the same bornological dual as E,
but not necessarily with the same natural topology. Indeed, the natural topology
of (£/)* is the strong B(D}, &) topology on D’;. If the normal topology of D/,
were the strong topology, then &, would be semi-reflexive because the dual of
D’ for the normal topology is &£. Thus, £ would be quasi-complete and we
shall prove in section [6.4] that this is not the case when the open cone A is not
closed.

This implies another consequence regarding the regularity of the inductive
limit. Recall that an inductive limit of locally convex spaces is said to be regular
if each bounded set of F is contained and bounded in some E, [56,68]. If the
inductive limit defining the topology of £/, were regular, then the bornology of £/,
would be the bornology of E (because we already know that every bounded set
of E is bounded in &;). In that case, the natural topologies of their bornological
dual D} would be identical and the normal topology on D} would be the strong
topology. Thus, the inductive limit is not regular when A is not both open and
closed.

Let us see how this bornological property also follows from a general theorem,
even giving us a stronger result:

Proposition 27 &' is an ultrabornological locally convex space.

Proof. D} is complete and nuclear. Therefore, by noticing that any nuclear
locally convex space is Schwartz [55, p. 581], we see that £/, is ultrabornological
because it is the strong dual of a complete Schwartz locally convex space [46]
p. 287] [39] p. 15].

Note that ultrabornological spaces are also called completely bornological [38]
p. 53] or fast-bornological [88] p. 203]. A locally convex space is ultrabornological
iff it is the topologification of a complete convex bornological space [38] p. 53].
An ultrabornological space is the inductive limit of a family of separable Banach
spaces [48], p. 274]. Further characterizations are known [84],[39, p. 207-210], [12]
Ch. 6], [61 p. 283], [29] p. 54]. The relation between boundedness and continuity
is: A linear map from an ultrabornological space F to a locally convex space F’
is continuous iff it is bounded on each compact disk of E [38] p. 54].

6. Functional properties of D). and &',

In this section, we put together the results derived up to now to determine the
main functional properties of D} and &.
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6.1. General functional properties.

Proposition 28 The space D is a normal space of distributions. It is Haus-
dorff, nuclear and semi-reflexive. Its topological dual is &'y which is Hausdorff,
nuclear, and barrelled.

Proof. We saw that D} is Hausdorfl. Its dual &'y is also Hausdorff because the
pairing (-, -) is separating (see lemma [3)) and the topology of £/, is finer than the
weak topology (&), D)) |46, p. 185]. We proved that D} is the dual of &’ for
the inductive topology and that the inductive topology of £y is equivalent to the
strong topology B(&Y, D). Therefore, D} is the topological dual of £, which
is the strong dual of D/.. This implies that D}, is semi-reflexive [46], p. 227].

The space & is barrelled because it is the strong dual of a semi-reflexive
space [46, p. 228]. This can also be deduced from the fact that the inductive
topology of &£ is equal to its strong topology [3} p. IV.5].

In fact, D} is even a completely reflexive locally convex space, because it is
complete and Schwartz [38, p. 95]. Recall that a locally convex space F is com-
pletely reflexive (or ultra-semi-reflexive [88] p. 243]) if E = (E’)* algebraically
and topologically [38, p. 89], where E’ is the dual of E with the equicontinu-
ous bornology and (E’)* is the bornological dual of E’ with its natural topol-
ogy. This has two useful consequences: (i) £/ equipped with the equicontinuous
bornology is a reflexive convex bornological space [38, p. 136]; (ii) the strong
and ultra-strong topologies on £/ are equivalent [38] p. 90].

6.2. Completeness properties of D». We state the results concerning the com-
pleteness of D

Proposition 29 In D/.:

— Dl is complete for all topologies finer than the normal topology and coarser
than the Mackey topology.

— D is quasi-complete for all topologies compatible with the duality between
D and E): all the bounded closed subsets are complete for these topologies.
In particular, D} is quasi-complete for the Hormander topology.

Proof. We have proved that D/}. is complete for the normal topology. Thus,
it is complete for all topologies that are finer than the normal topology and
that are compatible with duality [3] p. IV.5]. We have also showed that D’
is semi-reflexive. As a consequence, it is quasi-complete for the weak topology
o(D}, &) [0, p. 228]. This implies that D’ is quasi-complete for every topology
compatible with the duality between D} and &£, in particular for the normal
topology [3] p. IV.5]. Since Bourbaki’s proof is rather sketchy, we give it in more
detail. Assume that F is quasi-complete for the weak topology o(E, E’) and
consider a topology T compatible with duality. The space F is quasi-complete for
T iff every T-closed T-bounded subset of E is complete [46], p. 128]. Consider a
subset C' of E¥ which is closed and bounded for 7. By the theorem of the bipolars,
the bipolar C°° of C' is a balanced, convex, o(E, E’)-closed set containing C.
We also know that C' is bounded for T iff it is bounded for o(FE, E') because T
is compatible with duality [46, p. 209]. Then, we use the fact that C' is bounded
for o(E, E') iff C° is absorbing [46] p. 191]. But C° = (C°°)° so that C°° is
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weakly bounded if and only if C' is weakly bounded. Therefore, C'°° is bounded,
convex and closed for o(F, E'), and also for the other topologies compatible with
duality by the first two items of the proposition. Consider now a Cauchy filter on
C°° for the topology T. It is also a Cauchy filter for the weak topology. Indeed
a filter § is Cauchy if and only if, for any neighborhood V of zero, there is an
F € § such that FF — F C V. The topology T being compatible with duality,
it is finer than the weak topology. Thus, any weak neighborhood V is also a
neighborhood of 7 and § is a Cauchy filter for the weak topology. This Cauchy
filter converges to a point x because E is quasi-complete for the weak topology.
Moreover, x is in C°° because C°° is weakly closed. Therefore, the Cauchy filter
converges in C°° and C°° is complete for 7. As a consequence, C' itself is also
complete because it is a closed subset of a complete set [46] p. 128].

This brings us to the following result

Proposition 30 The space D with its normal topology is semi-Montel. The
space &Yy is a normal space of distributions on which the strong, Mackey, induc-
tive limit and Arens topologies are equivalent.

Proof. We saw that D/ is quasi-complete and nuclear for its normal topology.
Thus, its bounded subsets are relatively compact [83, p. 520] and D/ is semi-
Montel by definition of semi-Mountel spaces [46], p. 231]. We already know that
the strong, Mackey and inductive limit topologies are equivalent. It is known
that on the dual of a semi-Montel space, the Arens topology is equivalent to the
strong and Mackey ones [46, p. 235]. By item (iii) of proposition [6, we obtain
that &£ is a normal space of distributions.

Semi-Montel spaces have interesting stability properties [46] § 3.9], [48] § 11.5]
(for example, a closed subspace of a semi-Montel space is semi-Montel [46]
p. 232], as well as a strict inductive limit of semi-Montel spaces [46, p. 240]).
Moreover, if B is a bounded subset of D/, then the topology induced on B by the
normal topology is the same as that induced by the weak o (D}, £/;) topology [46]
p. 231] and B is metrizable (because &'y, the strong dual of D}, is nuclear [39]
p. 217)).

The following properties of semi-Montel spaces are a characterization of con-
vergence [46] p. 232] which is useful in renormalization theory:

Proposition 31 Ifu; is a sequence of elements of D} such that (u;,v) converges
to some number A\(v) in K for all v € &y, then the map u : v — A(v) belongs to
D’ and u; converges to u in Dl

Proposition 32 If (ue)o<e<a s a family of elements of Dy such that (u.,v)
converges to some number A(v) in K as e — 0 for all v € &, then the map
u:v— A(v) belongs to D and ue — w in D} as e — 0.

By proposition 29, we see that D is quasi-complete for the Hérmander topol-
ogy. However, it is generally not complete because D’({2) is not complete for the
weak topology (otherwise, every linear map from D({2) to K would be contin-
uous, whereas it is well known that the algebraic dual of D({2) is larger than
D/(©2) [64).
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6.8. Bounded sets. The bounded sets of D}, are important in renormalization
theory because they are used to define the scaling degree [§] of a distribution
and the weakly homogeneous distributions [62].

The bounded sets of D} were characterized in the proof of lemmal[IQt a subset
B’ of D} is bounded if B’ is a bounded set of D’(§2) and for every integer N,
every 9 € D(£2) and every closed cone V such that suppty x VNI =0, there
is a constant My v, such that ||u||n,vy < M,y for all u € B’. The bounded
sets of D'({2) have several characterizations (see [78, pp. 86 and 195] and [21]
pp. 330 and 493]).

We can now give a list of the main properties of the bounded sets of D},
which correspond to a Banach-Steinhaus theorem for D/

Theorem 33 In D):

— The bounded subsets are the same for all topologies finer than the weak topol-
ogy (D, &) and coarser than the strong topology (D, EY). In particular,
they are the same for the normal and the Hormander topologies.

— The bounded sets are equicontinuous.

— The closed bounded sets are compact, identical and topologically equivalent
for the weak, Hormander and normal topologies.

Proof. In general, the bounded subsets of a topological vector space E are the
same for all locally convex Hausdorff topologies on E compatible with the duality
between E and E’ [83] p. 371], i.e. for all topologies finer than the weak topology
and coarser than the Mackey topology [83, p. 369]. The barrelledness of &
implies that these bounded sets are also identical with the strongly bounded
sets |46, p. 212]. In the dual D). of the barrelled space £/, a set is bounded if and
only if it is equicontinuous [46, p. 212]. In a quasi-complete nuclear space, every
closed bounded subset is compact [83, p. 520]. Especially, using propositions
and 29 this implies that bounded subsets closed for the Hérmander and
normal topologies are compact for these topologies. In the dual of a barrelled
space, the weakly closed bounded sets are weakly compact [46, p. 212]. After the
proof of prop.[7 we showed that the Hormander topology is compatible with the
pairing [46] p. 198]. Thus, by the Mackey-Arens theorem [46] p. 205], it is finer
than the weak topology and coarser than the Mackey one.

In the remarks following Proposition B0, we showed that the weak and normal
topologies are equivalent on the bounded sets. Therefore, the Hérmander topol-
ogy is equivalent to those since it is finer than the weak topology and coarser
than the normal one. As a consequence, the closed and bounded sets are the
same for the three topologies. Indeed, it suffices to remember that the bounded
sets closed for one of these topologies are compact for the corresponding induced
topology, and compactness is an internal topological property so that they are
compact for all the induced topologies since they coincide. Finally, compactness
implies in a Hausdorff space that they are closed for the three topologies.

In concrete terms, this means that a subset B’ is bounded in D’ if and only
if one (and then all) of the following conditions is satisfied:

(i) For every v € &), there is a constant M, such that |(u,v)| < M, for all
u € B’. This defines weakly bounded sets.

(ii) For every bounded set B of £/, there is a constant Mp such that |(u,v)| <
Mp for all w € B" and all v € B. This defines strongly bounded sets.
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(iii) There is a constant C' and a finite set of seminorms p; of &) such that
[{u, v)| < C'max; p;(v). This defines equicontinuous sets [46, p. 200].

With respect to item (ii) recall that, the inductive limit being not regular, there
are bounded sets in £/ that are not contained and bounded in any E,. However,
of course, as we already used, the bounded sets of every E; are bounded in &/.

Note also that the closed convex subsets are the same for all topologies com-
patible with the duality between D} and &’y [83], p. 370].

6.4. Completeness properties of E'\. By contrast with D/, the completeness
properties of £ are very poor. More precisely, we have

Theorem 34 Assume that A is an open cone which is not closed, then &', with
its strong topology is not (even weakly) sequentially complete. In particular, if §2
is connected and the dimension of spacetime is n > 1, then £/ is not sequentially

complete when A is any open conical nonempty proper subset of T*0.

Proof. In fact, if A is an open cone which is not closed in 7*f2, we exhibit
an explicit counterexample showing that £, is not sequentially complete. Since
the construction of this counterexample is a bit elaborate, we first describe its
main ideas. Consider a point (x;7) in the boundary of A. There is a sequence
of points (Xm;Nm) € A such that (Xm;nm) — (2;7). By using an example due
to Hormander, we construct a distribution v,, whose wavefront set is exactly
the line {(m; Anm); A > 0}. Then we show that the sum v = > vp/m!is a
well-defined distribution which does not belong to £y because the point (x;7)
belongs to its wavefront set. Since the series defining v is a Cauchy sequence, we
have defined a Cauchy sequence in &y whose limit is not in &/.

The proof consists of several steps: (i) description of Hérmander’s example,
(i) construction of the counter-example v = 3 v,,/m!, (iii) choice of the se-
quence (Zpy,;Nm) and of the closed cones I'yy, (iv) calculation of the seminorms
of vy, in Df , (v) determination of the wavefront set of v, (vi) proof that the
series is Cauchy in &/, (vii) discussion of the case where A is both open and
closed.

Step 1: Hormander’s distribution

To build this counterexample we start from a family of distributions, defined
by Hormander [45, p. 188], whose wavefront sets are made of a single point x
and a single direction Ak and whose order is arbitrary: Let x € C*°(R, [0, 1]) be
equal to 1 in (—00,1/2) and to 0 in (1,400), with 0 < x < 1. Fix 0 < p < 1, let
n € R™ be a unit vector, take an orthonormal basis (e; = 7, ea, ..., €,,) and write
coordinates in this coordinate system.

Define u, s € 8'(R"™), for s € R, by

Uns(€) = (1= x(E))EX((E + -+ ) /7).

Then WF(UU75) = {(076)752 == gn = Oaé-l > 0} = {0} X R*-i-n and Un,s
coincides with a function in S(R™) outside a neighborhood of the origin [45]
p. 188]. It is clear that, if £ = Anp and A > 1, then |4, s(§)] = A™° for any A > 1,
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where s is an arbitrary real number. Thus, the degree of growth can be an
arbitrary polynomial degree. Moreover, Hérmander actually proves that for any
real number ¢t and any integer m, there is a constant C'(¢,m), such that if «, 5 are
multi-indexes, and |a| > C(t,m) then {x%0%u, s, s > t,|8| < m,n € S"~1} are
bounded continuous functions on R", uniformly bounded by a constant D(¢, m).

One should also note that when the last factor in the 2deﬁnitéioll;1p does not
vanish, we have £ > (€2 + ... 4+ €2) so that |¢[2 > & +(§2';"'+5") > |€12/2
as soon as &3 + ... + &2 > 1, and otherwise [£]2 < &2 + 1 < 5| when
(1 —x)(&1) # 0 (which implies & > 1/2). Moreover, when the first factor does
not vanish |£] > 1/2 so that |£] > (1 +2[¢[)/4 > (1 + |£])/4. As a consequence,
we note for s > 0:

s (©)] < (1= x(€0)80°/2(1+ [E)7*X((€3 + -+ £2)/€2) < 10°(1 + )

Step 2: Construction of the counterexample

Since A is open and not closed, its boundary 94 = A\A is not empty and
OANA = [51] p. 46]. Moreover, any point (x;n) of A is the limit of a sequence
of points (Zy;Nm) in A [B, p. 9].

By starting from Hérmander’s example, we build a family of distributions
Uy such that the wavefront set of vy, is {(Tm; M) ;A > 0} and |05, (M| =
(A|mm])~™. For this we use the translation operator T}, acting on test functions
by (T f)(y) = f(y — ) and extend it to distributions by (T,u, f) = (u, T_ f).
Thus T;,,uy,, m has the desired properties. However, we want all distributions
vm to be compactly supported on §2. Thus, we define the compact set X =
UX_{zm} U{z} C £2, so that 6 = d(X,2¢) > 0, and x a smooth function
compactly supported on B(0,6/2) and equal to 1 on a neighborhood of the
origin. Then vy, = Ty, (XUy,,,m) is a distribution in £'(2) with the desired
properties.

It is easy to show that the series v = > °_ vy, /m! converges to a distribution
in £'(£). Indeed, it is enough to prove that, for any f € D(2), the numerical
series Y (v, f)/m! converges in K [28 p. 13]. We have

(s £) = (Lo Xt s 1) = Qg X ) = @) [ T 0T ()

n

where f_, =T_,, f.For every integer N we have by Eq.(®)

X fan ()] < (L4 KDY (4(n + DBV K |mon,k ()TN, K (f=,0):
where K is a compact neighborhood of supp x and |K]| its volume.
Now, mon x(f-z,,) < mon k' (f), where K’ is a compact neighborhood of
supp f. Thus, there is a constant Cn = (4(n + 1)B)V|K|man,x (X)T2n,x (f),

independent of m, such that |@(k:)| < On(1 + |k|)~N. The estimate (I0)
gives us, for N = n,

(0 £)] < Cul2m) 10" [ (1 k)" "ak

n

< C’n(27r)_"10m/ (1+ k)" tdk < C,10™ T

n
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because m > 1, and the series defining v is absolutely convergent with |[(v, f)| <
CpInt1el0,

We know that the distribution v is well defined but we have no control of its
wavefront set. Indeed, the wavefront set of v can contain points that are not in
any WF(vy,) and there can be points that are in the wavefront set of some vy,
but not in WF(v) (see refs. [49/42] for concrete examples). Therefore, we must
carefully choose the sequence (z,; 1) so that (x;n) is indeed in the wavefront
set of v. This is done in the next step.

Step 3: Choice of the sequence and construction of the cones

We want to ensure that all points (z,;7m) actually belong to WF(v). Thus, we
choose the elements (2,,; nm) so that each direction 7, is at a finite distance from
the other ones (except when n = 1, in which case we will choose z,, at a finite
distance from one another), to avoid that their overlap concurs to remove (x;7)
from the wavefront set of v. Since A is a cone, we can choose |n| = || = 1 and,
up to extraction and since A is open, it is possible to shift the points (z,; nm

so that if n = 1, y, # z and 0y, = N, [Ty — 2] < |Zp — 2|/2, |20 — 2] <
Land if n # 1 9m # 1, [Mmtr — 0| < min(|pm — 0}, d(9m, —1%,,))/2, where
Iy, = {5 (xm;€) € T}, and | — 1] < 1 for all m. Let pp, = min (|, —
77|,d(77m,71“zm)) < 1lifn # 1 and set p,, = 1/3™ if n = 1, and note that
if n # 1, pme1 < pm/2 implies |ny, — Nkl > pm/2 for all k > m. Indeed, if
[Mm — k| < pm /2 Were true, ppm /2 > pm/28"™ > pr > | — | would imply that
Pm < 1w — 1| < |1m — k| + 76 — 1| < pm, yielding a contradiction. Recall that
Um = T, (XUn,,,m) 50 that v, € & and WF(vy,) = {2} X REnp,.

To control the wavefront set, we define partial sums S,,, = Y ;" | v;/i!, and we
show that the cotangent directions of the wavefront set of v — S, do not meet
(z;;m;) for @ < m. Thus, we have the finite sum v = (v — S,,) + >_1o, v;/i! and,
since the cotangent directions of the wavefront set of the terms do not overlap,
there can be no cancellation and all (z;;7;) belong to the wavefront set for i < m.
Then, we have indeed (Zm;nm) C WF(v) for all m because this procedure can
be applied for all values of m.

It remains to show that the wavefront set of v—S,,, belongs to a closed conical
set I, which does not meet (z;;n;) for i < m. We first build these I3, as follows:
Let X,,, = U2, {z.} U {z} C 2 and v = X x (REB(n;,pi/4)). It is clear
that if n # 1, Yy, N Ym,; = 0 because, for j > i, we have |n; — n;| > p;/2 and
p; < pi- Thus, |n; —n;| > (p; + p;)/4 and since this expression is symmetric in %
and j, it holds for all ¢ # j. This shows that the balls B(n;, p;/4) and B(n;, p;/4)
do not meet and the result follows. The closed cones 7, ; are then used to define
I, = (Ui>m '7,,“-) U (X x R m).

To show that the wavefront set of v — .S, belongs to I,,, we prove that the
series 1 v;/i! converges in Df, .

Step 4: Estimates on seminorms of v,, in Dy, , m > M.

Fix ¢ € D(£2) and any closed cone W such that suppty x W N Iy = 0.
For convenience we define the distance ||z — y||co = sSup;—q.__, |z" — y*|, where

.....
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x' is the ith coordinate of = in a given orthonormal basis. Then, we define the
distance between two sets to be doo (A4, B) = infyea yen |12 — Ylloo-

We first consider the case when X s Nsupp ) = 0. Then, v,,7) is smooth, and
we want to show that {v,,¥,m € N} is bounded in D({2), since W above can
be taken arbitrary. This is equivalent to prove that {x¥_g, Uy, m,m € N} is
bounded, where ¢_,, = T_, 1. Let € = doo(Xpr,suppp) > 0. Since ¢ vanishes
in a neighborhood of z,, on the ball By (x,,€) with € > 0, we deduce that
XU—z,, (y) vanishes when ||y||oc < €. Thus, we can consider that ||y||oc/€ > 1.

Then, using the properties of Hérmander’s construction, we bound uniformly
in m. Fix y and choose y* such that |y’| = ||y||ec. Then,

1 « 7 a a—

BLa

|0 XY~z U .o (V)]

IN

1 (e
le 70, K0 (XO—2,,) D(0, |a]),
where K, = supp (¢—,,,). To establish Eq. (Bl) we showed that

ﬂ-la‘aKm, (X’l/)fxm) < 2‘a|7r\a|,Km(X)7T\a|,Km (wfxm)-
But Tal,Km (X) < 7T|a\,suppx(X) and Ta|,Km (w—zm) = ﬂ.\a|,suppw(w)- Thus,

1
fe} < - 2|
|0 XY —z,, U,y m (Y)] < Coan 2

7T\cv¢|,supp)((X)Wloz\,suppw(1/})1)(07 |a|)
is bounded independently of m.

In the case X Nsupp 1 # ), we have y € supp ) for some y € Xy and {y} x
WNYas,m = 0 for all m > M by our assumption. Thus, WNR% B(1)m, pm/4) = 0
for all m > M. Arguing as usual by a compactness argument, one can prove
that there is a constant 1 > ¢ > 0 (independent of m) such that for all k
satisfying both k € [R% B(nm, pm/4)]¢ and (k — q) € RY. B(nm, pm/8), we have
lg| > cpm|k — gq|. We will deduce from this and our previous estimates a bound
on:

lomlInvwp < suppew (1+ KDY Jen dalti, m(k = O)xt—a,, ()] = 1 + I,

where I; corresponds to the integral over 21 = {q; III:%ZI € B(Mm, pm/8)} and I
over 25 = R"\(2;. To estimate I1, we use |, m(k—q)| <10™(1+ [k —q[)™™
(see Eq. (I0)) and (1 + k)N < (1 + |g)N (1 + |k — ¢g|)V to obtain

L <10™sup [ (14 |k =)V ™ x¢—a,, (@)1 + [g])" dg.
keW J o,

We bound [x9)_, ()] with [[Xa,,|[n+148 85 (1+]g)) N~ Then, if N —m <
0 we bound (14-|k—q|)V =™ with 1 and we obtain I; < 10™I" Y |xz, |lnt14+NR",0,
and if N —m > 0, then we bound (1 + |k — ¢|)N =™ with (cpm)™ N (1 +|q))N—™
and we find

I < 10m(cpm)m7NIg+1||Xﬂcm||n+1+2N7R"1¢'
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To estimate I, we start as for I3 except that we use the first inequality of
Eq. (@), where we replace 80™/2 by 10™:

|k —a* = [(k — g¢,nm)?
I, < 10™ sup 1—x(k—q,mm)))x
s 10 s [ (1= g X

(14 k= gD Xt ()] (1 + |g]) Y dg.

By considering the support of x, we see that the integrand is zero except (pos-
sibly) if (i) (k — ¢,7m) > 1/2 and (i) [(k — ¢,m)[* > |k —q® — [(k -
q,mm)|?. Now we show that the three conditions (i), (ii) and ¢ ¢ 2; imply
q € B(k,r), where r,, = (p2,/64 — (p2,/128)%)=1/(2=20) Indeed, ¢ ¢ 2, means
that [(k — q)/[k — q| = nm[> = 2(]k = q| = (k — q,nm))/Ik — al > (pm/8)?,
so that |k — ¢|(1 — p2,/128) > (k — q,nm). This implies with (i) and (ii):
k= ql*(1 — (1 = p7,/128)%) < |k = q|*(1 — p,/128)* < |k — q|*". Thus,
r20=2 < |k — q|?’=2 and the result follows because p < 1. By using 0 < x < 1 we
find

)

I < 10™ sup (1+ |k — gDV =" X, (@)| (1 + |g)N dg.
keW J B(k,rm)

We proceed now as for I; and obtain Iy < 10™I2|x,, |lnt14nRrn,p if N—m <
0 and I; < 10™(1 + rp) V"I Y Ixa | lnt 14N k70, if N —m > 0. We have
showed that ||Xz,.||n+1+N5 "¢ can be bounded independently of m. Thus, for
m > N, there is a constant C,, xy such that ||v.,||n,w,e < 10™C), n. Since the
set of m < N is finite, we see that 107" ||vy,||n, W,y is bounded for all values of
m.
Thus, we showed that, for any W and 1 such that suppy x W NIy = 0
and any integer N, the set {107"*||vy||nw,w;m > M} is bounded in R. To
show that the set A = {107™v,, ;m > M} is bounded in D}, , we still have to
show that it is bounded for the seminorms pp with B bounded in D(£2). In the
course of step 2, we showed that, for any f € D, the set ps(A) is bounded in R.
This means that A is bounded in D}M equipped with the Hérmander topology.
But we proved that this is equivalent to being bounded for the normal topology.
Thus, A is bounded in D}, = with its normal topology.

Step 5: Let Sp, := Y=, %ok (So = 0). Then for any M > 0, the sequence
(Sm — Sm)m>m is a Cauchy sequence in D'FM. As a consequence, S, — Sy
converges to v — Sy in D and WF(v) D {(zm;m), m € N*}.

In the previous step we showed that the set A = {107™v,,;m > M} is
bounded in D}, . Thus, for every seminorm p; of D, ~and any p > ¢ > M,
we have p;(S, — S;) < C; 377 _, 10™/ml, and each p;(S,, — Sar) is a Cauchy
sequence in R. By the completeness of D , it implies that S,,, — S converges
to v — S]\/[ in D/FM'

Since the wavefront set is known for each vy, (WF(vp,) = {Zm} X Ri0m), var
is the only one among the distributions v — Sas, vz, ..., v1 which is singular in
direction RY nas at xps (because (xar;nar) ¢ ' by construction either because
Tm # xpr if n =1 or because 1, # N if n # 1, for m > M), one deduces {x s } x
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R%na € WF(v). Indeed, by choosing a test function v such that ¢ (za) # 0
and a closed cone V' C R% B(nar, par/4), we have suppty) x VN WF(v,,) = 0
for m < M and suppy x VN WF(v — Sy) = 0. Therefore, ||v — var||n,v,p is

finite for all N and (v — vpr)(Anar) cannot compensate for the slow decrease

of M()\m\/[), which is ensured by the fact that WF(¢vas) = WF(vas) when
Y(xpr) # 0 [43, p. 121]. Since this is valid for any M, this proves the wavefront
set statement.

It remains to show that the sequence is also Cauchy in &').

Step 6: S, == > -, %vk is Cauchy in & for the strong topology coming
from its duality with D). (and even Mackey-Cauchy for the corresponding von
Neumann bornology). Especially, £ is not sequentially complete (and not even
Mackey-complete).

By construction WF(S,,) C A. Assume proved the statement about its Cauchy
nature, then the last step enables to show that if it were (even weakly) convergent
in &), then the limit would be v (since it would be weakly convergent in D
where the limit is v) as a distribution, but since the wavefront set is closed,
(x;m) € WF(v) and since (z;n) € A this gives a contradiction, implying that
Sm is a Cauchy sequence not (weakly) converging in &£.

Thus it remains to show that Sy, is Cauchy. Take B C D} bounded, we want
to show that pp(Sm) = Y 1, pa(vk)/k! is a Cauchy sequence. First choose y €
D({2) which is identically one on the compact set Uye xsupp x, = X +supp x (the
sum of two compact sets is compact), where x, = T, x. Using lemma[23] since B
is bounded in D' (£2), fix M = Mp such that sup,,c 5 supycgn (14+|k]) =M [Yu(k)| =
D < oco. Then, for y € X, we bound:

sup [[ul[argn v, = sup sup (1+ [k)) " [xyu(k)| = sup sup (1 + [k[)~" [xyxu(k)]

ueB ueB keR™ u€eB keR™
< sup sup / dg(1+ [k — g™ % (k — ) Tu@)l(1 + g™
ueB kKER™ n

< DI (A4 1)B8) M D s 1) supp 0 (X) = C < 0.

It now suffices to estimate pg(v,,) for m > M + n + 1. Thus, using this
inequality and (I0), we deduce for m > M +n + 1:

sup |14, vn)] = Sup = / kX u(k) Ty (— )
R’Vl

uwEB weB (2m)"

< cBmm/ k(1 + [K)M (1 + [k])~™ < Cp10m I+,

Thus, for p>¢> M +n+1, pp(Sp —Sq) < CplItt Zizq_H %k, and pp(Spm)
is Cauchy as we wanted.

More precisely, let us define the following bounded set for the strong topology
of &

A ={ve&):ppv) <max(CpI’™', max (pp(vm))) VB bounded in Dy(£2)}.
m<Mp+n+1
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Note that if g < Mp+n+1<p,orq<p<Mp+n+1, we still have
P k

10
_ < - n+1 .
pe(Sy = S) < 3 Jrmax(Cpli™,  max  (ps(vm))
k=q+1
Thus, if Apg = Agp = Dpgi1 0% for p > g, we showed S, — Sy € Ay A" and
since A, 4 — 0, we even deduce that S, is Mackey-Cauchy. This concludes.

P,q—©

Step 7: Characterization of closed A.

To complete the proof we give some information on the case when A is open
and closed. A subset of a topological space X is called clopen if it is both open
and closed in X [5 p. 10]. A topological space X is connected if and only if its
only clopen subsets are X and @ [5, p. 10]. Now, if {2 is connected, its cotangent
bundle T*2 is connected. If the dimension of 2 is n > 1 the set 7*(2, which is
T™(2 with the zero section removed, is also connected. In that case A is clopen if
and only if it is either empty (so that £ = D(2)) or T*(2 (so that &y = &'(£2)).
Since both D(2) and £'(§2) are complete, our theorem is optimal for connected
T*0.

Corollary 35 If A is an open cone which is not closed, &'y is not sequentially
complete for any topology that is coarser than the normal topology and finer
than the weak topology of distributions induced by D'(12). In particular, the in-
ductive limit of Ey equipped with the Héormander topology is also not sequentially
complete.

Proof. This result is a consequence of the proof above rather than of the state-
ment. A sequence which is Cauchy for the normal topology remains Cauchy for
topologies that are coarser than it, thus our counterexample above is Cauchy
for the topologies considered. Therefore, it converges weakly in D’(£2) and we
showed that the limit cannot be in £ so that &£ is not sequentially complete.

Corollary 36 If A is an open cone which is not closed, then &' is not a regu-
lar inductive limit for the inductive topology (which is equivalent to the strong
topology) and it is not semi-reflexive. If (I'")® = A, D} is neither bornological
nor barrelled in its normal topology

Proof. If &), were semi-reflexive it would be weakly sequentially complete 46,
p. 228]. If the inductive limit were regular, it would be semi-reflexive as explained
at the end of section 4.3. Alternatively, one can see that the set of the Cauchy
sequence {S,,, m > 1} we built is bounded in £/ and not in any FEj.

The space D). is not bornological because the strong dual of a separated
bornological space is complete [38, p. 77]. If D} were barrelled in its normal
topology so that, since it is semi-Montel, it would be a Montel space [46], p. 231],
then its strong dual £y would also be a Montel space [46] p. 234] and thus again
semi-reflexive. Note that Bourbaki states that a space that is semi-reflexive and
semi-barrelled is complete [3, p. IV.60], but this is wrong [4].

Remark that D} provides a concrete and natural example of a complete
nuclear space whose strong dual is not sequentially-complete. Grothendieck con-
structed other examples by using sophisticated techniques of topological tensor
products [33] Ch. II, p. 83 and p. 92] (see also [37, p. 96]).
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7. Conclusion

This paper determined the main functional properties of Hormander’s space of
distributions D} and its dual. In view of applications to the causal approach of
quantum field theory, we derived simple rules to determine whether a distribution
belongs to D', whether a sequence converges in D} and whether a subset of D
is bounded. The properties of D’ can also be useful to other physical applications
where the wavefront set played a crucial role [471[231[501241[821[251[67].

By using the functional properties of D/, the proof of renormalizability of
scalar quantum field theory in curved spacetime can be considerably simplified
and streamlined with respect to the original derivation given by Brunetti and
Fredenhagen [§].

The results of the present paper will be extended in two directions: i) The
continuity properties of the main operations with distributions in D). (tensor
product, pull-back, push-forward, multiplication of distributions) [15]; ii) A de-
tailed investigation of the microcausal functionals discussed by Brunetti, Diitsch,
Fredenhagen, Rejzner and Ribeiro [7}26LT0,9], which are the basis of a new and
powerful formulation of quantum field theory. As noticed in ref. [I0], the space of
microcausal functionals is based on spaces of the type &y which have very poor
completeness properties. This problem can be solved by using the completion
of &, which is, because of the nuclearity of £/, also the bornological dual of
D’ [39, p. 140]. The topological and bornological properties of this completion
will be discussed in a forthcoming publication by the first author [14].
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