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FUNCTIONAL PROPERTIES OF HÖRMANDER’S SPACE OF

DISTRIBUTIONS HAVING A SPECIFIED WAVEFRONT SET

YOANN DABROWSKI AND CHRISTIAN BROUDER

Abstract. The space D′

Γ
of distributions having their wavefront sets in a

closed cone Γ has become important in physics because of its role in the for-
mulation of quantum field theory in curved space time. In this paper, the
topological and bornological properties of D′

Γ
and its dual E ′

Λ
are investigated.

It is found that D′

Γ
is a nuclear, semi-reflexive and semi-Montel complete

normal space of distributions. Its strong dual E ′

Λ
is a nuclear, barrelled and

bornological normal space of distributions which, however, is not even sequen-
tially complete. Concrete rules are given to determine whether a distribution
belongs to D′

Γ
, whether a sequence converges in D′

Γ
and whether a set of

distributions is bounded in D′

Γ
.

1. Introduction

Standard quantum field theory uses Feynman diagrams in the momentum space.
However, this framework was not able to deal with quantum field theory in curved
space time because of the absence of translation invariance in general spacetimes.
In 1992, Radzikowski [1, 2] showed the wavefront set of distributions to be a key
concept to define quantum fields in curved spacetime. This idea was fully devel-
oped into a renormalized scalar field theory in curved spacetimes by Brunetti and
Fredenhagen [3], followed by Hollands and Wald [4]. This approach was rapidly
extended to deal with Dirac fields [5, 6, 7, 8, 9, 10], gauge fields [11, 12, 13] and
even the quantization of gravitation [14].

This tremendous progress was made possible by a complete reformulation of
quantum field theory, where the wavefront set of distributions plays a central role,
for example to determine the algebra of microcausal functionals, to define a spectral
condition for time-ordered products and quantum states and to give a rigorous
description of renormalization.

In other words, the natural space where quantum field theory takes place is
not the space of distributions D′, but the space D′

Γ of distributions having their
wavefront set in a specified closed cone Γ. This space and its simplest properties
were described by Hörmander in 1971 [15]. Since D′

Γ is now a crucial tool of
quantum field theory, it is important to investigate its topological and functional
properties. For example, renormalized time-ordered products are determined as an
extension of a distribution to the thin diagonal. Since this extension is defined as
the limit of a sequence, we need simple criteria to determine the convergence of
a sequence in D′

Γ. The ambiguity of renormalization is determined, among other
things, by the way this distribution varies under scaling. The scaled distributions
must form a bounded set in D′

Γ (i.e. every seminorm of D′
Γ must be bounded over

B). Thus, we need simple tests to know when a set of distributions is bounded.
The purpose of this paper is to provide tools to answer these questions in a simple
way.

The authors were partially supported by the GDR Renormalisation.
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The wavefront set of distributions plays also a key role in microlocal analysis, to
determine whether a distribution can be pulled back, restricted to a submanifold
or multiplied by another distribution [16, Chapter 8]. Therefore, the wavefront set
has become a standard subject in textbooks of distribution theory and microlocal
analysis [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. However, to the best of our knowledge,
no detailed study was published on the functional properties of D′

Γ.
Many properties of D′

Γ will be deduced from properties of its dual. Thus, we
shall first calculate the dual of D′

Γ, denoted by E ′
Λ, which turns out to be the space

of compactly supported distributions having their wavefront set included in an open
cone Λ which is the complement of Γ up to a change of sign. Such a space E ′

Λ is
used in quantum field theory to define microcausal functionals [12].

We now summarize our main results. Although they are both nuclear and nor-
mal spaces of distributions, D′

Γ and E ′
Λ have very contrasted properties; (i) D′

Γ

is semi-reflexive and complete while E ′
Λ is not even sequentially complete; (ii) E ′

Λ

is barrelled, and bornological, while D′
Γ is neither barrelled nor bornological. For

applications, the most significant property of D′
Γ is to be semi-Montel. Indeed,

two steps involving D′
Γ are particularly important in the renormalization process

described by Brunetti and Fredenhagen [3]. The first step is a control of the diver-
gence of the relevant distributions near the diagonal: there must be a real number
s such that the family {λ−suλ}0<λ≤1 is a bounded set of distributions, where uλ
is a scaled distribution. This proof is facilitated by our determination of bounded
sets:

Proposition 1. A set B of distributions in D′
Γ is bounded if and only if, for

every v ∈ E ′
Λ, there is a constant Cv such that |〈u, v〉| < Cv for all u ∈ B. Such

a weakly bounded set is also strongly bounded and equicontinuous. Moreover, the
closed bounded sets of D′

Γ are compact, complete and metrizable.

The second step is the proof that the extension of a distribution can be defined
as the limit of a sequence of distributions in D′

Γ. For this we derive the following
convergence test:

Proposition 2. If ui is a sequence of elements of D′
Γ such that, for any v ∈ E ′

Λ, the
sequence 〈ui, v〉 converges in C to a number λv, then ui converges to a distribution
u in D′

Γ and 〈u, v〉 = λv for all v ∈ E ′
Λ.

We now describe the organization of the paper. After this introduction, we
determine a pairing between D′

Γ and E ′
Λ and we show that this pairing is compatible

with duality. Then, we prove that D′
Γ is a normal space of distributions (in the

sense of Schwartz). The next section investigates several topologies on E ′
Λ and shows

their equivalence. Then, the bornological of D′
Γ are discussed. Bornology enables

to prove that D′
Γ is complete and it is relevant to the problem of quantum field

theory on curved spacetime because some isomorphisms of the space of sections of
a vector bundle over a manifold are stronger in the bornological setting than in
the topological one (see section 4). These results are put together to determine
the main functional properties of D′

Γ and its dual. Finally, a counter-example is
constructed to show that E ′

Λ is not sequentially complete. This will imply that D′
Γ

and its dual do not enjoy all the nice properties of D′.

2. The dual of D′
Γ

In this section, we review what is known about the topology of D′
Γ and we

describe the functional analytic tools (duality pairing and normal spaces of distri-
butions) that enable us to calculate the dual of D′

Γ.
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2.1. What is known about D′
Γ. Let us fix the notation. Let Ω be an open set

in Rn, we denote by T ∗Ω the cotangent bundle over Ω, by UT ∗Ω = {(x; k) ∈
T ∗Ω ; |k| = 1} (where |k| is the standard Euclidian norm on Rn) the sphere bundle

over Ω and by Ṫ ∗Ω = T ∗Ω\{(x; 0) ;x ∈ Ω} the cotangent bundle without the zero

section. We say that a subset Γ of Ṫ ∗Ω is a cone if (x;λk) ∈ Γ whenever (x; k) ∈ Γ
and λ > 0. For any closed cone Γ, Hörmander defined [15, p. 125] the space D′

Γ

to be the set of distributions in D′(Ω) having their wavefront set in Γ. He also
described what he called a pseudo-topology on D′

Γ, which means that he defined a
concept of convergence in D′

Γ but not a topology (as a family of open sets). His
definition was equivalent to the following one [16, p. 262]: a sequence uj ∈ D′

Γ

converges to u ∈ D′
Γ if

(i) The sequence of numbers 〈uj, f〉 converges to 〈u, f〉 in the ground field K

(i.e. R or C) for all f ∈ D(Ω).
(ii) If V is a closed conical neighborhood in Rn and χ is an element of D(Ω) that

satisfy (suppχ × V ) ∩ Γ = ∅, then supk∈V (1 + |k|)N |ûjχ(k) − ûχ(k)| → 0
for all integers N ,

where v̂ denotes the Fourier transform of the distribution v. The Fourier transform
of a function f ∈ D(Ω) is defined by f̂(k) =

∫
Ω
eik·xf(x)dx. Hörmander then

showed that D(Ω) is dense in D′
Γ. More precisely, for every u ∈ D′

Γ there is a
sequence of functions uj ∈ D(Ω) such that uj converges to u in the above sense [16,
p. 262].

This concept of convergence is compatible with different topologies. The topol-
ogy ofD′

Γ used in the literature (see [22, p. 80], which is usually called the Hörmander
topology [3, 23]), is that of a locally convex topological vector space defined by the
following seminorms:

(i) pf(u) = |〈u, f〉| for all f ∈ D(Ω).
(ii) ||u||N,V,χ = supk∈V (1 + |k|)N |ûχ(k)| → 0, for all integers N , all closed

conical neighborhoods V and all χ ∈ D(Ω) such that (suppχ×V )∩Γ = ∅.
An equivalent topology can be defined as the initial topology of a set of maps [26],
from which it can be deduced that D′

Γ is a nuclear space [12]. We immediately
observe that D′

Γ is a Hausdorff locally convex space because u = 0 if pi(u) = 0 for
all its seminorms pi [27, p. 96]. Indeed, if pf (u) = |〈u, f〉| = 0 for all f ∈ D(Ω),
then u = 0.

2.2. Duality pairing. Mackey’s duality theory [28, 29, 30, 31] is a powerful tech-
nique to investigate the topological properties of locally convex spaces [32, 27]. The
first step of this method is to find a duality pairing between two spaces.

Let us take the example of the duality pairing between D′(Ω) and D(Ω). Any
test function u ∈ D(Ω) can be paired to any f ∈ D(Ω) by 〈u, f〉 =

∫
Ω u(x)f(x)dx.

The density of D(Ω) in D′(Ω) implies that this pairing can be uniquely extended
to a pairing between D′(Ω) and D(Ω), also denoted by 〈u, f〉, that can be written

〈u, f〉 =
1

(2π)n

∫

Rn

ûϕ(k)f̂(−k)dk,(1)

where the function ϕ ∈ D(Ω) is equal to 1 on a compact neighborhood of the support
of f . Indeed, 〈u, f〉 = 〈ϕu, f〉 [33, p. 90] and ϕu has a Fourier transform because
it is a compactly supported distribution [16, p. 165]. This pairing is compatible
with duality, in the sense that any element α in the topological dual of D(Ω) can
be written α(f) = 〈u, f〉 for one element u of D′(Ω), by definition of the space of
distributions.

We would like to find a similar pairing between D′
Γ and another space to be

determined. Grigis and Sjöstrand [22, p. 80] showed that the pairing 〈u, v〉 =
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∫
Ω u(x)v(x)dx between C∞(Ω) and D(Ω) extends uniquely to the pairing defined by
eq. (1) between D′

Γ and every space E ′
Ξ of compactly supported distributions whose

wavefront set is contained in Ξ, where Ξ is any closed cone such that Γ′ ∩ Ξ = ∅,
where Γ′ = {(x; k) ∈ Ṫ ∗Ω ; (x;−k) ∈ Γ} (see also [18, p. 512] for a similar result).

We need to slightly extend their definition by pairing D′
Γ with the space E ′

Λ,
where Λ is now the open cone Λ = (Γ′)c. Note that this space is the union of the
ones considered by Grigis and Sjöstrand. The next lemma does not contain more
information than their result, but, for the reader’s convenience, we still first show
that this extended pairing is well defined.

Lemma 3. If Γ is a closed cone in Ṫ ∗Ω and Λ = (Γ′)c = {(x; k) ∈ Ṫ ∗Ω ; (x,−k) /∈
Γ}, then the following pairing between D′

Γ and E ′
Λ = {v ∈ E ′(Ω) ;WF(v) ⊂ Λ} is

well defined:

〈u, v〉 =
1

(2π)n

∫

Rn

ûϕ(k)v̂(−k)dk,

where u ∈ D′
Γ, v ∈ E ′

Λ and ϕ is any function in D(Ω) equal to 1 on a compact
neighborhood of the support of v. This pairing is separating and, for any v ∈ E ′

Λ,
the map λ : D′

Γ → K defined by λ(u) = 〈u, v〉 is continuous.

Proof. We first consider the case where Γ is neither empty nor Ṫ ∗Ω. A distribution
v ∈ E ′

Λ is compactly supported and its wavefront set is a closed cone contained
in Λ, which implies WF(v) ∩ Γ′ = ∅. The product of distributions uv is then a
well-defined distribution by Hörmander’s theorem [16, p. 267]. We estimate now
〈u, v〉 = (2π)−n

∫
ûϕ(k)v̂(−k)dk.

By a classical construction [24, p. 61], there is a finite set of non-negative smooth
functions ψj such that

∑
j ψ

2
j = 1 on a compact neighborhood K of the support

of v and there are closed conical neighborhoods Vuj and Vvj that satisfy the three
conditions: (i) Vuj ∩ (−Vvj) = ∅, (ii) suppψj ×V cuj ∩Γ = ∅ and (iii) suppψj ×V cvj ∩
WF(v) = ∅. As a consequence of these conditions, we have Γ|K ⊂ ∪j (suppψj×Vuj)
and WF(v) ⊂ ∪j (suppψj × Vvj). If we choose ϕ =

∑
j ψ

2
j we can write 〈u, v〉 =

∑
j Ij , where Ij = (2π)−n

∫
ûψj(k)v̂ψj(−k)dk.

Following again Eskin [24, p. 62], we can define homogeneous functions of degree

zero αj and βj on Ṫ ∗Ω, which are smooth except at the origin, measurable, non-
negative and bounded by 1 on Rn and such that suppαj and suppβj are closed
conical neighborhoods satisfying the three conditions (i), (ii) and (iii) stated above,
with αj = 1 on Vuj and βj = 1 on Vvj . Then we insert 1 =

(
αj + (1 − αj)

)(
βj +

(1− βj)
)
in the integral defining Ij and we obtain Ij = I1j + I2j + I3j + I4j , where

I1j = (2π)−n
∫

Rn

αj(−k)ψ̂ju(−k)βj(k)ψ̂jv(k) dk,

I2j = (2π)−n
∫

Rn

αj(−k)ψ̂ju(−k)
(
1− βj(k)

)
ψ̂jv(k) dk,

I3j = (2π)−n
∫

Rn

(
1− αj(−k)

)
ψ̂ju(−k)βj(k)ψ̂jv(k) dk,

I4j = (2π)−n
∫

Rn

(
1− αj(−k)

)
ψ̂ju(−k)

(
1− βj(k)

)
ψ̂jv(k) dk.

We first notice that I1j = 0 because (−suppαj) ∩ suppβj = ∅. We estimate I4j .
The function βj was built so that (1−βj) = 0 on Vvj and suppψj × supp (1−βj)∩
WF(v) = ∅. Then, for any integer N ,

∣∣(1− βj(k)
)
ψ̂jv(k)

∣∣ ≤ ||v||N,suppβ′

j ,ψj
(1 + |k|)−N ,
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where β′
j = 1− βj . Similarly

∣∣(1− αj(k)
)
ψ̂ju(k)

∣∣ ≤ ||u||M,suppα′

j ,ψj
(1 + |k|)−M ,(2)

where α′
j = 1− αj . Thus, for N +M > n,

|I4j | ≤ ||u||M,suppα′

j ,ψj
||v||N,supp β′

j,ψj
IN+M
n ,

where INn =
∫
Rn(1 + |k|)−Ndk.

For I3j we use the fact that, ψjv being a compactly supported distribution, there

is an integer m and a constant C such that |ψ̂jv(k)| ≤ C(1 + |k|)m [16, p. 181].
When this estimate is combined with eq. (2) we obtain for M > n+m,

|I3j | ≤ ||u||M,suppα′

j ,ψj
CIM−m

n .

For the integral I2j we proceed differently because we want to recover a seminorm of

D′
Γ. If we define f̂j(k) = αj(−k)(1−βj(k))ψ̂jv(k), then I2j = (2π)−n

∫
ψ̂ju(−k)f̂j(k)dk.

We call fast decreasing a function f(k) such that, for every integer N , |f(k)| ≤
CN (1 + |k|)−N for some constant CN . Note that our fast decreasing functions are

different from Schwartz rapidly decreasing functions. The function f̂j(k) is fast de-

creasing because αj and βj are bounded by 1, ψ̂jv(k) is fast decreasing outside the

wavefront set of v and (1− βj(k)) cancels ψ̂jv(k) on this wavefront set. The func-

tion f̂j is also measurable because it is the product of measurable functions. Thus,
by a standard result in the spirit of [20, p. 145], its inverse Fourier transform fj
exists and is smooth. We can now rewrite I2j = 〈ψju, fj〉 = 〈u, ψjfj〉, which is well
defined because ψjfj is smooth and compactly supported. Finally |I2j | ≤ pψjfj (u),
where pψjfj (u) = |〈u, ψjfj〉|, and we obtain

|〈u, v〉| ≤
∑

j

(
pψjfj (u) + ||u||M,suppα′

j ,ψj
CIM−m

n(3)

+||u||M,suppα′

j ,ψj
||v||N,suppβ′

j ,ψj
IN+M
n

)
.

Thus, 〈u, v〉 is well defined because all the terms in the right hand side are finite
and the sum is over a finite number of j. Note that pψjfj (u) and ||u||M,suppα′

j ,ψj

are seminorms of D′
Γ because ψjfj ∈ D(Ω) and, by construction, suppα′

j is a cone
and suppψj × suppα′

j ∩ Γ = ∅.
Equation (4) obviously shows that λ : u 7→ 〈u, v〉 is continuous.
The second case is Γ = Ṫ ∗Ω and Λ = ∅, so that D′

Γ = D′(Ω) and E ′
Λ = D(Ω).

The seminorm |〈u, v〉| = pv(u) is then a seminorm of D′
Γ since v ∈ D(Ω). The last

case is when Γ = ∅ and Λ = Ṫ ∗Ω, so that D′
Γ = C∞(Ω) and E ′

Λ = E ′(Ω). If we use
the fact that the usual topology of C∞(Ω) is equivalent with the topology defined
by || · ||N,V,χ for all closed conical neighborhoods V and all χ ∈ D(Ω) [34], then we
recover the fact that the elements of E ′(Ω) are continuous maps from C∞(Ω) to
K [33, p. 89].

Finally, the pairing is separating because, if 〈u, v〉 = 0 for all v ∈ E ′
Λ, then

〈u, f〉 = 0 for all f ∈ D(Ω) because D(Ω) ⊂ E ′
Λ and a distribution u which is zero

on D(Ω) is the zero distribution. Similarly, v = 0 if 〈u, v〉 = 0 for all v ∈ E ′
Λ because

D(Ω) ⊂ E ′
Λ. �

To simplify the discussion, we used Eskin’s αj and βj functions to build maps
from v ∈ E ′

Λ to fj ∈ C∞(Ω). This can be improved by defining maps from E ′
Λ

to the Schwartz space S of rapidly decreasing functions. The idea is to use a
smooth positive function h bounded by 1, equal to 1 outside the unit ball and to
0 in a neighborhood of the origin of Rn. If, furthermore, the functions αj and βj
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have polynomially bounded derivatives, then the functions ĝj(k) = h(k)αj(−k)(1−
βj(k))ψ̂jv(k) are in S as well as their Fourier transforms.

2.3. Normal space of distributions. The usual spaces of distribution theory
(e.g. D, S, C∞, D′, S ′, E ′), are normal spaces of distributions [35, p. 10], which
enjoy useful properties with respect to duality. They are defined as follows:

Definition 4. A Hausdorff locally convex space E is said to be a normal space of
distributions if there are continuous injective linear maps i : D(Ω) → E and j : E →
D′(Ω), where D′(Ω) is equipped with its strong topology, such that: (i) The image
of i is dense in E, (ii) for any f and g in D(Ω) 〈j ◦ i(f), g〉 =

∫
Ω f(x)g(x)dx [27,

p. 319].

To transform D′
Γ into a normal space of distributions we need to make its topol-

ogy finer. In the case of D′
Γ condition (ii) is obviously satisfied because the injections

i and j are the identity. The fact that j is a continuous injection means that the
topology of D′

Γ must be finer than the topology induced on it by the strong topology
of D′(Ω) [36, p. 302]. Therefore, we now equip D′

Γ with the topology defined by the
seminorms pB(u) = supf∈B |〈u, f〉| of uniform convergence on the bounded sets B
of D(Ω) (instead of only the seminorms pf = |〈u, f〉|) and we keep the seminorms
||u||N,V,χ defined in section 2.1. Since pB are the seminorms of D′(Ω), D′

Γ has more
seminorms than D′(Ω), the identity is a continuous injection and its topology is
finer than that of D′(Ω) [27, p. 98]. We call this topology the normal topology of
D′

Γ, while the usual topology will be called the Hörmander topology of D′
Γ. Note

that D′
Γ is Hausdorff for the normal topology because it is Hausdorff for the coarser

Hörmander topology. It remains to show that

Lemma 5. The injection of D(Ω) in D′
Γ is continuous.

Proof. We have to prove that the identity map D(Ω) →֒ D′
Γ is continuous. Because

of the inductive limit topology of D(Ω), we must show that, for any compact subset
K of Ω, the map D(K) →֒ D′

Γ is continuous for the topology of D(K) [33, p. 66].
Recall that D(K) is the set of elements of D(Ω) whose support is contained in K.
Its topology is defined by the seminorms πm,K(f) = sup|α|≤m supx∈K |∂αf(x)|.

Continuity is proved by showing that all the seminorms of D′
Γ are bounded by

seminorms of D(K) [27, p. 98]. Let B be a bounded set of D(Ω) and pB(f) =
supg∈B |〈f, g〉| with 〈f, g〉 =

∫
K
f(x)g(x)dx. The function f(x) is bounded by

π0,K(f), all the g(x) in B are bounded by a common number M0 because B is
bounded [33, p. 69]. Thus, pB(f) ≤ |K|M0π0,K(f), where |K| is the volume of K.

We still must estimate the seminorms ||f ||N,V,χ = supk∈V (1 + |k|)N |f̂χ(k)|. By
using (1 + |k|) ≤ β(1 + |k|2), with β = (1 +

√
2)/2, we find

(1 + |k|)N |f̂χ(k)| ≤ βN
∣∣∣(1 + |k|2)N

∫
eik·xf(x)χ(x)dx

∣∣∣

≤ βN
∣∣∣
∫
eik·x(1−∆)N (fχ)(x)dx

∣∣∣

We expand (1 − ∆)N =
∑N

i=0

(
N
i

)
(−∆)i and we estimate each |∆i(fχ)(x)| ≤

niπ2N,K(fχ). This gives us (1 + |k|)N |f̂χ(k)| ≤ ((1 + n)β)N |K|π2N,K(fχ). To
calculate π2N,K(fχ) we notice that, for any multi-index α such that |α| ≤ m, we
have

|∂α(fχ)| ≤
∑

β≤α

(
α

β

)
|∂βf ||∂α−βχ| ≤

∑

β≤α

(
α

β

)
πm,K(f)πm,K(χ)

≤ 2mπm,K(f)πm,K(χ).
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Thus,

(1 + |k|)N |f̂χ(k)| ≤ (4(n+ 1)β)N |K|π2N,K(χ)π2N,K(f),(4)

with a bound independent of k and ||f ||N,V,χ ≤ Cπ2N,K(f), where C = (4(n +
1)β)N |K|π2N,K(χ). The proof that the identity is continuous is complete. �

It is now clear that D′
Γ with its normal topology is a normal space of distribu-

tion because D(Ω) is dense in D′
Γ (since sequential convergence for the weak and

strong topologies of D′(Ω) are equivalent [33, p. 70] and from Hörmander’s density
result [16, p. 262]). From the general properties of normal spaces of distributions
we obtain:

Proposition 6. If we (temporarily) denote by DΓ the dual of D′
Γ, then

(i) The restriction map induces an injection DΓ →֒ D′(Ω) [27, p. 259]
(ii) If DΓ is equipped with the strong topology β(DΓ,D′

Γ), then the injection
DΓ →֒ D′(Ω) is continuous [27, p. 259]

(iii) If DΓ is equipped with the Arens topology [37] κ(DΓ,D′
Γ) of the uniform

convergence on the convex compact sets for the normal topology of D′
Γ,

then DΓ is a normal space of distributions [27, p. 259] and the dual of DΓ

is D′
Γ [27, p. 235]

(iv) A distribution v ∈ D′(Ω) belongs to DΓ if and only if it is continuous on
D(Ω) for the topology induced by D′

Γ [27, p. 319]
(v) D(Ω) is dense in DΓ equipped with any topology compatible with duality [35,

p. 10]

We are now ready to prove

Proposition 7. The dual of D′
Γ for its normal topology is E ′

Λ.

Proof. We already proved that E ′
Λ →֒ DΓ because, by lemma 3, any v ∈ E ′

Λ defines
a continuous map D′

Γ → K (for the Hörmander and thus for the normal topology)
and the injectivity is obvious by density of D(Ω) in D′

Γ. It remains to show that
any continuous linear map λ : D′

Γ → K defines a distribution in E ′
Λ. By item (i) of

proposition 6, we know that λ is a distribution. We first show that this distribution
is compactly supported, then that its wavefront set is included in Λ.

Since the map λ is continuous for the normal topology of D′
Γ, there exists a finite

number of seminorms pi and a constantM such that |λ(u)| ≤M supi pi(u) for all u
in D′

Γ [27, p. 98]. In other words, there is a bounded set B in D(Ω) (one is enough
because supi pBi ≤ pB where B = ∪iBi), and there are r integers Ni, r functions
χi in D(Ω) and r closed cones Vi such that suppχi × Vi ∩ Γ = ∅ and

|λ(u)| ≤M sup(pB(u), ||u||N1,V1,χ1
, . . . , ||u||Nr,Vr,χr ).

We first show that λ is a compactly supported distribution. Indeed, B is a
bounded set of D(Ω) if and only if there is a compact subset K of Ω and constants
Mm such that all g ∈ B are supported on K and πm,K(g) ≤ Mm [33, p. 68].
According to the definition of the support of a distribution [16, p. 42], 〈u, g〉 = 0 if
suppu∩ supp g = ∅. Thus pB(u) = supg∈B |〈u, g〉| = 0 if suppu∩K = ∅. Similarly,
||u||Ni,Vi,χi = 0 if suppu ∩ suppχi = ∅. Finally, for any f ∈ D(Ω) whose support
does not meet Kλ = ∪isuppχi ∪ K, we have |λ(f)| = 0. This implies that the
support of λ is included in the compact set Kλ [16, p. 42].

Then we show that WF(λ) ⊂ ΛM = ∪Mi=1suppχi×(−Vi). We consider an integer
N , a smooth function ψ and a closed cone W such that suppχ×W ∩ΛM = ∅. We
now fix such W,χ and we define fk = (1 + |k|)Nψek, where ek(x) = eik·x. Hence,

||λ||N,W,ψ = sup
k∈W

(1 + |k|)N |λ̂ψ(k)| = sup
k∈W

|λ(fk)|,
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where we used the fact that the Fourier transform of the compactly supported
distribution λψ is λ(ψek) [16, p. 165]. Since, by continuity, |λ(fk)| ≤M supi pi(fk),
it suffices to bound supk∈W pi(fk).

We first estimate pB(fk). Since B is a bounded set in D(Ω), the support of all
g ∈ B is contained in a common compact set K [33, p. 88] and

|〈fk, g〉| = (1 + |k|)N |〈ψek, g〉| = (1 + |k|)N |ψ̂g(k)|
≤ (4(n+ 1)β)N |K|π2N,K(g)π2N,K(ψ),

where we used eq. (4). Moreover, all the seminorms of elements ofB are bounded [33,
p. 88]. Thus, there is a number M2N such that π2N,K(g) ≤M2N for all g ∈ B and
we obtain |〈fk, g〉| ≤ (8β)N |K|π2N,K(ψ)M2N . Since this bound is independent of
k, we obtain our first bound supk∈Rn pB(fk) <∞.

Consider now the second type of seminorms and calculate pi(fk) = ||fk||Ni,Vi,χi .
We have two cases:

(i) If (suppψ ∩ suppχi) = ∅, then supk∈Rn pi(fk) = 0 and we are done.
(ii) If suppψ ∩ suppχi 6= ∅, we want to estimate

||fk||Ni,Vi,χi = sup
q∈Vi

(1 + |q|)Ni |f̂kχi(q)| = sup
q∈Vi

(1 + |q|)Ni(1 + |k|)N |êkψχi(q)|.

We have êkψχi(q) = 〈ekeq, ψχi〉 = ψ̂χi(k+ q). Since we choseW such that (−Vi)∩
W = ∅, by compactness of the intersection of Vi and W with the unit sphere, there
is a 1 ≥ c > 0 such that |k − q|/|k| > c, |q − k|/|q| > c for all k ∈ W, q ∈ −Vi. We
thus deduce:

||fk||Ni,Vi,χi ≤ c−N−Ni sup
q∈Vi

(1 + |k + q|)N+Ni ψ̂χi(k + q).

The function ψχi is smooth and compactly supported. We can use eq. (4) again to
show that the right hand side of this inequality is bounded uniformly in k.

This concludes the proof of WF(λ) ⊂ ΛM . Finally, suppχi × Vi ∩ Γ = ∅ implies
suppχi × (−Vi) ⊂ Λ and ΛM ⊂ Λ. Thus, WF(λ) ⊂ Λ and since λ is compactly
supported we have λ ∈ E ′

Λ. �

In the following, we shall use E ′
Λ (instead of DΓ) to denote the dual of D′

Γ. Note
that a similar proof shows that E ′

Λ is the topological dual of D′
Γ equipped with the

Hörmander topology. Indeed, lemma 3 shows in fact that the pairing is continuous
for the Hörmander topology because pψifi in Eq. (4) is a seminorm of the weak
topology of D′(Ω), and the proof of the reverse inclusion just requires to replace
pB by pf .

3. Topologies on E ′
Λ

Our purpose in this section is to show that, if (E ′
Λ, β) denotes the space E ′

Λ

equipped with the strong β(E ′
Λ,D′

Γ) topology, then the topological dual of (E ′
Λ, β)

is D′
Γ. This implies immediately that D′

Γ is semi-reflexive and E ′
Λ is barrelled.

However, we shall not work directly with the strong topology β(E ′
Λ,D′

Γ). It will be
convenient (especially to show that E ′

Λ is nuclear and D′
Γ is complete) to define a

topology on E ′
Λ as an inductive limit. Then, we prove that the inductive topology is

compatible with duality and we conclude by showing that this inductive topology
is equivalent to the strong topology.

3.1. Inductive limit topology on E ′
Λ. We want to define a topology on E ′

Λ as the
topological inductive limit of some topological spaces Eℓ. We shall first determine
the vector spaces Eℓ, then we equip them with a topology.

Let us express E ′
Λ as the union of increasing spaces Eℓ. Inspired by the work

of Brunetti and coll. [26], we take Eℓ to be a set of distributions whose wavefront
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set is contained in some closed cone, that we denote by Λℓ. To determine Λℓ we
notice that Λ is an open set and the projection πi of a product space into each
of its coordinate spaces is open [38, p. 90]. Thus, π1(Λ) is an open subset of Ω.
On the other hand, the singular support of v ∈ E ′

Λ (i.e. Σ(v) = π1(WF(v)) [16,
p. 254]) is closed [20, p. 108]. It is even compact because it is a closed subset of
the support of v, which is compact. Hence, if we exhaust π1(Λ) by an increasing
sequence of compact sets Kℓ we know that, for any v ∈ E ′

Λ, Σ(v) will be contained
in Kℓ for ℓ large enough (because Σ(v) ⊂ π1(Λ) implies that the distance between
the compact set Σ(v) and the closed set π1(Λ)

c is strictly positive). Let us define
Kℓ to be the set of points that are at a distance smaller than ℓ from the origin and
at a distance larger than 1/ℓ from the boundary of Ω and from the boundary of
π1(Λ): Kℓ = {x ∈ Ω ; |x| ≤ ℓ, d(x,Ωc) ≥ 1/ℓ, d(x, ∂π1(Λ)) ≥ 1/ℓ}, where ∂π1(Λ) is
the boundary of π1(Λ) and d(x,A) = inf{|x− y|, y ∈ A} is the distance between a
point x and a subset A of Ω. If A is empty, we consider that d(x,A) = +∞. The
sets Kℓ are obviously compact (they are intersections of closed sets with a compact
ball), Kℓ ⊂ Kℓ+1 and π1(Λ) = ∪∞

ℓ=1Kℓ. Indeed, Ω
c is closed because Ω is open and

∂π1(Λ) is a closed set disjoint from π1(Λ) because π1(Λ) is open [38, p. 46]. Thus,
any point of π1(Λ) is at a finite distance ǫ1 from Ωc, ǫ2 from ∂π1(Λ) and M from
zero. Then x ∈ Kℓ for all integers ℓ greater than 1/ǫ1, 1/ǫ2 and M .

We can now build the closed cones Λℓ, that will be subsets of π
−1
1 (Kℓ) at a finite

distance from Γ′: Λℓ = {(x; k) ∈ Ṫ ∗Ω ;x ∈ Kℓ, d
(
(x; k/|k|),Γ′

)
≥ 1/ℓ}. This set is

clearly a cone because it is defined in terms of k/|k| and it is closed in Ṫ ∗Ω because it

is the intersection of two close sets: π−1
1 (Kℓ) and {(x; k) ∈ Ṫ ∗Ω ; d

(
(x; k/|k|),Γ′

)
≥

1/ℓ}. The first set is closed because Kℓ is compact and π1 is continuous and the
second set is closed because the function (x; k) 7→ d

(
(x; k/|k|),Γ′

)
is continuous on

Ṫ ∗Ω.
For some proofs, it will be useful for the support of the distributions to be

contained in a fixed compact set. Therefore, we also consider an increasing sequence
of compact sets {Lℓ}ℓ∈N exhausting Ω and such that Lℓ is a compact neighborhood
of Kℓ∪Lℓ−1 (L0 = ∅). Finally, we define Eℓ = E ′

Λℓ
(Lℓ) to be the set of distributions

in E ′(Ω) whose support is contained in Lℓ and whose wavefront set is contained in
Λℓ. Note that Eℓ will be equipped with the topology induced by D′

Λℓ
as a closed

subset.
This is an increasing sequence of spaces exhausting E ′

Λ. It is increasing because
Lℓ ⊂ Lℓ+1 and Λℓ ⊂ Λℓ+1 imply E ′

Λℓ
(Lℓ) ⊂ E ′

Λℓ+1
(Lℓ+1). To show that it is

exhausting, consider any v ∈ E ′
Λ. Since the support of v is compact, it is contained

in some Lℓ0 and then in Lℓ for all ℓ ≥ ℓ0. To show that WF(v) ⊂ Λℓ1 for some ℓ1,
consider the set Sv = {(x; k) ; |k| = 1 and (x; k) ∈ WF (v)}. It is compact because
it is closed and bounded (the support of v being compact). Since WF(v) ⊂ Λ and
Λ∩Γ′ = ∅, we have Sv∩Γ′ = ∅. There is a number δ > 0 such that d

(
(x; k),Γ′

)
> δ

for all (x; k) ∈ Sv because Sv is compact and Γ′ is closed. Thus, Sv ⊂ Λℓ for
ℓ > 1/δ. Since both Sv and Λℓ are cones we have WF(v) ⊂ Λℓ. Finally, v ∈ Eℓ for
all ℓ larger than ℓ0 and 1/δ.

We obtained the first part of

Lemma 8. If Λ is an open cone in Ṫ ∗Ω, then

E ′
Λ =

∞⋃

ℓ=1

Eℓ,

where Eℓ = E ′
Λℓ
(Lℓ) is the set of distributions in E ′(Ω) with a wavefront set con-

tained in Λℓ and a support contained in Lℓ. If Eℓ is equipped with the topology
induced by D′

Λℓ
(with its normal topology) we define on E ′

Λ the topological inductive
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limit

E ′
Λ = lim

→
Eℓ.

This topology will be called the inductive topology on E ′
Λ.

Proof. The inductive limit of Eℓ defines a topology on E ′
Λ iff the injections Eℓ →֒

Eℓ+1 are continuous [39, p. 221]. Since Eℓ ⊂ D′
Λℓ
, we can equip Eℓ with the topology

induced by D′
Λℓ
, which is defined by the seminorms pB(v) for all bounded sets B

of D(Ω) and || · ||N,V χ, where suppχ × V ∩ Λℓ = ∅. We prove that Eℓ →֒ Eℓ+1 is
continuous by showing that Eℓ has more seminorms than Eℓ+1: we have Λℓ ⊂ Λℓ+1.
Thus, Λcℓ ⊃ Λcℓ+1, suppχ×V ∩Λℓ = ∅ if suppχ×V ∩Λℓ+1 = ∅ and all the seminorms
||v||N,V,χ on E ′

Λℓ+1
are also seminorms on E ′

Λℓ
. The seminorms pB are the same for

E ′
Λℓ+1

and E ′
Λℓ

because the sets B are identical (i.e. the bounded sets of D(Ω)). �

This inductive limit is not strict if the open cone Λ is not closed. Indeed, if
the inductive limit were strict, then the Dieudonné-Schwartz theorem [27, p. 161]
would imply that each bounded set of E ′

Λ is included and bounded in an Eℓ, which
is wrong when Λ is not both open and closed, as we shall prove in section 4.3.

3.2. Duality of the inductive limit. In this section, we show that the inductive
topology on E ′

Λ is compatible with the pairing:

Proposition 9. The topological dual of E ′
Λ equipped with its inductive topology is

D′
Γ.

Proof. We first show that D′
Γ →֒ (E ′

Λ)
′. We already know that, for any u ∈ D′

Γ,
〈u, v〉 is well defined for all v ∈ Eℓ because Eℓ ⊂ E ′

Λ. Note that injectivity is
obvious since smooth compactly supported functions, which form a separating set
for distributions, are in E ′

Λ. A linear map from an inductive limit into a locally
convex space is continuous if and only if its restriction to all Eℓ is continuous [39,
p. 217]. Therefore, we must show that, for any ℓ, the map λ : v 7→ 〈u, v〉 is
continuous from Eℓ to K. The proof is so close to the derivation of lemma 3 that
it suffices to list the differences. We define a finite number of compactly supported
smooth functions ψj such that

∑
j ψ

2
j = 1 on a compact neighborhood of Lℓ (here

we use the fact that the support of all v ∈ Eℓ is contained in a common compact set)
and closed cones Vuj and Vvj satisfying the three conditions (i) Vuj ∩ (−Vvj) = ∅,
(ii) suppψj × V cuj ∩ WF(u) = ∅ and (iii) suppψj × V cvj ∩ Λℓ = ∅. The integral

I2j is calculated as I3j in lemma 3 if we interchange u and v, α and β: |I2j | ≤
||v||N,suppβ′

j ,ψj
CIN−m

n , where m is the order of v, and I3j is bounded as I2j in

lemma 3: |I3j | ≤ pψjgj (v), where ĝj(k) = βj(k)(1− αj(−k))ψ̂ju(−k). We obtain

|〈u, v〉| ≤
∑

j

(
pψjgj (v) + ||v||N,suppβ′

j ,ψj
CIN−m

n

+||u||M,suppα′

j ,ψj
||v||N,suppβ′

j ,ψj
IN+M
n

)
,

for any N > m+ n (the condition N +M > n being then satisfied for any nonneg-
ative integer M). This shows the continuity of λ because the right hand side is a
finite sum of terms involving seminorms of D′

Λℓ
, which induce the topology of Eℓ.

Conversely, to prove that (E ′
Λ)

′ →֒ D′
Γ, we show that any element λ of (E ′

Λ)
′

defines by restriction to D(Ω) a distribution and then that its wavefront set is
contained in Γ. This will be enough since by density of D(Ω) in E ′

Λ the restriction
then extends uniquely to E ′

Λ and is thus the inverse of the reverse embedding. A
linear map λ : E ′

Λ → K is continuous if its restriction to all Eℓ is continuous. In
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other words, for each Eℓ there is a bounded set B in D(Ω) and there are smooth
functions χi and closed conic neighborhoods Vi such that suppχi×Vi∩Λℓ = ∅ and

|λ(v)| ≤M sup(pB(v), ||v||N1,V1,χ1
, . . . , ||v||Nr,Vr ,χr ).(5)

We first prove that λ is a distribution, i.e. a continuous linear map from D(Ω) to
K. Recall that the space D(Ω) is the inductive limit of D(Lℓ) because Lℓ is an
increasing sequence of compact sets exhausting Ω [33, p. 66]. Thus, a map λ is a
distribution if the restriction of λ to each D(Kℓ) is continuous. For any f ∈ D(Kℓ),
we must show that all the seminorms on the right hand side of eq. (5) can be
bounded by some πm(f). But this is a consequence of the fact that D(Ω) →֒ D′

Λℓ

is continuous, which was established in lemma 5.
Since λ is a distribution, it has a wavefront set. To prove that WF(λ) ⊂ Γ

consider a smooth compactly supported function ψ and a closed cone W such that
suppψ×W ∩Γ = ∅, i.e. suppψ×(−W ) ⊂ Λ. Since the restriction of suppψ×(−W )
to the unit sphere is compact, there is an ℓ such that suppψ × (−W ) ⊂ Λℓ. Note
also that suppψ ⊂ π1(Λℓ) ⊂ Lℓ so that fk = (1 + |k|)Nψek is in Eℓ. We can
now repeat the same reasoning as for the proof of proposition 7 to show that
||λ||N,W,ψ = supk∈W |λ(fk)| is bounded. This shows that WF(λ) ⊂ Γ, which implies
λ ∈ D′

Γ and (E ′
Λ)

′ ⊂ D′
Γ.

This completes the proof that (E ′
Λ)

′ = D′
Γ. �

3.3. The strong topology on E ′
Λ. We showed that the coupling between E ′

Λ and
D′

Γ is compatible with duality. Thus, the inductive topology on E ′
Λ is coarser than

the Mackey topology [32, p. IV.4]. The strong topology β(E ′
Λ,D′

Γ) is always finer
than the Mackey topology [32, p. IV.4]. Therefore, if we can show that the inductive
topology is finer than the strong topology, we prove the identity of the inductive,
Mackey and strong topologies.

Lemma 10. The inductive, Mackey and strong topologies on E ′
Λ are equivalent.

Proof. To show that the identity map from E ′
Λ with the inductive topology to E ′

Λ

with the strong topology is continuous we must prove that the identity map is
continuous from all Eℓ to E ′

Λ with the strong topology. In other words, for any
bounded set B′ of D′

Γ, we must show that pB′(v) = supu∈B′ |〈u, v〉| is bounded on
Eℓ by some seminorms of Eℓ.

We proceed as in the proof of lemma 3. From the fact that Γ′ ∩ Λℓ = ∅ and
supp v ⊂ Lℓ we can build a finite number of smooth compactly supported functions
ψj such that

∑
j ψ

2
j = 1 on a compact neighborhood K ′ of Lℓ, and closed cones Vuj

and Vvj satisfying the three conditions (i) Vuj∩(−Vvj) = ∅, (ii) suppψj×V cuj∩Γ = ∅
and (iii) suppψj × V cvj ∩ Λℓ = ∅. The support of all ψj is assumed to be contained

in a common compact neighborhood K of K ′. Then, we define again homogeneous
functions αj and βj of degree 0, measurable, smooth except at the origin, non-
negative and bounded by 1 on Rn, such that the closed conical neighborhoods
suppαj and suppβj satisfy the three conditions (i), (ii) and (iii), with αj = 1
on Vuj and βj = 1 on Vvj and, as in the proof of lemma 3, we write 〈u, v〉 =∑

j(I1j + I2j + I3j + I4j). We have again I1j = 0 because the supports of αj and

βj are disjoint, and |I4j | ≤ ||u||M,suppα′

j ,ψj
||v||N,suppβ′

j ,ψj
IN+M
n for any integers N

and M such that N +M > n. It is important to remark that ψj , αj and βj depend
only on Γ, Lℓ and Λℓ and not on u and v.

To estimate I2j and I3j , we need to establish some properties of the bounded
sets of D′

Γ. The continuity of the injection D′
Γ →֒ D′(Ω) implies that a set B′ which

is bounded in D′
Γ is also bounded in D′(Ω) [27, p. 109]. According to Schwartz [33,

p. 86], a subset B′ is bounded in D′(Ω) iff, for any relatively compact open set
U ⊂ Ω, there is an index m such that every u ∈ B′ can be expressed in U as
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u = ∂αfu for |α| ≤ m, where fu a continuous function. Moreover, there is a
number M such that |fu(x)| ≤ M for all x ∈ U and u ∈ B′. The elements of Eℓ
are supported on Lℓ and we need only consider bounded sets of D′

Γ that are defined
on the compact neighborhood K of Lℓ. Thus, we can take for U any relatively
compact open set containing K.

To calculate I2j , as in the proof of lemma 3, we define ĝj(k) = αj(−k)(1 −
βj(k))ψ̂jv(k) and we obtain I2j = (2π)−n

∫
ψ̂ju(−k)ĝj(k)dk = 〈u, ψjgj〉. At this

stage one might apply the Banach-Steinhaus theorem but we shall use an equivalent
method using u = ∂αfu:

〈u, ψjgj〉 = 〈∂αfu, ψjgj〉 = (−1)|α|〈fu, ∂α(ψjgj)〉 = (−1)|α|〈ϕfu, ∂α(ψjgj)〉,

where ϕ is a smooth function, equal to 1 on K and supported on U . Thus

〈u, ψjgj〉 = (−1)|α|(2π)−n
∫

Rn

ϕ̂fu(−k) ̂∂α(ψjgj)(k)dk

= i|α|(2π)−n
∫

Rn

ϕ̂fu(−k)kαψ̂jgj(k)dk.

We must estimate ψ̂jgj(k) = (2π)−n
∫
Rn ψ̂j(k − q)ĝj(q)dq. The functions αj and

(1 − βj) are bounded by 1 and ψ̂jv is rapidly decreasing on the support of β′
j =

1 − βj . Thus, |ĝj(q)| ≤ ||v||N,suppβ′

j ,ψj
(1 + |q|)−N for all integers N . In the proof

of lemma 5, we estimated the Fourier transform of a smooth compactly supported
function: |ψj(k − q)| ≤ CN

′

j (1 + |k − q|)−N ′

for all integers N ′, where CN
′

j =

((1+n)β)N
′ |K|π2N ′,K(ψj). If we take N = n+m+1, where m = |α| is the degree

of ∂α, and N ′ = 2N we obtain

|ψ̂jgj(k)| ≤ (2π)−n||v||N,suppβ′

j ,ψj
C2N
j

∫

Rn

(1 + |k − q|)−2N (1 + |q|)−Ndq

≤ ||v||N,suppβ′

j,ψj
C2N
j INn (1 + |k|)−N ,

where we used (1 + |q|)−N ≤ (1 + |k − q|)N (1 + |k|)−N [24, p. 50]. This estimate
enables us to calculate

|I2j | = |〈u, ψjgj〉| ≤ (2π)−n
∫

Rn

|ϕ̂fu(−k)||k|m|ψ̂jgj(k)|dk

≤ (2π)−n|U |M ||v||N,suppβ′

j ,ψj
C2N
j INn

∫

Rn

|k|m
(1 + |k|)n+m+1

dk

≤ |U |M ||v||N,suppβ′

j ,ψj
C2N
j INn I

n+1
n ,

where N = n + m + 1, |U | is the volume of U and we used the obvious bound

|ϕ̂fu(−k)| ≤ |U |M .

The estimate of I3j is a little more subtle. We start from I3j = (2π)−n
∫
ĝuj (−k)ψ̂jv(k)dk,

where ĝuj (−k) = (1 − αj(−k))βj(k)ψ̂ju(−k). Thus |I3j | = |〈ψjguj , v〉| can be

bounded by pBj (v) = supf∈Bj
|〈f, v〉| if the set Bj = {ψjguj ;u ∈ B′} is a bounded

set in D(Ω). It is clear that all f ∈ Bj are supported on K = suppψj and that
all elements of ψjg

u
j are smooth because ψj is smooth and the Fourier transform

of guj is rapidly decreasing. It remains to show that all the derivatives of ψjg
u
j are

bounded by a constant independent of u. For this we write

∂α(ψjg
u
j )(x) = (2π)−n(−i)|α|

∫

Rn

e−ik·xkαψ̂jguj (k)dk.
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If |α| ≤ m, we use the estimate of ψ̂jgj obtained in the previous section and we
interchange u and v, αj and βj

|ψ̂jguj (k)| ≤ ||u||N,suppα′

j ,ψj
C2N
j INn (1 + |k|)−N ,

where N = n + m + 1. A set B′ is bounded in D′
Γ iff it is bounded for all the

seminorms of D′
Γ [27, p. 109]. In particular, there is a constant MN,suppα′

j ,ψj

such that ||u||N,suppα′

j ,ψj
≤ MN,suppα′

j ,ψj
for all u ∈ B′. Thus, for all f ∈ Bj ,

|f̂(k)| ≤MN,suppα′

j ,ψj
C2N
j INn (1 + |k|)−N and

|∂αf(x)| ≤ (2π)−n
∫

Rn

|k|m|f̂(k)|dk ≤MN,suppα′

j ,ψj
C2N
j INn I

n+1
n ,

where N = n+m+ 1 as for the estimate of I3j . In other words, for any α there is
a constant C|α| such that |∂αf | ≤ C|α| for all f ∈ Bj . Thus, πm(f) ≤ sup0≤k≤m Ck
is bounded independently of f , and we proved that Bj is a bounded set of D(Ω).
Hence, |I3j | ≤ pBj (v) where pBj is a seminorm of D′

Γ.
If we gather our results we obtain

pB′(v) ≤
∑

j

(
Mn,suppα′

j ,ψj
||v||n,supp β′

j ,ψj
I2nn +M ||v||N,suppβ′

j ,ψj
C2N
j INn I

n+1
n

+pBj (v)
)
,

where the sum over j is finite, N = n +m + 1 where m is the maximum order of
the distributions of B′. The proof is complete. �

4. Bornological properties

We study the bornological properties of D′
Γ because they enable us to prove

that D′
Γ is complete and because they have a better behaviour than the topological

properties with respect to the tensor product of sections. More precisely, if Γc(E) is
the space of compactly supported sections of a vector bundle E overM , then there
is a bornological isomorphism but no topological isomorphism between Γc(E ⊗ F )

and Γc(E) ⊗βC∞(M) Γ(F ), where F is another vector bundle over M [40]. As a

consequence, there is a bornological (and topological) isomorphism between the

distribution spaces Γc(E ⊗ F )′ and Γ(E∗)⊗βC∞(M) Γc(F )
′ [40].

4.1. Bornological concepts. We start by recalling some elementary concepts of
bornology theory [41].

Definition 11. A bornology on a set X is a family B of subsets of X satisfying
the following axioms:

B.1: B is a covering of X, i.e. X = ∪B∈BB.
B.2: B is hereditary under inclusion: if A ∈ B and B ⊂ A, then B ∈ B.
B.3: B is stable under finite union.

A pair (X,B) is called a bornological set and the elements of B are called the
bounded subsets (or the bounded sets) ofX . Bornological concepts are often inspired
by similar topological concepts. For example, a bornology B1 on a set X is finer
than a bornology B2 if B1 ⊂ B2. If B is a bornology on a set X , a subset B1 of B
is said to be a basis of B iff every set of B is contained in a set of B1.

If A is a subset of a vector space E, then the convex balanced envelope of A,
denoted by Γ(A), is the smallest convex balanced set that contains A. It is also
the convex envelope of A ∪ (−A) [32, p. II.10]. The envelope Γ(A) is the set of
finite linear combinations

∑
i λixi where xi ∈ A and

∑
i |λi| ≤ 1 [32, p. II.10]. If

f : E → F is a linear map between vector spaces, then f(Γ(A)) = Γ(f(A)) [32,
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p. II.10]. A convex balanced set is also called a disk [42, p. 1] or an absolutely
convex set [42, p. 1].

To define a convex bornological space we need the concept of a disked hull [41,
p. 6]. We recall that a subset A of a vector space is a disk if it is convex (i.e. for
any x and y in A and any real λ such that 0 ≤ λ ≤ 1, then λx + (1 − λ) is in A)
and balanced (i.e. if x ∈ A and λ ∈ K with |λ| ≤ 1, then λx ∈ A) [41, p. 4].

Lemma 12. A subset A is a disk if and only if λx+µy ∈ A whenever x and y are
in A and λ and µ in K satisfy |λ|+ |µ| ≤ 1 [41, p. 4].

Definition 13. If E is a vector space, the disked hull of a subset A of E, denoted
by Γ(A), is the smallest disk containing A.

Lemma 14. Let A be a subset of the vector space E. The disked hull Γ(A) of A
is the set of finite linear combinations of the form

∑
i∈I λixi, with xi ∈ A, λi ∈ K

and
∑

i∈I |λi| ≤ 1 [41, p. 6].

Definition 15. Let E be a vector space on K. A bornology B on E is said to be a
a convex bornology if, for every A and B in B and every t ∈ K, the sets A + B,
tA and Γ(A) (i.e. the disked hull of A) belong to B. Then E or (E,B) is called a
convex bornological space.

A convex bornological space is separated if the only vector space of B is {0}.
4.2. Completeness of D′

Γ. The set of bounded maps from a convex bornological
space E to K is called the bornological dual of E and is denoted by E×.

A powerful theorem of bornology states that, if a convex bornological space E is
regular (i.e. if E× separates points in E [41, p. 66]), then its bornological dual E×,
endowed with its natural topology, is a complete locally convex space [41, p. 77].

We are now going to build a bornological space E such that E× with its natural
topology is equal to D′

Γ with its normal topology. This implies the completeness of
D′

Γ.
Recall that Eℓ is the space E ′

Λℓ
(Lℓ) of the distributions compactly supported

on Lℓ whose wavefront set is included in Λℓ, where the set of Lℓ exhausts Ω and
the set of Λℓ exhausts Λ. To every locally convex space Eℓ we associate the convex
bornological space bEℓ which is the vector space Eℓ equipped with the von Neumann
bornology (i.e. the bornology defined by the bounded sets of the locally convex
space Eℓ) [41, p. 48]. Let E be the bornological inductive limit of bEℓ, which is the
vector space E ′

Λ equipped with the bornology defined by the bounded sets of Eℓ for
all integers ℓ [41, p. 33].

The bornological dual (F )× of a convex bornological space F is a locally convex
space for the natural topology defined by the bounded sets of F . In other words,
the seminorms of (F )× are of the form pB′(u) = supv∈B′ |〈u, v〉|, where B′ runs
over the bounded sets of F .

We start by two lemmas:

Lemma 16. D(Ω) is Mackey-sequentially-dense in E.

Proof. Take u ∈ bEℓ = E ′
Λℓ
(Lℓ). It suffices to find un ∈ D(Ω) such that un − u

tends bornologically to 0 in E ′
Λℓ+1

(Lℓ+1).

From the proof of Hörmander’s density Theorem [16, Th 8.2.3 p. 262] we see
that there exists a sequence un ∈ D(Ω) with supp (un) ⊂ Lℓ+1 such that un → u
in D′

Λℓ+1
thus in E ′

Λℓ+1
(Lℓ+1).

Moreover, in D′(Ω), Mackey convergence of a sequence is equivalent to conver-
gence in the strong topology (Mackey convergence for a von Neumann bornology
always implies by definition convergence for the topology from which the bornology
is derived). Moreover, strong convergence implies Mackey convergence when the
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von Neumann bornology is Schwartz, [41, p. 26], and this is the case for D′(Ω) since
this is a complete, thus bornologically complete [41, p. 46], co-nuclear locally con-
vex space so that its von Neumann bornology is nuclear thus Schwartz [43, p. 69]).
Thus, there exists νn → 0 such that { 1

νn
(un − u)}n∈N is bounded in D′(Ω).

Finally, the supplementary seminorms (beyond those of the strong topology) for
convergence in E ′

Λℓ+1
(Lℓ+1) can be chosen in a countable set {pn}n∈N [22, 34, p. 80].

Extracting a subsequence, one can assume that for all k ≤ n, pk(un−u) ≤ 1/n. As
a consequence, if Mk = maxn<k(npk(un − u), 1), then pk(un − u) ≤ Mk/n for all
n, k.

Finally, let λn = max(νn,
1
n ) → 0. We see that 1

λn
(un − u) = 1

νn
νn
λn

(un − u)

is obviously still bounded in D′(Ω) (since | νnλn
| ≤ 1). Moreover, 1

λn
pk(un − u) ≤

npk(un − u) ≤Mk, so that 1
λn

(un − u) is actually bounded in E ′
Λℓ+1

(Lℓ+1), i.e. un
tends to u bornologically. �

Lemma 17. Let B be a bounded set in D′(Ω), then for every f ∈ D(U) there exists
M such that

sup
u∈B

sup
ξ∈Rn

(1 + |ξ|)−M |f̂u(ξ)| <∞.

Proof. This lemma is an easy consequence of uniform boundedness principle/Banach-
Steinhauss Theorem. Consider the space S ′

0,M of C0 functions g on Rn such that:

sup
ξ∈Rn

(1 + |ξ|)−M |g(ξ)| <∞.

This is obviously a Banach space continuously embedded in the space of tempered
distribution S ′. One can consider S ′

0 = lim−→M→∞S ′
0,M with the inductive limit

topology. Define Tf : D′ → S ′
0 by Tf (u) = f̂u (by polynomial boundedness and

smoothness of f̂u it is well defined.) Now let us show this map is bounded (for
the von Neumann bornologies). From [43, II.4 p10 Prop 1] or [41, 4:2.3 lemma
(1) p52], it suffices to prove that the image of any sequence Mackey convergent to
0 is bounded. But a Mackey convergent sequence (for the von Neumann bornol-
ogy) obviously converges topologically, and a weakly convergent sequence in D′ has
polynomially bounded Fourier transform by uniform boudedness principle, i.e. is
bounded in some S ′

0,M and a fortiori in S ′
0. This shows Tf is bounded. Now

since D′ is complete, one may assume the bounded set B to be absolutely convex
and complete, and since D′ is Montel in its strong topology B is compact. Since
D′ is bornological with this topology, Tf is actually continuous, and thus Tf(B) is
compact, thus bounded and complete in S ′

0, and moreover absolutely convex. But
finally, from [39, §19.5.(5)], as in any (LF) space, Tf (B) has to be bounded in some
S ′

0,M . This concludes. �

Proposition 18. If E is the bornological inductive limit of the spaces bEℓ as above,
then (E)× = D′

Γ and its natural topology as a dual is equivalent to the normal
topology we defined on D′

Γ.

Proof. From lemma 3 and proposition 9, any u ∈ D′
Γ defines a continuous linear

form on each El thus a bounded linear form of bEℓ, i.e. an element of (E)×. This
gives an embedding D′

Γ →֒ (E)× since injectivity comes from the fact D(Ω) ⊂ E.
Conversely, we want to prove that each bounded linear form λ on E: (i) defines

a distribution when restricted to D(Ω) ⊂ E; (ii) with wavefront set contained in Γ.
This will be enough to conclude the computation of the bornological dual since,

from the previous lemma and the fact that a bounded linear functional is Mackey-
continuous, the restriction of a bounded linear functional to D(Ω) has a unique
extension to E, proving the second map above is injective.
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To prove that λ restricts to a distribution, we notice that the injection D(Lℓ) →֒
Eℓ is continuous because Eℓ is a normal space of distributions. Any bounded set
B of D(Ω), which is actually in some Eℓ, is bounded in Eℓ thus in E because the
image of a bounded set by a continuous linear map is a bounded set [27, p. 109].
Thus, λ is also a bounded map from D(Ω) to K. It is well-known that D(Ω) is
bornological [27, p. 222]. Hence, λ is a continuous map from D(Ω) to K because
any bounded map from a bornological locally convex space to K is continuous [27,
p. 220]. In other words, λ is an element of D′(Ω).

We still have to show that λ ∈ D′
Γ, i.e. that for any χ ∈ D(Ω) and any closed con-

vex neighborhood V such that suppχ×V ∩Γ = ∅, the seminorm ||λ||N,V,χ is finite for
all integers N . For this we use again the remark made in the proof of proposition 7
that ||λ||N,V,χ = supk∈V |λ(fk)|, where fk = (1 + |k|)Nχek. Thus, if B′ = {fk ; k ∈
V } is a bounded set in E, then we know that pB′(λ) = supk∈V |λ(fk)| < +∞
because the image of the bounded set B′ by the bounded map λ is bounded. It
remains to show that B′ is a bounded set of some Eℓ. We proceed as in the proof
of lemma 10.

First, suppχ is a compact subset of the open set π1(Λ). Therefore, there is an
integer ℓ such that Lℓ is a compact neighborhood of suppχ and U∗Ω ∩ Λℓ is a
compact neighborhood of U∗Ω ∩ (suppχ × (−V )) because Lℓ exhausts Ω and Λℓ
exhausts Λ. This space Eℓ contains B′ because each fk is smooth and compactly
supported and we want to show B′ is bounded in this Eℓ.

Consider the seminorm ||fk||N ′,W,ψ where suppψ × W ∩ Λℓ = ∅. If suppψ ∩
suppχ = ∅, then ||fk||N ′,W,ψ = 0 is bounded. If suppψ ∩ suppχ 6= ∅, then W ∩
(−V ) = ∅ and thus by compactness of the intersections of these cones with the unit
sphere, there is a c > 0 such that |k+ q|/|q| > c,|k+ q|/|k| > c for all k ∈ V, q ∈ W .
Therefore, we follow the proof of proposition 7 to show that

||fk||N ′,W,ψ ≤ c−N−N ′

sup
q∈W

(1 + |k + q|)N+N ′ |ψ̂χ(k + q)|.

According to eq. (4), there is a constant CN+N ′,ψχ such that ||fk||N ′,W,ψ ≤
c−N−N ′

CN+N ′,ψχ. Therefore, ||fk||N ′,W,ψ is uniformly bounded for all values of
k ∈ V .

To conclude the proof of the boundedness of B′ in Eℓ, we show that pB(fk)
is bounded for all bounded sets B ⊂ D(Ω). We know that D(Ω) is a Montel
space [36, p. 357]. Thus, it is barrelled and it is enough to show that B′ is weakly
bounded: i.e. that, for any g ∈ D(Ω), 〈fk, g〉 is bounded. Indeed we have |〈fk, g〉| =
(1 + |k|)N |〈ek, χg〉| = (1 + |k|)N |χ̂g(k)|, which is bounded uniformly in k ∈ Rn, as
seen from eq. (4).

Finally, we have shown that B′ is bounded in Eℓ, which implies that B′ is
bounded in E and that ||λ||N,V,χ = pB′(λ) < +∞ for all integers N and all V, χ
such that suppχ×V ∩Γ = ∅. In other words, this concludes our proof of WF(λ) ⊂ Γ.

Moreover, this also shows the natural topology of E× is finer than the normal
topology of D′

Γ (we have shown there are more seminorms defining the former than
the later, since the seminorms pB for B ⊂ D(Ω) are clearly in both.). It remains
to show the converse, i.e. continuity of the map D′

Γ 7→ E×. Since E× is defined
as a projective limit, it suffices to show, continuity of the injection obtained by
composition with E× → E×

ℓ for all ℓ. Said otherwise, we have to show that the
bound (3) we obtained in lemma 3 can be made uniform in v ∈ B for some bounded
set B in Eℓ. First note that the choices of functions ψ, α, β can be made uniformly
for v ∈ B, B a bounded set in Eℓ.

Second, using lemma 17, one see that the m,C used in the proof of the bound

(3) can be made uniform in v ∈ B so that supv∈B |v̂ψj(ξ)| ≤ C(1+ |ξ|)m. Moreover,
by definition of boundedness supv∈B ||v||N,suppβ′

j ,ψj
≤MN,suppβ′

j,ψj
.
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We thus obtain:

pB(u) = sup
v∈B

|〈u, v〉| ≤
∑

j

(
pB′

j
(u) + ||u||M,suppα′

j ,ψj
CIM−m

n

+||u||M,suppα′

j ,ψj
MN,suppβ′

j,ψj
IN+M
n

)
,

where B′
j := {ψjfvj ; v ∈ B} with f̂vj (k) = αj(−k)(1 − βj(k))ψ̂jv(k). To prove the

expected continuity, it thus only remains to show B′ is bounded in D(Ω) so that
pB′ will be a seminorm of D′

Γ.
But, let Kj = suppψj , we deduce:

πN,Kj(ψjf
v
j ) ≤ 2NπN,Kj(ψj)πN,Kj(f

v
j )

≤ 2NπN,Kj(ψj) sup
|γ|≤N

|
∫

supp β′

j

dk(kγ)αj(−k)(1− βj(k))ψ̂jv(k)|

≤ 2NπN,Kj(ψj)I
n+1
n ||v||N+n+1,supp β′

j ,ψj
,

and the last seminorm is a seminorm in Eℓ since suppβ′
j has been chosen (in the

process of choosing ψ, α, β independent of v ∈ B) so that supp (ψj)×suppβ′
j∩Λℓ =

∅. The above estimate thus concludes. �

Corollary 19. D′
Γ with its normal topology is complete.

Proof. From the result we stated [41, p. 77], it remains to check that E, as a convex
bornological space, is regular. From our computation of the dual, it was already
proved in lemma 3 that E× separates points in E. Thus, E is a regular convex
bornological space and its dual D′

Γ is complete with its normal topology, because
it is equivalent to the natural topology. �

4.3. E ′
Λ is bornological. A locally convex space is bornological if its balanced,

convex and bornivorous subsets are neighborhoods of zero [27, p. 220]. Bornological
spaces have very convenient properties. For example, every linear map f from a
bornological locally convex space E to a locally convex space F is continuous iff
it is bounded (i.e. if f sends every bounded set of E to a bounded set of F ) [27,
p. 220]. Thus, it is worthwile to prove the following:

Proposition 20. E ′
Λ is a bornological locally convex space.

Proof. By a standard theorem [27, p. 221], a locally convex Hausdorff space E is
bornological iff the topology of E is the Mackey topology and any bounded linear
map from E to K is continuous. We already know from lemma 10 that the inductive
topology on E ′

Λ is equivalent to the Mackey topology. Thus, it remains to show that
a linear map λ : E ′

Λ → K is continuous if supv∈B′ |λ(v)| < ∞ for every bounded
subset B′ of E ′

Λ. Since λ is a fortiori bounded for the coarser bornology of E, we
know from proposition 18 that it defines by restriction on D(Ω) an element of D′

Γ.
Then this element extends to a continuous linear form on E ′

Λ, and since by lemma 16,
D(Ω) is Mackey dense in E thus a fortiori in E ′

Λ, the extension has to coincide with
the original λ (which is bounded thus Mackey sequentially continuous). Finally, λ
is thus continuous. �

Note that the previous argument says E ′
Λ has the same bornological dual as E,

but not necessarily with the same natural topology. Indeed, the natural topology of
(E ′

Λ)
× is the strong β(D′

Γ, E ′
Λ) topology on D′

Λ. If the normal topology of D′
Λ were

the strong topology, then E ′
Λ would be semi-reflexive because the dual of D′

Γ for
the normal topology is E ′

Λ. Thus, E ′
Λ would be quasi-complete and we shall prove

in section 5.4 that this is not the case when the open cone Λ is not closed.
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This implies another consequence regarding the regularity of the inductive limit.
Recall that an inductive limit of locally convex spaces is said to be regular if each
bounded set of E is contained and bounded in some Eℓ [44, 45]. If the inductive
limit defining the topology of E ′

Λ were regular, then the bornology of E ′
Λ would

be the bornology of E (because we already know that every bounded set of E is
bounded in E ′

Λ). In that case, the natural topologies of their bornological dual D′
Γ

would be identical and the normal topology on D′
Γ would be the strong topology.

Thus, the inductive limit is not regular when Λ is not both open and closed.

5. Functional properties of D′
Γ and E ′

Λ

In this section, we put together the results derived up to now to determine the
main functional properties of D′

Γ and E ′
Λ.

5.1. General functional properties.

Proposition 21. The space D′
Γ is a normal space of distributions. It is Hausdorff,

nuclear and semi-reflexive. Its topological dual is E ′
Λ which is Hausdorff, nuclear,

and barrelled.

Proof. We saw that D′
Γ is Hausdorff. Its dual E ′

Λ is also Hausdorff because the
pairing 〈·, ·〉 is separating (see lemma 3) and the topology of E ′

Λ is finer than the
weak topology σ(E ′

Λ,D′
Γ) [27, p. 185]. We proved that D′

Γ is the dual of E ′
Λ for

the inductive topology and that the inductive topology of E ′
Λ is equivalent to the

strong topology β(E ′
Λ,D′

Γ). Therefore, D′
Γ is the topological dual of E ′

Λ, which is
the strong dual of D′

Γ. This implies that D′
Γ is semi-reflexive [27, p. 227].

The space E ′
Λ is barrelled because it is the strong dual of a semi-reflexive space [27,

p. 228]. This can also be deduced from the fact that the inductive topology of E ′
Λ

is equal to its strong topology [32, p. IV.5]. D′
Γ is well-known to be nuclear with

its Hörmander topology [12]. Since the normal topology is the locally convex ker-
nel [39, p. 225] of this Hörmander topology and the strong topology of D′(Ω) which
is well known to be nuclear, it is again nuclear [36, p. 514]. Of course, one could
give a direct proof in seeing the normal topology directly as a locally convex kernel
of nuclear spaces of tempered distributions and D′(Ω).

Since Eℓ is a linear subspace of the nuclear space D′
Λℓ
, we immediately obtain

that E ′
Λ is a nuclear space because a linear subspace of a nuclear space is nuclear

and a countable inductive limit of nuclear spaces is nuclear [36, p. 514]. �

The duality pairing D′
Γ × E ′

Λ → K defined by 〈u, v〉 is hypocontinuous but not
continuous. Generally, the canonical pairing between a topological space E and its
dual can only be continuous if E is normable [27, p. 359]. The spaces D′

Γ and E ′
Λ

are not normable. In fact, a nuclear space is normable if and only if it is finite
dimensional [36, p. 520].

5.2. Completeness properties of D′
Γ. We state the results concerning the com-

pleteness of D′
Γ:

Proposition 22. In D′
Γ:

• D′
Γ is complete for all topologies finer than the normal topology and coarser

than the Mackey topology.
• D′

Γ is quasi-complete for all topologies compatible with the duality between
D′

Γ and E ′
Λ; all the bounded closed subsets are complete for these topologies.

In particular, D′
Γ is quasi-complete for the Hörmander topology.

Proof. We have proved that D′
Γ is complete for the normal topology. Thus, it is

complete for all topologies that are finer than the normal topology and that are
compatible with duality [32, p. IV.5]. We have also showed that D′

Γ is semi-reflexive.
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As a consequence, it is quasi-complete for the weak topology σ(D′
Γ, E ′

Λ) [27, p. 228].
This implies that D′

Γ is quasi-complete for every topology compatible with the
duality between D′

Γ and E ′
Λ, in particular for the normal topology [32, p. IV.5].

Since Bourbaki’s proof is rather sketchy, we give it in more detail. Assume that
E is quasi-complete for the weak topology σ(E,E′) and consider a topology T
compatible with duality. The space E is quasi-complete for T iff every T -closed
T -bounded subset of E is complete. Consider a subset C of E which is closed and
bounded for T . By the theorem of the bipolars, the bipolar C◦◦ of C is a balanced,
convex, σ(E,E′)-closed set containing C. We also know that C is bounded for T
iff it is bounded for σ(E,E′) because T is compatible with duality [27, p. 209].
Then, we use the fact that C is bounded for σ(E,E′) iff C◦ is absorbing [27,
p. 191]. But C◦ = (C◦◦)◦ so that C◦◦ is weakly bounded if and only if C is
weakly bounded. Therefore, C◦◦ is bounded, convex and closed for σ(E,E′), and
also for the other topologies compatible with duality by the first two items of the
proposition. Consider now a Cauchy filter on C◦◦ for the topology T . It is also
a Cauchy filter for the weak topology. Indeed a filter F is Cauchy iff, for any
neighborhood V of zero, there is an F ∈ F such that F − F ⊂ V . The topology T
being compatible with duality, it is finer than the weak topology. Thus, any weak
neighborhood V is also a neighborhood of T and F is a Cauchy filter for the weak
topology. This Cauchy filter converges to a point x because E is quasi-complete for
the weak topology. Moreover, x is in C◦◦ because C◦◦ is weakly closed. Therefore,
the Cauchy filter converges in C◦◦ and C◦◦ is complete for T . As a consequence, C
itself is also complete because it is a closed subset of a complete set [27, p. 128]. �

This brings us to the following result

Proposition 23. The space D′
Γ with its normal topology is semi-Montel. The space

E ′
Λ is a normal space of distributions on which the strong, Mackey, inductive limit

and Arens topologies are equivalent.

Proof. We saw that D′
Γ is quasi-complete and nuclear for its normal topology. Thus,

its bounded subsets are relatively compact [36, p. 520] and D′
Γ is semi-Montel by

definition of semi-Montel spaces [27, p. 231]. We already know that the strong,
Mackey and inductive limit topologies are equivalent. It is known that on the dual
of a semi-Montel space, the Arens topology is equivalent to the strong and Mackey
ones [27, p. 235]. By item (iii) of proposition 6, we obtain that E ′

Λ is a normal space
of distributions. �

Semi-Montel spaces have interesting stability properties [27, § 3.9], [46, § 11.5]
(for example, a closed subspace of a semi-Montel space is semi-Montel [27, p. 232],
as well as a strict inductive limit of semi-Montel spaces [27, p. 240]). Moreover,
if B is a bounded subset of D′

Γ, then the topology induced on B by the normal
topology is the same as that induced by the weak σ(D′

Γ, E ′
Λ) topology [27, p. 231]

and B is metrizable (because E ′
Λ, the strong dual of D′

Γ, is nuclear [47, p. 217]).
The following properties of semi-Montel spaces are a characterization of conver-

gence [27, p. 232] which is useful in renormalization theory:

Proposition 24. If ui is a sequence of elements of D′
Γ such that 〈ui, v〉 converges

to some number λ(v) in K for all v ∈ E ′
Λ, then ui converges to λ in D′

Γ.

Proposition 25. If (uǫ)0<ǫ<α is a family of elements of D′
Γ such that 〈uǫ, v〉

converges to some number λ(v) in K as ǫ → 0 for all v ∈ E ′
Λ, then uǫ → λ in

D′
Γ as ǫ→ 0.

By proposition 22, we see that D′
Γ is quasi-complete for the Hörmander topology.

However, it is generally not complete because D′(Ω) is not complete for the weak
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topology (otherwise, every linear map fromD(Ω) to K would be continuous, whereas
it is well known that the algebraic dual of D(Ω) is larger than D′(Ω) [48]).

5.3. Bounded sets. The bounded sets of D′
Γ are important in renormalization

theory because they are used to define the scaling degree [3] of a distribution and
the weakly homogeneous distributions [49].

The bounded sets of D′
Γ were characterized in the proof of lemma 10: a subset

B′ of D′
Γ is bounded if B′ is a bounded set of D′(Ω) and for every integer N , every

ψ ∈ D(Ω) and every closed cone V such that suppψ×V ∩Γ = ∅, there is a constant
MN,V,χ such that ||u||N,V χ ≤ MN,V,χ for all u ∈ B′. The bounded sets of D′(Ω)
have several characterizations (see [33, pp. 86 and 195] and [50, pp. 330 and 493]).

We can now list the main properties of the bounded sets of D′
Γ, which correspond

to a Banach-Steinhaus theorem for D′
Γ:

Theorem 26. In D′
Γ:

• The bounded subsets are the same for all topologies finer than the weak
topology σ(D′

Γ, E ′
Λ) and coarser than the strong topology β(D′

Γ, E ′
Λ). In par-

ticular, they are the same for the normal and the Hörmander topologies.
• The bounded sets are equicontinuous.
• The closed bounded sets are compact and identical for the weak, Hörmander

and normal topologies.

Proof. In general, the bounded subsets of a topological vector space E are the same
for all locally convex Hausdorff topologies on E compatible with the duality be-
tween E and E′ [36, p. 371], i.e. for all topologies finer than the weak topology
and coarser than the Mackey topology [36, p. 369]. The barrelledness of E ′

Λ im-
plies that these bounded sets are also identical with the strongly bounded sets [27,
p. 212]. In the dual D′

Γ of a barrelled space E ′
Λ, a set is bounded if and only if

it is equicontinuous [27, p. 212]. In a quasi-complete nuclear space, every closed
bounded subset is compact [36, p. 520]. Especially, using propositions 21 and 22,
this implies that bounded subsets closed for the Hörmander and normal topolo-
gies are compact for these topologies. In the dual of a barrelled space, the weakly
closed bounded sets are weakly compact [27, p. 212]. After the proof of prop. 7, we
showed that the Hörmander topology is compatible with the pairing [27, p. 198].
Thus, by the Mackey-Arens theorem [27, p. 205], it is finer than the weak topology
and coarser than the Mackey one.

In the remarks following Proposition 23, we show that the weak and normal
topologies are equivalent on the bounded sets. Therefore, the Hörmander topology
is equivalent to those since it is finer than the weak topology and coarser than
the normal one. As a consequence, the closed and bounded sets are the same for
the three topologies. Indeed, it suffices to remember we noted above bounded sets
closed for one of the topologies are compact for the corresponding induced topology,
and compactness is an internal topological property so that they are compact for
all the induced topologies since they coincide. Finally, compactness implies in a
Hausdorff space they are closed for all the three topologies. �

In concrete terms, this means that a subset B′ is bounded in D′
Γ if and only if

one (and then all) of the following conditions is satisfied:

(i) For every v ∈ E ′
Λ, there is a constant Mv such that |〈u, v〉| ≤ Mv for all

u ∈ B′. This defines weakly bounded sets.
(ii) For every bounded set B of E ′

Λ, there is a constantMB such that |〈u, v〉| ≤
MB for all u ∈ B′ and all v ∈ B. This defines strongly bounded sets.

(iii) There is a constant C and a finite set of seminorms pi of E ′
Λ such that

|〈u, v〉| ≤ Cmaxi pi(v). This defines equicontinuous sets [27, p. 200].
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With respect to item (ii) recall that, the inductive limit being not regular, there
are bounded sets in E ′

Λ that are not contained and bounded in any Eℓ. However,
of course, as we already used, the bounded sets of every Eℓ are bounded in E ′

Λ.
Note also that the closed convex subsets are the same for all topologies compat-

ible with the duality between D′
Γ and E ′

Λ [36, p. 370].

5.4. Completeness properties of E ′
Λ. By contrast with D′

Γ, the completeness
properties of E ′

Λ are very poor. More precisely, we have

Theorem 27. Assume Λ is an open cone which is not closed, then E ′
Λ with its strong

topology (i.e. inductive limit topology) is not (even weakly) sequentially complete.
In particular, if Ω is connected and the dimension of spacetime is n > 1, then E ′

Λ

is not sequentially complete when Λ is any open conical proper subset of Ṫ ∗Ω.

Proof. In fact, if Λ is an open cone which is not closed in Ṫ ∗Ω, we exhibit an explicit
counterexample showing that E ′

Λ is not sequentially complete. Since the construc-
tion of this counterexample is a bit elaborate, we first describe its main idea. Con-
sider a point (x; η) in the boundary of Λ. There is a sequence of points (xm; ηm) ∈ Λ
such that (xm; ηm) → (x; η). By using an example due to Hörmander, we construct
a distribution vm whose wavefront set is exactly the line {(xm;ληm) ;λ > 0}. Then
we show that the sum v =

∑
m vm/m! is a well defined distribution which does not

belong to E ′
Λ because the point (x; η) belongs to its wavefront set. Since the series

defining v is a Cauchy sequence, we have defined a Cauchy sequence in E ′
Λ whose

limit is not in E ′
Λ.

The proof consists of several steps: (i) description of Hörmander’s example,
(ii) construction of the couter-example v =

∑
vm/m!, (iii) choice of the sequence

(xm; ηm) and of the closed cones ΓM , (iv) calculation of the seminorms of vm in
D′

ΓM
, (v) determination of the wavefront set of v, (vi) proof that the series is Cauchy

in E ′
Λ, (vii) discussion of the case where Λ is both open and closed.

Step 1: Hörmander’s distribution

To build this counterexample we start from a family of distributions, defined by
Hörmander [51, p. 188], whose wavefront sets are made of a single point x and a
single direction λk and whose order is arbitrary: Let χ ∈ C∞(R, [0, 1]) be equal
to 1 in (−∞, 1/2) and to 0 in (1,+∞) and fix 0 < ρ < 1. Let η ∈ Rn a unit
vector, and take an orthonormal basis (e1 = η, e2, ..., en) and write coordinates in
this coordinate system.

Define uη,s ∈ S ′(Rn), for s ∈ R, by

ûη,s(ξ) = (1− χ(ξ1))ξ
−s
1 χ((ξ22 + · · ·+ ξ2n)/ξ

2ρ
1 ).

Then WF(uη,s) = {(0; ξ); ξ2 = · · · = ξn = 0, ξ1 > 0} = {0}×R∗
+η and uη,s coincides

with a function in S(Rn) outside a neighborhood of the origin [51, p. 188]. It is
clear that, if ξ = λη and λ > 1, then |ûη,s(ξ)| = λ−s for any λ > 1, where s is an
arbitrary real number. Thus, the degree of growth can be an arbitrary polynomial
degree. Moreover, Hörmander actually proves that for any real number t and any
integer m, there is a constant C(t,m), such that if α, β are multi-indexes, and
|α| ≥ C(t,m) then {xα∂βuη,s, s ≥ t, |β| ≤ m, η ∈ Sn} are bounded continuous
functions on Rn, uniformly bounded by a constant D(t,m).

One should also note that when the last factor in the definition does not vanish,

we have ξ2ρ1 ≥ (ξ22 + ... + ξ2n) so that |ξ1|2 ≥ |ξ1|
2+(ξ22+...+ξ

2
n)

1/ρ

2 ≥ |ξ|2/2 as soon

as ξ22 + ... + ξ2n ≥ 1, and otherwise |ξ|2 ≤ |ξ1|2 + 1 ≤ 5|ξ1|2 when (1 − χ)(ξ1) 6= 0
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(which implies ξ1 ≥ 1/2). Moreover, when the first factor does not vanish |ξ| ≥ 1/2
so that |ξ| ≥ (1 + 2|ξ|)/4 ≥ (1 + |ξ|)/4. As a consequence, we note for s ≥ 0:

|ûη,s(ξ)| ≤ (1− χ(ξ1))80
s/2(1 + |ξ|)−sχ((ξ22 + · · ·+ ξ2n)/ξ

2ρ
1 ) ≤ 10s(1 + |ξ|)−s.(6)

Step 2: Construction of the counterexample

Since Λ is open and not closed, its boundary ∂Λ = Λ\Λ is not empty and ∂Λ∩Λ =
∅ [38, p. 46]. Moreover, any point (x; η) of ∂Λ is the limit of a sequence of points
(xm; ηm) in Λ [52, p. 9].

By starting from Hörmander’s example, we build a family of distributions vm
such that the wavefront set of vm is {(xm;ληm) ;λ > 0} and |v̂m(ληm)| = (λ|ηm|)−m.
For this we use the translation operator Tx acting on test functions by (Txf)(y) =
f(y − x) and extend it to distributions by 〈Txu, f〉 = 〈u, T−xf〉. Thus Txmuηm,m
has the desired properties. However, we want all distributions vm to be compactly
supported on Ω. Thus, we define the compact set X = ∪∞

m=1{xm} ∪ {x} ⊂ Ω, so
that δ = d(X,Ωc) > 0, and χ a smooth function compactly supported on B(0, δ/2)
and equal to 1 on a neighborhood of the origin. Then vm = Txm(χuηm,m) is a
distribution in E ′(Ω) with the desired properties.

It is easy to show that the series v =
∑∞

m=1 vm/m! converges to a distribution
in E ′(Ω). Indeed, it is enough to prove that, for any f ∈ D(Ω), the numerical series∑

m〈vm, f〉/m! converges in K [20, p. 13]. We have

〈vm, f〉 = 〈Txmχuηm,m, f〉 = 〈uηm,m, χT−xmf〉 = (2π)−n
∫

Rn

ûηm,m(k)χ̂f−xm(−k).

where f−xm = T−xmf . For every integer N we have by Eq.(4)

|χ̂f−xm(k)| ≤ (1 + |k|)−N (4(n+ 1)β)N |K|π2N,K(χ)π2N,K(f−xm),

whereK is a compact neighborhood of suppχ and |K| its volume. Now, π2N,K(f−xm) ≤
π2N,K′(f), where K ′ is a compact neighborhood of supp f . Thus, there is a con-
stant CN = (4(n + 1)β)N |K|π2N,K(χ)π2N,K′(f), independent of m, such that

|χ̂f−xm(k)| ≤ CN (1 + |k|)−N . The estimate (6) gives us, for N = n,

|〈vm, f〉| ≤ Cn(2π)
−n10m

∫

Rn

(1 + |k|)−n−mdk

≤ Cn(2π)
−n10m

∫

Rn

(1 + |k|)−n−1dk ≤ Cn10
mIn+1

n ,

because m ≥ 1, and the series is absolutely convergent with |〈v, f〉| ≤ CnI
n+1
n e10.

We know that the distribution v is well defined but we have no control of its
wavefront set. Indeed, the wavefront set of v can contain points that are not in any
WF (vm) and there can be points that are in the wavefront set of some vm but not
in WF (v) (see refs. [53, 4] for concrete examples). Therefore, we must carefully
choose the sequence (xm; ηm) so that (x; η) is indeed in the wavefront set of v. This
is done in the next step.

Step 3: Choice of the sequence and construction of the cones

We want to ensure that all points (xm; ηm) actually belong to WF(v). Thus, we
choose the elements (xm; ηm) so that each direction ηm is at a finite distance from
the other ones (except when n = 1, in which case we will choose xm at a finite
distance from one another), to avoid that their overlap concurs to remove (x; η)
from the wavefront set of v. Since Λ is a cone, we can choose |η| = |ηm| = 1 and, up
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to extraction and since Λ is open, it is possible to shift the points (xm; ηm) so that
if n = 1, xm 6= x and ηm = η, |xm+1 − x| < |xm − x|/2, |xm − x| < 1 , and if n 6= 1
ηm 6= η, |ηm+1−η| < min(|ηm−η|, d(ηm,−Γxm))/2, where Γxm = {ξ ; (xm; ξ) ∈ Γ},
and |ηm − η| < 1 for all m. Let ρm = min

(
|ηm − η|, d(ηm,−Γxm)

)
< 1 if n 6= 1

and set ρm = 1/3m if n = 1, and note that if n 6= 1, ρm+1 < ρm/2 implies
|ηm − ηk| > ρm/2 for all k > m, since ρm/2 ≥ ρm/2

k−m > ρk ≥ |ηk − η| so that if
|ηm−ηk| ≤ ρm/2 were true, we would deduce ρm ≤ |ηm−η| ≤ |ηm−ηk|+ |ηk−η| <
ρm, yielding a contradiction. Recall that vm = Txm(χuηm,m) so that vm ∈ E ′

Λ and
WF(vm) = {xm} × R∗

+ηm.
To control the wavefront set, we define partial sums Sm =

∑m
i=1 vi/i!, and we

show that the cotangent directions of the wavefront set of v − Sm do not meet
(xi; ηi) for i ≤ m. Thus, we have the finite sum v = (v − Sm) +

∑m
i=1 vi/i! and,

since the cotangent directions of the wavefront set of the terms do not overlap,
there can be no cancellation and all (xi; ηi) belong to the wavefront set for i ≤ m.
Then, we have indeed (xm; ηm) ⊂ WF(v) for all m because this procedure can be
applied for all values of m.

It remains to show that the wavefront set of v − Sm belongs to a closed conical
set Γm which does not meet (xi; ηi) for i ≤ m. We first build these Γm as follows:

Let Xm = ∪∞
l>m{xl} ∪ {x} ⊂ Ω and γm,i = Xm ×

(
R∗

+B(ηi, ρi/4)
)
. It is clear

that if n 6= 1, γm,i ∩ γm,j = ∅ because, for j > i, we have |ηi − ηj | > ρi/2 and
ρj < ρi. Thus, |ηi − ηj | > (ρi + ρj)/4 and since this expression is symmetric in i

and j, it holds for all i 6= j. This shows that the balls B(ηi, ρi/4) and B(ηj , ρj/4)
do not meet and the result follows. The closed cones γm,i are then used to define
Γm =

(⋃
i>m γm,i

)
∪ (Xm × R∗

+η).
To show that the wavefront set of v−Sm belongs to Γm, we prove that the series∑∞
i=m+1 vi/i! converges in D′

Γm
.

Step 4: Estimates on seminorms of vm in D′
ΓM

, m > M .

Fix ψ ∈ D(Ω) and any closed cone W such that suppψ ×W ∩ ΓM = ∅. For
convenience we define the distance ||x − y||∞ = supi=1,...,n |xi − yi|, where xi is
the ith coordinate of x in a given orthonormal basis. Then, we define the distance
between two sets to be d∞(A,B) = infx∈A,y∈B ||x− y||∞.

We first consider the case when XM ∩ suppψ = ∅. Then, vmψ is smooth, and we
want to show that {vmψ,m ∈ N} is bounded in D(Ω), since W above can be taken
arbitrary. This is equivalent to prove that {χψ−xmuηm,m,m ∈ N} is bounded, where
ψ−xm = T−xmψ. Let ǫ = d∞(XM , suppψ) > 0. Since ψ vanishes in a neighborhood
of xm on the ball B∞(xm, ǫ) with ǫ > 0, we deduce that χψ−xm(y) vanishes when
||y||∞ ≤ ǫ. Thus, we can consider that ||y||∞/ǫ ≥ 1.

Then, using the properties of Hörmander’s construction, we bound uniformly in
m. Fix y and choose yi such that |yi| = ||y||∞. Then,

|∂αχψ−xmuηm,m(y)| ≤ 1

ǫC(0,|α|)

∑

β≤α

(
α

β

)
|∂βχψ−xm | |(yi)C(0,|α|)∂α−βuηm,m|

≤ 1

ǫC(0,|α|)
2|α|π|α|,supp (ψ−xm )(χψ−xm)D(0, |α|).

To establish Eq. (4) we showed that

π|α|,supp (ψ−xm )(χψ−xm) ≤ 2|α|π|α|,supp (ψ−xm )(χ)π|α|,supp (ψ−xm )(ψ−xm).
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But π|α|,supp (ψ−xm )(χ) ≤ π|α|,suppχ(χ) and π|α|,supp (ψ−xm )(ψ−xm) = π|α|,suppψ(ψ).
Thus,

|∂αχψ−xmuηm,m(y)| ≤ 1

ǫC(0,|α|)
22|α|π|α|,suppχ(χ)π|α|,suppψ(ψ)D(0, |α|)

is bounded independently of m.
In the case XM ∩ suppψ 6= ∅, we have y ∈ suppψ for some y ∈ XM and

{y}×W∩γM,m = ∅ for allm > M by our assumption. Thus,W∩R∗
+B(ηm, ρm/4) =

∅ for all m > M . Arguing as usual by a compactness argument, one can prove there
is a constant 1 > c > 0 (independent of m) such that for all k ∈ R∗

+B(ηm, ρm/4)
c,

for all (k − q) ∈ R∗
+B(ηm, ρm/8), |q| ≥ cρm|k − q|. We deduce from this and our

previous estimates:

||vm||N,W,ψ ≤ sup
k∈W

(1 + |k|)N
∫

Rn

dq|ûηm,m(k − q)χ̂ψ−xm(q)|

≤ 10m sup
k∈W

(∫

(k−q)∈R∗

+
B(ηm,ρm/8)

+

∫

(k−q) 6∈R∗

+
B(ηm,ρm/8)

)
dq

(1− χ(〈k − q, ηm〉))χ( |k − q|2 − |〈k − q, ηm〉|2
|〈k − q, ηm〉|2ρ )(1 + |k − q|)N−m|χ̂ψ−xm(q)|(1 + |q|)N

≤ 10mmax(1, (cρm)m−N ) sup
k∈W

∫

q∈Rn

dqmax(1, (1 + |q|)N−m)(1 + |q|)−n−1−N ||χxm ||n+1+2N,Rn,ψ

+ 10mmax(1, (1 + rm)N−m)

∫

q∈Rn

dq(1 + |q|)N (1 + |q|)−n−1−N ||χxm ||n+1+N,Rn,ψ

≤ 10mIn+1
n ||χxm ||n+1+2N,Rn,ψmax

(
2, (cρm)m−N + (1 + rm)N−m

)

∼m→∞ Cn,N10m,

where rm = (ρm/8− (ρm/16)
2)−1/2(1−ρ). We used (1 + |k|)N ≤ (1 + |q|)N (1 + |k−

q|)N , (6) starting at the second inequality, the fact that ||χxm ||n+1+2N,Rn,ψ can be
bounded independently of m in the last line and where we also used that

{q ; (k − q)/|k − q| 6∈ B(ηm, ρm/8), 〈k − q, ηm〉 > 0,

|〈(k − q), ηm〉|2ρ ≥ |k − q|2 − |〈k − q, ηm〉|2} ⊂ B(k, rm),

since |(k − q)/|k − q| − ηm|2 = 2(|k − q| − 〈k − q, ηm〉)/|k − q| ≥ ρm/8 implies
|k − q|(1 − ρm/16) ≥ 〈k − q, ηm〉 which implies with the two other inequalities:
|k− q|2(1− (1−ρm/16)2) ≤ |k− q|2ρ(1−ρm/16)2ρ ≤ |k− q|2ρ. Since by our choices
cρm < 1 the terms max(1, (cρm)m−N ), max(1, (1 + |q|)N−m) and the max term of
the next line correspond to the case when N −m ≤ 0 or N −m ≥ 0.

Thus, we showed that, for any W and ψ such that suppψ ×W ∩ ΓM = ∅ and
any integer N , the set {10−m||vm||N,W,ψ ;m > M} is bounded in R. To show that
the set A = {10−mvm ;m > M} is bounded in D′

ΓM
, we still have to show that it is

bounded for the seminorms pB with B bounded in D(Ω). In the course of step 2,
we showed that, for any f ∈ D, the set pf (A) is bounded in R. This means that
A is bounded in D′

ΓM
equipped with the Hörmander topology. But we proved that

this is equivalent to being bounded for the normal topology. Thus, A is bounded
in D′

ΓM
with its normal topology.

Step 5: Let Sm :=
∑m

k=1
1
k!vk (S0 = 0). Then for any M ≥ 0, the sequence

(Sm−SM )m≥M is a Cauchy sequence in D′
ΓM
. As a consequence, Sm−SM converges

to v − SM in D′
ΓM

and WF (v) ⊃ {(xm; ηm),m ∈ N∗}.
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In the previous step we showed that the set A = {10−mvm ;m > M} is bounded
in D′

ΓM
. Thus, for every seminorm pi of D′

ΓM
and any p ≥ q > M , we have

pi(Sp − Sq) ≤ Ci
∑p

m=q 10
m/m!, and each pi(Sm − SM ) is a Cauchy sequence in

R. By the completeness of D′
ΓM

, it implies that Sm − SM converges to v − SM in
D′

ΓM
.

Since the wavefront set is known for each vm (WF (vm) = {xm}×R∗
+ηm), vM is

the only one among the distributions v−SM , vM , ..., v1 which is singular in direction
R∗

+ηM at xM (because (xM ; ηM ) /∈ ΓM by construction either because xm 6= xM if
n = 1 or because ηm 6= ηM if n 6= 1, for m > M), one deduces {xM} × R∗

+ηM ⊂
WF (v). Indeed, by choosing a test function ψ such that ψ(xM ) 6= 0 and a closed
cone V ⊂ R∗

+B(ηM , ρM/4), we have suppψ × V ∩ WF(vm) = ∅ for m < M and
suppψ × V ∩WF(v − SM ) = ∅. Therefore, ||v − vM ||N,V,ψ is finite for all N and

̂ψ(v − vM )(ληM ) cannot compensate for the slow decrease of ψ̂vM (ληM ), which is
ensured by the fact that WF(ψvM ) = WF(vM ) when ψ(xM ) 6= 0 [15, p. 121]. Since
this is valid for any M , this concludes about the wavefront set statement.

It remains to show that the sequence is also Cauchy in E ′
Λ.

Step 6: Sm :=
∑m

k=1
1
k!vk is Cauchy in E ′

Λ for the strong topology coming from
its duality with D′

Γ. Especially, E ′
Λ is not sequentially complete.

By construction WF (Sm) ⊂ Λ. Assume proved the statement about its Cauchy
nature, then the last step enables to show that if it were (even weakly) convergent in
E ′
Λ, then the limit would be v (since it would be weakly convergent in D′

Λ
where the

limit is v) as a distribution, but since the wavefront set is closed, (x; η) ∈ WF (v)
and since (x; η) 6∈ Λ this gives a contradiction, implying Sm is a Cauchy sequence
not (weakly) converging in E ′

Λ.
Thus it remains to show that Sm is Cauchy. Take B ⊂ D′

Γ bounded, we want to
show that pB(Sm) =

∑m
k=1 pB(vk)/k! is a Cauchy sequence. First choose χ̃ ∈ D(Ω)

which is identically one on the compact set ∪y∈Xsuppχy = X+suppχ (the sum of
2 compact sets is compact), where χy = Tyχ. Using lemma 17, since B is bounded

in D′(Ω), fix M such that supu∈B supξ∈Rn(1 + |ξ|)−M |̂̃χu(ξ)| = D < ∞. Then, for
y ∈ X , we bound:

sup
u∈B

||u||M,Rn,χy = sup
u∈B

sup
ξ∈Rn

(1 + |ξ|)−M |χ̂yu(ξ)| = sup
u∈B

sup
ξ∈Rn

(1 + |ξ|)−M |χ̂yχ̃u(ξ)|

≤ sup
u∈B

sup
ξ∈Rn

∫

Rn

dq(1 + |ξ − q|)M |χ̂y(ξ − q)̂̃χu(q)|(1 + |q|)−M

≤ DIn+1
n ((1 + n)β)(M+n+1)π2(M+n+1),supp (χ)(χ) = C <∞.

It now suffices to estimate pB(vm) for m ≥M+n+1. Thus, using this inequality
and (6), we deduce for m ≥M + n+ 1:

sup
u∈B

|〈u, vm〉| = sup
u∈B

1

(2π)n

∣∣∣∣
∫

Rn

dk ̂χT−xmu(k)ûηm,m(−k)
∣∣∣∣

≤ C10m
∫

Rn

dk(1 + |k|)M (1 + |k|)−m ≤ C10mIn+1
n .

Thus, for p ≥ q ≥M +n+1, pB(Sp−Sq) ≤ CIn+1
n

∑p
k=q+1

10m

m! , and thus pB(Sm)
is Cauchy as we wanted.

Step 7: Characterization of closed Λ.
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To conclude the proof we give some information on the case when Λ is open and
closed. A subset of a topological space X is called clopen if it is both open and
closed in X [52, p. 10]. A topological space X is connected if and only if its only
clopen subsets are X and ∅ [52, p. 10]. Now, if Ω is connected, its cotangent bundle

T ∗Ω is connected. If the dimension of Ω is n > 1 the set Ṫ ∗Ω, which is T ∗Ω with
the zero section removed, is also connected. In that case Λ is clopen if and only if
it is either empty (so that E ′

Λ = D(Ω)) or Ṫ ∗Ω (so that E ′
Λ = E ′(Ω)). Since both

D(Ω) and E ′(Ω) are complete, our theorem is optimal for connected Ṫ ∗Ω. �

Corollary 28. If Λ is an open cone which is not closed, E ′
Λ is not sequentially

complete for any topology that is coarser than the normal topology and finer than
the weak topology of distributions induced by D′(Ω). In particular, the inductive
limit of Eℓ equipped with the Hörmander topology is also not sequentially complete.

Proof. This result is a consequence of the proof above rather than of the statement.
A sequence which is Cauchy for the normal topology remains Cauchy for topologies
that are coarser than it, thus our counterexample above is Cauchy for the topologies
considered. Therefore, it thus converges weakly in D′(Ω) and we showed the limit
cannot be in E ′

Λ so that E ′
Λ is not sequentially complete. �

Corollary 29. If Λ is an open cone which is not closed, then E ′
Λ is not a regular

inductive limit with the inductive limit defining its inductive limit topology and it
is not semi-reflexive. If (Γ′)c = Λ, D′

Γ is neither bornological nor barrelled in its
normal topology

Proof. If E ′
Λ were semi-reflexive it would be weakly sequentially complete [27,

p. 228]. If the inductive limit were regular, it would be semi-reflexive as explained
at the end of section 4.3. Alternatively, one can see that the set of the Cauchy
sequence {Sm,m ≥ 1} we built is bounded in E ′

Λ and not in any Eℓ.
The spaceD′

Γ is not bornological because the strong dual of a separated bornolog-
ical space is complete [41, p. 77]. If D′

Γ were barrelled in its normal topology so
that, since it is semi-Montel, it would be a Montel space [27, p. 231], thus its strong
dual E ′

Λ would also be a Montel space [27, p. 234] and thus again semi-reflexive.
Note that Bourbaki states that a space that is semi-reflexive and semi-barrelled is
complete [32, p. IV.60], but this is wrong [54]. �

6. Conclusion

This paper determined the main functional properties of Hörmander’s space of
distributions D′

Γ and its dual. In view of applications to the causal approach of
quantum field theory, we derived simple rules to determine whether a distribution
belongs to D′

Γ, whether a sequence converges in D′
Γ and whether a subset of D′

Γ is
bounded.

By using the functional properties of D′
Γ, the proof of renormalizability of scalar

quantum field theory in curved space times can be considerably simplified and
streamlined with respect to the original derivation given by Brunetti and Freden-
hagen [3].

This paper is also the first step of a detailed investigation of the microcausal
functionals discussed by Brunetti, Dütsch, Fredenhagen, Rejzner and Ribeiro [26,
12, 55, 14], which are the basis of a new and powerful formulation of quantum field
theory. As noticed in ref. [55], the space of microcausal functionals is based on
spaces of the type E ′

Λ which have very poor completeness properties. This problem
can be solved by using the completion of E ′

Λ, which is, because of the nuclearity of
E ′
Λ, also the bornological dual of D′

Γ [47, p. 140]. The topological and bornological
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properties of this completion will be discussed in a forthcoming publication by the
first author [56].
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[16] L. Hörmander. The Analysis of Linear Partial Differential Operators I. Distribution Theory

and Fourier Analysis. Springer Verlag, Berlin, second edition, 1990.
[17] J. J. Duistermaat. Fourier Integral Operators. Birkhäuser, Boston, 1996.
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[33] L. Schwartz. Théorie des distributions. Hermann, Paris, 1966.
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[51] L. Hörmander. Lectures on Nonlinear Hyperbolic Differential Equations. Springer Verlag,

Berlin, 1997.
[52] G.E. Bredon. Topology and Geometry. Springer, New York, 1993.
[53] M. Kashiwara and T. Kawai. Second-microlocalization and asymptotic expansions. In

D. Iagolnitzer, editor, Complex Analysis, Microlocal Calculus and Relativistic Quantum The-
ory, volume 126 of Lecture Notes in Physics, pages 21–76, Berlin, 1980. Springer.

[54] H. Bourlès. Counterexamples on semi-barrelled spaces – Four false statements of N. Bourbaki.
arXiv:1304.0360, 2013.

[55] R. Brunetti, K. Fredenhagen, and P. L. Ribeiro. Algebraic structure of classical field theory.
I. Kinematics and linearized dynamics for real scalar fields. arXiv:1209.2148.

[56] Y. Dabrowksi. Functional properties of spaces of generalized microcausal functionals. In
preparation, 2013.
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