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Super-optimal rate of convergence in non-parametric
estimation for functional valued processes.

Christophe Chesneau∗ and Bertrand Maillot∗

Abstract

In this paper, we consider the non-parametric estimation of the generalised regression
function for continuous time processes with irregular paths when the regressor takes values
in a semi-metric space. We establish the mean-square convergence of our estimator with
the same super-optimal rate as when the regressor is real valued.

Keywords: Regression estimation; Functional variables; Infinite dimensional space; Small balls
probabilties.

1 Introduction
Since the pioneer works of Nadaraya (1964) and Watson (1964), the nonparametric estimation of
the regression function has been very widely studied for real and vectorial regressors (see, for exam-
ple, Rosenblatt (1969), Stone (1982), Collomb et Härdle (1986), Krzyżak et Pawlak (1987), Roussas
(1990) and Bosq (1993)) and more recently, the case when the regressor takes values in a semi-metric
space of infinite dimension has been addressed (e.g. Ferraty et Vieu (2004), Masry (2005), Ferraty
et al. (2007), Ferraty et Vieu (2011)). In the regression estimation framework, it is well known that
the efficiency of a non parametric estimator decreases quickly when the dimension of the regressor
grows: this problem, known as the “curse of dimensionality,” is due to the sparsity of data in high
dimensional space. However, when studying continuous time processes with irregular paths, it has
been shown in Bosq (1997) that even when the regressor is Rd−valued, we can estimate the re-
gression function with the parametric rate of convergence O

(
1√
T

)
. This kind of suroptimal rate of

convergence for nonparametric estimators is always obtained under hypotheses on the joint proba-
bility density functions of the process which are very similar from those introduced by Castellana et
Leadbetter (1986). Since there is no equivalent of the Lebesgue measure on an infinite dimensional
Hilbert space, the definition of a density is less natural in the infinite dimensional framework and the
classical techniques can not be applied. Under hypotheses on probabilities of small balls, we show
that we can reach suroptimal rates of convergence for nonparametric estimation of the regression
function when the regressor takes values in an infinite dimensional space.

Notations and assumptions are presented in Section 2. Section 3 introduces our estimator and the
main result. A numerical study can be found in Section 4. The proofs are postponed to Section 5.
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2 Problem and assumptions
Let {Xt, Yt}t∈[0,∞) be a continuous time process defined on a probability space (Ω,F , P ) and ob-
served for t ∈ [0, T ], where Yt is real valued and Xt takes values in a semi-metric vectorial space
H equipped with the semi-metric d(., .). We suppose that the law of (Xt, Yt) does not depend on
t and that there exists a regular version of the conditional probability distribution of Yt given Xt

(see Jirina (1954, 1959) and Grunig (1966) for conditions giving the existence of the conditional
probability). Throughout this paper, C denotes a compact set of H. Let Ψ be a real valued Borel
function defined on R and consider the generalized regression function

r(x) := E(Ψ(Y0)|X0 = x), x ∈ C. (1)

We aim to estimate r from {Xt, Yt}t∈[0,T ].
We gather hereafter the assumptions that are needed to establish our result.

(H1) There exist three constants (c1, C, η) ∈ (0,∞)3, such that, for any x ∈ C and any (u, v) ∈
B(x, c1)2, we have

|r(u)− r(v)| ≤ Cd(u, v)η.

(H2) For any x ∈ C and any h > 0, set B(x, h) := {y ∈ C; d(y, x) ≤ h}. There exist a function φ

(i) and three constants (β1, β2, c2) ∈ [0,∞)3 such that, for any x ∈ C and any h ∈ (0, c2], we
have

0 < β1φ(h) ≤ P
(
X0 ∈ B(x, h)

)
≤ β2φ(h),

(ii) a constant c3 > 0 and a function g0 integrable on (0,∞) such that, for any x ∈ C, any
s > t ≥ 0 and any h ∈ (0, c3], we have

|P
((
Xt, Xs

)
∈ B(x, h)2

)
− P

(
Xt ∈ B(x, h)

)2
| ≤ g0(s− t)φ(h)2,

(H3) For any t ≥ 0, we set εt := Ψ(Yt)−E(Ψ(Yt)|Xt). There exists an integrable bounded function
g1 on [0,∞) such that, for any (s, t) ∈ [0,∞)2, we have

max{|E(εs|Xs, Xt)|, |E(εsεt|Xs, Xt)|} ≤ g1(|s− t|).

(H4) There exists a constant R > 0 such that

sup
t∈[0,T ]

E(Ψ(Yt)
2|TT ) < R.

Comments: (H1) is a very classical Hölderian condition on the true regression function. The
assumption on small balls probabilities given in (H2)-(i) is widely used in non-parametric estimation
for functional data (see, e.g., the monograph by Ferraty et Vieu (2006)). In a functional framework,
this condition can be satisfied only locally since if H is infinite dimensional, this hypothesis implies
that we cannot find any open ball included in C. Assumptions (H2)-(ii) and (H3) are an adaptation
to infinite dimensional processes of the conditions on the density function introduced in Castellana
et Leadbetter (1986) for real valued processes. Finally, it is much less restrictive to impose (H4)
than supposing that Ψ(Yt) is bounded (see examples in Bosq (1998) p.131).



3 Estimator and result
We define the generalized regression function estimate by

r̂T (x) :=



∫ T
t=0

Ψ(Yt)K(h−1T d(x,Xt))dt∫ T
t=0

K(h−1T d(x,Xt))dt
if
∫ T

t=0

K(h−1T d(x,Xt))dt 6= 0,

∫ T
t=0

Ψ(Yt)dt

T
otherwise,

(2)

where K(x) = 1I[0,1](x) is the indicator function on [0, 1] and hT is a bandwidth decreasing to 0
when T →∞. Remark that this estimator is the same as the one defined in Bosq (1998) p.130 with
the use of the semi-metric d instead of the simple difference used in the real case.

Theorem 3.1 explores the performance of r̂T (x) in term of mean-square error.

Theorem 3.1 Suppose that (H1)-(H4) hold. Let r be (1) and r̂T be (2) defined with hT = O
(
T

1
η

)
.

Then, for any x ∈ C, we have

E (r̂T (x)− r(x))
2

= O
( 1

T

)
. (3)

4 Simulations
We simulated our functional valued process as follows.
At first we simulated an Ornstein-Uhlenbeck process solution of the stochastic differential equation

dOUt = −9(OUt − 2)dt+ 6dWt,

where Wt denotes a Wiener process. Here, we took dt=0.0005.
Then, denoting the floor function by b·c ,we defined our functional process for any t ∈ [0, T ] setting

Xt := (1 + bOUtc −OUt)Pnum(bOUtc) + (OUt − bOUtc)Pnum(bOUt+1c),

where Pi is the Legendre polynomial of degree n and

num(x) := 2 ∗ sign(x) ∗ x− sign(x) ∗ (1 + sign(x))/2.

For any square integrable function x on [−1, 1], we chose the function

Ψ(x) =

∫ 1

u=−1
x(u)(2u+ x(u))du

and set
Yt = Ψ(Xt) + Ut,

where Ut = W ′t −W ′T−1 and W ′t is a wiener process independent of X.
In order to obtain a panel of 20 points (in L2([−1, 1])) where we can evaluate the regression

function. We did a first simulation with T = 10 and set C := (Xi/2, i ∈ 1, 2, ..., 20). We represent
theses functions in the following figure.



−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Panel of 20 curves

We simulated the paths of the process (Xt, Yt)t∈[0,T ] for different values of T . We represent here the
path of the process (Yt) for t ∈ [0, 1].
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Path of the process Y on [0,1]

We estimated the regression function at each point in C, for different values of T and compared
our results to those obtained when studying a discrete time functional process, i.e., when we observe
(Xt, Yt) only for t ∈ N, and use the estimator defined in Ferraty et Vieu (2004) with the indicator
function as the kernel. When working with the discrete time process we used the data-driven way
of choosing the bandwidth proposed in Benhenni et al. (2007). When working with the continuous



time process, i.e. observed on a very thin grid, for T = 50, we chose the same bandwidth as the
one used for the discret time process and for T > 50 who used the bandwidth hT = h50

50
T . In the

following table, we give the mean square error evaluated on the functions of the panel for different
T=50, 500 and 2000.

Continuous time process discrete time process

T=50 0.056623 0.231032
T=500 0.003235 0.037855
T=2000 0.000698 0.0155137

We can see that for T = 50, we already have a smaller mean square error with the estimator
using the continuous time process, and when T increase, the mean square error seems to decrease
much more quickly when working with the continuous time process.

On the following graphics, we have in abscissa the value of the real regression function applied
to each function of our panel and in ordinate the estimated value of the regression function. We
represent on the left the results for the continuous time estimator and on the right the results for
the discrete time estimator.

5 Proofs

5.1 Intermediary results
In the sequel, we use the following notations:

∆T,t(x) = K(h−1T d(x,Xt)),

r̂1,T (x) :=
1

T E(∆T,0(x))

∫ T

t=0

∆T,t(x)dt

and

r̂2,T (x) :=
1

T E(∆T,0(x))

∫ T

t=0

Ψ(Yt)∆T,t(x)dt.

Lemma 5.1 below studies the behavior of the bias of r̂2,T .

Lemma 5.1 Under the conditions of Theorem 3.1, we have

sup
x∈C
|E(r̂2,T (x))− r(x)| = O

( 1

T

)
.

Lemma 5.2 below provides an upper bound for the variances of r̂1,T and r̂2,T .

Lemma 5.2 Under the conditions of Theorem 3.1, we have

sup
x∈C

(
Var(r̂2,T (x)) + Var(r̂1,T (x))

)
= O

( 1

T

)
.



(a) Outputs for T=50

(b) Outputs for T=500

(c) Outputs for T=2000

Figure 1: Continuous time estimator (left) and discrete time estimator (right), in abscissa the value
of the real regression function applied to each function of our panel and in ordinate the estimated
value of the regression function.



5.2 Proofs of the intermediary results
In the proofs of Lemmas 5.1 and 5.2, for the sake of conciseness, we fix x ∈ C and, when no confusion
is possible, use the notations Ψt := Ψ(Yt) and ∆T,t := ∆T,t(x).

Proof of Lemma 5.1
Observe that

E(r̂2,T (x)) =
1

T E(∆T,0)

∫ T

t=0

E(Ψt∆T,t)dt

=
E
(

Ψ0∆T,0

)
E(∆T,0)

=

E

(
E
(
r(X0) + ε0|X0

)
∆T,0

)
E(∆T,0)

=

E

(
r(X0)∆T,0

)
E(∆T,0)

.

Hence

E(r̂2,T (x))− r(x) =

E

(
r(X0)∆T,0

)
E(∆T,0)

− r(x) =

E

(
(r(X0)− r(x))∆T,0

)
E(∆T,0)

.

Owing to (H1), we have |r(X0)−r(x)|∆T,0 ≤ ∆T,0 supu∈B(x,hT ) |r(u)−r(x)| ≤ C∆T,0h
η
T . Therefore,

by Jensen’s inequality and hη = O
(

1
T

)
, there exists a constant C0 such that

|E(r̂2,T (x))− r(x)| ≤
E

(
|r(X0)− r(x)|∆T,0

)
E(∆T,0)

≤ ChηT = O
( 1

T

)
.

This ends the proof of Lemma 5.1. �

Proof of Lemma 5.2 Observe that, by Fubini’s Theorem,

Var(r̂2,T (x)) =
1

T 2 E(∆T,0)2

∫ T

t=0

∫ T

s=0

Cov(Ψs∆T,s,Ψt∆T,t)dtds. (4)

Upper bound of the covariance term. In order to simplify the notations, we set R(Xt) := E
(
Ψt|Xt

)
and εt := Ψt −Rt. Note that

E
(
ΨsΨt|Xs, Xt

)
= R(Xs)R(Xt) +R(Xs) E

(
εt|Xs, Xt

)
+R(Xt) E

(
εs|Xs, Xt

)
+ E

(
εsεt|Xs, Xt

)
.

Therefore, the covariance term can be expended as follows:

Cov
(
Ψs∆T,s,Ψt∆T,t

)
= E

(
Ψs∆T,sΨt∆T,t

)
− E

(
Ψs∆T,s

)
E
(
Ψt∆T,t

)
= E

(
∆T,s∆T,t E

(
ΨsΨt|Xs, Xt

))
− E

(
∆T,sR(Xs)

)2

= E

(
∆T,s∆T,tR(Xs)R(Xt)

)
+ E

(
∆T,s∆T,t

(
R(Xs) E

(
εt|Xs, Xt

)
+R(Xt) E

(
εs|Xs, Xt

)))
+ E

(
∆T,s∆T,t E

(
εsεt|Xs, Xt

))
− E

(
∆T,sR(Xs)

)2

.



Set
dt := R(Xt)− r(x).

We have

Cov
(
Ψs∆T,s,Ψt∆T,t

)
= r(x)2 E

(
∆T,s∆T,t

)
+ r(x)

(
E
(
∆T,s∆T,tdt

)
+ E

(
∆T,s∆T,tds

))
+ E

(
∆T,s∆T,tdtds

)
+ r(x) E

(
∆T,s∆T,t

(
E
(
εt|Xs, Xt

)
+ E

(
εs|Xs, Xt

)))
+ E

(
∆T,s∆T,t

(
ds E

(
εt|Xs, Xt

)
+ dt E

(
εs|Xs, Xt

)))
+ E

(
∆T,s∆T,t E

(
εsεt|Xs, Xt

))
− r(x)2 E

(
∆T,s

)2
− E

(
∆T,sds

)2 − 2r(x) E
(
∆T,sds

)
E
(
∆T,s

)
= r(x)2

(
E
(
∆T,s∆T,t

)
− E

(
∆T,s

)2)− (E
(
∆T,sds

)2
+ 2r(x) E

(
∆T,sds

)
E
(
∆T,s

))
+ E

(
∆T,s∆T,tQ

)
,

with

Q = ds E
(
εt|Xs, Xt

)
+ dt E

(
εs|Xs, Xt

)
+ dsdt + E

(
εsεt|Xs, Xt

)
+ r(x)

(
ds + dt + E

(
εt|Xs, Xt

)
+ E

(
εs|Xs, Xt

))
.

The triangular inequality and Jensen’s inequality yield

|Cov
(
Ψs∆T,s,Ψt∆T,t

)
| ≤ L+M +N,

where
L = r(x)2

∣∣∣E (∆T,s∆T,t

)
− E

(
∆T,s

)2∣∣∣,
M = E

(
∆T,s|ds|

)2
+ 2|r(x)|E

(
∆T,s|ds|

)
E
(
∆T,s

)
, N = E

(
∆T,s∆T,t|Q|

)
.

Upper bound for L. Using (H2)-(ii), we have

L ≤ r(x)2g0(|s− t|)φ(hT )2.

Upper bound for M . Owing to (H1), we have ∆T,s|ds| ≤ ∆T,s supu∈B(x,hT ) |r(u)− r(x)| ≤ C∆T,sh
η
T .

It follows from this inequality and (H2)-(i) that

M ≤
(

2|r(x)|ChηT + C2h2ηT

)
E
(
∆T,s

)2 ≤ (2r(x)ChηT + C2h2ηT

)
β2
2φ(hT )2.

Upper bound for N . By similar techniques to those in the bound for M and (H3), we obtain

∆T,s∆T,t|Q| ≤ ∆T,s∆T,t

(
2|r(x)|ChηT + C2h2ηT +

(
2(|r(x)|+ ChηT ) + 1

)
g1(|s− t|)

)
.



On the other hand, by (H2)-(ii),

E
(
∆T,s∆T,t

)
≤ |Cov

(
∆T,s,∆T,t

)
|+ E

(
∆T,s

)2 ≤ (β2
2 + g0(|s− t|)

)
φ(hT )2.

Hence

N ≤
(

2|r(x)|ChηT + C2h2ηT +
(
2(|r(x)|+ ChηT ) + 1

)
g1(|s− t|)

)(
β2
2 + g0(|s− t|)

)
φ(hT )2.

Therefore, setting

GT (y) := r(x)2g0(y)φ(hT )2

+
(

2|r(x)|ChηT + C2h2ηT +
(
2(|r(x)|+ ChηT ) + 1

)
g1(y)

)(
β2
2 + g0(y)

)
φ(hT )2

+
(

2r(x)ChηT + C2h2ηT

)
β2
2φ(hT )2,

the obtained upper bounds for L, M and N yield∣∣∣Cov
(
Ψs∆T,s,Ψt∆T,t

)∣∣∣ ≤ GT (|s− t|). (5)

Final bound. Combining (4) and (5), and using (H2)-(i), we have

Var(r̂2,T (x)) ≤ 2

T 2 E(∆T,0)2

∫ T

t=0

∫ T

s=t

GT (s− t)dtds ≤ 2

T E(∆T,0)2

∫ T

y=0

GT (y)dy

≤ 2

Tβ2
1φ(hT )2

∫ T

y=0

GT (y)dy.

Since g0 and g1 are integrable and hη = O
(

1
T

)
, there exists a constant C0 such that

Var(r̂2,T (x)) ≤ C0

T
.

The special choice of Ψ : (x) 7→ 1 leads us to

Var(r̂1,T (x)) ≤ C1

T
.

This last inequality concludes the proof of Lemma 5.2. �

Proof of Theorem 3.1 Note that, when r̂1,T (x) 6= 0,

r̂T (x) =
r̂2,T (x)

r̂1,T (x)
.

Therefore we can write

r̂T (x)− r(x)

=
(
r̂T (x)(1− r̂1,T (x))

)
+
(
r̂2,T (x)− E(r̂2,T (x))

)
+ (E (r̂2,T (x))− r(x)) .



The elementary inequality : (a+ b+ c)2 ≤ 3(a2 + b2 + c2), (a, b, c) ∈ (0,∞)3, yields

E (r̂T (x)− r(x))
2 ≤ 3(U + V +W ),

where
U = E

(
r̂T (x)(1− r̂1,T (x))

)2
, V = E

(
r̂2,T (x)− E(r̂2,T (x))

)2
and

W =
(

E (r̂2,T (x))− r(x)
)2
.

Upper bound for V . Lemma 5.2 yields

V = Var
(
r̂2,T (x)

)
= O

(
1

T

)
.

Upper bound for W . Lemma 5.1 yields

W = O
(

1

T 2

)
.

Upper bound for U . We define, for any t ∈ [0, T ], the quantity:

Zt :=


K
(
h−1T d(x,Xt)

)∫ T
t=0

K
(
h−1T d(x,Xt)

)
dt

if
∫ T

t=0

K
(
h−1T d(x,Xt)

)
dt 6= 0,

1

T
otherwise.

Let TT be the sigma-algebra generated by {Xt, t ∈ [0, T ]}. Using (H4) and Lemma 5.2, we get

U = E
(

E
(
r̂2T (x)(1− r̂1,T (x))2|TT

))
= E

(
E
(
r̂2T (x)|TT

)
(1− r̂1,T (x))2

)
= E

(
E
((∫ T

t=0

ZtΨ(Yt)dt
)2
|TT
)

(1− r̂1,T (x))2
)

= E
(∫

(s,t)∈[0,T ]2
ZtZs E

(
Ψ(Yt)Ψ(Ys)|TT

)
dsdt(1− r̂1,T (x))2

)
≤ E

(∫
(s,t)∈[0,T ]2

ZtZsRdsdt(1− r̂1,T (x))2
)

≤ RE
(

(1− r̂1,T (x))2
)

= RVar
(
r̂1,T (x)

)
= O

( 1

T

)
.

Putting the obtained upper bounds for U , V and W together, we obtain

E (r̂T (x)− r(x))
2

= O
( 1

T

)
.

Theorem 3.1 is proved. �
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