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1. Introduction

The scratch loading is a classical way to characterize the
abrasive resistance of engineering surfaces such as coating over
substrate systems.

In a standard single pass scratch test, a hard indenter slides
along the surface of a softer material. The induced normal and
tangential forces as well as the resulting scratch morphology are
analyzed. Three main phenomena can be observed during a
scratch test: ploughing which induces ridges in front and on sides
of indenter; the cutting which leads to material removal due to
the formation of a chip in front of the indenter; cracking leading
to cracks formation and propagation. In this paper only the
scratch-induced deformation will be investigated which corre-
sponds to the ploughing phenomenon.

Because of the high number of parameters involved in the
experimental tests, the analysis of the scratch test is really a
difficult and expensive task. The finite element method can be
used to overcome these difficulties [1–3]. Indeed, the influence of
each parameter can be studied separately in order to achieve a
better understanding of the scratch test.

During the last decade, the scratch test of time-dependent
solids has been widely investigated, due to the intensive use of
amorphous polymers in a large number of industrial sectors [4]. In
particular, research in optics is currently focusing on light glasses
: +33 477 43 75 39.
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in polymers which are more comfortable but also more sensitive
to daily aggressions [5,6]. Hence, the glass surface protection is
usually ensured by thin coating films. Amorphous polymers are
the main constituting materials of these layers. As scratching is
one of the major stresses for such a surface, specific studies have
to be performed.

This paper mainly focus on the influence of the representative
strain rate on the material recovery after scratching. More
precisely the response of three constitutive models is analyzed:
an elastic–viscoplastic model, a linear viscoelastic model and
finally a viscoelastic–viscoplastic model. To analyze the numerical
results, the concept of representative stress and representative
strain rate of a scratch test is used.
2. The scratch recovery

The ploughing phenomenon is a rapidly achieved steady state
regime. It can be viewed as a permanent material flow around a
rigid obstacle. Theoretically, this steady state regime can be
achieved under constant imposed normal force or constant
imposed penetration depth of the indenter [7]. From a practical
point of view, the way the loading is monitored do not matter as
long as only the steady state regime is studied. Most of the
experimental devices allows the measure of the normal and
tangential forces [8–10] during the scratch. The scratch-induced
deformation is often measured after the scratch and so only the
residual print is used to perform the analysis. It is the reason why



we only focus on the residual morphology after scratching in this
paper. More specifically, the scratch-induced deformation re-
sponse of materials is often evaluated as their capability to
recover. Two kinds of recovery can be distinguished:
�
 The elastic recovery, which refers to the instantaneous elastic
response of solids.

�
 The viscoelastic recovery, which refers to the delayed elastic

response of time-dependent solids. In this case the value of the
recovery depends directly on the instant where the measure is
done.

2.1. Definition

For a time-dependent viscoelastic material, it is really difficult
to separate the respective parts of elastic and viscoelastic
recovery at a given time. Therefore we propose to call ‘‘scratch
recovery’’, the following quantity [11]:

R¼ 1�
hp

h
ð1Þ

where hp is the depth of the residual groove measured in the
steady-state regime and h is the penetration depth of the indenter
(Fig. 1). Let us note that the measure is performed 10 000 s after
scratching in our numerical simulations to be sure that all
relaxation processes are over. From a phenomenological point of
view, this parameter represents the reversible part of the strain
compared to the total strain.

When the scratch recovery R is equal to 1, the residual groove
on the surface behind the indenter vanishes totally. Hence the
scratch is purely reversible, instantaneous (elastic) or not
(viscoelastic). For value of R equals to 0, the scratch is purely
plastic. For metals, the scratch recovery is negligible, and
consequently hp is close to h, whereas for polymer the scratch
recovery can be much more important [12].

2.2. Experimental evidences

Many experimental studies have been carried out on the
deformation of amorphous polymers during scratch tests [8,9].
Most of them have concluded on the strong influence of the tip
velocity and they have linked this phenomenon to the time-
dependent properties of the materials. More precisely, experi-
ments carried out by Gauthier et al. [6,13] on PMMA (poly-
methylmethacrylate) with a spherical hard indenter have shown
that the higher the tip velocity, the higher the recovery. Different
values of the load and the tip radii have been used. In their
experimental conditions, they have shown that the PMMA
behavior moves from elasticity at the highest tip velocity
ð0:71 mm s�1Þ to viscoelasticity at a lower velocity and finally to
elastic–viscoplasticity at the lowest velocity ð0:001 mm s�1Þ. The
reversibility of the strain induced by the scratch test on such a
material is clearly shown to be dependent on the tip velocity.
Fig. 1. Side view of the scratch.
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Moreover, one major conclusion is that both viscoelastic and
viscoplastic phenomena have to be accounted for to analyze
scratch data. These experiments have been carried out using a
constant normal load applied on the indenter.
3. Constitutive models

Amorphous polymers are well known for their complex
mechanical behavior, which strongly depends on the thermo-
mechanical history [14]. In this paper, temperature dependency is
not accounted for. The phenomenological study here only focuses
on the time dependency. Such materials exhibit a viscoelastic
behavior at small strain. However, at high strain level, they
present an elastic–viscoplastic behavior combined with an
exponential strain hardening [14]. Consequently, glassy polymers
are sometime considered as viscoelastic–viscoplastic solids
[15,16]. These rheological models lead to classical stress/strain
curves given in Figs. 2–4.

In this context, we propose in this paper the study of the
influence of each of these three main mechanical behaviors on the
scratch response. The ploughing process involves plastic strain,
consequently the modeling of the viscoplasticity needs the use of
specifically dedicated behavior law. We have chosen the elastic
viscoplastic model of Arruda and Boyce [17,18]. However, before
the performing of a specific study dealing with the real necessity
(or not) to account for the viscoelastic behavior of the amorphous
polymer in scratch test, we have to understand the influence of
such behavior. Therefore, the viscoelastic model of Poynting is
considered in this paper. Its parameters are not directly identified
on a polymer because it is not necessary for this phenomen-
ological study. Finally a viscoelastic viscoplastic model is build up
thanks to a specific algorithm allowing to connect in series two
models of any kind.

3.1. The viscoplastic model

To model the viscoplastic behavior of amorphous polymers,
the Arruda–Boyce model [17,18], modified by Hasan [19], is
chosen. It is composed of a Argon viscosity [20], in parallel with a
Langevin rubbery hyperelasticity. This element, used to model the
strain hardening, is not accounted for in our study because we
have observed that if the scratch severity does not exceed
ac=R¼ 0:4 (contact radius on tip radius), the strain level is not
high enough to activate this element. Finally a linear elasticity
is added in series in order to model the behavior at small strain
(Fig. 5). Scalar equation of the Argon viscous element is written as

_gp ¼ _g0 exp
A

ky
ðt� sÞ

� �
ð2Þ

where _gp represents the plastic shear strain rate, _g0 is a factor
proportional to the attempt frequency, s¼ 0:077G=ð1� nÞ is the
athermal shear strength, G is the elastic shear modulus, A is the
zero stress level activation energy, t is the effective equivalent
shear strength, k is Boltzmann’s constant, y is absolute
temperature. The parameters are given in Table 1. The value of
the Young modulus E2 is given in the following section.

3.2. The viscoelastic model

The viscoelastic constitutive model is based on the Poynting
model [21]. It consists of a linear elastic spring in series with the
parallel combination of a linear elastic spring and a deviatoric
viscous dashpot ðs¼ Z1

_eÞ (Fig. 6). This model allows to reproduce
creep and relaxation phenomena. Let us note that the present
model is developed in a three dimensional configuration.



Fig. 3. Stress–strain curves for an elastic–viscoplastic model at different strain rates.

Fig. 2. Stress–strain curve for a viscoelastic model at different strain rates.
Consequently, the stiffness modulus can be expressed as the
additive composition of the bulk modulus K and the shear
modulus G ð1=E¼ 1=9Kþ1=3GÞ. Since the viscous element of
3

this Poynting model follows a deviatoric definition, only the shear
modulus G is affected by the strain rate, and not K. Nevertheless,
the equivalent moduli can be calculated and for the two limit



Fig. 4. Stress–strain curve for a viscoelastic–viscoplastic model at different strain rates.

Fig. 5. Arruda–Boyce model without its strain hardening element.

Table 1
Parameters of the elastic–viscoplastic model of Arruda–Boyce.

n _g0 ðs
�1Þ A ðm3Þ y (K)

0.33 2:8� 107 1:39� 10�27 298

Fig. 6. Rheological representation of the Poynting model.

Table 2
Parameters of the viscoelastic model of Poynting.

E1 (MPa) E2 (MPa) n1 ¼ n2 ¼ n Z1 ðMPa s�1Þ

785 2730 0.33 150

Fig. 7. Series assembly of two rheological models.
states, the shear modulus is computed as follows:

1

G0
eq

¼
1

G1
þ

1

G2

G1eq ¼ G2 ð3Þ

From these considerations, the Poisson ratio is affected by the
strain rate as well. The values of the parameters have been chosen
in relation with those of the PMMA. Since this study aims at a
phenomenological approach of the time-dependent scratch
response of solids, the viscous parameter Z1 has been chosen to
observe the viscoelastic transition in the middle of the tip
velocities range. The whole parameters are given in Table 2.
4

3.3. The viscoelastic viscoplastic model thanks to the ‘‘series model’’

To account for both viscoelasticity and viscoplasticity we have
developed in the finite element code Systuss [22] a specific
algorithm, named ‘‘series model’’, which allows to combine in
series two models of any kind (Fig. 7). Such an algorithm is helpful
to combine very quickly whatever models since their constitutive
equations are available in the finite element code. Our case study
needs to connect a viscoelastic model with a viscoplastic one.
3.3.1. Hypotheses

The algorithm is here described in an updated Lagrangian
formulation by using the relationship between the Cauchy stress
tensor r and the Eulerian strain rate tensor D. Hence it can be



Fig. 8. Decomposition of deformation gradient via a intermediate virtual

configuration.

Fig. 9. Series model algorithm.
used in either Lagrangian actualized formulation or quasi-Euler
formulation.

Moreover the series model is developed in the general case
(finite transformation), and so it is based on the multiplicative
decomposition of the deformation tensor F [23]:

F ¼ F1 � F2 ð4Þ

where F1 refers to the deformation tensor for the model 1 and F2

to the model 2 (Fig. 8).
The major assumption of this algorithm takes place here. The

main problem in the numerical implementation of this algorithm
is that the finite element code needs a direct relationship between
the strain rate taking place in the model 1, D1, and the one in the
model 2, D2. We propose that one of the assembled models
(model 1) gives very small deformation compared to the other
(Fig. 8). That is to say that the deformation in the model 1 is
almost equal to the identity tensor:

F1 � Id ð5Þ

Thanks to this helpful assumption, the Eulerian strain
rate tensor, D, can be written as the additive decomposition of
the strain rate tensor from the model 1, D1, and the one from
the model 2, D2:

D¼D1þD2 ð6Þ

3.3.2. Algorithm

At each integration point of each element of the mesh and for
each time step, the previous decomposition of the strain rate
tensor D is assumed (Eq. (6)). As the two models are connected in
series, one has:

r¼ r1 ¼ r2 ð7Þ

where r, r1 and r2 are, respectively, the total stress tensor, stress
tensor in the model 1, and the one in the model 2 (Fig. 7).

Starting from a known configuration at time t one has to find
the stress tensor at time tþDt solving:

rðtþDtÞ ¼ r1ðtþDtÞ ¼ r2ðtþDtÞ ð8Þ

Since the aim of this algorithm is to connect two models
available in the finite element code, the solutions of their
constitutive equations are obtained from dedicated routines and
can be written as

Model 1 : r1 ¼Y1ðD1;X1; t; . . .Þ

Model 2 : r2 ¼Y2ðD2;X2; t; . . .Þ ð9Þ

Furthermore, the finite element code provides, at each time
step and each integration point, the total strain rate tensor, D,
computed from the displacement at time tþDt. Consequently the
unknown quantities at tþDt are :

rðtþDtÞ
5

r1ðtþDtÞ and r2ðtþDtÞ

D1ðtþDtÞ and D2ðtþDtÞ ð10Þ

All the quantities at the previous time step have been calculated
and are thus perfectly known. The series model has to calculate,
and provide to the code, the total stress tensor, r, at tþDt

satisfying Eq. (8). The algorithm uses an iterative process which
calculates the repartition of the strain rate to ensure the equality
of the stress tensors (Eq. (9)).

To simplify the notation, the value at tþDt of any quantity A

noted AðtþDtÞ is for the sequel of this section written as A.
At iteration i, the algorithm calculates the stress tensors ri

1 and
ri

2 from the strain rates Di
1 and Di

2 according to Eq. (9):

ri
1 ¼Y1ðD

i
1;Dt; . . .Þ

ri
2 ¼Y2ðD

i
2;Dt; . . .Þ ð11Þ

A convergence criterion is then applied:

ðri
1 � ri

2Þeq

si
eq1þsi

eq2

oa ð12Þ

where a corresponds to the prescribed precision value and Aeq is
the quadratic norm of A:

Aeq ¼ ðA : AÞ1=2
ð13Þ

If the criterion is not satisfied, the strain rates are adjusted from a
first order development of the quantity ri

2 � ri
1:

dðr2 � r1Þ

dD1

� �i

fDiþ1
1 � Di

1gþfr
i
2 � ri

1g ¼ f0g ð14Þ

This algorithm is summarized as in Fig. 9.

3.3.3. The viscoelastic viscoplastic model

In our case study, the model 1 refers to the Kelvin–Voigt model
and the model 2 corresponds to the Arruda–Boyce model
previously presented (Fig. 10). The viscoelastic response of such
association is due to the Kelvin–Voigt model plus the elastic
element of the Arruda–Boyce model which constitute the
Poynting model already presented. Consequently the parameters
of this viscoelastic part come from the Poynting model, whereas
the viscoplastic ones refer to the viscous element of the Arruda–
Boyce model.



Fig. 10. Viscoelastic–viscoplastic model thanks to the series model.
4. Computational modeling of a scratch test

The loading is achieved by adjusting the quasi-static displace-
ment of the indenter which is first pushed down vertically into
the specimen and then moved horizontally to realize the
ploughing. In this approach, the indenter is subjected to imposed
vertical and horizontal displacements. The scratch distance has to
be sufficiently long to reach the steady state. The finite element
domain is a right-angled parallelepiped. The x-axis and z-axis are,
respectively, the scratch and indentation axes. The plane y¼ 0 is a
symmetry plane. The mesh is constituted of 8-node-brick
elements. The numerical simulations are performed using a large
displacement/large strain option (updated Lagrangian formula-
tion). The indenter is a rigid sphere of 1 mm radius and its
penetration depth is 100mm. The scratch test is performed
without the use of a remeshing algorithm because the material
is assumed as relatively soft and the contact frictionless. Let us
recall here that a special remeshing algorithm dedicated to the
scratch test of bilayer material has been recently developed in the
FEM software Systuss package [7,10] and thus allows to perform
such types of simulations.
5. Phenomenological study

5.1. Scratch recovery and representative strain rate

As suggested by many authors [24,8,2,12,25], the scratch-
induced deformation of solids can be qualitatively explained
using the concept of representative parameters. Let us note that
this concept has been preliminarily used with success on
indentation experiments [24,26–29].

The representative stress is often related to the mean contact
pressure:

srp
Fn

pa2
c

ð15Þ

where Fn is the normal load and ac the contact radius. Let us note
that the representative stress of scratch experiments performed
with the same normal load is not constant because the contact
radius is a function of the material behaviors and the scratch
velocity. As shown by Briscoe et al. [8], Gauthier et al. [6], the
scratch-induced deformation of time-dependent solids is strongly
related to the representative strain rate defined by :

_erp
V

ac
ð16Þ

where V is the tip velocity. Hence the higher the tip velocity V, the
higher the representative strain rate _er .

The representative strain of scratch experiments is related to
the contact severity. For a rigid spherical indenter, it is often
written as:

erp
ac

R
ð17Þ
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where R is the ball radius. For such a tip, the higher the
penetration depth h, the higher the contact radius and thus
higher the representative strain. In this paper, each scratch test is
performed with the same penetration depth, thus the represen-
tative strain is approximately constant. The representative strain
can be shared into an elastic representative strain (reversible part)
and a plastic representative strain (irreversible part):

er ¼ ee
rþe

p
r ð18Þ

From a phenomenological point of view, the scratch recovery
corresponds to the ratio of reversible strain over the total strain.
The representative strain being constant in the following
numerical simulations, the scratch recovery will only be a
function of the elastic representative strain. This quantity can be
simply approximated by:

ee
r ¼

sr

E
ð19Þ

Hence it follows:

Rp
ee

r

er
p

sr=E

ac=R
ð20Þ

5.2. Elastic–viscoplastic scratching

Because of its sensitivity to the strain rate, using a viscoplastic
model allows to analyze the time effects on the scratch response.
Since the simulations are performed at a constant penetration
depth the contact radius is also considered as constant. Conse-
quently, a variation of the scratch velocity leads directly to a
variation of the strain rate.

The selected model is the modified Arruda–Boyce model from
the previous section (Fig. 5). The value of the Young modulus is
not taken from Ref. [17] but from the viscoelastic limits E1eq and
E0

eq (see Section 3). Hence two different series of numerical
simulations have been carried out: one with E0

eq and one with E1eq.
The aim is not to predict exactly the behavior of the PMMA but
rather to show the effect of such modeling on the scratch
response.

Fig. 11 shows the variation of the recovery with the
tip velocity. It can be seen that the recovery increases with
the tip velocity for both cases that is to say that the reversible part
of the strain increases with the tip velocity. It can be explained
like that: because of the viscous element of the model, the
representative stress is sensitive to the representative strain rate.
The yield stress increases with the strain rate. The highest the
yield stress, the higher the elastic part of the representative strain
(for a constant Young modulus). Since the total representative
strain is constant, its plastic part decreases when the velocity
increases.

The behavior model gives a logarithmic proportionality
between the representative stress and the representative strain
rate. As a consequence, Eq. (20) can be written thanks to Eq. (16):

Rp
lnð_ee

r Þ

Eac=R
p

lnðVÞ

E ac=R
ð21Þ

Eq. (21) is suitable whatever the value of the Young modulus.
However, the higher the Young modulus, the lower the recovery.
Fig. 11 shows that at a fixed value of velocity the recovery
decreases when the Young modulus increases. However, when
the Young modulus increases the level of the representative stress
corresponding to the beginning of the plasticity is early reached
on the strain scale. Consequently the level of the reversible strain
decreases.



Fig. 11. Recovery vs. tip velocity for two different Young’s moduli using the modified elastic–viscoplastic Arruda–Boyce model.

Fig. 12. Tangential and normal loads during a viscoelastic scratch.
5.3. The viscoelastic transition

The previous section shows the influence of the value of the
Young modulus on the scratch response. This mechanical
property of the polymers depends notably on the strain rate.
We study here this aspect by using the viscoelastic model
presented above.

Such a model leads to a perfectly reversible strain. The
recovery is total that is why we pay attention to the variation of
tangential and normal loads applied to the tip to keep the
penetration and the velocity constant.

Fig. 12 shows two curves, one for the tangential load Ft and the
other for normal load Fn.
7

Since the penetration remains constant for all tip velocities,
the load applied on the tip depends on the tip velocity.

For low tip velocities, the normal load Fn curve is constant and
the tangential load Ft presents negligible values (frictionless
contact). This state corresponds to a quasi-elastic response.

On the other side, for high tip velocities, Fn has reached an
higher constant value and the tangential load Ft presents again
negligible values. It is an other elastic response but defined by a
higher stiffness than the previous one because of the higher value
of Fn.

Between these two states, in a particular range of tip velocities
the tangential load Ft reaches a peak, whereas Fn increases. This
range of velocities corresponds directly to the one of the



viscoelastic transition. The deformation of the material is strongly
delayed and the indenter is submitted to a bigger tangential
resistance. The deformation of the material is dissipative and
depends strongly on the tip velocity.

Let us note that this range is very sharp because of the linear
dependency of the viscous element on the strain rate. Polymers
present a viscoelastic transition often wider than 10 decades of
velocities. As a consequence, this result does not represent the
behavior of a polymer but it shows clearly the influence of this type
of model on the measurement of the scratch load.

5.4. Viscoelasticity and recovery

The viscoelastic and viscoplastic models are now connected to
build up the complete model described above. This study aims at
comparing the elastic–viscoplastic and viscoelastic–viscoplastic
recoveries.

In Fig. 13, the two limit curves E0
eq and E1eq related to the

elastic–viscoplastic behavior, already analyzed, are also displayed.
The third curve, called Z1, corresponds to the recovery due to the
viscoelastic viscoplastic model.

This last curve presents two particularities: first, both ends of
it are very close to the elastic–viscoplastic curves. At small tip
velocities, the curve Z1 is close to the curve E0

eq. This is explained
by the fact that this modulus ðE0

eqÞ is equal to the equivalent
modulus of the Poynting model taken for the strain rates near
zero. Such tip velocities are out of the range of the viscoelastic
transition and the model behaves as an elastic one with an
equivalent stiffness corresponding to small strain rates. For the
same reason, the curves Z1 and E1eq coincide at high tip velocities
since E1eq is the equivalent modulus of the Poynting model.

Between these two sections, in the particular range of
velocities where the viscoelastic transition takes place, the curve
Z1 decreases dramatically. In this range the equivalent modulus
increases with the tip velocity and, as it has been shown
previously, the recovery decreases when the stiffness increases.
Fig. 13. Recovery in elastic–viscoplastic an
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To account for the dependency of the stiffness on the velocity
Eq. (21) can be written as :

Rp
lnðVÞ

EðVÞac=R
ð22Þ

When the viscoelastic transition is sharp, that is to say when
the variation of the stiffness is important in a sharp range of
frequencies, the influence of the stiffness on the recovery is higher
than the one of the tip velocity. That happens here, but the
viscoelastic model does not correspond to the one of polymers. As
a conclusion, the ratio lnðVÞ=EðVÞ drives the dependency of the
recovery on the velocity.

These results show that the viscoelasticity of viscoelastic–
viscoplastic material, like amorphous polymers, can lead to an
important variation of values measured in scratch test. This
variation is even higher than the viscoelastic transition is sharper.
6. Conclusions

It is well known that amorphous polymers display complex
viscoelastic–viscoplastic behavior. However, such materials are
often modeled by using an elastic–viscoplastic behavior law when
the strain level is enough to activate plastic deformation. In the
particular case of the scratch test some study have been started in
order to highlight the necessity to account for the viscoelasticity.
The first step of this expensive and difficult task deals with the
understanding of the effect of the viscoelastic behavior in scratch
test thanks to a numerical approach. Three major steps have been
developed in this way.

The first main result concerns the study of the elastic–
viscoplastic recovery. The particular model of Arruda–Boyce [17]
has been implemented in the finite element code Systuss. Several
simulations of the ploughing process at a fixed penetration depth
have been carried out for different tip velocities. This shows that
the recovery increases with the tip velocity and for a fixed value of
d viscoelastic–viscoplastic scratches.



the velocity, the recovery depends directly on the value of the
Young modulus.

Since the viscoelasticity is classically employed to model the
variation of the stiffness with the strain rate, the second step of
this study deals with the analysis of the normal load and the
tangential load measured during scratch simulations at fixed
penetration depth due to a purely viscoelastic behavior. In spite of
the frictionless contact, the tangential load reaches a non-zero
value describing a tangential resistance due to the delayed elastic
response of the material. That takes place in the viscoelastic
transition where the normal load increases because the equiva-
lent stiffness modulus increases.

The viscoelastic transition leads to a particular response in
scratch test, consequently the third part of this paper compares
elastic–viscoplastic and viscoelastic–viscoplastic recoveries. To
carry out viscoelastic–viscoplastic simulations we have developed
a specific algorithm, the series model in the finite element code
Systuss, allowing to connect in series two models of any kind. As
it has been shown, in the range of tip velocity corresponding to
the viscoelastic transition, the viscoelastic–viscoplastic recovery
decreases when the tip velocity increases. That corresponds to the
increase of the equivalent stiffness of the model.

Forthcoming work will specifically address the problem of the
viscoelasticity in modeling the mechanical behavior of amor-
phous polymers in scratch test.
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