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Properties of Mode-Locked Optical Pulses in a
Dispersion-Managed Fiber-Ring Laser Using

Semiconductor Optical Amplifier
as Active Device

Jacques W. D. Chi, Arnaud Fernandez, and Chao Lu, Member, IEEE

Abstract— A hybrid model is proposed in order to exploit the
idea of compensating semiconductor optical amplifiers (SOAs)
nonlinearity by adjusting cavity dispersion in a SOA-fiber ring
mode-locked laser. The model is checked by analytical as well
as experimental results. Excellent agreement is obtained in both
cases. It is predicted that, once the cavity dispersion is correctly
adjusted, the mode-locked pulses of 10 ps width will become
distortion-free Gaussians, with their time-bandwidth product
(TB) very close to the fundamental Gaussian limit (TB = 1/2)
using root-mean-square definition. We will show evidence and
explain why other waveforms, notably soliton, are highly unlikely
in such a system. Some interesting effects related to band-pass
filter are revealed as well. Our results highlight the ambiguity
of TB using full-width at half-maximum (FWHM) definition. As
a consequence, the widely adopted notion of transform-limited
pulse in its FWHM version might be misleading.

Index Terms— Optical pulses, pulse generation, semiconductor
fiber ring laser, transform-limited pulse, ultrafast optics.

I. INTRODUCTION

OPTICAL pulses as clean as possible, i.e., distortion-free
and containing few chirp in both their time waveform

and spectrum, are highly important everywhere they appear.
In theoretical studies, notably in mode-locked lasers, models
are built assuming ideal waveforms such as Gaussian [1]
and soliton [2]. In optical communication networks using
time- or wavelength-division multiplexing (TDM or WDM),
a clean pulse train increases data transmission capacity by
reducing the time slot per bit at a given bandwidth (TDM), or
reducing its bandwidth per channel at a given bit-rate (WDM).
Therefore, how to obtain a clean optical pulse train fast enough
for such applications, and how to measure it, are of remarkable
importance and vast implications.

The cleanness of an optical pulse is most objectively
and quantitatively measured by its time-bandwidth product
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(TB) using root-mean-square (RMS) definition, i.e., the stan-
dard deviation of energy densities of a signal in the time-
and frequency domain. The Uncertainty Principle states that
TB ≥ 1/2, the equality being uniquely obtained with an ideal
(chirp-free) Gaussian [1], [3]. For an ideal hyperbolic secant
(first-order soliton), we calculated TB = 0.5236. Therefore, if
one obtains for sure 0.5 ≤ TB < 0.5236 for an optical pulse,
it cannot be a soliton but might be a chirped Gaussian. In
this paper, we will use this method to distinguish a soliton
and a Gaussian. In the following, we call TB = 1/2 as the
Gaussian limit, and a pulse with TB ∼0.5 as a Gaussian-
limited pulse, in contrast to a transform-limited pulse [1]. This
last one routinely applies to a pulse with �f�t∼0.5, �f and
�t being intensity full-width at half-maximum (FWHM) in the
frequency- and time domain, respectively. As will be shown
and discussed later, it turns out that �f�t, and hence the notion
of Transform-limited Pulse in FWHM version, are ambiguous
and might be misleading. The situation could be even worse
if �t is obtained using autocorrelation technique [4].

In our attempt to achieve clean pulses, we have carried
out an experiment using a semiconductor optical amplifier
(SOA) and dispersion-compensating fiber (DCF) to form a
ring laser [5]. As has been explained in [5], the objective is
to compensate SOA’s nonlinearity, mainly caused by carrier
dynamics, by an appropriate amount of negative dispersion [6].
The resulting actively mode-locked pulses at 10 GHz repetition
rate are indeed transform-limited, with �f�t = 0.46. In this
experiment, noticeably, the pulse’s shape is not estimated
by autocorrelation plus curve-fitting, but directly observed
with a fast optical sampling oscilloscope; the spectrum is
obtained using a high-resolution optical spectrum analyzer.
This provides an excellent opportunity to test a theoretical
model about mode locking, which, once validated, could reply
to some interesting questions: 1) What these transform-limited
pulses really are? Could they reasonably be approximated by
Gaussians or solitons? 2) How close these pulses could be to
the fundamental Gaussian limit, once relevant parameters are
optimized?

Keeping these questions in mind, we propose and develop
the present hybrid model, based on the experiment in [5]. In
this model, the SOA’s behavior is described and then resolved
in the time domain, results are checked by analytical formulas;
the transmission out of SOA is calculated in the frequency

0018–9197/$31.00 © 2012 IEEE
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Fig. 1. Experimental setup. MZ: Mach-Zehnder amplitude modulator.
PC: polarization controller. DL: delay line. EDFA: erbium-doped fiber ampli-
fier. DCF: dispersion compensating fiber. OSO: optical sampling oscilloscope.
OSA: optical spectrum analyzer.

domain. The overall precision is estimated to be ∼10−4 in the
evaluation of TB, which is good enough for addressing the
above questions.

In Section II, the experiment in [5] and relevant results
are briefly reminded for consistency. The hybrid model and
the algorithm are developed in Section III, together with
comparisons between the model’s predictions and available
analytical results. In Section IV, the experimental condition
is applied to the model so as to directly check its outcome,
followed by detailed inspection of optical pulses’ properties in
similar conditions. Our conclusions are presented in Section V.

II. EXPERIMENT

The experimental setup is shown in Fig. 1. In this exper-
iment, the SOA (by CIP, ref. SOA-NL-OEC) as the gain
medium exhibits 1 dB polarization gain dependence. It has a
multi-quantum-well (10 wells) structure with a length LS O A =
1.5 mm, shows its peak gain at 1555 nm, and provides 28 dB
small-signal optical gain at 290 mA DC drive. Its optical
gain is periodically modulated at 10 GHz by an optical back-
injection. The noise in the ring will circulate clockwise, and
eventually grow into mode-locked pulses if conditions are
propitious. The band-pass filter serves to locate the carrier
frequency, as well as to limit the noise level in the ring cavity.
The length of DCF is estimated using a model in [7]. The
characteristics of all these components are either provided by
their producers, or measured by ourselves [5]. All of them
are commercially available. The modulation and the filter
functions are also measured and will be given in Section III.
The parameters adopted are listed in Table 1.

The average power of the extracted pulse train is ∼0.3 mW
(with an average back injection power of ∼9 mW), its spectral
width is less than 1nm. This pulse train is first boosted
by an EDFA with +9 dB gain. Compared to EDFA’s sat-
uration power (∼10 mW) and its amplification bandwidth
(>35 nm) [8], the differences are 1 ∼ 2 orders of magnitude
for both values. Therefore, the pulse’s original shape and
spectrum are preserved after EDFA. The amplified pulse
train is then analyzed simultaneously by an optical sampling
oscilloscope (OSO, Ando AQ7750), with its input bandwidth

TABLE I

PARAMETERS USED IN THE SIMULATION

Symbol Quantity Value or Relation

αH Henry’s factor 6.0

αint SOAs internal loss 8.86 cm−1

β0 Wavenumber 2π /λ

BBP Filter bandwidth variable, 5−6 nm

Esat SOAs saturation
energy

0.5 pJ

2�m Modulation index 1.4

D Dispersion parameter −139.2 ps/(nm·km)
for DCF
(to be averaged with
SMF)

g0 Small-signal gain 51.84 cm−1 (G0 =
28 dB net gain)

LSOA SOAs length 1500 µm

L Total length of the
ring

variable (DL=
−10 ∼-25 ps/nm)

λ Wavelength 1.55 µm

ω0 Carrier frequency 2πc/λ s−1

(c = 3 × 108 m/s)

ωm Modulation
frequency

2π × 1010 s−1

vg Group velocity in
SOA

c/4 m/s

τ Carrier lifetime 16 ps

25ps /div 

2mW/div

Fig. 2. Oscilloscope trace of the output pulse train.

of 500 GHz and a resolution of 0.6 ps in time, and by an
optical spectrum analyzer (OSA, Apex AP2440A), with its
spectral resolution of 0.16 pm or 20 MHz between λ = 1520∼
1567 nm. The peak power in the ring cavity, just before the
output coupler, is estimated to be ≈12 mW.

The oscilloscope trace of the output pulse train is shown
in Fig. 2. These pulses have a FWHM width of �t∼=12 ps.
Notice that there are some slight fluctuations around the peaks.
The spectrum has been shown in Fig. 2(d) in [5], together
with a Gaussian fit. The fitting quality there is excellent. The
product �f�t = 0.46 is thus obtained. Therefore, these pulses
are indeed transform-limited (always in FWHM version).

It should be noticed that the insertion of DCF into the ring
cavity is not easy [9], due to structure and material differences
between DCF and single-mode fiber (SMF) used for linking
different elements. The insertion loss per facet of DCF could



82 IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 49, NO. 1, JANUARY 2013

SOA 

Output 

coupler 

External 

modulation 

Isolator 

Attenuator 
Filter 

Circulator 

Ain AoutDCF link 

80:20 

B(t) A(t) 

DC

Fig. 3. Schematic of the model.

be as low as −2 dB in our experiment, but that value is far
from regularly obtainable. This is the reason why it is difficult,
at least for now, to insert a designed length of DCF into the
ring laser while maintaining an acceptable insertion loss.

III. MODEL AND ALGORITHM

A. Hybrid Model

The schematic of the model is depicted in Fig. 3. Recogniz-
ing that pulse width �t ≥ 6 ps in general in SOA-related lasers
excluding external pulse compression, it is not necessary in the
present model to include the effect of gain dispersion, since its
time constant is ∼0.1 ps [10]. Other ultrafast effects, notably
two-photon absorption, are also neglected for the same reason
and the fact that optical power level is moderate here [11].
In this regime, the dominant physical effects inside SOA are
carrier recovery and gain saturation. Assuming slowly-varying
envelops, the electrical field in SOA is

E(z, t) = [A(z, t) exp(iβ0z) + B(z, t) exp(−iβ0z)]
× exp(−iω0t). (1)

Here, A and B are the forward (+z) and the backward
(−z) field envelops, β0 and ω0 are the free-space propaga-
tion constant and the carrier frequency, respectively. Lateral
and polarization effects are ignored. Notice that the carrier
frequencies for A and B are independent, but this makes no
difference in the model. The propagation for A, B is described
by [6], [7]:

∂z A + v−1
g ∂t A = 1

2
[g(1 − iαH ) − αint] A (2)

−∂z B + v−1
g ∂t B = 1

2
[g(1 − iαH ) − αint] B. (3)

Together with the rate equation for the optical gain g(z, t):

∂t g = g0 − g

τ
− g

(

|A|2 + |B|2
)

Esat
. (4)

In the above equations, vg is the group velocity in SOA, αH

is the Henry’s factor, αint is SOA’s internal loss coefficient, g0

is the small-signal optical gain, τ is the carrier lifetime, Esat is
the saturation energy. The small-signal net gain is thus G0 =
exp[(g0-αint)LSOA]. Due to a narrow frequency bandwidth
involved, these parameters are assumed to be constant. Notice
that the noise term is not explicitly present in (2)–(4), it will
be included as an additional input afterward.

The SOA’s output envelop (Aout in Fig. 3) makes a roundtrip
through the ring, and emerges as a renewed input Ain. The
transmission of the pulse train in the fiber link of ∼200 m
could be considered as linear, since with a peak intensity of
∼10 mW, the nonlinear length L N L will be ∼50 km for a
typical SMF [12]. Therefore, nonlinear effects in the fiber link
are not a concern, even though relevant fiber parameters in
our experiment differ from those in [12]. Consequently, the
transmission through the fiber link could be described by a
transfer function in the frequency domain

H (ω) =
ÃN+1

in (ω)

ÃN
out(ω)

= η × exp

[

−1

2

(

2
4
√

ln 2
(ω − ω0)

BBP

)4
]

× exp

[

iβ2L
(ω − ω0)

2

2

]

. (5)

Here, ÃN+1
in and ÃN

out are the frequency-domain presenta-
tions of AN+1

in and AN
out, respectively, with the integer N

denoting the number of roundtrip; η is the total amplitude
attenuation, including the loss from the output coupler; BBP

is the band-pass filter’s 3 dB bandwidth, its flat-top form is
checked by us and is well fitted by the first exponent above.
For simplicity, we assume that the filter is centered at ω0. The
consequence of this assumption will be discussed later. The
second exponent depicts the effect of group velocity dispersion
(GVD) in the fiber link, β2 is the GVD parameter averaged
throughout the link, and L is the total length of the ring.
In the following, we replace β2 by the dispersion parameter
D through the relation D = −2πcβ2λ

2, with λ = 1.55 µm.
Higher-order dispersion is neglected due to relatively long
pulse widths and the high value of β2 involved [12], in
consistency with the rest of the model.

Some other components are also implicitly contained in (5).
These include a polarization controller, whose attenuation is
accounted for by η, and an optical delay for synchronization.
It is assumed that harmonic mode-locking is achieved, i.e., the
roundtrip delay corresponds to an exact multiple of modulation
period. This explains the absence of β1 (the inverse of the
group velocity in the fiber) in (5). In effect, the optical delay in
Fig. 1 is already included in the total length L. Mode-locking
is achieved if with a big enough N (∼102), |AN+1

in | = |AN
in |.

The hybrid model is thus complete.

B. Algorithm

Since (5) is essentially error-free, the resolution of (2)–(4)
determines the precision of the model. In order to achieve high
precision, we have upgraded the algorithm in [7] to a higher
order. The detailed formulation is available in [13], which
adopts a predictor-corrector strategy [14], and is equivalent
to the well-known 4th-order Runge-Kutta algorithm in terms
of convergence [15]. Notice that the effect of gain dispersion
is included in [13] as well, in order to take on optical pulses
as short as ∼1 ps in future studies.

To adapt the above algorithm to the experiment in Fig. 1, the
modulation period is divided into 2M equal intervals (256 to
begin with, up to 4096 to ensure convergence and precision).
For a 10 GHz signal, this corresponds to a stepsize of δt =



CHI et al.: PROPERTIES OF MODE-LOCKED OPTICAL PULSES IN A DISPERSION-MANAGED FIBER-RING LASER 83

100/2M [ps]. The SOA is divided accordingly, with a space
division δz = vgδt .

At t = 0, a trigger signal A0
in(t) at the front facet, and

the back injection (modulation) signal B(t) at the rear facet,
are simultaneously injected into SOA. The trigger A0

in could
be a random signal emulating a noise, or simply a sinus
A0

in = asin(bt) with arbitrary (a, b), or a combination of both.
As a matter of fact, we observed that the final outcomes are
independent of the choice of A0

in, as long as this last one has
reasonable peak power (at −40 dBm, say). Meanwhile, the
modulation signal can be written as [1]

B(t) = B0 exp [−�m(1 − cos ωm t)] (6)

where B0 is the peak amplitude of the modulation envelop,
2�m is the modulation index, and ωm = 2π × 1010 is
the modulation frequency. This function has been verified
in [5]. The output envelop A0

out(t) is then calculated using
the algorithm mentioned above. It is converted to Ã0

outω) by
Fourier transform (FT). The next input A1

in(t) is obtained from

A1
in(t) = FT −1

[

H (ω) Ã0
out(ω)

]

. (7)

A complete roundtrip is thus accomplished. A random noise
emulating spontaneous emissions in SOA could be added to
A1

in, as well as to the following roundtrips. It is observed,
however, that the end results are insensitive to such a noise,
as long as its power level is realistic (−40 dBm is applied
in our simulations). The only perceptible consequence is a
slight fluctuation (∼10−4) of TB. This observation might be
explained by the permanent presence of a large number of
coherent photons in SOA. In effect, even at its intensity trough,
|B|2min ≈7.4 mW (using B2

0 = 30 mW and �m = 0.7),
which is far more intense than any possible noise. Therefore,
spontaneous emissions could not grow perceptibly (except
those photons joining mode-locked pulses) and remain weak
enough to be neglected. Consequently, all noises are ignored
after the trigger A0

in.
The new input A1

in(t) is synchronized to B(t) to obtain
A1

out(t), while the optical gain g(z, t) in the SOA remains what
it is after the precedent passage of A and B , as described in the
algorithms in [7] and [13], i.e., g(z, t) is not reset to its initial
state g = g0. This simply reflects the fact that every time slot is
occupied by a pulse in harmonic mode-locking. After N ∼100
roundtrips in favorable conditions, two consecutive inputs will
have the same amplitude distribution, |AN+1

in | = |AN
in |, the

steady state is thus achieved; otherwise |AN+1
in | �= |AN

in |
whatever N is, the mode locking will not happen. The
results presented in the next section are obtained with
N = 200.

C. Theoretical Verification

Recall that for an arbitrary signal A(t)

T B = σt · σω

σx =
〈

x2
〉

− 〈x〉2 (x = t, ω)

〈

xn
〉

= 1

E

∞
∫

−∞

xn I (x)dx

E =
∞

∫

−∞

I (x)dx (8)

where I (t) = |A|2 and I (ω) = |Ã|2 are the intensities in
the time- and frequency domain, respectively. The integration
limits in time (−∞,∞) are replaced by (0, T ) for a periodic
signal, and E is the signal’s energy in one period. The
integrations in (8), as well as in the following, are carried
out using the 6th-order Bode’s rule [14].

For an ideal Gaussian, TB = 1/2 and �f�t = 2ln(2)/π [1].
These two reference values could test the precision of the chain
of calculation, including integration, FT, sampling rate, speed
of convergence, and so on. We calculated that for an ideal
Gaussian, A1 = exp[−(t − t0)2/τ 2

0]

TB = 0.5 ± 0.0002,�f�t = 0.44127 ± 0.00005 (Gaussian)

where τ 0 and t0 are arbitrary parameters. Compared with the
exact values, the relative errors are ∼10−4. For a chirp-free
soliton, A2 = sech[(t − t0)/τ 0], the results are

TB = 0.5236 ± 0.0002,�f�t = 0.327 ± 0.002 (soliton)

The larger fluctuation (∼10−3) of a soliton’s �f�t is because
there is no analytical function to estimate its spectral FWHM
using least-squares fitting [14]. The method of interpolation
has to be used, resulting in some uncertainty at 10−3 level.
However, a less accurate estimate of �f�t does not degrade
the precision of the calculated pulse itself. Notice also that
a chirp-free soliton’s TB is higher than that of a chirp-free
Gaussian, but the opposite is true for �f�t. This discordance
between TB and �f�t reveals the important fact that �f�t is
not a good enough measure for judging the overall cleanness
of a signal.

The precision of the model in nonlinear regime could be
tested by launching an ideal Gaussian into SOA, and then
comparing the amplified pulse with the analytical result in [6].
Fig. 4(a) shows the result using a Gaussian of �t = 3 ps
and E = Esat. Other parameters are indicated in the figure.
Fig. 4(b) is the spectrum of the output pulse. As can be seen in
Fig. 4(a), the shape of the calculated output pulse is seamlessly
superposed with the analytical curve. The calculation error of
the algorithm in this nonlinear regime is difficult to estimate,
since the analytical curve itself involves integrations [6]. It
is reasonable, however, to assume that the relative error in
Fig. 4(a) is of the same order as in the evaluation of (8), since
the method of integration is the same. Consequently, we will
adopt 4 digits for TB and 3 digits for �f�t in the following
results.
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Fig. 4. Amplification of a 3-ps Gaussian pulse by SOA. (a) Input and the
output pulses’ intensities (analytical and calculation) in a linear scale, output
pulse’s phase in radian, and its chirp in THz. Notice that t is traced in a
moving coordinate at the group velocity. (b) Spectrum of the output pulse.

The optical phase φ(t) of the output envelop has a “S”
form, resulting in a nonlinear negative chirp, defined by δ f =
−(2π)−1∂tφ in THz. The spectrum of this output pulse is
highly distorted, as shown in Fig. 4(b). This output pulse has
TB = 2.677, which is far higher than the Gaussian limit. Due
to its multi-peak spectrum, its �f�t is hardly meaningful and
is not estimated.

It could be said, therefore, that the numerical procedures
used in this paper are trustworthy; its predictions are in
excellent agreement with available analytical results.

IV. PROPERTIES OF MODE-LOCKED PULSES

The above algorithm is then applied to the experiment of
Fig. 1, where the total fiber dispersion is estimated to be DL =
−25 ps/nm; the filter bandwidth is BBP = 6 nm; the average
optical power injected into the rear facet is measured to be
9 mW, its peak intensity is therefore B2

0 ≈23.5 mW according
to (6) with �m = 0.7. Substituting these values in the
algorithm, mode-locking is obtained with 0.145 ≤η ≤ 0.185,
which corresponds to a total transmission loss of 20log10η =
−16.8∼ −14.7 dB outside SOA. With η < 0.145, the peak
intensity of the output pulse will drop quickly below the noise
level; if η > 0.185, the SOA output will be chaotic and there
will be no mode locking. Fig. 5 shows the result obtained with
η = 0.152, which corresponds most likely to the experimental
observation of Fig. 2.

As can be seen in Fig. 5(a), the peak intensity of the output
pulse |Aout|2max = 12.5 mW. After passing through an output
coupler (80:20), an EDFA amplifier (9 dB) and a 50:50 power
splitter, the peak intensity at the OSO in Fig. 1 should be
12.5 × (0.2 × 109/10 × 0.5) = 9.93 mW. Taking into account
some uncertainties, such as mode conversion loss between
SOA and SMF, this value is in good agreement with the exper-
imental result of 9.2 mW in Fig. 2. The calculated �f�t =
0.459, which is the same as experimental result (= 0.46).

Moreover, the calculated pulse’s waveform and spectrum are
both well fitted by Gaussians, as shown in Fig. 5. This is also
the case for experimental results in [5]. Furthermore, the slight
fluctuation around the output pulse’s peak in Fig. 5(a) is indeed
observed in Fig. 2, confirming once again the precision of the

(a)

∆t=11.0ps 

DL=-25 ps/nm 

B0
2=23.5 mW 

BBP=6nm 

Back injection 

SOA output 

Gaussian fit 

SOA input and Gaussian fit 

(superposed)

(b)

∆f=41.8GHz 

Output spectrum 

Gaussian fit 

Fig. 5. Mode-locked pulse at η = 0.152. (a) Intensities of input pulses (two
consecutive inputs totally superposed) measured at the front facet (z = 0),
output pulse (with a Gaussian fit) and back injection intensities measured at
the rear facet (z = LSOA). The time shift between the input and the output
pulses corresponds to the transmission delay in SOA. (b) Spectrum of output
pulse with a Gaussian fit.

model and the algorithm, as well as the high resolution of the
fast OSO. Notice also that the main peak in the spectrum is
red-shifted of about −0.1 THz relative to the carrier frequency
(at f = 0).

With its �f�t = 0.459, this output pulse is well qualified
as transform-limited, even though some fluctuations can be
observed in both its waveform and spectrum. However, it has
TB = 2.526. This value is comparable to that obtained in
Fig. 4, where severe distortions are clearly observed in both
amplified pulse’s waveform and spectrum.

As a matter of fact, the output pulse’s waveform in Fig. 5(a)
and its spectrum in Fig. 5(b) stretch widely below their
half-maximum levels, resulting in the poor TB value above.
These low-level fluctuations cannot be filtered out, however.
By using a narrow-band filter (0.5∼1 nm) surrounding the
main peak in Fig. 5(b), the pulse will change substantially its
shape and spectrum, or simply collapse. This behavior is not
revealed by its �f�t, in contrast to its TB. This issue will be
further illustrated and discussed in the following examples.

Fig. 6 shows the output pulse’s �t, �f�t, TB, and its
normalized peak power |Aout|2max/B2

0 within the locking range.
As can be seen in Fig. 6, the values of �f�t within the
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[mW/23.5]

DL=-25 ps/nm 

B0
2=23.5 mW 

BBP=6nm 

Fig. 6. Properties of mode-locked pulse at different cavity attenuation η.
Pulse’s width is divided by 10, its peak power is normalized to B2

0 = 23.5 mW.

entire locking range remain very close to 0.5. Therefore,
the output pulse is always transform-limited. In contrast, its
TB varies strongly, with the minimum point TB = 0.5551
obtained at η = 0.172. At this point, the pulse has sim-
ilar properties as those in Fig. 7 in terms of phase and
chirp, and will be discussed together there. The fundamen-
tal Gaussian limit is thus still some distance away. It is
not obvious to experimentally localize this minimum TB
point using other, more measureable quantities as background.
Notice also that, by adjusting the cavity loss, it is possi-
ble to obtain transform-limited pulses with a width �t =
10 ∼25 ps and a peak power of a few mW after the output
coupler.

With DL = −25 ps/nm, as well as with other DL values
used in the following, it is possible to obtain mode-locked
pulses using other sets of parameters. In the above case of
DL = −25 ps/nm, for example, the model predicts that mode-
locking can happen with B2

0 varying from a few tens of mW
up to well beyond 100 mW, if G0 = 28 dB and BBP =
6 nm are maintained. However, an increasing B2

0 reduces the
effective SOA gain for mode-locked pulses, the cavity loss has
to be reduced (η increased) to compensate the effect, as the
model correctly predicts in agreement with physical insight.
The problem of DCF-SMF link, mentioned in Section II, might
then become a hurdle.

In order to further reduce the minimum value of TB =
0.5551 obtained with DL = −25 ps/nm, DL and B2

0 are
allowed to change in the simulation, while other parameters in
Table 1 are kept unchanged. Fig. 7 shows the result obtained
with DL = −23.4 ps/nm, B2

0 = 36.8 mW and η = 0.182.
The output pulse in Fig. 7 has TB = 0.5086, which is

very close to the fundamental Gaussian limit. It is even below
that of an ideal hyperbolic secant (= 0.5236). The difference
between the two values is well beyond the error margin in the
calculation of TB. As a consequence, this pulse cannot be a
soliton. Notice that this remark is based on TB, not on curve
fitting or �f�t. (In effect, �f�t = 0.327 is never approached
in our simulations).

From a theoretical point of view, only in the limit of slowly
saturating gain, the master equation in [2] could become

(a) 

(b) 

(c) 

∆t=12.7ps 

∆f=49.6GHz 

DL=-23.4ps/nm 

B0
2=36.8mW 

η=0.182 

BBP=6nm 

Output spectrum 

Gaussian fit 

Input phase /100 

Output phase /100 

(References) 

Input chirp  

(THz)

Output chirp 

(THz) 

Output pulse 

Gaussian fit 

Input pulse 

Gaussian fit (superposed) 

Fig. 7. Pulses obtained with DL = 23.4 ps/nm, B2
0 = 36.8 mW, η = 0.182.

(a) Input and output pulses’ shapes and their Gaussian fits. (b) Correspondent
optical phases (/100) in radian and chirps in THz. (c) Output spectrum with
a Gaussian fit.

the nonlinear Schrödinger equation (NSE), whose solution
is a soliton. This assumption is acceptable for erbium-doped
fibers, where the carrier lifetime of ∼10 ms is far longer
than the pulse widths [2]. In the case of SOA, however,
the carrier lifetime is comparable to the pulse widths, this
assumption is not true. In contrast, the master equation in [1]
does not require the above condition. Instead, it applies the
quadratic approximation, cos(ωm t) ≈ 1 − (ωm t)2/2 around
t = 0 in (7), which is usually acceptable around the trough
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of the modulation function (see Fig. 5(a)). Unsurprisingly,
SOA-related lasers such as this one would most likely support
Gaussian pulses, if cavity dispersion is correctly adjusted.

Interestingly, the pulse in Fig. 7 is hardly transform-limited
(�f�t = 0.634), even though both its waveform and spectrum
are remarkably well fitted by Gaussians. Here, once again, TB
and �f�t deliver contradictory messages about the cleanness
of a pulse.

The optical phases and chirps illustrated in Fig. 7(b) could
help understand why this pulse has such a low TB. Contrary
to the nonlinear “S” shape of the phase in Fig. 4(a), both input
and output pulses in Fig. 7(b) have nearly linear phases during
the time slots where the pulses’ intensities are significant.
As a consequence, their instantaneous frequencies (chirps) are
nearly constant during the corresponding time slots. According
to Fourier Shift Theorem, their spectra are simply red-shifted,
as confirmed by Fig. 7(c). In effect, it is this nearly constant
chirp which explains the cleanness of this pulse. Furthermore,
a careful inspection of Fig. 7(b) reveals that the input and
the output chirps have opposite slopes (upward for the input,
downward for the output). This is the result of the dispersion
management with DCF. In effect, the role of DCF in this ring
laser is not to eliminate the spectral red-shift associated with
SOA’s amplification, but to smooth the pulse’s phase so that
the red-shift becomes nearly constant and therefore harmless
regarding the cleanness of the pulse.

It is probable that the above TB = 0.5086 could be further
reduced if G0 and �m are allowed to change as well. The
interest of doing this seems limited, since it would not help
gain more insight into the system.

It is also observed that the pulses in Figs. 5–7 are essen-
tially unchanged to a varying BBP between 5∼8 nm in the
simulation, implying that the initial assumption of the carrier
frequency ω0 at the center of the filter is acceptable for
these pulses, whose spectral spans are narrow compared to
BBP. Our simulation also shows that clean pulses (TB < 0.6
and �f�t∼0.5, say) can be expected in a range DL =
−23±3 ps/nm by adjusting B2

0 and η only (similar to Fig. 6).
All these provide some margins for practical applications.

If the cavity dispersion DL deviates substantially from
the above equilibrium point (DL∼−23 ps/nm), however, the
pulse’s phase and chirp will become erratic, resulting in poor
TB and misleading �f�t. A typical example is shown in
Fig. 8, which is obtained with DL = −10 ps/nm, B2

0 =
27.9 mW, η = 0.206 and, noticeably, BBP = 5 nm, which
differs from previous cases (BBP = 6 nm).

The output pulse in Fig. 8(a) has a peak power of 24.8 mW
and a relatively narrow width of �t = 6.90 ps. It has
complicated waveform and spectrum, resulting in TB = 10.31,
a very poor value indeed. Meanwhile, its �f�t = 0.426, which
paradoxically qualifies the pulse as transform-limited.

As shown in Fig. 8(b), the spectrum of this pulse is far
more extended than previous cases of Figs. 5–7. As a result,
the interaction of this pulse with the filter becomes important.
In effect, the mode-locking cannot happen with BBP = 6 nm
if other parameters are roughly the same as before. With the
help of a narrower filter of 5 nm, the lower (red) end of the
pulse’s spectrum will be re-shaped and limited, as can be

(a)

(b)

(c)

DL=-10ps/nm 

B0
2=27.9mW 

η=0.206 

BBP=5nm 

∆f=61.8  

GHz 

∆t=6.90ps

 t0=10.5ps 

Filter (5nm) 

Back injection 

SOA input

SOA output 

Fig. 8. Pulse obtained with DL = 10 ps/nm and BBP = 5 nm. (a) Input and
output pulses’ waveforms and the back injection. (b) Output pulse’s spectrum
and the filter function. (c) Calculated intensity autocorrelation trace of the
output pulse.

seen between f = −0.5 ∼ −0.25 THz in Fig. 8(b). Since
the spectral energy is near zero on the other (bleu) side of
the filter, a narrower filter is effectively equivalent to a red-
shift of the carrier frequency ω0 from the center of a wider
filter. In other words, it is the spectral distance between ω0

and the red-end of the filter that matters, as long as BBP is
wide enough. As a consequence of this interaction between
the pulse and the filter, the filter bandwidth BBP should be
allowed to change or, alternatively, the carrier frequency ω0
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needs to be shifted, in order to obtain mode-locked pulses in
the condition of unbalanced dispersion. To the authors’ best
knowledge, this “red-wall” effect, i.e., the spectral re-shaping
by the filter’s red-end to stop pulses’ excessive red-shift so as
to maintain mode-locking, is not predicted before this study.

The second-order autocorrelation trace of the output pulse,
calculated using Wiener-Khinchin Theorem, is shown in
Fig. 8(c). It is remarkably clean, with the FWHM width
t0 = 10.5 ps. This corresponds to �t = 7.42 ps if the initial
pulse is supposed to be a Gaussian, or �t = 6.77 ps if a soliton
is assumed [16]. Both values are in good agreement with the
original one. Meanwhile, all details of the original pulse are
washed out. Were this pulse indeed produced in an experiment,
and then measured by the usual autocorrelation technique, it
would not be difficult to fit approximately the autocorrelation
trace with both assumptions. As a consequence, conclusions or
theories that follow might be unrealistic. Therefore, indepen-
dent of theoretical models or laser systems which may produce
such a pulse, its potential existence should not be ignored.

V. CONCLUSION

The model presented in this paper demonstrates its capa-
bility of predicting and analyzing the behaviors of mode-
locked optical pulses in a SOA-fiber ring laser. The associated
algorithm is shown to be accurate enough to address the
questions asked at the beginning of the paper.

In the condition of adequate cavity dispersion, nearly per-
fect Gaussian pulses can be expected. Their time-bandwidth
product using RMS definition could be very close to the fun-
damental Gaussian limit. These pulses would have a slight and
linear chirp as a result of the dispersion management. Thanks
to their narrow spectral widths, these pulses are resilient to
parameter variations, including filter bandwidth change. If the
cavity dispersion is not correctly adjusted, the cleanness of
mode-locked pulses will degrade, as measured by their energy
spreads in both time- and frequency domain. These pulses will
then have rather complicated waveforms and spectra, and are
consequently more sensitive to parameter variations.

It is also demonstrated that this SOA-fiber ring laser does
not support optical solitons. The method and arguments devel-
oped in this paper could be applied to other similar laser
systems using SOA as active devices.

The results obtained in this study highlight the inadequacy
of �f�t, the time-bandwidth product using FWHM definition,
as an objective criterion for judging the overall cleanness of
a pulse. The correlation between the cleanness of a pulse and
its �f�t value is not as strong as usually expected. As a
consequence, the tacit significance of transform-limited pulse
seems questionable, as well as its widespread use today.

The above results and observations are inseparable with
a careful evaluation of optical phase. It is not obvious how
to reveal the details of these pulses using intensity-based
approaches such as autocorrelation. Indeed, some questions
might be asked as to what extent an autocorrelation trace could
be used, and whether the curve-fitting is trustworthy enough
to serve beyond a pure illustrative propose.
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