
HAL Id: hal-00849988
https://hal.science/hal-00849988

Submitted on 2 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On-line, non-clairvoyant optimization of workflow
activity granularity on grids

Rafael Ferreira da Silva, Tristan Glatard, Frédéric Desprez

To cite this version:
Rafael Ferreira da Silva, Tristan Glatard, Frédéric Desprez. On-line, non-clairvoyant optimization
of workflow activity granularity on grids. 19th International Conference Euro-Par 2013, Aug 2013,
Aachen, Germany. pp.255-266. �hal-00849988�

https://hal.science/hal-00849988
https://hal.archives-ouvertes.fr


On-line, non-clairvoyant optimization of
workflow activity granularity on grids

Rafael Ferreira da Silva1, Tristan Glatard1 and Frédéric Desprez2

1 University of Lyon, CNRS, INSERM, CREATIS, Villeurbanne, France
{rafael.silva,glatard}@creatis.insa-lyon.fr

2 INRIA, University of Lyon, LIP, ENS Lyon, Lyon, France
Frederic.Desprez@inria.fr

Abstract. Controlling the granularity of workflow activities executed
on widely distributed computing platforms such as grids is required to
reduce the impact of task queuing and data transfer time. Most exist-
ing granularity control approaches assume extensive knowledge about
the applications and resources (e.g. task duration on each resource), and
that both the workload and available resources do not change over time.
We propose a granularity control algorithm for platforms where such
clairvoyant and offline conditions are not realistic. Our method groups
tasks when the fineness degree of the application, which takes into ac-
count the ratio of shared data and the queuing/round-trip time ratio,
becomes higher than a threshold determined from execution traces. The
algorithm also de-groups task groups when new resources arrive. The ap-
plication’s behavior is constantly monitored so that the characteristics
useful for the optimization are progressively discovered. Experimental
results, obtained with 3 workflow activities deployed on the European
Grid Infrastructure, show that (i) the grouping process yields speed-ups
of about 2.5 when the amount of available resources is constant and that
(ii) the use of de-grouping yields speed-ups of 2 when resources progres-
sively appear.

1 Introduction

Software-as-a-service (SaaS) platforms deployed on production grids, for instance
the Virtual Imaging Platform (VIP [1]) and other science gateways [2,3,4], usu-
ally have no a-priori model of the execution time of their applications because (i)
task costs depend on input data with no explicit model, and (ii) characteristics of
the available resources, in particular network and RAM, depend on background
load. Modeling application execution time in these conditions requires cumber-
some experiments which cannot be conducted for every new application in the
platform. As a consequence, such SaaS platforms operate in non-clairvoyant
conditions, where little is known about executions before they actually happen.
Such platforms also run in online conditions, i.e. users may launch or cancel
applications at any time and resources may appear or disappear at any time
too. Our ultimate goal is to control the behavior of these non-clairvoyant, on-
line platforms to limit human intervention required for their operation. In other



works, we address error recovery [5] and fairness of resource allocation [6] among
executions. This paper focuses on task granularity optimization.

The low performance of lightweight (a.k.a. fine-grained) tasks is a common
problem on widely distributed platforms where the communication overhead and
queuing time are high, such as grid systems. To address this issue, fine-grained
tasks are commonly grouped into coarse-grained tasks [7,8,9,10,11], which re-
duces the cost of data transfers when grouped tasks share input data [7] and
saves queuing time when resources are limited [8]. However, task grouping also
limits parallelism and therefore should be used sparingly.

We consider such a granularity problem in a SaaS platform executing work-
flows on a grid. Workflows are compositions of activities that consist only of
a program description. At runtime, activities receive data and spawn tasks for
which the executable name and input data are known, but the computational
cost and produced data volume are not. We propose an algorithm to optimize
the granularity of workflow activities on non-clairvoyant online grid platforms.
Our algorithm progressively discovers the characteristics of the running applica-
tions to compute a metric quantifying the fineness degree of a task group. This
fineness metric includes measured task queuing times, and median-based esti-
mations of task running times and transfer time of shared input data. Tasks are
grouped when the fineness metric goes beyond a threshold learned from platform
traces. In addition, a de-grouping mechanism is triggered when parallelism losses
are detected, i.e. when the number of queued tasks is lower than the number of
running tasks. The method is implemented in VIP, and evaluated with differ-
ent applications, in production conditions, on the European Grid Infrastructure
(EGI3). The contributions of this work are the following:

– We propose a new metric to quantify workflow activity fineness in online and
non-clairvoyant conditions;

– We design task grouping and de-grouping algorithms that are triggered by
the fineness metric in the control loop described in [5];

– We show, on 3 different applications, that the method provides significant
speed-up in production conditions, on the European Grid Infrastructure.

To the best of our knowledge, this algorithm is the first example of task gran-
ularity control in a non-clairvoyant online context. The next Section gives an
overview of the related work, Section 3 details the granularity control process,
Section 4 reports experiments and results, and the paper closes with a discussion
and conclusions.

2 Related Work

Muthuvelu et al. [9] proposed an algorithm to group bag of tasks based on their
granularity size – defined as the processing time of the task on the resource.
Resources are ordered by their decreasing values of capacity (in MIPS) and

3 http://www.egi.eu



tasks are grouped up to the resource capacity. This process continues until all
tasks are grouped and assigned to resources. Then, Keat et al. [10] and Ang et
al. [11] extended the work of Muthuvelu et al. by introducing bandwidth in the
scheduling framework to enhance the performance of task scheduling. Resources
are sorted in decreasing order of bandwidth, then assigned to grouped tasks
downward ordered by processing requirement length. The size of a grouped task
is determined from the task cost in millions instructions (MI).

Later, Muthuvelu et al. [12] extended [9] to determine task granularity based
on QoS requirements, task file size, estimated task CPU time, and resource
constraints. Meanwhile, Liu & Liao [13] proposed an adaptive fine-grained job
scheduling algorithm (AFJS) to group lightweight tasks according to process-
ing capacity (in MIPS) and bandwidth (in Mb/s) of the current available re-
sources. Tasks are sorted in decreasing order of MI, then clustered by a greedy
algorithm. To accommodate with resource dynamicity, the grouping algorithm
integrates monitoring information about the current availability and capabil-
ity of resources. Afterwards, Soni et al. [14] proposed an algorithm to group
lightweight tasks into coarse-grained tasks (GBJS) based on processing capa-
bility, bandwidth, and memory-size of the available resources. Tasks are sorted
into ascending order of required computational power, then, selected in first
come first serve order to be grouped according to the capability of the resources.
Zomaya and Chan [15] studied limitations and ideal control parameters of task
clustering by using genetic algorithms. Their algorithm performs task selection
based on the earliest task start time and task communication costs; it converges
to an optimal solution of the number of clusters and tasks per cluster.

Although the reviewed works significantly reduce communication and pro-
cessing time, neither of them are non-clairvoyant and online at the same time.
Recently, Muthuvelu et al. [16,7] proposed an online scheduling algorithm to
determine the task granularity of compute-intensive bag-of-tasks applications.
The granularity optimization is based on task processing requirements, resource-
network utilisation constraint (maximum time a scheduler waits for data trans-
fers), and users QoS requirements (user’s budget and application deadline). Sub-
mitted tasks are categorised according to their file sizes, estimated CPU times,
and estimated output file sizes, and arranged in a tree structure. The sched-
uler selects a few tasks from these categories to perform resource benchmarking.
Tasks are grouped according to seven objective functions of task granularity, and
submitted to resources. The process restarts upon task arrival. Although this is
an online approach, the solution is still clairvoyant.

3 Task Granularity Control Process

Algorithm 1 describes our task granularity control composed of two processes:
(i) the fineness control process groups too fine task groups for which the fineness
degree ηf is greater than threshold τf , and (ii) the coarseness control process
de-groups too coarse task groups for which the coarseness degree ηc is greater



than threshold τc. This section describes how ηf , ηc, τf and τc are computed,
and details the grouping and de-grouping algorithms.

Algorithm 1 Main loop for granularity control
1: input: n waiting tasks
2: create n 1-task groups Ti

3: while there is an active task group do
4: wait for timeout or task status change
5: determine fineness degree ηf
6: if ηf >τf then
7: group task groups using Algorithm 2
8: end if
9: determine coarseness degree ηc

10: if ηc >τc then
11: degroup coarsest task groups
12: end if
13: end while

3.1 Fineness control

Fineness degree ηf . Let n be the number of waiting tasks in a workflow
activity, and m the number of task groups. Tasks related to an activity are
assumed independent, but with similar execution times (bag of tasks). This
hypothesis is critical for our method. Initially, 1 group is created for each task
(n = m). Ti is the set of tasks in group i, and ni is the number of tasks in Ti.
Groups are a partition of the set of waiting tasks: Ti

⋂
i 6=j Tj = ∅ and

∑m
i=1 ni =

n. The activity fineness degree ηf is the maximum of all group fineness degrees
fi:

ηf = max
i∈[1,m]

(fi). (1)

All ηf are in [0,1], and high fineness degrees indicate fine granularities. We use
a max operator in this equation to ensure that any task group with a too fine
granularity will be detected. The fineness degree fi of group i is defined as:

fi = di · ri, (2)

where di is the ratio between the transfer time of the input data shared among
all tasks in the activity, and the total execution time of the group:

di =
t̃ shared

t̃ shared + ni(t̃− t̃ shared)
,

where t̃ shared is the median transfer time of the input data shared among all
tasks in the activity, and t̃ is the sum of its median task phase durations cor-
responding to application setup, input data transfer, application execution and
output data transfer: t̃ = t̃ setup+ t̃ input+ t̃ exec+ t̃ output. Median values t̃ shared
and t̃ are computed from values measured on completed tasks. When less than 2



tasks are completed, medians remain undefined and the control process is inac-
tive. This online estimation makes our process non-clairvoyant with respect to
the task duration which is progressively estimated as the workflow activity runs.
Yet, it assumes that all tasks in an activity have similar durations.

In equation 2, ri is the ratio between the max of the task current queuing
times qi in the group (measured for each task individually), and the total round-
trip time (queuing+execution) of the group:

ri =
maxj∈[1,ni] qj

maxj∈[1,ni] qj + t̃ shared + ni(t̃− t̃ shared)

Group queuing time is the max of all task queuing times in the group; group
execution time is the time to transfer shared input data plus the time to execute
all task phases in the group except for the transfers of shared input data. Note
that di, ri, and therefore fi and ηf are in [0, 1]. ηf tends to 0 when there is little
shared input data among the activity tasks or when the task queuing times are
low compared to the execution times; in both cases, grouping tasks is indeed
useless. Conversely, ηf tends to 1 when the transfer time of shared input data
becomes high, and the queuing time is high compared to the execution time;
grouping is needed in this case.

Threshold value τf . The threshold value for ηf separates configurations where
the activity’s fineness is acceptable (ηf ≤ τf ) from configurations where the
activity is too fine (ηf >τf ). We determine τf from execution traces, inspecting
the modes of the distribution of ηf . Values of ηf in the highest mode of the
distribution, i.e. which are clearly separated from the others, will be considered
too fine.

We use traces collected from VIP [1] between January 2011 and April 2012,
made available through the science-gateway workload archive [17]. The data set
contains 680, 988 tasks (including resubmissions and replications) linked to ac-
tivities of 2, 941 workflows executed by 112 users; task average waiting time is
about 36 min. Applications deployed in VIP are described as workflows exe-
cuted using the MOTEUR workflow engine [18]. Resource provisioning and task
scheduling are provided by DIRAC [19] using so-called “pilot jobs”. Resources
are provisioned online with no advance reservations. Tasks are executed on the
biomed virtual organization (VO) of the European Grid Infrastructure (EGI)4

which has access to some 150 computing sites world-wide and to 120 storage sites
providing approximately 4 PB of storage. Fig. 1 (left) shows the distribution of
sites per country supporting the biomed VO.

The fineness degree ηf was computed after each event found in the data set.
Fig. 1 (right) shows the histogram of these values. The histogram appears bi-
modal, which indicates that ηf separates platform configurations in two distinct
groups. We assume that these groups correspond to “acceptable fineness” (lowest
mode) and “too fine granularity” (highest mode), and thus we choose τf = 0.55.
For ηf ≥ 0.55, task grouping will therefore be triggered.

4 http://www.egi.eu



0

10

20

30

40

50

UK France
Italy

Germany

Netherlands
Greece

Spain
Portugal

Croatia
Poland

Bulgaria
Turkey

Brazil
FYROM

Other (1 site)

F
re

qu
en

cy

Batch queues
Sites

ηf

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0e
+

00
6e

+
04

Fig. 1. Distribution of sites and batch queues per country in the biomed VO (January
2013) (left) and histogram of fineness incident degree sampled in bins of 0.05 (right).

Task grouping. We assume that running tasks cannot be pre-empted, i.e. only
waiting tasks can be grouped. Algorithm 2 describes our task grouping. Groups
with fi > τf are grouped pairwise until ηf ≤ τf or until the amount of waiting
groups Q is smaller or equal to the amount of running groups R. Although ηf
ignores scattering (Eq. 1 uses a max), the algorithm considers it by grouping
tasks in all groups where fi > τf . Ordering groups by decreasing fi values tends
to equally distribute tasks among groups. The grouping process stops when
Q ≤ R to avoid parallelism loss. This condition also avoids conflicts with the
de-grouping process described in the next sub-section.

Algorithm 2 Task grouping
1: input: f1 to fm //group fineness degrees, sorted in decreasing order
2: input: Q, R // number of queued and running task groups
3: for i = 1 to m− 1 do
4: j = i+ 1
5: while fi > τf and Q > R and j ≤ m do
6: if fj > τf then
7: Group all tasks of Tj into Ti

8: Recalculate fi using Equation 2
9: Q = Q− 1

10: end if
11: j = j + 1
12: end while
13: i = j
14: end for
15: Delete all empty task groups

3.2 Coarseness control

Condition Q > R used in Algorithm 2 ensures that all resources will be exploited
if the number of available resources is stationary. In case the number of available
resources decreases, the fineness control process may further reduce the number
of groups. However, if the number of available resources increases, task groups
may need to be de-grouped to maximize resource exploitation. This de-grouping
is implemented by our coarseness control process.

The coarseness control process monitors the value of ηc defined as:

ηc =
R

Q+R
. (3)



Let’s consider a workflow composed of one activity with 10 tasks initially split in 10 groups, and
assume that task input data are shared among all tasks (i.e. t̃ shared = t̃ input).
Let t̃ = 10 and t̃ shared = 7 (in arbitrary time units) obtained from two completed task groups.
At time t, we assume R = 2 and Q = 6 with the following values for waiting task groups:

i maxj∈[1,ni]
qj di ri fi

5 50 0.70 0.83 0.58
6 48 0.70 0.82 0.58
7 45 0.70 0.81 0.57
8 43 0.70 0.81 0.57
9 41 0.70 0.80 0.56
10 40 0.70 0.80 0.56

Eq. 1 gives ηf = 0.58. As ηf > τf = 0.55 and Q > R, the activity is considered too fine and
task grouping is triggered. Groups with fi > τf are grouped pairwise until ηf ≤ τf or Q ≤ R:

i maxj∈[1,ni]
qj di ri fi

11 [5,6] 50 0.53 0.79 0.42
12 [7,8] 45 0.53 0.77 0.41
13 [9,10] 41 0.53 0.76 0.40

Groups 5 and 6, 7 and 8, and 9 and 10 are grouped into groups 11, 12, and 13.

Let’s consider that at time t′ > t, group 11 starts running, thus Q = 2 < R = 3.
Eq. 3 gives ηc = 0.6. As ηc > τc = 0.5, the activity is consider too coarse and task de-grouping
is triggered. Then, group 13 is de-grouped to balance ηc.

Table 1. Example

The threshold value τc is set to 0.5 so that ηc > τc ⇔ Q < R.
When an activity is considered too coarse, its groups are ordered by increasing

values of ηf and the first groups (i.e. the coarsest ones) are split until ηc < τc.
Note that de-grouping increases the number of queued tasks, therefore tends to
reduce ηc. Table 1 illustrates the method on a simple example.

4 Experiments and Results

The experiments presented hereafter evaluate the fineness control process under
stationary load, and the interest of controlling coarseness under non-stationary
load in a production environment.

4.1 Experiment Conditions

The granularity control process was implemented as a plugin of the MOTEUR
workflow manager, receiving notifications about task status changes and task
phase durations. The plugin then uses this data to group and de-group tasks
according to Algorithm 1, where the timeout value is set to 2 minutes.

The target computing platform for these experiments is the biomed VO where
the traces used to determine τf were acquired (see Section 3.1). To ensure re-
source limitation without flooding the production system, experiments are per-
formed only on 3 sites of different countries. Tasks generated by MOTEUR are
submitted to the biomed VO of EGI using the DIRAC scheduler.



Three workflow activities, implementing different kinds of medical image sim-
ulation, are used in the experiments. SimuBloch [20] is a very short activity made
of 25 concurrent tasks; task CPU time is of a few seconds; input data size is about
15 MB and output is less than 5 MB; t̃ shared is about 90% of the execution time.
FIELD-II [21] consists of 122 data-intensive concurrent tasks ranging from a few
seconds to 15 minutes of CPU time (tasks have the same cost, but their du-
ration is resource-dependent); it transfers 208 MB of input data and outputs
about 40 KB of data; t̃ shared ranges from 40% to 60% of the execution time.
PET-Sorteo/emission [22] has 80 tasks of 2 CPU minutes; input data size is
about 20 MB and output is about 50 MB; t̃ shared ranges from 50% to 80% of
the execution time.

Two sets of experiments are conducted, under different load patterns. Exper-
iment 1 evaluates the fineness control process only under stationary load. It con-
sists of separated executions of SimuBloch, FIELD-II, and PET-Sorteo/emission.
A workflow activity using our task grouping mechanism (Fineness) is compared
to a control activity (No-Granularity). Resource contention on the 3 execution
sites is maintained high and constant so that no de-grouping is required.

Experiment 2 evaluates the interest of using the de-grouping control pro-
cess under non-stationary load. It uses activity FIELD-II. An execution using
both fineness and coarseness control (Fineness-Coarseness) is compared to
an execution without coarseness control (Fineness) and to a control execution
(No-Granularity). Executions are started under resource contention, but the
contention is progressively reduced during the experiment. This is done by sub-
mitting a heavy workflow before the experiment starts, and canceling it when
half of the experiment tasks are completed.

For both experiments, control and tested executions are launched simultane-
ously to ensure similar grid conditions. As no online task modification is possible
in DIRAC, we implemented task grouping by canceling queued tasks and sub-
mitting grouped tasks as a new task. For each grouped task resubmitted in the
Fineness or Fineness-Coarseness executions, a task in the No-Granularity

is resubmitted too to ensure equal race conditions for resource allocation, and
that each execution faces the same re-submission overhead. Five repetitions of
each experiment are performed, along a time period of 4 weeks to cover different
grid conditions. We use MOTEUR 0.9.21, configured to resubmit failed tasks
up to 5 times, and with the task replication mechanism described in [5] acti-
vated. We use the DIRAC v6r6p2 instance provided by France-Grilles5. Results
could not be compared to other grouping/de-grouping methods due to the lack
of non-clairvoyant, online method available in the literature (see Section 2).

4.2 Results and Discussion

Experiment 1: Fig. 2 shows the makespan of SimuBloch, FIELD-II, and PET-Sorteo/emission

executions. Fineness yields a significant makespan reduction for all repetitions.
Table 2 shows the makespan (M) values and the number of task groups. The task

5 https://dirac.france-grilles.fr



grouping mechanism is not able to group all SimuBloch tasks in a single group
because 2 tasks must be completed for the process to have enough information
about the application (i.e. t̃ shared and t̃ can be computed). This is a constraint of
our non-clairvoyant conditions, where task durations cannot be determined in ad-
vance. FIELD-II tasks are initially not grouped, but as the queuing time becomes
important, tasks are considered too fine and grouped. PET-Sorteo/emission is
an intermediary case where only a few tasks are grouped. Results show that the
task grouping mechanism speeds up SimuBloch and FIELD-II executions up to
a factor of 2.6, and PET-Sorteo/emission executions up to a factor of 2.5.

SimuBloch FIELD−II PET−Sorteo/emission

0

2500

5000

7500

10000

Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5 Run 1 Run 2 Run 3 Run 4 Run 5

M
ak

es
pa

n 
(s

)

Fineness No−Granularity

Fig. 2. Experiment 1: makespan for Fineness and No-Granularity executions for the
3 workflow activities under stationary load.

Experiment 2: Fig. 3 shows the makespan (top) and evolution of task groups
(bottom). Makespan values are reported in Table 3. In the first three repeti-
tions, resources appear progressively during workflow executions. Fineness and
Fineness-Coarseness speed up executions up to a factor of 1.5 and 2.1. Since
Fineness does not benefit of newly arrived resources, it has a lower speed up
compared to No-Granularity due to parallelism loss. In the two last repeti-
tions, the de-grouping process in Fineness-Coarseness allows to reach similar
performance than No-Granularity, while Fineness is penalized by its lack of
adaptation: a slowdown of 20% is observed compared to No-Granularity.

Table 3 also shows the average queuing time values for Experiment 2. The
linear correlation coefficient between the makespan and the average queuing time
is 0.91, which indicates that the makespan evolution is indeed correlated to the
evolution of the queuing time induced by the granularity control process.

Our task granularity control process works best under high resource con-
tention, when the amount of available resources is stable or decreases over time
(Experiment 1). Coarseness control can cope with soft increases in the number
of available resources (Experiment 2), but fast variations remain difficult to han-
dle. In the worst-case scenario, tasks are first grouped due to resource limitation,
and resources suddenly appear once all task groups are already running. In this



SimuBloch FIELD-II PET-Sorteo
M (s) Groups M (s) Groups M (s) Groups

1
No-Granularity 5421 25 10230 122 873 80
Fineness 2118 3 5749 80 451 57

2
No-Granularity 3138 25 7734 122 2695 80
Fineness 1803 3 2982 75 1766 40

3
No-Granularity 1831 25 9407 122 1983 80
Fineness 780 4 4894 73 1047 53

4
No-Granularity 1737 25 6026 122 552 80
Fineness 797 6 3507 61 218 64

5
No-Granularity 3257 25 4865 122 1033 80
Fineness 1468 4 3641 91 831 71

Table 2. Experiment 1: makespan (M) and number of task groups for SimuBloch,
FIELD-II and PET-Sorteo/emission executions for the 5 repetitions.

Run 1 Run 2 Run 3 Run 4 Run 5
M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s) M (s) q̄ (s)

No-Granularity 4617 2111 5934 2765 6940 3855 3199 1863 4147 2295
Fineness 3892 2036 4607 2090 4602 2631 3567 1928 5247 2326
Fineness-Coarseness 2927 1708 3335 1829 3247 2091 2952 1586 4073 2197

Table 3. Experiment 2: makespan (M) and average queuing time (q̄) for FIELD-II

workflow execution for the 5 repetitions.

case the de-grouping algorithm has no group to handle, and granularity control
penalizes the execution. Task pre-emption should be added to the method to
address this scenario.

In addition, our method is dependent on the capability to extract enough
accurate information from completed tasks to handle active tasks using median
estimates. This may not be the case for activities which execute only a few tasks.

5 Conclusion

We presented a method to address task granularity in distributed workflows in
an online and non-clairvoyant environment. We defined a metric ηf for online
determination of task fineness based on queue waiting time and estimated data
transfer time of shared input data. For high ηf values, tasks are considered too
fine and task grouping is triggered. Queued tasks are grouped pairwise as long
as the number of queued tasks is greater than the number of running tasks and
ηf is considered too fine. We also define a metric ηc for online determination of
task coarseness based on the ratio of the number of queued tasks related to the
number of running tasks. This metric aims at maximizing resource exploitation
by de-grouping tasks groups when the number of available resources increases.

The task granularity control strategy was implemented in the MOTEUR
workflow engine and deployed on EGI with the DIRAC resource manager. We
tested it on three applications extracted from the Virtual Imaging Platform, a
science gateway for medical simulation. Two experiments were conducted, to
evaluate the fineness control process only under stationary load and the fine-
ness and coarseness control process under non-stationary load. Results showed
that under stationary load, our fineness control process significantly reduces the



0

2000

4000

6000

Run 1 Run 2 Run 3 Run 4 Run 5

M
ak

es
pa

n 
(s

)

Fineness

Fineness−Coarseness

No−Granularity

Run 1 Run 2 Run 3 Run 4 Run 5

60

80

100

120

0 1000 2000 3000 4000 0 2000 4000 60000 2000 4000 6000 0 1000 2000 3000 0 10002000300040005000
Time (s)

Ta
sk

 g
ro

up
s

Fineness Fineness−Coarseness No−Granularity

Fig. 3. Experiment 2: makespan (top) and evolution of task groups (bottom) for
FIELD-II executions under non-stationary load (resources arrive during the experi-
ment).

makespan of all applications. Under non-stationary load, task grouping is penal-
ized by its lack of adaptation, but our de-grouping algorithm corrects it in case
variations in the number of available resources are not too fast. In our future
work, task pre-emption will be added to the method to further improve the han-
dling of resource dynamicity. A comparative study against pilot job approaches
and clairvoyant methods will also be considered. We will also study the impact
of task duration variability on the proposed method.

6 Acknowledgment

This work is funded by the French National Agency for Research under grant ANR-
09-COSI-03 “VIP”. The research leading to this publication has also received funding
from the EC FP7 Programme under grant agreement 312579 ER-flow = Building an
European Research Community through Interoperable Workflows and Data. Results
obtained in this paper were computed on the biomed virtual organization of the Eu-
ropean Grid Infrastructure (http://www.egi.eu). We thank the European Grid Infras-
tructure and its supporting National Grid Initiatives, in particular France-Grilles, for
providing the technical support, computing and storage facilities.

References

1. Glatard, T., et al.: A virtual imaging platform for multi-modality medical image
simulation. IEEE Transactions on Medical Imaging 32 (2013) 110–118



2. Shahand, S., et al.: Front-ends to Biomedical Data Analysis on Grids. In: Pro-
ceedings of HealthGrid 2011, Bristol, UK (june 2011)

3. Kacsuk, P.: P-GRADE Portal Family for Grid Infrastructures. Concurrency and
Computation: Practice and Experience 23(3) (2011) 235–245

4. Barbera, R., et al.: Supporting e-science applications on e-infrastructures: Some
use cases from latin america. In: Grid Computing. (2011) 33–55

5. Ferreira da Silva, R., Glatard, T., Desprez, F.: Self-healing of operational workflow
incidents on distributed computing infrastructures. CCGrid’12 (2012) 318–325

6. Ferreira da Silva, R., Glatard, T., Desprez, F.: Workflow fairness control on online
and non-clairvoyant distributed computing platforms. Euro-Par 2013, to appear
(2013)

7. Muthuvelu, N., et al.: Task granularity policies for deploying bag-of-task applica-
tions on global grids. FGCS 29(1) (2012) 170 – 181

8. Singh, G., et al.: Workflow task clustering for best effort systems with pegasus.
In: Mardi Gras’08, New York, NY, USA, ACM (2008) 9:1–9:8

9. Muthuvelu, N., et al.: A dynamic job grouping-based scheduling for deploying
applications with fine-grained tasks on global grids. In: Proceedings of the 2005
Australasian workshop on Grid computing and e-research - Volume 44. ACSW
Frontiers ’05, Australian Computer Society, Inc. (2005) 41–48

10. Keat, N.W., et al.: Scheduling framework for bandwidth-aware job grouping-based
scheduling in grid computing. Malaysian Journal of Computer Science 19 (2006)

11. Ang, T., et al.: A bandwidth-aware job grouping-based scheduling on grid envi-
ronment. Information Technology Journal 8 (2009) 372–377

12. Muthuvelu, N., Chai, I., Eswaran, C.: An adaptive and parameterized job grouping
algorithm for scheduling grid jobs. In: Advanced Communication Technology, 2008.
ICACT 2008. 10th International Conference on. Volume 2. (2008) 975 –980

13. Liu, Q., Liao, Y.: Grouping-based fine-grained job scheduling in grid computing.
In: ETCS ’09. Volume 1. (2009) 556 –559

14. Soni, V.K., et al.: Grouping-based job scheduling model in grid computing. World
Academy of Science, Engineering and Technology 41 (2010) 781–784

15. Zomaya, A., Chan, G.: Efficient clustering for parallel tasks execution in distributed
systems. In: 18th IPDPS. (2004) 167–174

16. Muthuvelu, N., Chai, I., Chikkannan, E., Buyya, R.: On-line task granularity
adaptation for dynamic grid applications. In: Algorithms and Architectures for
Parallel Processing. Volume 6081 of LNCS. Springer (2010) 266–277

17. Ferreira da Silva, R., Glatard, T.: A Science-Gateway Workload Archive to Study
Pilot Jobs, User Activity, Bag of Tasks, Task Sub-Steps, and Workflow Executions.
In: CoreGRID’12, Rhodes, GR (2012)

18. Glatard, T., Montagnat, J., Lingrand, D., Pennec, X.: Flexible and Efficient Work-
flow Deployment of Data-Intensive Applications on Grids with MOTEUR. IJH-
PCA 22(3) (August 2008) 347–360

19. Tsaregorodtsev, A., et al.: DIRAC3. The New Generation of the LHCb Grid
Software. Journal of Physics: Conference Series 219(6) (2009) 062029

20. Cao, F., et al.: MRI estimation of T1 relaxation time using a constrained opti-
mization algorithm. In: Multimodal Brain Image Analysis. Volume 7509 of Lecture
Notes in Computer Science. (2012) 203–214

21. Jensen, J., Svendsen, N.: Calculation of pressure fields from arbitrarily shaped,
apodized and excited ultrasound transducers. IEEE T-UFFC 39(2) (1992) 262–267

22. Reilhac, A., et al.: PET-SORTEO: Validation and Development of Database of
Simulated PET Volumes. IEEE Trans. on Nuclear Science 52 (2005) 1321–1328


	On-line, non-clairvoyant optimization of workflow activity granularity on grids

