
HAL Id: hal-00849971
https://hal.science/hal-00849971v1

Submitted on 2 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Drunkness Analysis Through Games Using
Artificial Neural Networks

Audrey Robinel, Didier Puzenat

To cite this version:
Audrey Robinel, Didier Puzenat. Real Time Drunkness Analysis Through Games Using Artificial
Neural Networks. International Conference on Advances in Computer-Human Interactions, Feb 2011,
Gosier, Guadeloupe. pp.206-211. �hal-00849971�

https://hal.science/hal-00849971v1
https://hal.archives-ouvertes.fr

Real Time Drunkness Analysis Through Games Using Artificial Neural Networks

Audrey ROBINEL

LAMIA, Université Antilles-Guyane

Pointe-à-Pitre, France

audrey.robinel@univ-ag.fr

Didier PUZENAT

LAMIA, Université Antilles-Guyane

Pointe-à-Pitre, France

didier.puzenat@univ-ag.fr

Abstract—In this paper, we describe a blood alcohol content
estimation prototype based on a comportment analysis per-
formed by artificial neural networks. We asked to subjects that
had drunk alcohol to play a video-game after having measured
their blood alcohol content with a breathalyser. A racing game
was modified so that it could provide various data related to
the use of the controls by the player. Using the collected data,
we trained our neural network in order to be able to determine
whether or not the subject had exceeded a blood alcohol content
threshold. We also succeeded in estimating this blood alcohol
content with a mean error of 0.1g/l. We could perform those
estimations independently of the track played among the two
ones used. It was also performed in “real time”, e.g., using only
the data collected within the last 10 seconds of playing.

Keywords-User interfaces; Games; Neural network applica-
tions; Cognitive sciences; Psychology; Human factors.

I. INTRODUCTION

Driving under influence is not only forbidden, but also

dangerous, being a major cause of accidents. Devices for

measuring the blood alcohol concentration of a driver have

thus been developed. The current and most common ap-

proach for a driver is to use a “breathalyser” [3]. Such a

device measures the amount of alcohol contained in the

exhausted air blown by the subject into the device by using

a chemical reaction. The blood alcohol content is computed

from this value. Law enforcement class devices are very

reliable but expensive. Most of the low cost devices sold

to regular citizen are unreliable and provide erroneous mea-

sures, and require regular calibration or parts replacement

(we had a hard time finding a good device, which came at a

higher price). Furthermore, if ever a good device is used, the

driver must not forget to test himself before driving, which

is very likely to happen for a drunk person.

But what if the car could estimate whether or not the

driver is in condition for driving? Alcohol affects the driver

and thus creates dangerous behavior on the road. This means

that if we monitor the “low level” characteristics of the car

controls used, we should be able to correlate the subject’s

blood alcohol content to his driving ability [9]. Our final

goal is to create a natural interface embedded in the vehicle

that would use the data collected by the car’s computer

to analyze the driver’s behavior and actions to provide a

diagnostic to the driver and warn him before he becomes

really dangerous. For now, we present a prototype in order

to demonstrate the feasibility of the concept. We will not

use a real car but a video game, and gather data from the

use of the game controls. In order to fulfill the objectives

(detailed in the Section II), we had to instrument a game

(Section III-A). We chose SuperTuxKart, a racing game for

the reasons presented in the Section III-C. Following the

measuring protocol described in Section III-E, we collected

low level data (Section III-D) of 120 game runs. Using

all those examples, and a K-fold cross-validation derived

algorithm (Section IV-A), we measured the ability of the

network to detect whether or not a subject’s blood alcohol

content exceed a threshold in Section V. We thereafter

used the system to estimate the value of the blood alcohol

content, in Section VI. We then showed how the system

could perform this task independently of the track played,

in Section VII. Subsequently, after defining what we call a

“real time estimation” in Section VIII, we demonstrate the

ability of our prototype to perform such an estimation in

Section VIII. To conclude, we present in Section IX a global

interpretation of the results and the perspectives opened.

II. OBJECTIVES

Our main goal is to demonstrate that using the data

collected from an instrumented game played by a subject, a

trained artificial neural network is able to determine whether

or not a subject’s blood alcohol content exceeds a fixed

value, and even estimate the blood alcohol content value.

Our secondary goal is to determine if the neural network is

able to provide those estimations independently of the track

or if it must be used on predefined tracks. Our last goal for

the prototype is to perform in real time (we have a specific

definition, presented in Section VIII), at any moment of the

game run.

III. OUR SYSTEM

A. “Instrumenting” a game

We instrumented a video game that provided many low

level measurements. By “Instrumenting” we mean taking

measurements of player actions on input devices such as

a joystick or a steering wheel. This devices response being

progressive rather than binary, we can collect the state of

the device and obtain a large set of “low level” data about

the intensity of the subject’s actions on the controls. We

gather these data continuously in time, which enables us to

compute the evolution of some parameters over time.

B. Artificial neural networks

Playing a video game implies mobilizing many skills.

Depending on the game, it may be more or less necessary

to think, to act quickly, to act with precision, etc. Thus,

instrumenting a game should give valuable information on

the player. However, the point is to know what to measure

and how to go from the measurements to a conclusion.

The prototype presented in this paper uses artificial neural

networks to select and combine relevant measures to assess

the player, and is based on previous works [9]. Once

trained on a representative population, a dedicated neural

network will be able to evaluate a new player. Our approach

eliminates the need to explicit the significance of measures

for a given goal, therefore it becomes possible to make “low

level measurements”, e.g., the frequency of corrections on

the steering wheel during a racing car simulation.

Among all artificial neural network models, for all our

present developments, we have chosen a classical Multi-

Layer Perceptron (MLP) with a back-propagation learning

algorithm [2]. The neural network has been implemented

with the free open source Fast Artificial Neural Network

Library (FANN) [8]. FANN is a C library facilitating the

use of the developed neural network within the instrumented

video game (or interface, embedded computer, etc.), e.g., to

perform a real-time evaluation.

C. The chosen game

We chose a racing game because of the dynamic aspect

of such games. Since races are played on tracks, it implies a

predefined path. The subject has then a restricted freedom,

which turns the runs (played games) into reproducible and

comparable tasks, enabling us to create an uniform exam-

ples set. Furthermore, it can be controlled with a steering

wheel [7], which is an intuitive device for controlling a car

as presented in Figure 1.

We selected SuperTuxKart [5] because it is extremely easy

to handle. Anyone who could drive a car, even if unfamiliar

with computers can perform the tests. It has very simple

tracks, on which it is impossible to loose one’s way (every

subject were able to finish the races). Tanks to the open

source license (GNU GPL), we could edit the code to include

our data collecting library.

D. The collected data

For each full lap of the circuit, a vector of 5 components

is preserved and will feed the artificial neural network.

Those components are (i) the average number of steps per

rotation (the steering wheel is analogical), (ii) the number

of accidents (collisions and falls), (iii) the total number

of actions of the steering wheel, and (iv) the number of

changes in direction (e.g., the driver was turning left and is

Figure 1. The prototype during a run

now turning right). We define a “run” as a session played

by a subject on a full track lap. When a subject plays a

run, the system generates XML files containing all the race

measurements. Each run then provides us an example (in the

real time context, each run will provides us with multiple

examples, more on that in Section VIII) that can be used for

our problematics. Each subject does multiple runs, and the

combination of all runs is our full examples set. For each

run, we also measured the subject’s blood alcohol content

with a breathalyser.

E. The measuring and data collection protocol

In order to obtain a coherent example set, we used

the same protocol for each subject. We had selected two

tracks (“skyline” and “snowmountain”, see Figure 2) for our

data collection campaign, and every subject played on both

tracks. Each subject played being sober on skyline, then

on snowmountain, so that he could get used to the game

controls. We then repeated it, still with a 0 g/l blood alcohol

content, which provided us sober playing examples. Then the

subject drank some alcohol, and we waited 20 minutes. After

this delay, the subject’s blood alcohol content were measured

with a breathalyser (model AL7000 from Alcopass [1]). Two

other games were then played (same tracks). The operation

were repeated 15 to 20 minutes later, and for some subjects

another time 15 to 20 minutes later again. This provided

us with 8 to 10 examples per subject, two with a blood

alcohol content of 0 g/l, and the other ones with various

values greater than 0 g/l and lesser than 1 g/l.

At last, we obtained a 120 examples set containing game

statistics distributed between 14 different subjects (in order

to avoid subject-specific results) with various blood alcohol

content, between 0 and 1 g/l. We ensured that, after the

experiment, no subject drove a real car while having a blood

alcohol content superior to 0 g/l.

Figure 2. The skyline track on the left, snowmountain on the right.

IV. EXPERIMENTAL PROTOCOL

Before presenting our results, we will explain the method-

ology used to obtain the numbers that will be showed later.

Neural networks are trained on a learning set and then used

in generalization, on examples that are not in the learning

set. Generalization can be done either in production, or in

order to test the network as presented in Section IV-A. We

used a method derived from K-fold cross validation [6]

to evaluate the generalization performance of the network.

This provided the success rate and the average error of the

network for each problematic.

A. The K-fold cross-validation derived algorithm

Our algorithm was the following : at start, we take an

example base (in this example, it has 100 examples). We

initialize the algorithm by setting a loop index i, variable s

(successes) and variable f (failures) to 0. We then split

our example base in two: examples 0, 1 and 2, constitute

the generalization set and examples from 3 to 99 form

the learning set. We train the network on the learning

set, and test it on the generalization set. We evaluate the

network’s answer and increment s or f in case of success

or failure. We then increment i, and start again the same

with generalization set containing examples 1, 2 and 3, and

learning set containing examples 4 to 99 and example 0.

We keep doing that until i reaches 99 (in that case, the

generalization set is constitute of examples 99, 0 and 1,

while learning set is the rest). Thus, on each pass, we trained

the network on a subset of examples, and tested it on another

disjoint subset. Therefore, the network was never tested in

generalization on any example used in the learning set. We

obtain in the end the total number of successes and failures.

We can then compute the success rate of the neural network

as accurately as possible.

B. Determination of right and wrong network answers

We will now explain how we decide when the neural net-

work response is right or wrong. When the network returns

(i) skyline (ii) snow (iii) both tracks

successes 129 121 233

failures 3 5 25

success rate (%) 97.73 96.03 90.31

mean error (g/l) 0.0587 0.0972 0.1873

Table I
THRESHOLD EXCEEDING DETERMINATION

a value for an example, we can compare it to the real value,

e.g., the estimated blood alcohol content and the measured

value. We define ǫ as the distance between the expected

value v and the neural network output o: ǫ = ‖v − o‖.

We define the total cumulated error as the sum of all ǫ

obtained for each example. We then obtain the average error

by dividing this sum by the total number of examples tested.

We will set a maximal tolerated value (ǫmax) for ǫ: if ǫ

exceed ǫmax, the network answer will be considered wrong

(a failure). It will be right (a success) otherwise. A value of

ǫmax is defined for each experiment.

From now on, when we write that the success rate in

generalization is x% for a value of epsilon, it means that for

x% of the tested examples, the error of the network were less

than ǫmax. We always give the success rate in generalization,

and never the learning rate.

V. DETERMINATION OF THRESHOLD EXCEEDING

We first tried to determine if the neural network is able

to detect when a subject’s blood alcohol content exceeds

a fixed threshold of 0.4 g/l. When the subject’s measured

blood alcohol content was over 0.4 g/l, the network was

expected to return a value of 1 on the output, and a value

of 0 otherwise.

We present in Table I the success rate and mean error of

the network when using an example set of runs played on

(i) skyline, (ii) snowmountain and (iii) both tracks.

This first experiment is the easiest for the network, and

offers the best success rates, over 95% of good determina-

tions. The results are similar for skyline and snowmountain,

while they slightly decrease when we use both tracks in the

same base (it will be studied further in section VII).

VI. ESTIMATION OF BLOOD ALCOHOL CONTENT

This experiment was conducted in order to see if the

neural network could give an estimation of the subject’s

blood alcohol content. The network is expected to return (as

output value) the subject’s measured blood alcohol content,

between 0 g/l and 1 g/l.

We note in Tables II and III lower success rates than in

the previous experiments (especially for lower values of ǫ).

However, this was expected. As we try to return an accurate

value, we define a lower tolerated error (ǫmax). This indeed

decreases the success rate.

ǫ successes failures success rate

0.10 85 47 64.39%

0.12 102 30 77.27%

0.14 108 24 81.82%

0.15 112 20 84.85%

0.16 114 16 87.88%

0.18 119 13 90.15%

0.20 122 10 92.42%

Table II
BLOOD ALCOHOL CONTENT ESTIMATION ON SKYLINE, IN FUNCTION

OF ǫ. THE AVERAGE ERROR IS 0.083860 G/L.

ǫ successes failures success rate

0.10 70 53 56.91%

0.12 71 52 57.72%

0.14 78 45 63.41%

0.15 81 42 65.85%

0.16 84 39 68.29%

0.18 94 29 76.42%

0.20 98 25 79.67%

Table III
BLOOD ALCOHOL CONTENT ESTIMATION ON SNOWMOUNTAIN, IN

FUNCTION OF ǫ. THE AVERAGE ERROR IS 0.1158 G/L.

VII. TRACK INDEPENDENT ESTIMATIONS

In order to demonstrate that the system is able to estimate

the blood alcohol content of the subject independently of the

race track played, we conducted two other experiments. The

first one, in Section VII-A, focuses on a network trained on a

base containing examples from both tracks. The second one,

presented in Section VII-B, shows how the network behaves

when trained on a learning base containing examples from

one track and is tested on a generalization base made of

examples from another track.

A. Testing the network with examples from both circuits

We will start with the mixed tracks data sets. The example

set includes data gathered from game runs played on the

two tracks, skyline and snowmountain. Using K-fold cross

validation, we measured the ability of the network do

estimate the blood alcohol content of the subjects after being

trained on such a base.

The results presented in the Table IV does not show a

significant changes in neither the success rate nor the mean

error of the network. This tends to indicate that the prototype

is able to estimate the blood alcohol content without the

variable value

successes 77

failures 22

success rate (%) 77.78

mean error (g/l) 0.0587

Table IV
RESULTS OF THE MIXED EXAMPLE SET FOR ǫ=0.20

values of epsilon A : sky → snow B : snow → sky

Success rate for ǫ=0.15 26.47% 40.62%

Success rate for ǫ=0.20 82.35% 62.62%

Success rate for ǫ=0.25 88.24% 71.88%

Average error (g/l) 0.185407 0.226358

Table V
TRACK INDEPENDENCE TEST RESULTS.

need of a specific portion of road, implying that we could

construct examples set from various road sections or tracks.

B. Training the network with examples from one track, and

testing it with examples from another track

After this, we trained the network on the examples from

the first track, and then checked it’s generalization results on

the examples of the second track. This configuration ensures

that the second set of examples (games played on the second

track) is unknown to the network.

This time, we created two examples sets instead of one: (i)

the “sky set” contains all the game runs that were played on

the “skyline” track; (ii) the “snow set” contains all the game

runs that were played on the track “snowmountain”. We will

try two configurations: in the first one (A) we will use the

sky set as training set and snow set as generalization set. In

the second one (B), the the snow set as training and sky set

as the generalization set. The results obtained for different

values of ǫ are presented in Table V. On contrary of other

experiments, we did not use the k-validation algorithm, since

we had two distinct sets.

If we consider low values of ǫ, the success rate is quite

low. We had to increase ǫ in order to maintain a success

rate comparable to the previous ones. The obtained ǫ reaches

really important max values, with in the worst case 0.25 g/l.

But despite the fact that the mean error also increased,

the network could still perform valuable estimations. This

tends to indicate the ability of the prototype to be used

to estimate the blood alcohol content independently of the

track. Furthermore, this shows how our neural network is

able to cope with data gathered on an unknown portion of

track. This avoids the need to either create an exhaustive

learning set containing all possible situations or to use the

system in the same environment that were used for training.

Of course it is far from being perfect as, in these conditions,

the prototype is less accurate with much lower success rates

in some cases (experiment B, for example) and significantly

higher average errors (reaching 0.22 g/l for experiment B).

But the prototype tends to demonstrate that it is able to

generalize from one track to another.

Of course, we could have more meaningful results with

more tracks, but the game did not provided enough tracks

that met our requirements, detailed in section III-C.

VIII. REAL TIME ESTIMATIONS

We will here demonstrate the ability of the system to

perform “real time” estimations of the measured blood

alcohol content.

A. Definition of “real time estimation”

We define as “real time” an estimation done using the

data gathered within the last elapsed seconds. We define n

as the length in seconds of the interval of play used. An

n seconds real time estimation means that the estimation is

performed using the data of n seconds of race instead of

using the full length of the race. The interval of play used

for this determination will be called a “window” and n is

defined as the size of the window.

In order to obtain comparable data, we normalize the

variables by dividing their values by n. By this mean we

also ensure that the trained network can estimate the blood

alcohol content for various values of n, e.g., it can be used

indifferently to provide a real time estimation based on 10

or 20 seconds.

We kept using the examples from both tracks for our real

time experiments.

B. Protocol

We checked here if the network is able to perform a real

time determination based on 10, 15, 20, 30, 40 and 50 s

windows. In order to study the impact of n on the results,

we kept all other parameters equal. In order to do that, when

cutting the runs in order to obtain n seconds examples, we

only kept the first example, so that the number of generated

examples remained constant. We thus used data from the

interval [0, n] in order to perform the n seconds real time

estimation.

C. Impact of n on the success rate and the mean error

We present in the Figure 3 the evolution of the success

rate (as always in generalization) and in the Figure 4 the

variation of the mean error in function of the value of n.

The success rate increases with the length of the interval,

while the mean error decreases. Increasing the window size

improves the quality of the examples, which indeed enhances

the results.

 70

 75

 80

 85

 90

 95

 100

 10 15 20 25 30 35 40 45 50

S
u
c
c
e
ss

 r
a
te

 (
%

)

Window size (seconds)

Figure 3. Evolution of the success rate in function of the window size

 0

 0.05

 0.1

 0.15

 0.2

 10 15 20 25 30 35 40 45 50

M
ea

n
 e

rr
o
r(

g
/l

)

Window size (seconds)

Figure 4. Network mean error as a function of the window size

successes failures success rate mean error

10s 104 28 78.79 0.155820

15s 102 30 77.27 0.143969

20s 108 24 81.82 0.142155

30s 111 21 84.09 0.123291

40s 110 22 83.33 0.125081

50s 116 16 87.88 0.105408

Table VI
REAL TIME BLOOD ALCOHOL CONTENT ESTIMATION ON A MIXED SET

(CONTAINING BOTH TRACKS), FOR A VALUE OF ǫ OF 0.2 FOR

DIFFERENT VALUES OF THE WINDOW SIZE (n).

D. Other real time results using all the available windows

The previously presented results focus on the impact

of the window size on the success rate and mean error.

Furthermore, we obtained similar results when using all the

available windows. Indeed, when we split our 60 seconds

long runs in windows of 20 seconds, we obtain 3 examples.

In the previous experiments we kept only the first one.

Keeping all the obtained examples gave similar results. This

also confirms the track independent estimations capability of

the network, since the windows [0-20], [20-40] and [40-60],

as an example, are 3 different sections of the track. Indeed,

only one lap is performed. Thus, the subject never drives

two times on the same section during a run.

We also obtained comparable results for the threshold ex-

ceeding detection (with better success rates), which we do

not present here as they are quite similar (slightly better)

than the ones detailed earlier in Section VIII-C.

IX. CONCLUSION

We have demonstrated that it is possible not only to detect

threshold exceeding but also to estimate the blood alco-

hol content of a subject. These estimations were achieved

independently of the track. Considering that it is hardly

feasible to create an exhaustive learning base containing all

possible situations, it makes possible to only fill the learning

base with the most common situation patterns. We then rely

on the generalization capability of the neural network to

provide estimations on new patterns. We also managed to

obtain a real time estimation, and still independently of the

track played. The prototype is able to provide an estimation

using a 10 seconds window (e.g., after only 10 seconds of

playing), and to improve the reliability and the accuracy of

the estimation by using a larger window. It should thus be

possible to conceive an embedded interface that would be

able to provide estimations on the driver after only a short

while, and enhance these estimations after more time. The

fact that the estimations are not bound to a fixed length of

time allows many configurations.

Furthermore, such a system could re-evaluate the driver

continuously, and adapt the estimations to a changing situ-

ation. Indeed, someone who just drunk some alcohol may

feel perfectly able to drive, but as alcohol is absorbed in

blood, the side effects will alter his driving skills up to

the point where driving becomes dangerous. An embedded

device based on our concept could detect the evolution of the

driver and warn him before he becomes really dangerous.

X. LIMITS AND DRAWBACKS

While we could solve the problematics, we had to degrade

the accuracy of the system (ǫ) in some case in order to main-

tain acceptable success rates. As for track independence,

we note in some cases a significant drop on success rate

and an increase of the average error. But this experiment

was performed to see how the network would cope with

unknown tracks. Considering that we only had two tracks,

only one remained for training. As shown, if more accuracy

is required, we can use several tracks. Furthermore, if this

system were to be used in a production environment, we

would try to create a base containing a representative set of

the situations that can be encountered.

We also noted the much higher average error for real time

estimations when using small windows such as 10 s, but

it was expected. It indeed was intended to show the neural

network behavior in an extreme case, setting the lower bound

of the window size.

In some cases we reached an accuracy of 0.11 g/l, which

is close to the 0.1 g/l of the breathalyser. Owing to the

fact that we calibrated our system with this breathalyser,

improving the accuracy can only be achieved by using a

better breathalyser. On some cases though, the accuracy were

quite far from the breathalyser’s. As the present prototype

was created as a proof of concept, it was not intended to be

on par the breathalyser in every experiment.

XI. PERSPECTIVES

We demonstrated the ability of the prototype to perform

meaningful estimations even in a simple environment. Those

results will be the base of our next works: we plan to

improve and test the system on a more realistic environment

in so that it might be embedded in a vehicle later on.

The prototype demonstrated the viability of the concept in

a simplified environment, we will now take it to a more

complex virtual world before trying to use it in the real

world. For now, much work is left in order to achieve this

goal: we will have to find what data to gather from a more

realistic system, or among the numerous data monitored

by modern cars, and also a way to accurately measure

those data. Considering the amount of completely different

situations in a real driving environment (the “game play” of

SuperTuxKart is very simplified), we will have to use either

much more inputs, or other sorts of neural networks such as

mixture of neural experts [4] to cut down the problematics

in smaller and more simple ones, considering how different

it is to drive on the highway and in congested urban areas.

No matter what neural network model we will use, it

will anyway imply much more work to select meaningful

inputs for the network, and probably require the use of

parallel computing in order to explore configurations until

we obtain the optimal ones for a given problem. Hopefully,

generalization will always be possible on a low cost, low

power consumption, and low computing power system,

making the software easily usable in embedded devices.

Furthermore, we foresee that increasing the complexity of

the environment and the amount of measured characteristics

might enable us to perform not only more accurate esti-

mations, but also many other estimations, such as detection

of tiredness, attention drop, or the use of driving impairing

drugs or medications. Those very similar problematics may

use the same system with just another examples set.

REFERENCES

[1] Alcopass. Alcopass AL7000 breathalyzer documentation.,
December 2010. http://www.alcopass.com/.

[2] C. M. Bishop. Neural Networks for Pattern Recognition.
Clarendon Press, Oxford, 1995.

[3] E. Bogen. Drunkenness, a quantitative study of acute alcoholic
intoxication. California and Western Medecine, XXVI(6):778–
783, 1927.

[4] P. Estvez, H. Paugam-Moisy, D. Puzenat, and M. Ugarte. A
scalable parallel algorithm for training a hierarchical mixture
of neural experts. Parallel Computing, 28(6):861–891, 2002.

[5] J. Henrichs, M. Gagnon, and C. Pelikan. Super-
TuxKart, Free 3D kart racing game., December 2010.
http://supertuxkart.sourceforge.net.

[6] Ron Kohavi. A study of cross-validation and bootstrap for
accuracy estimation and model selection, 1995.

[7] Logitech. Formula Vibration Feedback Wheel., December
2010. http://www.logitech.com/en-in/441/298.

[8] S. Nissen. Implementation of a fast artificial neural network
library (FANN). Technical report, Department of Computer
Science University of Copenhagen, October 2003.

[9] D. Puzenat and I. Verlut. Behavior analysis through games
using artificial neural networks. In Third International Con-
ferences on Advances in Computer-Human Interactions, pages
134–138, February 2010.

