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Abstract

This paper introduces a novel steepest descent flow in Banach spaces. This extends previous

works on generalized gradient descent, notably the work of Charpiat et al. [16], to the setting

of Finsler metrics. Such a generalized gradient allows one to take into account a prior on defor-

mations (e.g., piecewise rigid) in order to favor some specific evolutions. We define a Finsler

gradient descent method to minimize a functional defined on a Banach space and we prove a

convergence theorem for such a method. In particular, we show that the use of non-Hilbertian

norms on Banach spaces is useful to study non-convex optimization problems where the geome-

try of the space might play a crucial role to avoid poor local minima. We show some applications

to the curve matching problem. In particular, we characterize piecewise rigid deformations on

the space of curves and we study several models to perform piecewise rigid evolution of curves.

2010 Mathematics Subject Classification: Primary 49M25; Secondary 65K10, 68U05.
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1 Introduction

This paper introduces a new descent method to minimize energies defined over Banach spaces.

This descent makes use of a generalized gradient which corresponds to a descent direction for a

Finsler geometry. We show applications of this method to the optimization over the space of curves,

where this Finsler gradient allows one to construct piecewise regular curve evolutions.

1.1 Previous Works

Energy minimization for curve evolution. The main motivation for this work is the design of

novel shape optimization methods, with an emphasis toward curves evolutions. Shape optimization
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is a central topic in computer vision, and has been introduced to solve various problems such as

image segmentation or shape matching. These problems are often solved by introducing an energy

which is minimized over the space of curves. The first variational method proposed to perform im-

age segmentation through curve evolution is the snake model [27]. This initial proposal has been

formalized using intrinsic energies depending only on the geometry of the curves. A first class of

energies corresponds to a weighted length of the curve, where the weight acts as an edge detec-

tor [12, 29]. A second class of segmentation energies, pioneered by the Mumford-Shah model [32],

integrates a penalization both inside and outside the curve, see for instance [13]. Shape registration

requires to compute a matching between curves, which in turn can be solved by minimizing energies

between pairs of curves. An elegant framework to design such energies uses distances over a space

of measures or currents, see [22] for a detailed description and applications in medical imaging.

Curve evolution for image processing is an intense area of research, and we refer for instance to

the following recent works for applications in image segmentation [26, 25, 1, 21] and matching [37,

43, 8].

Shape spaces as Riemannian spaces. Minimizing these energies requires to define a suitable

space of shapes and a notion of gradient with respect to the geometry of this space. The mathematical

study of spaces of curves has been largely investigated in the last years, see for instance [50, 30].

The set of curves is naturally modeled over a Riemannian manifold [31]. This corresponds to using

a Hilbertian metric on each tangent plane of the space of curves, i.e. the set of vector fields which

deform infinitesimally a given curve. This Riemannian framework allows one to define geodesics

which are shortest paths between two shapes [51, 23]. Computing minimizing geodesics is useful to

perform shape registration [39, 46, 44], tracking [39] and shape deformation [28]. The theoretical

study of the existence of these geodesics depends on the Riemannian metric. For instance, a striking

result [31, 48, 49] is that the natural L2-metric on the space of curves, that has been largely used

in several applications in computer vision, is a degenerate Riemannian metric: any two curves have

distance equal to zero with respect to such a metric.

Beside the computation of minimizing geodesics, Riemannian metrics are also useful to define

descent directions for shape optimization. Several recent works [31, 15, 49, 48] point out that the

choice of the metric, which the gradient depends on, notably affects the results of a gradient descent

algorithm. Carefully designing the metric is thus crucial to reach better local minima of the energy.

Modifying the descent flow can also be important for shape matching applications. A typical ex-

ample of such Riemannian metrics are Sobolev-type metrics [40, 38, 42, 41] which lead to smooth

curve evolutions.

Shape spaces as Finslerian spaces. It is possible to extend the Riemannian framework by con-

sidering more general metrics on the tangent planes of the space of curves. Finsler spaces make

use of Banach norms instead of Hilbertian norms [9]. A few recent works [30, 49] have studied

the theoretical properties of Finslerian spaces of curves. To the best of our knowledge, with the

notable exception of [16], which is discussed in detailed in Section 1.4, no previous work has used

Finslerian metrics for curve evolution.

Generalized gradient flow. Beyond shape optimization, the use of non-Euclidean geometries is

linked to the study of generalized gradient flows. Optimization on manifolds requires the use of
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Riemannian gradients and Riemannian Hessians, see for instance [2]. Second order schemes on

manifolds can be used to accelerate shape optimization over Riemannian spaces of curves, see [34].

Optimization over Banach spaces requires the use of convex duality to define the associated gradient

flow [24, 3, 6]. It is possible to generalize these flows for metric spaces using implicit descent steps,

we refer to [5] for an overview of the theoretical properties of the resulting flows.

1.2 Motivation

The metrics defined over the tangent planes of the space of curves (e.g. an Hilbertian norm in the

Riemannian case and a Banach norm in the Finsler case) have a major impact on the trajectory of the

associated gradient descent. This choice thus allows one to favor specific evolutions. A first reason

for introducing a problem-dependent metric is to enhance the performances of the optimization

method. Energies minimized for shape optimization are non-convex, so a careful choice of the

metric is helpful to avoid being trapped in a poor local minimum. A typical example is the curve

registration problem, where reaching a non-global minimum makes the matching fail. A second

reason is that, in some applications, one is actually interested in the whole descent trajectory, and

not only in the local minimum computed by the algorithm. For the curve registration problem,

the matching between the curves is obtained by tracking the bijection between the curves during

the evolution. Taking into account desirable physical properties of the shapes, such as global or

piecewise rigidity, is crucial to achieve state of the art results, see for instance [17, 14, 36]. In this

article, we explore the use of Finsler gradient flows to encode piecewise regular deformations of the

curves.

1.3 Contributions

Our first contribution is the definition of a novel generalized gradient flow, that we call Finsler

descent, and the study of the convergence properties of this flow. This Finsler gradient is obtained

from the W 1,2-gradient through the resolution of a constrained convex optimization problem. Our

second contribution is the instantiation of this general framework to define piecewise regular curve

evolutions, without knowing in advance the location of the articulations. This contribution includes

the definition of novel Finsler penalties to encode piecewise rigid and piecewise similarity evolu-

tions. It also includes the theoretical analysis of the convergence of the flow for BV 2-regular curves.

Our last contribution is the application of these piecewise regular evolutions to the problem of curve

registration. This includes the definition of a discretized flow using finite elements, and a compar-

ison of the performances of Riemannian and Finsler flows for articulated shapes registration. The

Matlab code to reproduce the numerical results of this article is available online1.

1.4 Relationship with [16]

Our work is partly inspired by the generalized gradient flow originally defined in [16]. We use a

different formulation for our Finsler gradient, and in particular consider a convex constrained for-

mulation, which allows us to prove convergence results. An application to piecewise rigid evolutions

is also proposed in [16], but it differs significantly from our method. In [16], piecewise rigid flows

1https://www.ceremade.dauphine.fr/˜peyre/codes/
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are obtained using a non-convex penalty, which poses both theoretical difficulties (definition of a

suitable functional space to make the descent method well-defined) and numerical difficulties (com-

putation of descent direction as the global minimizer of a non-convex energy). In our work we prove

a characterization of piecewise rigid deformations that enables the definition of a penalty depending

on the deformation (instead of instantaneous parameters as done in [16]). Then, we generalize this

penalty to the BV 2-framework obtaining a convex penalty for BV 2-piecewise rigid deformations.

1.5 Paper Organization

Section 2 defines the Finsler gradient and the associated steepest descent in Banach spaces,

for which we prove a convergence theorem. Section 3 introduces the space of BV 2-curves and

studies its main properties, in particular its stability to reparametrization. Section 4 characterizes

C2-piecewise rigid motions and defines a penalty in the case of BV 2-regular motions. We apply

this method in Section 5 to the curve registration problem. We minimize a matching energy using

the Finsler descent method for BV 2-piecewise rigid motions. Section 6 details the finite element

discretization of the method. Section 7 gives numerical illustrations of the Finsler descent method

for curve matching. Section 8 refines the model introduced in Section 4 to improve the matching

results by replacing piecewise rigid transforms with piecewise similarities.

2 Finsler Descent Method in Banach Spaces

Let (H, 〈·, ·〉H) be a Hilbert space and let E be a Fréchet differentiable energy defined on H .

We consider a Banach space (B, ‖.‖B) which is continuously embedded in H and we consider

the restriction of E to B (such a restriction will be also denoted by E).

We aim to solve the following minimization problem

inf
Γ∈B

E(Γ) (2.1)

using a steepest descent method. We treat B as a manifold modeled on itself and denote by TΓB

the tangent space at Γ ∈ B. In the following we suppose that at every point Γ ∈ B, the space TΓB

coincides with B, although our descent method can be adapted to more general settings.

For every Γ ∈ B can define an inner product 〈·, ·〉H(Γ) that is continuous with respect to Γ ∈ B

and we suppose that the norms ‖ · ‖H and ‖ · ‖H(Γ) are equivalent on every ball of B (with respect

to the norm on B). This makes H complete with respect to the norm ‖ · ‖H(Γ). Note that this inner

product may be different from the inner product induced by 〈·, ·〉H on TΓB, and in particular it

might depend on Γ. For instance in the case of Sobolev metrics for the space of curves we usually

consider H = W 1,2([0, 1],R2) and set TΓB = W 1,2([0, 1],R2) equipped with the measure defined

by the arclength of Γ (see Remark 2.4).

Since E is Fréchet differentiable and (H, 〈·, ·〉H(Γ)) is a Hilbert space, by the Riesz representa-

tion theorem, there exists a unique vector v ∈ H such that

DE(Γ)(Φ) = 〈v, Φ〉H(Γ) ∀Φ ∈ TΓB .

The vector v represents the gradient of E at Γ with respect to inner product 〈·, ·〉H(Γ) and it is

denoted by v = ∇H(Γ)E(Γ).
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2.1 Finsler Gradient

The Finsler gradient determines a descent direction by modifying ∇H(Γ)E(Γ) with respect to a

penalty RΓ that depends on Γ. It is defined by minimizing RΓ under a constraint LΓ.

Definition 2.1 (Finsler gradient). For every Γ ∈ B, let RΓ : TΓB → R
+ ∪ {+∞} be a function

such that RΓ 6= +∞ and LΓ ⊂ TΓB a set satisfying

LΓ ⊂
{

Φ ∈ TΓB :
〈

∇H(Γ)E(Γ),Φ
〉

H(Γ)
> (1− ρ)‖∇H(Γ)E(Γ)‖H(Γ)‖Φ‖H(Γ)

}

(2.2)

where ρ ∈ (0, 1) is a fixed parameter independent of Γ. This parameter is typically adapted to the

targeted applications (see Section 7), and in particular to the energy E. If RΓ admits a minimum on

LΓ then a Finsler gradient for E at Γ with respect to RΓ is defined as:

∇RΓ
E(Γ) ∈ argmin {RΓ(Φ) : Φ ∈ LΓ} . (2.3)

Note that if ∇H(Γ)E(Γ) = 0 then Γ is a critical point and any descent algorithm stops. Note that

RΓ is in general not equal to the Banach norm defined over the tangent space. This is important for

some applications, such as the one considered in Section 4 (piecewise rigid deformations).

The next theorem gives an existence result for the Finsler gradient which is proved by using the

standard direct method of calculus of variations.

Theorem 2.2. Let TΓB be a Banach space equipped with a topology T (TΓB) such that every

bounded sequence in TΓB converges (up to a subsequence) with respect to the topology T (TΓB).
Let RΓ be coercive (i.e., RΓ(Φ) → +∞ as ‖Φ‖TΓB → +∞) and lower semi-continuous with

respect to the topology T (TΓB) and we suppose that LΓ is closed in TΓB with respect to the

topology T (TΓB). Then Problem (2.3) admits at least a solution.

Proof. As RΓ is coercive, every minimizing sequence is bounded in TΓB so it converges (up to a

subsequence) with respect to the topology T (TΓB) toward an element of LΓ. Now, because of the

lower semi-continuity of RΓ, the theorem ensues.

Such a result is the generalization of the usual existence theorem of calculus of variations on a

reflexive Banach space. In fact (see Corollary 3.23 p. 71 in [11]), if TΓB is reflexive, the existence

of the Finsler gradient is guaranteed whenever LΓ is convex and closed with respect to the strong

topology of TΓB, and RΓ is coercive, RΓ 6= +∞, convex, and lower semi-continuous with respect

to the strong topology of TΓB. These hypotheses guarantee in particular an existence result if TΓB

is a Hilbert space.

Previous theorem guarantees the existence of a minimum on no reflexive Banach spaces. The

key point is the existence of a suitable topology which guarantees compactness of minimizing se-

quences. We point out that, in general, such a topology is weaker than the strong topology of the

Banach space.

We point out that the applications studied in this work concern a minimization problem on

TΓB = BV 2(S1,R2). Such a space is not reflexive but the weak* topology of BV 2(S1,R2) sat-

isfies the hypotheses of the previous theorem (see Appendix). Then, for some suitable set LΓ and

penalty RΓ, the existence of the Finsler gradient is guaranteed.
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The set LΓ imposes a constraint on the direction of the Finsler gradient and more precisely on

the angle between the Finsler and Hilbert gradient. It is crucial to guarantee the convergence of

the descent method by the Zoutendijk theorem (see Theorem 2.5). The parameter ρ controls the

deviation of the Finsler gradient with respect to ∇H(Γ)E(Γ). This parameter can be tuned by the

user to modify the geometry of the trajectory of the flow defined in Section 2.2. The impact of ρ is

studied by several numerical simulations in Section 7.1.

If the hypotheses of Theorem 2.2 are verified then the minimum in (2.3) exists, but in general it

is not unique. A Finsler gradient is any minimum of the functional minimized in (2.3).

Condition (2.2) implies

〈 ∇H(Γ)E(Γ)

‖∇H(Γ)E(Γ)‖H(Γ)

,
∇RΓ

E(Γ)

‖∇RΓ
E(Γ)‖H(Γ)

〉

H(Γ)

> (1− ρ) > 0 ∀Γ ∈ B. (2.4)

This shows that the Finsler gradient is a valid descent direction, in the sense that

d

dt
E(Γ− t∇RΓ

E(Γ))
∣

∣

∣

t=0
= −〈∇H(Γ)E(Γ), ∇RΓ

E(Γ)〉H(Γ) < 0 .

Remark 2.3 (Relationship with [16]). Our definition of Finsler gradient is partly inspired by the

generalized gradient introduced in Section 6.1 of [16]. An important difference is that we introduce a

constraint LΓ whereas [16] defines the gradient as a minimum of DE(Γ)(Φ)+RΓ(Φ) on TΓB. This

is a crucial point because, as shown in the next section, this constraint guarantees the convergence

of the descent method associated with the Finsler gradient toward a stationary point of E.

Remark 2.4 (Relationship with Sobolev gradient). We consider the spaces B = W 1,2([0, 1],R2),
H = L2([0, 1],R2). More precisely, for every Γ ∈ B, we set TΓB = W 1,2([0, 1],R2) and we denote

by L2(Γ) the space L2([0, 1],R2) equipped with the norm

‖Ψ‖2L2(Γ) =

∫ 1

0

|Ψ(s)|2|Γ′(s)|ds.

In order to make such a norm well-defined we suppose that |Γ′(s)| 6= 0 for a.e. s ∈ S
1. This setting

models smooth parametric planar curves and their deformations Ψ. Note that the space of curves is

further detailed in Section 3.

We introduce

RΓ(Φ) = ‖DΦ‖2L2(Γ), ∀Φ ∈ TΓB,

LΓ =
{

Φ ∈ TΓB : ‖∇L2(Γ)E(Γ)− Φ‖L2(Γ) 6 ρ‖∇L2(Γ)E(Γ)‖L2(Γ)

}

(2.5)

where we denote by DΦ the weak derivative of Φ. Note that LΓ satisfies condition (2.2). For a given

differentiable energy E, (2.3) becomes

∇RΓ
E(Γ) ∈ argmin

Φ∈LΓ

‖DΦ‖2L2(Γ) . (2.6)

Remark that, comparing with Proposition 4 p. 17 in [16], the Finsler gradient (2.6) represents a

constrained version of the Sobolev gradient. Note also that in Definition 2.1, the penalty RΓ need

not be quadratic so that the negative Finsler gradient can be understood as a generalization of the

Sobolev gradient.
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2.2 Finsler Descent Method

In this section we consider the minimization problem (2.1) of an energy E on B. Given some

initialization Γ0 ∈ B, the Finsler gradient descent is defined as

Γk+1 = Γk − τk∇RΓk
E(Γk) (2.7)

where ∇RΓk
E(Γk) is any minimizer of (2.3) and the step size τ = τk > 0 is chosen in order to

satisfy the Wolfe constraints

{

E(Γ + τv) 6 E(Γ) + ατ〈∇HE(Γ), v〉H
〈∇HE(Γ + τv), v〉H > β〈∇HE(Γ), v〉H (2.8)

for some fixed 0 < α < β < 1 and with v = −∇RΓk
E(Γk), see for instance [33], p.37.

We have the following result.

Theorem 2.5. Let E ∈ C1(B) be a non negative energy. We suppose that there exists a constant

L > 0 such that

‖∇HE(Γ1)−∇HE(Γ2)‖H 6 L‖Γ1 − Γ2‖H ∀Γ1,Γ2 ∈ H . (2.9)

Then every accumulation point of the sequence {Γk}k (defined in (2.7)) for the topology on B is a

critical point of E.

Proof. Since {Γk} is the sequence defined by the gradient descent satisfying the assumption of the

Zoutendijk theorem (see [33]: Theorem 3.2 p.43) for the ambiant norm on H , we have:

∞
∑

k=0

〈 ∇HE(Γk)

‖∇HE(Γk)‖H
,

∇RΓk
E(Γk)

‖∇RΓk
E(Γk)‖H

〉2H ‖∇HE(Γk)‖2H < ∞ .

Now, consider a subsequence {Γψ(k)} converging to Γ∞ ∈ B (for the B topology). As we have

assumed that the norms ‖ · ‖H and ‖ · ‖H(Γ) are equivalent on every bounded ball of B, for k large

enough, the condition (2.4) implies :

〈 ∇HE(Γψ(k))

‖∇HE(Γψ(k))‖H
,

∇RΓψ(k)
E(Γψ(k))

‖∇RΓψ(k)
E(Γψ(k))‖H

〉H > (1− ρ)M > 0

with M > 0. This follows by the fact that

〈∇HE(Γψ(k)),∇RΓψ(k)
E〉H = DE(Γ)(∇RΓψ(k)

) = 〈∇H(Γ)E(Γψ(k)),∇RΓψ(k)
〉H(Γ)

and the equivalence of the norms applied to (2.2).

Therefore, we have in particular

∞
∑

k=0

‖∇HE(Γψ(k))‖2H < ∞ ,

and the result ensues.
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Remark 2.6 (On the Zoutendijk theorem). In the previous proof we applied the Zoutendijk theo-

rem in infinite dimensions which is not the case in [33]. However, their proof can be straightforward

generalized to the case of infinite dimensional Hilbert spaces.

Note that the sequence defined by the Finsler descent method could diverge (for instance if

E(Γ) → 0 as ‖Γ‖B → +∞). However, if E is coercive and its level sets are compact with respect

to the strong topology of B, then the previous theorem guarantees the convergence of the Finsler

descent method toward a stationary point of the energy. In fact, as E is coercive, we have that {Γk}
is uniformly bounded in B. Then, as the level sets of E are compact, {Γk} converges (up to a

subsequence) to an element of B which is a stationary point of E. We point out that in the infinite-

dimension case a bounded closed set need not to be compact, which justifies the hypothesis on the

level sets.

Remark 2.7. An interesting problem would be to show that the Finsler gradient descent scheme

admits a limit flow when the step size tends to zero, or to show that the machinery of gradient flows

over metric spaces (see [5]) can be adapted to our setting. We believe this is however not trivial and

decided to leave this for future work.

3 Finsler Gradient in the Spaces of Curves

This section specializes our method to a space of piecewise-regular curves. We target applica-

tions to piecewise rigid evolutions to solve a curve matching problem (see Section 5). Note that, in

order to perform piecewise rigid evolutions, we are led to deal with curves whose first and second

derivatives are not continuous. This leads us to consider the setting of BV 2-functions. We refer the

reader to Appendix for the definition and the main properties of BV and BV 2 functions.

3.1 BV 2-curves

In this section we define the space of BV 2-curves and introduce its main properties. This models

closed, connected curves admitting a BV 2-parameterization.

In the following, for every Γ ∈ BV 2(S1,R2), we denote by dΓ the measure defined as

dΓ(A) =

∫

A

|Γ′(s)|ds , ∀A ⊂ S
1

where Γ′ denotes the approximate derivative of Γ (see for instance [4]). In the following we identify

[0, 1] with the unit circle S
1.

Definition 3.1 (BV 2-curves). We set B = BV 2(S1,R2) equipped with the BV 2-norm. For any

Γ ∈ B, we set TΓB = BV 2(Γ), the space BV 2(S1,R2) equipped with the measure dΓ. In BV 2(Γ),
differentiation and integration are done with respect to the measure dΓ. For every Φ ∈ TΓB, we

have in particular

dΦ

dΓ
(s) = lim

ε→0

Φ(s+ ε)− Φ(s)

dΓ((s− ε, s+ ε))
, ‖Φ‖L1(Γ) =

∫

S1

|Φ(s)||Γ′(s)| ds .

We also point out that dΦ
dΓ
(s) = Φ′(s)/|Γ′(s)| for a.e. s ∈ S

1, which implies that such a derivative

is Lebesgue-measurable. Remark that in order to make previous derivation well defined we have to
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make a hypothesis on the derivative. We refer to next section, in particular to (3.10), for a discussion

about the necessity of such a condition.

The first and second variation are defined as

TVΓ (Φ) = sup

{∫

S1

Φ(s) · dg
dΓ

(s) dΓ(s) : g ∈ C1
c(S

1,R2), ‖g‖L∞(S1,R2) 6 1

}

(3.1)

and

TV 2
Γ (Φ) = sup

{∫

S1

Φ · d
2g

dΓ2
(s) dΓ(s) : g ∈ C2

c(S
1,R2), ‖g‖L∞(S1,R2) 6 1

}

(3.2)

for every Φ ∈ BV 2(S1,R2). Now, as dg
dΓ
(s) dΓ(s) = g′(s) ds we get TVΓ(Φ) = ‖Φ′‖L1(S1,R2). The

BV 2-norm on the tangent space is defined by

‖Φ‖BV 2(Γ) = ‖Φ‖W 1,1(Γ) + TV 2
Γ (Φ) .

In a similar way we define W 2,1(Γ). Every Φ ∈ TΓB operates on a curve Γ ∈ B as

(Γ + Φ)(s) = Γ(s) + Φ(s) , ∀ s ∈ S
1.

Definition 3.2 (Tangent, normal, and curvature). For every Γ ∈ B we define the following vector

νΓ(s) = lim
r→0

DΓ((s− r, s+ r))

|DΓ|((s− r, s+ r))

where |DΓ| denotes the total variation of Γ and DΓ denotes the vector-valued measure associated

with the total variation. Note that, as Γ ∈ W 1,1(S1,R2), |DΓ| coincides with the measure dΓ (we

remind that the total variation of a W 1,1-function coincides with the L1-norm of its derivative) and

the limit defining νΓ exists for dΓ-a.e. s ∈ S
1. Moreover we have ‖νΓ‖ = 1 for dΓ-a.e. s ∈ S

1.

Now, Γ ∈ W 1,1(S1,R2) and we can suppose that |Γ′(s)| 6= 0 for almost every s ∈ S
1. This

implies in particular that a subset of S1 is dΓ-negligible if and only if it is Lebesgue-negligible.

Then, the tangent and normal vectors to the curve at dΓ-a.e. point Γ(s) are defined as

tΓ(s) =
νΓ(s)

‖νΓ(s)‖
nΓ(s) = tΓ(s)

⊥ (3.3)

where (x, y)⊥ = (−y, x) , ∀ (x, y) ∈ R
2.

We point out that νΓ(s) = Γ′(s)/|Γ′(s)| for a.e. s ∈ S
1 and tΓ ∈ BV (S1,R2) with tΓ · tΓ = 1

for a.e. s ∈ S
1. Thus, by differentiating with respect to dΓ, we get that the measure tΓ ·DΓtΓ is null

(DΓ denotes here the vector-valued measure associated with the total variation TVΓ). Then, there

exists a real measure curvΓ such that

DΓtΓ = nΓ curvΓ . (3.4)

By the definition of nΓ we also have

DΓnΓ = −tΓ curvΓ . (3.5)

The measure curvΓ is called generalized curvature of Γ and in the case of a smooth curve it coincides

with the measure κΓ ds where κΓ denotes the standard scalar curvature of Γ.

From the properties of the total variation (see for instance [4]) it follows that

|curvΓ|(S1) 6 |D2Γ|(S1) (3.6)

where |curvΓ|(S1) denotes the total variation of the generalized curvature on the circle.
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Definition 3.3 (Projectors). We denote by ΠΓ the projection on the normal vector field nΓ

ΠΓ(Φ)(s) =
(

Φ(s) · nΓ(s)
)

nΓ(s), (3.7)

where · is the inner product in R
2. We denote by ΣΓ the projection on the tangent vector field tΓ

ΣΓ(Φ)(s) =
(

Φ(s) · tΓ(s)
)

tΓ(s) . (3.8)

Definition 3.4 (Hilbertian structure). The Banach space B = BV 2(S1,R2) is continuously em-

bedded in the Hilbert space H = W 1,2(S1,R2).
For every Γ ∈ B, we define W 1,2(Γ) = W 1,2(S1,R2), where integration is done with respect to

the measure dΓ. In particular, if Γ verifies essinf
s∈S1

|Γ′(s)| > 0, then the norms of W 1,2(S1,R2) and

W 1,2(Γ) are equivalent. This defines the following inner product on TΓB

〈Φ, Ψ〉W 1,2(Γ) =

∫

S1

Φ(s) ·Ψ(s) dΓ(s) +

∫

S1

dΦ

dΓ
(s) · dΨ

dΓ
(s) dΓ(s) ∀Φ,Ψ ∈ TΓB . (3.9)

Finally, recall that for a Fréchet-differentiable energy E on H , the W 1,2(Γ)-gradient of E at Γ is

defined as the unique deformation ∇W 1,2(Γ)E(Γ) satisfying :

DE(Γ)(Φ) = 〈∇W 1,2(Γ)E(Γ), Φ〉W 1,2(Γ) , ∀Φ ∈ TΓB

where DE(Γ)(Φ) is the directional derivative.

3.2 Geometric Curves and Parameterizations

For applications in computer vision, it is important that the developed method (e.g. a gradient

descent flow to minimize an energy) only depends on the actual geometry of the planar curve, and

not on its particular parametrization. We denote [Γ] = Γ(S1) the geometric realization of the curve,

i.e. the image of the parameterization in the plane.

If for two curves Γ1,Γ2 ∈ B there exists a smooth invertible map ϕ : S
1 → S

1 such that

Γ2 = Γ1◦ϕ, then Γ2 is a reparameterization of Γ1, and these parameterizations share the same image,

i.e. [Γ1] = [Γ2]. This section shows in some sense the converse implication in the BV 2 framework,

namely the existence of a reparameterization map between two curves sharing the same geometric

realization. This result is important since it shows the geometric invariance of the developed Finsler

gradient flow.

Note however that this is clearly not possible without any constraint on the considered curve.

For instance, there is no canonical parameterization of an eight-shaped curve in the plane. We thus

only consider injective curves Γ ∈ B satisfying the following additional property

essinf
s∈S1

|Γ′(s)| > 0. (3.10)

Such a property gives a generalized definition of immersion for BV 2-curves.

We define the set of curves

B0 = {Γ ∈ BV 2(S1,R2) : Γ is injective and satisfies (3.10)} (3.11)
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equipped with the BV 2-norm. This is the set of embedded curves of BV 2 regularity.

Note that it is difficult to ensure that the iterates {Γk} defined by (2.7) stays in B0, since B0 is

not a linear space. As shown in Proposition 3.5 below, B0 is an open set, so that one might need

to use small step sizes τk to guarantee that Γk ∈ B0. This is however not acceptable, because it

could contradict the constraints (2.8) and prevent the convergence of Γk to a stationary point of E.

This issue reflects the well known fact that during an evolution, a parametric curve can develop

self-intersection and thus become non-injective.

We also note that, as pointed out in Definitions 3.4 and 3.1, condition (3.10) guarantees that the

norms on L2(S1,R2) and L2(Γ) and on BV 2(S1,R2) and BV 2(Γ) are equivalent, so that the abstract

setting described in Section 2 is adapted to our case.

Proposition 3.5. B0 is an open set of B = BV 2(S1,R2).

Proof. By property (3.10), if Λ ∈ B0, we can set

m = essinf
s∈S1

|Λ′(s)| > 0 .

Now, as BV is embedded in L∞ (i.e. there exists a constant C > 0 such that ‖Γ‖L∞(S1,R2) 6

C‖Γ‖BV (S1,R2)), every curve Γ ∈ BV 2(S1,R2) such that

‖Γ′ − Λ′‖BV (S1,R2) <
η

2C
, η < m

satisfies (3.10). Moreover, (3.10) implies that Λ is locally injective and, as S1 is compact, there exists

ε, α > 0 such that

|Λ(s)− Λ(s′)| > α|s− s′|, ∀ s, s′ ∈ S
1 such that |s− s′| 6 ε . (3.12)

This is essentially due to condition (3.10) and the compactness of S
1. Then, every Γ such that

‖Γ′ −Λ′‖L∞(S1,R2) < α/2 satisfies (3.12) so it is locally injective. Then, as Λ is injective, if we take

‖Γ− Λ‖BV 2(S1,R2) < β(Λ) where

β(Λ) =
1

2
min

{

α

C
, inf
s∈S1

inf
|s−s′|>ε

|Λ(s)− Λ(s′)|
}

then Γ is also globally injective.

Then
{

Γ ∈ B0

∣

∣ ‖Γ− Λ‖BV 2(S1,R2) < min
{ η

2C
, β(Λ)

}}

⊂ B0

which proves that B0 is an open set of BV 2(S1,R2).

The next proposition extends two classical properties of smooth curves to B0.

Proposition 3.6. 1) (Reparameterization) For every Γ1,Γ2 ∈ B0 such that [Γ1] = [Γ2], there

exists a homeomorphism ϕ ∈ BV 2(S1, S1) such that

Γ1 = Γ2 ◦ ϕ .

2) (Local coordinates) For every Γ ∈ B0 the set Γ(S1) can be locally represented as the graph

of a BV 2-function.



12 G. Charpiat et al.

Proof. 1) For every Γ ∈ B0 we consider the arc-length parameterization defined by

ϕΓ : S1 → S
1

ϕΓ(s) =
1

Length(Γ)

∫ s

s0

|Γ′(t)| dt , s0 ∈ S
1 .

Because property (3.10) we can apply the inverse function theorem for Lipschitz functions (see

Theorem 1 in [18]) which allows to define ϕ−1
Γ ∈ BV 2(S1, S1). It follows that

(Γ1 ◦ ϕ−1
Γ1

◦ ϕΓ2)(s) = Γ2(s) ∀ s ∈ S
1.

2) It suffices to adapt the classical proof in the case of smooth curves using Theorem 1 in [18].

3.3 Geometric Invariance

For BV 2 curves, the geometric invariance of the developed methods should be understood as an

invariance with respect to BV 2 reparameterizations.

Definition 3.7. Let GBV 2 denote the set of homeomorphisms ϕ ∈ BV 2(S1, S1) such that ϕ−1 ∈
BV 2(S1, S1). Note that for every Γ ∈ BV 2(S1,R2) we have Γ ◦ ϕ ∈ BV (S1,R2) for every ϕ ∈
GBV 2 . In fact, as every BV 2-function is Lipschitz-continuous, by the chain-rule for BV -function,

we get Γ ◦ϕ ∈ BV (S1,R2). Moreover, (Γ ◦ϕ)′ = Γ′(ϕ)ϕ′ ∈ BV (S1,R2) because BV is a Banach

algebra (one can check that Γ′(ϕ) ∈ BV (S1,R2) by performing the change of variables t = ϕ(s) in

the definition of total variation).

To ensure this invariance, we consider energies E and penalties RΓ such that

E(Γ ◦ ϕ) = E(Γ) , RΓ◦ϕ(Φ ◦ ϕ) = RΓ(Φ) ∀Γ ∈ B0, ∀ϕ ∈ GBV 2 , ∀Φ ∈ TΓB .

This implies that

∇RΓ◦ϕ
E(Γ ◦ ϕ)(Φ ◦ ϕ) = ∇RΓ

E(Γ)(Φ) ◦ ϕ
so that the descent scheme (2.7) does not depend on the parameterization of Γ. Finally, as

(Γ− τ∇RΓ
E(Γ)) ◦ ϕ = Γ ◦ ϕ− τ∇RΓ◦ϕ

E(Γ ◦ ϕ),
for τ = τk, the descent step in (2.7) is also invariant under reparameterization.

This shows that the Finsler gradient flow can actually be defined over the quotient space B/GBV 2 .

To avoid unnecessary technicalities, we decided not to use this framework and develop our analysis

in the setting of the vector space B.

Another consequence of this invariance is that, as long as the evolution (2.7) is in B0, the flow

does not depend on the choice of the parameterization. However, as already noted in Section 3.2, it

might happen that the sequence leaves B0, in which case different choices of parameterizations of

an initial geometric realization can lead to different evolutions.

4 Piecewise Rigidity

This section defines a penalty RΓ that favors piecewise rigid BV 2 deformations of BV 2-curves.

For the sake of clarity we present the construction of this penalty in two steps. We first characterize

in Section 4.1 C2-global rigid deformations for smooth curves. Then, in Section 4.2, we introduce

a penalty that favors piecewise rigid BV 2 deformations for curves belonging to B.
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4.1 Rigid Curve Deformations

A continuous curve evolution t ∈ R 7→ Γt ∈ B reads

∀ t ∈ R,
∂Γt(s)

∂t
= Φt(s) where Φt ∈ TΓtB . (4.1)

We further assume in this section that Γt is a C2 curve. This evolution is said to be globally rigid if

it preserves the pairwise distances between points along the curves, i.e.

∀ t ∈ R, ∀ (s, s′) ∈ S
1 × S

1, |Γt(s)− Γt(s
′)| = |Γ0(s)− Γ0(s

′)|. (4.2)

The following proposition shows that the set of instantaneous motion Φt giving rise to a rigid evo-

lution is, at each time, a linear sub-space of dimension 3 of TΓtB.

Proposition 4.1. The evolution (4.1) satisfies (4.2) if and only if Φt ∈ RΓt for all t ∈ R, where

RΓ =
{

Φ ∈ TΓB : ∃a ∈ R, ∃b ∈ R
2, ∀ s ∈ S

1, Φ(s) = aΓ(s)⊥ + b
}

. (4.3)

Proof. Recall that the group of distance preserving transformations on R
d is the Euclidean group

E(d) = R
d
⋊Od(R) and that any element of E(d) is uniquely defined by the image of d+ 1 points

in R
d which are affinely independent. Therefore, provided that the curve Γ has at least three non

collinear points, Φt is the restriction of gt ∈ E(d), a path on E(d) which is uniquely defined. In

addition, gt and Φt have the same smoothness. Thus the result follows from the fact that the Lie

algebra of Rd
⋊ Od(R) is Rd

⋊ A(d), where A(d) denotes the set of antisymmetric matrices. The

degenerate cases such as the curve is contained in a line or a point are similar.

Note that for numerical simulations, one replaces the continuous PDE (4.1) by a flow discretized

at times tk = kτ for some step size τ > 0 and k ∈ N,

Γk+1 = Γk + τΦk where Φk ∈ TΓkB.

This is for instance the case of a gradient flow such as (2.7) where Φk = −∇RΓk
E(Γk). In this

discretized setting, imposing Φk ∈ RΓk only guarantees that rigidity (4.2) holds approximately and

for small enough times tk.

The following proposition describes this set of tangent fields in an intrinsic manner (using only

derivative along the curve Γ), and is pivotal to extend RΓ to piecewise-rigid tangent fields.

Proposition 4.2. For a C2-curve Γ, one has Φ ∈ RΓ if and only if Φ is C2 and satisfies LΓ(Φ) = 0
and HΓ(Φ) = 0, where LΓ and HΓ are the following linear operators

LΓ(Φ) =
dΦ

dΓ
· tΓ and HΓ(Φ) =

d2Φ

dΓ2
· nΓ . (4.4)

From a geometric point of view, LΓ(Φ) takes into account the length changes and HΓ(Φ) the curva-

ture changes.
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Proof. Using the parameterization of Γ, any such deformation Φ satisfies

∃ ! (a, b) ∈ R× R
2, ∀ s ∈ [0, 1], Φ(s) = aΓ(s)⊥ + b . (4.5)

By differentiation with respect to s, this is equivalent to

∃ ! a ∈ R, ∀ s ∈ [0, 1],
dΦ

ds
(s) = a|Γ′(s)| nΓ(s)

which can be rewritten as dΦ
dΓ
(s) = anΓ(s) by differentiating with respect to the length element

dΓ = ‖Γ′(s)‖ ds, or simply as dΦ
ds
(s) = anΓ(s) by considering an arc-length parameterization. This

is equivalent to

∃ ! a ∈ R, ∀ s ∈ [0, 1],











dΦ

dΓ
· tΓ(s) = 0

dΦ

dΓ
· nΓ(s) = a

which is equivalent to














dΦ

dΓ
· tΓ = 0

d

dΓ

(

dΦ

dΓ
· nΓ

)

= 0

and, using that
d

dΓ

(

dΦ

dΓ
· nΓ

)

=
d2Φ

dΓ2
· nΓ − dΦ

dΓ
· κΓ tΓ,

where κΓ is the curvature of Γ, we obtain the desired characterization.

4.2 Piecewise rigid BV 2 deformations

This section extends the globally rigid evolution considered in the previous section to piecewise-

rigid evolution.

In the smooth case considered in the previous section, this corresponds to imposing that an

instantaneous deformation Φ ∈ TΓB satisfies (4.4) piecewisely for possibly different couples (a, b)
on each piece. To generate a piecewise-smooth Finsler gradient Φ = ∇RΓ

E(Γ) (as defined in (2.3))

that is a piecewise rigid deformation, one should design a penalty RΓ that satisfies this property.

This is equivalent to imposing LΓ(Φ) = 0 and HΓ(Φ) = 0 for all s ∈ [0, 1] except for a finite

number of points (the articulations between the pieces). In particular, note that LΓ(Φ) is undefined

at these points, while HΓ(Φ) is the sum of Dirac measures concentrated at the articulation points

(due to the variations of a). This suggests that, in the smooth case, we can favor piecewise rigidity by

minimizing ‖HΓ(Φ)‖L1(Γ) under the constraint LΓ(Φ) = 0 a.e., so that we control the jumps of the

second derivative without setting in advance the articulation points. Note also that the minimization

of the L1-norm favors sparsity and, in contrast to the L2-norm, it enables the emergence of Dirac

measures.

In order to extend such an idea to the BV 2-framework we remind that

‖HΓ(Φ)‖L1(Γ) = TVΓ

(

dΦ

dΓ
· nΓ

)

∀Φ ∈ C2(S1,R2), Γ ∈ C2(S1,R2)
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which defines a suitable penalty in the BV 2-setting. Moreover, since we are interested in piecewise

rigid motions, we deal with curves that could be not C1 at some points s. It is useful to introduce

the following operators

L+
Γ (Φ)(s) = lim

t→s
t∈(s,s+ε)

dΦ

dΓ
(t) · tΓ(t) , (4.6)

L−
Γ (Φ)(s) = lim

t→s
t∈(s−ε,s)

dΦ

dΓ
(t) · tΓ(t) . (4.7)

Of course if Γ and Φ are C1 at s we have L+
Γ (Φ)(s) = L−

Γ (Φ)(s) = LΓ(Φ)(s). The next definition

introduces a penalty for piecewise rigid evolution in B.

Definition 4.3 (BV 2 Piecewise-rigid penalty). For Γ ∈ B and Φ ∈ TΓB = BV 2(Γ), we define

RΓ(Φ) = TVΓ

(

dΦ

dΓ
· nΓ

)

+ ιCΓ
(Φ) (4.8)

where ιCΓ
is the indicator function of CΓ

ιCΓ
(Φ) =

{

0 if Φ ∈ CΓ

+∞ otherwise
.

Note that (3.1) is the total variation of f with respect to the measure dΓ. We remind that TVΓ(f) =
|Df |(S1) for every f ∈ L1(S1,R2).

The set CΓ is defined as follows

CΓ =
{

Φ ∈ TΓB : L+
Γ (Φ) = L−

Γ (Φ) = 0
}

. (4.9)

In order to define the Finsler gradient we consider a constraint on the normal component of the

deformation field.

Definition 4.4 (Deviation constraint). For Γ ∈ B, we define

LΓ =
{

Φ ∈ TΓB :
∥

∥ΠΓ(∇W 1,2(Γ)E(Γ)− Φ)
∥

∥

W 1,2(Γ)
6 ρ
∥

∥ΠΓ(∇W 1,2(Γ)E(Γ))
∥

∥

W 1,2(Γ)

}

.

(4.10)

Here, ρ ∈ (0, 1) is called the rigidification parameter, and controls the deviation of the Finsler

gradient from the L2 gradient. ΠΓ is the projector introduced in equation (3.7).

We point out that in the applications studied in this paper we consider an intrinsic energy E (i.e.,

it does not depend on reparameterization). In this case the W 1,2-gradient of E is normal to the curve,

so that LΓ satisfies condition (2.2) in the case of an intrinsic energy and it can be used to define a

valid Finsler gradient.

Using these specific instantiations for RΓ and LΓ, Definition 2.1 reads in this BV 2 framework

as follows.

Definition 4.5 (BV 2 Piecewise-rigid Finsler gradient). We define

∇RΓ
E(Γ) ∈ argmin

Φ∈LΓ

RΓ(Φ). (4.11)
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The following result ensures the existence of a Finsler gradient. To prove it we consider the space

B equipped with the weak* toplogy.

Theorem 4.6. Problem (4.11) admits at least a solution.

In order to prove the theorem, we need the following lemmas. They guarantee in particular the

compactness of minimizing sequences with respect to the BV 2-weak* topology. The proof relies

on the evaluation of a bilinear form which is degenerate if the curve is a circle, so we trait the case

of the circle separately.

Lemma 4.7. Let Γ ∈ B be an injective curve. We suppose that Γ is different from a circle. Then

there exists a constant C(Γ) depending on Γ such that

‖Φ‖BV 2(Γ) 6 C(Γ)
(

(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) +RΓ(Φ)
)

∀Φ ∈ LΓ ∩ CΓ (4.12)

where ΠΓ is the operator defined in (3.7).

Proof. (of Lemma 4.7) The proof is essentially based on estimation (4.14) giving a bound for the

L∞-norms of the deformation Φ and its first derivative. We also remark that, as Φ ∈ LΓ, we have

‖ΠΓ(Φ)‖L2(Γ) 6 (1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) . (4.13)

In the following we denote by l(Γ) the length of the curve Γ.

Bound on the first derivative. In this section we prove the following estimate for the L∞-norms

of dΦ
dΓ

· nΓ and Φ:

max

{

‖Φ‖L∞(Γ) :

∥

∥

∥

∥

dΦ

dΓ
· nΓ

∥

∥

∥

∥

L∞(Γ)

}

6 C0(Γ)
(

(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) +RΓ(Φ)
)

(4.14)

where C0(Γ) depends on Γ.

Let s0 ∈ S
1, we can write

dΦ

dΓ
· nΓ = u+ a

where u ∈ BV (Γ) such that u(s0) = 0 and a = dΦ
dΓ
(s0) · nΓ(s0) ∈ R. As Φ ∈ CΓ we have

L+
Γ (Φ) = L−

Γ (Φ) = 0, which implies

dΦ

dΓ
=

(

dΦ

dΓ
· nΓ

)

nΓ

and

Φ(s) = Φ(s0) + a[Γ(s)− Γ(s0)]
⊥ +

∫ s

s0

unΓdΓ(s) ∀ s ∈ S
1 . (4.15)

Now, by projecting on the normal to Γ, we can write

ΠΓ(Φ) = ΠΓ(Φ(s0) + a[Γ(s)− Γ(s0)]
⊥) + ΠΓ

(∫ s

s0

unΓdΓ(s)

)

. (4.16)
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In particular, by the properties of good representatives for BV -functions of one variable (see [4] p.

19), we have

|u(s)| = |u(s)− u(s0)| 6 TVΓ(u) ∀s ∈ S
1

which implies that

∥

∥

∥

∥

∫ s

s0

unΓdΓ(s)

∥

∥

∥

∥

L∞(Γ)

6 l(Γ)TVΓ(u) = l(Γ)RΓ(Φ) (4.17)

and
∥

∥

∥

∥

∫ s

s0

unΓdΓ(s)

∥

∥

∥

∥

L2(Γ)

6 l(Γ)3/2RΓ(Φ) (4.18)

Thus, by (4.13), (4.18), and (4.16) it follows that

‖ΠΓ(Φ(s0) + a[Γ(s)− Γ(s0)]
⊥)‖L2(Γ) 6 (1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) + l(Γ)3/2RΓ(Φ) .

(4.19)

We remark now that ‖ΠΓ(Φ(s0) + a[Γ(s)− Γ(s0)]
⊥)‖2L2(Γ) can be written as

‖ΠΓ(Φ(s0) + a[Γ(s)− Γ(s0)]
⊥)‖2L2(Γ) = (|Φ(s0)|, a) · A

(

Φ(s0)

|Φ(s0)|
, s0

)(

|Φ(s0)|
a

)

(4.20)

where, for any e ∈ S
1 ⊂ R

2 and s0 ∈ S
1, the matrix A(e, s0) is defined by

(
∫

S1
(e · nΓ)

2 dΓ(s)
∫

S1

(

[Γ(s)− Γ(s0)]
⊥ · nΓ

)

(e · nΓ) dΓ(s)
∫

S1

(

[Γ(s)− Γ(s0)]
⊥ · nΓ

)

(e · nΓ) dΓ(s)
∫

S1

(

[Γ(s)− Γ(s0)]
⊥ · nΓ

)2
dΓ(s)

)

. (4.21)

Note that the bilinear form defined by A(e, s0) is degenerate if and only if the determinant of

A(e, s0) is zero which means that there exists α ∈ R such that (e − α[Γ(s) − Γ(s0)]
⊥) · nΓ = 0

for every s ∈ S
1. Note that this implies that Γ is either a circle or a line. Now, as we work with

closed injective curves Γ is different from a line. Then, because of the hypothesis on Γ, we get that

for every s0 ∈ S
1 the bilinear form associated with A(e, s0) is not degenerate.

In particular the determinant of A is positive which means that the bilinear form is positive-

definite. This implies that its smallest eigenvalue is positive and in particular, by a straightforward

calculation, it can be written as λ (e, s0) where λ : S1 → R is a positive continuous function. Then,

we have

inf
e,s0∈S1

λ(e, s0)(|Φ(s0)|2 + a2) 6 λ

(

Φ(s0)

|Φ(s0)|
, s0

)

(|Φ(s0)|2 + a2) 6 ‖ΠΓ(Φ(s0) + aΓ(s)⊥)‖2L2(Γ)

(4.22)

where the infimum of λ on S
1 × S

1 is a positive constant depending only on Γ and denoted by λΓ.

The previous relationship and (4.19) prove that, for every s0 ∈ S
1, we have

max {|Φ(s0)|, a} 6 C0(Γ)
(

(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) +RΓ(Φ)
)

(4.23)

where C0(Γ) = max{1/λΓ, l(Γ)
3/2/λΓ} depends only on Γ.

Then, because of the arbitrary choice of s0 and the definition of a (a = dΦ
dΓ
(s0) · nΓ(s0)), (4.23)

implies (4.14). In particular (4.14) gives a bound for the W 1,1(Γ)-norm of Φ.
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Bound on the second variation. We have

TV 2
Γ (Φ) = TVΓ

(

dΦ

dΓ

)

.

Now, dΦ
dΓ

=
(

dΦ
dΓ

· nΓ

)

nΓ ∈ BV (Γ) and, by the generalization of the product rule to BV -functions

(see Theorem 3.96, Example 3.97, and Remark 3.98 in [4]), we get

TVΓ

(

dΦ

dΓ

)

6 2

(

TVΓ

(

dΦ

dΓ
· nΓ

)

+

∥

∥

∥

∥

dΦ

dΓ
· nΓ

∥

∥

∥

∥

L∞(Γ)

TVΓ(nΓ)

)

.

The constant 2 in the previous inequality comes from the calculation of the total variation on

the intersection of the jump sets of
(

dΦ
dΓ

· nΓ

)

and nΓ (see Example 3.97 in [4]). Note also that

TVΓ(nΓ) = |DnΓ|(S1).
Then, by (3.5) and (3.6), we get

TVΓ

(

dΦ

dΓ

)

6 2

(

TVΓ

(

dΦ

dΓ
· nΓ

)

+ |curvΓ|(S1)

∥

∥

∥

∥

dΦ

dΓ
· nΓ

∥

∥

∥

∥

L∞(Γ)

)

6 2

(

TVΓ

(

dΦ

dΓ
· nΓ

)

+ |D2Γ|(S1)

∥

∥

∥

∥

dΦ

dΓ
· nΓ

∥

∥

∥

∥

L∞(Γ)

) (4.24)

which implies that

TV 2
Γ (Φ) 6 C1(Γ)

(

RΓ(Φ) +

∥

∥

∥

∥

dΦ

dΓ
· nΓ

∥

∥

∥

∥

L∞(Γ)

)

. (4.25)

where C1(Γ) is a constant depending on Γ.

The Lemma follows from (4.14) and (4.25).

The next lemma gives a similar result in the case where Γ is a circle.

Lemma 4.8. Let Γ ∈ B be a circle with radius r. Then there exists a constant C(r) depending on

r such that

‖Φ‖BV 2(Γ) 6 C(r)
(

(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) +RΓ(Φ)
)

(4.26)

for every Φ ∈ LΓ ∩ CΓ such that Φ(s0) · tΓ(s0) = 0 for some s0 ∈ S
1.

Proof. The proof is based on the same arguments used to prove the previous lemma. We denote by

r the radius of the circle.

As Φ(s0)·tΓ(s0) = 0, by the properties of good representatives for BV -functions of one variable

(see [4] p. 19), we have

|Φ · tΓ| = |Φ(s) · tΓ(s)− Φ(s0) · tΓ(s0)| 6 TVΓ(Φ · tΓ) ∀s ∈ S
1 . (4.27)

Now, as L+
Γ (Φ) = L−

Γ (Φ) = 0 and the curvature is equal to 1/r at each point, we get

d(Φ · tΓ)
dΓ

= Φ · nΓ

r



Finsler Steepest Descent 19

and from (4.27) it follows

‖Φ · tΓ‖L∞(Γ) 6
‖Φ · nΓ‖L1(Γ)

r
. (4.28)

Now, as Φ ∈ LΓ, we have

‖Φ · nΓ‖L2(Γ) 6 (1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) (4.29)

and, from (4.28) and (4.29), it follows

‖Φ‖L1(Γ) 6
√
2πr(2π + 1)(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) . (4.30)

Concerning the first derivative we remark that, as Φ is periodic, the mean value of its first deriva-

tive is equal to zero. Then, by Poincaré’s inequality (see Theorem 3.44 in [4]), we have

∥

∥

∥

∥

dΦ

dΓ

∥

∥

∥

∥

L1(Γ)

6 C0(r)TVΓ

(

dΦ

dΓ

)

(4.31)

where C0(r) is a constant depending on r. Moreover, by integrating by parts the integrals of the

definition of second variation, we get

TV 2
Γ (Φ) = TVΓ

(

dΦ

dΓ

)

. (4.32)

So, in order to prove the lemma it suffices to prove a bound for TVΓ

(

dΦ
dΓ

)

.

Now, as dΦ
dΓ

=
(

dΦ
dΓ

· nΓ

)

nΓ, by the generalization of the product rule to BV -functions (see

Theorem 3.96, Example 3.97, and Remark 3.98 in [4]), we get

TVΓ

(

dΦ

dΓ

)

6

(

1 +
1

r

)

TVΓ

(

dΦ

dΓ
· nΓ

)

=

(

1 +
1

r

)

RΓ(Φ) , (4.33)

where we used the fact that nΓ has no jumps (see Example 3.97 in [4]).

The lemma follows from (4.30), (4.31), (4.32), and (4.33).

We can now prove Theorem 4.6.

Proof. (of Theorem 4.6) The proof is based on Lemma 4.7 and Lemma 4.8, so we distinguish two

cases: Γ is a circle and it is not.

We suppose that Γ is different from a circle. Let {Φh} ⊂ LΓ ∩ CΓ be a minimizing sequence of

RΓ. We can also suppose sup
h

RΓ(Φh) < +∞. From Lemma 4.7 it follows that

sup
h

‖Φh‖BV 2(Γ) 6 C(Γ)

(

(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) + sup
h

RΓ(Φh)

)

where C(Γ) depends only on Γ. This gives a uniform bound for the BV 2(Γ)-norms of Φh and

implies that {Φh} converges (up to a subsequence) toward some Φ ∈ BV 2(Γ) with respect to the

BV 2(Γ)-weak* topology (see Theorem 3.23 in [4]).

In particular Φh → Φ in W 1,1(Γ) which proves that Φ ∈ CΓ, and, by the lower semi-continuity

of the L2-norm, we also get Φ ∈ LΓ.
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Now, as RΓ is lower semi-continuous with respect to the BV 2(Γ)-weak* topology, the theorem

ensues.

In the case where Γ is a circle with radius r, for every minimizing sequence {Φh} ⊂ LΓ ∩ CΓ,

we consider the sequence

Ψh(s) = Φh(s)− (Φh(s0) · tΓ(s0))tΓ(s) (4.34)

for some s0 ∈ S
1. We remark that {Ψh} ⊂ LΓ. Moreover

dΨh

dΓ
(s) =

dΦh

dΓ
(s)−

(

Φh(s0) · tΓ(s0)
r

)

nΓ(s) (4.35)

which implies that, for every h, Ψh ∈ CΓ and

RΓ(Ψh) = RΓ(Φh) . (4.36)

Then the sequence {Ψh} is a minimizing sequence of Problem (4.11) such that Ψ(s0) · tΓ(s0) = 0.

We can also suppose sup
h

RΓ(Ψh) < +∞.

Then, by Lemma 4.8 we get

sup
h

‖Ψh‖BV 2(Γ) 6 C(r)

(

(1 + ρ)‖ΠΓ(∇W 1,2(Γ)E(Γ))‖W 1,2(Γ) + sup
h

RΓ(Ψh)

)

where C(r) depends only on r.

This proves a uniform bound for ‖Ψh‖BV 2(Γ) which implies that the minimizing sequence {Ψh}
converges (up to a subsequence) with respect to the BV 2-weak* topology. Then we can conclude

as in the previous case.

We point out that, as showed in the previous proof, when Γ is a circle the Finsler gradient is de-

fined up to a tangential translation. This was actually expected because such a tangential translation

is a rotation of the circle.

We have defined a penalty for piecewise rigid BV 2 deformations for curves belonging to B. In

the next section we use the Finsler descent method with respect to such a penalty to solve curve

matching problems.

5 Application to Curve Matching

This section shows an application of the Finsler descent method to the curve matching problem.

5.1 The Curve Matching Problem

Given two curves Γ0 and Λ in B, the curve matching problem (also known as the registration

problem) seeks for an (exact or approximate) bijection between their geometric realizations [Γ0] and

[Λ] (as defined in Section 3.2). One thus looks for a matching (or correspondence) f : [Γ0] → R
2

such that f([Γ0]) is equal or close to [Λ].
There exists a variety of algorithms to compute a matching with desirable properties, that are

reviewed in Section 1.1. A simple class of methods consists in minimizing an intrinsic energy E(Γ)
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(i.e., E only depends on [Γ]), and to track the points of the curve, thus establishing a matching during

the minimization flow. We suppose that E(Γ) > 0 if [Γ] 6= [Λ] and E(Λ) = 0, so that the set of

global minimizers of E is exactly [Λ]. This is for instance the case if E(Γ) is a distance between [Γ]
and [Λ]. A gradient descent method (such as (2.7)) defines a set of iterates Γk, so that Γ0 is the curve

to be matched to Λ. The iterates Γk (or at least a sub-sequence) converge to Γ∞, and the matching

is simply defined as

∀ s ∈ S
1, f(Γ0(s)) = Γ∞(s).

If the descent method succeeds in finding a global minimizer of E, then f is an exact matching,

i.e. f([Γ0]) = [Λ]. This is however not always the case, and the iterates Γk can converge to a local

minimum. It is thus important to define a suitable notion of gradient to improve the performance of

the method. The next sections describe the use of the Finsler gradient to produce piecewise rigid

matching.

5.2 Matching Energy

The matching accuracy depends on the energy and on the kind of descent used to define the flow.

In this paper we are interested in studying the Finsler descent method rather than designing novel

energies. For the numerical examples, we consider an energy based on reproducing kernel Hilbert

space (r.k.h.s.) theory [47, 7]. These energies have been introduced for curve matching in [45, 22].

For an overview on other types of energies we refer the reader to the bibliography presented in

Section 1.1.

We consider a positive-definite kernel k in the sense of the r.k.h.s theory [47, 7]. Following [45],

we define a distance between curves as

dist(Γ,Λ)2 = H(Γ,Γ) +H(Λ,Λ)− 2H(Γ,Λ) , ∀Γ,Λ ∈ B (5.1)

where

H(Γ,Λ) =

∫

S1

∫

S1

nΓ(s) · nΛ(t) k (Γ(s),Λ(t)) dΓ(s)dΛ(t) . (5.2)

As the kernel k is positive-definite in the sense of r.k.h.s. theory, it can be shown that dist defined

in (5.1) is a distance between the geometric realizations ([Γ], [Λ]) (up to change in orientation) of the

curves. In our numerical tests, we define k as a sum of two Gaussian kernels with standard deviation

σ > 0 and δ > 0

k(v, w) = e−
‖v−w‖2

2σ2 + e−
‖v−w‖2

2δ2 , ∀ v, w ∈ R
2, (5.3)

which can be shown to be a positive-definite kernel. We use a sum of Gaussian kernels to better

capture features at different scales in the curves to be matched. This has been shown to be quite

efficient in practice in a different context in [35]. This energy takes into account the orientation of

the normals along the shape in order to stress the difference between the interior and the exterior

of closed shapes. Remark that, to obtain interesting numerical results, both Γ and Λ have to be

parameterized with the same orientation (clockwise or counter-clockwise).

Given a target curve Λ ∈ B, we consider the following energy

E : B → R, E(Γ) =
1

2
dist(Γ,Λ)2 . (5.4)

Remark that, as dist is a distance then [Λ] is equal to the set of global minimizers of E. The gradient

of E at Γ with respect to L2(Γ)-topology is given by the following proposition.
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Proposition 5.1. The gradient of E at Γ with respect to the L2(Γ) scalar product is given by

∇L2(Γ)E(Γ)(s) = nΓ(s)
[

∫

S1

nΓ(t) · ∇1k(Γ(s),Γ(t)))dΓ(t)−
∫

S1

nΛ(t) · ∇1k(Γ(s),Λ(t))dΛ(t)
]

(5.5)

for every s ∈ S
1, where ∇1k represents the derivative with respect to the first variable.

For every deformation Φ, the L2 gradient of E at Γ satisfies

〈∇L2(Γ)E(Γ),Φ〉L2(Γ) =

∫

S1

nΓ(s) · Φ(s)
∫

S1

nΓ(t) · ∇1k(Γ(s),Γ(t))dΓ(t) dΓ(s)

−
∫

S1

nΓ(s) · Φ(s)
∫

S1

nΛ(t) · ∇1k(Γ(s),Λ(t))dΛ(t) dΓ(s) .

Proof. In order to prove (5.5) we calculate the gradient for H(Γ,Λ) with respect to Γ. We rewrite

H as

H(Γ,Λ) =

∫

S1

∫

S1

Γ′(s) · Λ′(t) k (Γ(s),Λ(t)) dt ds

and we consider a smooth variation of the curve Γ, denoted by δΓ. Then, for h small, we have

I(h) =
H(Γ + hδΓ,Λ)−H(Γ,Λ)

h
=

∫

S1

∫

S1

(Γ′(s) · Λ′(t))(∇1k(Γ(s),Λ(t)) · δΓ(s)) dt ds

+

∫

S1

∫

S1

δΓ′(s) · Λ′(t) k (Γ(s),Λ(t)) dt ds + o(h)

and integrating by parts we obtain

I(h) =

∫

S1

∫

S1

(Γ′(s) · Λ′(t))(∇1k(Γ(s),Λ(t)) · δΓ(s)) dt ds

−
∫

S1

∫

S1

(δΓ(s) · Λ′(t))(∇1k(Γ(s),Λ(t)) · Γ′(s)) dt ds+ o(h)

which can be written as

I(h) =

∫

S1

∫

S1

[∇1k(Γ(s),Λ(t))
t(δΓ(s)⊗ Γ′(s)− Γ′(s)⊗ δΓ(s))Λ′(t)] dt ds+ o(h) (5.6)

where v ⊗ w = vwt, ∀ v, w ∈ R
2.

Now, writing δΓ(s) with respect to the basis {tΓ(s),nΓ(s)} and reminding that Γ′(s) = |Γ′(s)|tΓ(s),
we can show that the matrix

M(s) = δΓ(s)⊗ Γ′(s)− Γ′(s)⊗ δΓ(s) = |Γ′(s)|(δΓ(s) · nΓ(s))(nΓ(s)⊗ tΓ(s)− tΓ ⊗ nΓ(s))

acts as

M(s)(v) = −|Γ′(s)|(δΓ(s) · nΓ(s))v
⊥, ∀ v ∈ R

2. (5.7)

Then, by (5.6) and (5.7), we obtain

I(h) = −
∫

S1

∫

S1

(δΓ(s) · nΓ(s))(∇1k(Γ(s),Λ(t)) · Λ′(t)
⊥
) dt |Γ′(s)|ds+ o(h) .
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Finally, as h → 0, we obtain the L2(Γ)-gradient of H(Γ,Λ) is given by

−nΓ(s)

∫

S1

nΛ(t) · ∇1k(Γ(s),Λ(t))dΛ(t)

that represents the second term in (5.5). For the first term we need to apply the same argument to

calculate the gradient of H(Γ,Γ).

5.3 Matching Flow

In this section, we use H = W 1,2(S1,R2). In order to minimize E on B we consider the

scheme (2.7), that defines {Γk} for k > 0 as

Γk+1 = Γk − τk∇RΓk
E(Γk) (5.8)

where Γ0 is the input curve to be matched to Λ, ∇RΓk
E is defined by (4.11) (using H = W 1,2(S1,R

2))
and τk > 0 is a step size, that satisfies the Wolfe rule (2.8). We prove the following convergence

theorem for the method:

Proposition 5.2. The W 1,2−gradient of the energy functional E is Lipschitz on every convex set of

curves of bounded length.

Proof. We remark that we choose W 1,2(S1,R2) as ambient space and, moreover, we have

∇W 1,2E = K∇L2E , (5.9)

where we have denoted K the inverse of the isomorphism between W 1,2 and its dual. Then it suffices

to prove the proposition for the L2-gradient. For a sake of clarity, we separate the proof in several

steps.

Continuity of the energy and the gradient. By the dominated convergence theorem, we have

that H and E are continuous with respect to the BV 2(S1,R
2)-topology.

Note that

〈∇L2(Γ)E(Γ),Φ〉L2(Γ) =

∫

S1

Γ′(s)
⊥ · Φ(s)

∫

S1

Γ′(t)
⊥ · ∇1k(Γ(s),Γ(t)))dt ds

−
∫

S1

Γ′(s)
⊥ · Φ(s)

∫

S1

Λ′(t)
⊥ · ∇1k(Γ(s),Λ(t))dt ds

where (x, y)⊥ = (−y, x) for every (x, y) ∈ R
2.

Then E is non-negative and C1 with respect to the BV 2 topology on B and the gradient is

continuous with respect to the W 1,2(S1,R2)-ambient topology.

Condition (2.9). We detail the proof for the term of the gradient depending on both Γ and Λ. For

the other term the proof is similar. For every couple of curves (Γ,Λ), we introduce the following

function

I (Γ,Λ)(s) =

∫

S1

nΛ(t) · ∇1k(Γ(s),Λ(t)) dΛ(t) =

∫

S1

Λ′(t)
⊥ · ∇1k(Γ(s),Λ(t)) dt .
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It suffices just to prove that there exists L > 0 such that

‖Γ′
1
⊥
I (Γ1,Λ)− Γ′

2
⊥
I (Γ2,Λ)‖L2(S1,R2) 6 L‖Γ1 − Γ2‖W 1,2(S1,R2)

for every couple of curves (Γ1,Γ2) ∈ BV 2(S1,R2). We have

‖Γ′
1
⊥
I (Γ1,Λ)− Γ′

2
⊥
I (Γ2,Λ)‖L2(S1,R2) = ‖Γ′

1I (Γ1,Λ)− Γ′
2I (Γ2,Λ)‖L2(S1,R2)

and

‖Γ′
1I (Γ1,Λ)− Γ′

2I (Γ2,Λ)‖L2(S1,R2) 6‖Γ′
1I (Γ1,Λ)− Γ′

1I (Γ2,Λ)‖L2(S1,R2) (5.10)

+‖Γ′
1I (Γ2,Λ)− Γ′

2I (Γ2,Λ)‖L2(S1,R2) , (5.11)

Note that

‖I (Γ,Λ)‖L∞(S1,R2) 6 α‖Λ′‖L1(S1,R2) , (5.12)

where α = supx,y∈R2 |∇1k(x, y)|. Now, we have

‖Γ′
1[I (Γ1,Λ)− I (Γ2,Λ)]‖2L2(S1,R2) 6 ‖Γ′

1‖2L1(S1,R2)‖I (Γ1,Λ)− I (Γ2,Λ)‖2L∞(S1,R2)

6 ‖Γ′
1‖2L1(S1,R2)‖Λ′‖2L1(S1,R2) sup

s∈S1

∫

S1

|∇1k(Γ1(s),Λ(t))−∇1k(Γ2(s),Λ(t))|2 dt

6
‖Γ′

1‖2L1(S1,R2)‖Λ′‖2L1(S1,R2)

σ2
sup
s∈S1

‖Γ1(s)− Γ2(s)‖2 ,

where we used the fact that re−r
2

is 1-Lipschitz continuous (given by a straightforward derivative

calculation). Then, as W 1,2(S1,R2) is continuously embedded in L∞(S1,R2), we get

‖Γ′
1[I (Γ1,Λ)− I (Γ2,Λ)]‖2L2(S1,R2) 6 C1‖Λ′‖2L1(S1,R2)‖Γ1 − Γ2‖2W 1,2(S1,R2) (5.13)

where C1 = ‖Γ′
1‖2L1(S1,R2)C

2
0/σ

2 (C0 denotes here the constant of the embedding of W 1,2(S1,R2) in

L∞(S1,R2) so that ‖Γ‖L∞(S1,R2) 6 C0‖Γ‖W 1,2(S1,R2)).

Moreover, by (5.12), we have

‖Γ′
1I (Γ2,Λ)− Γ′

2I (Γ2,Λ)‖2L2(S1,R2) 6 α2‖Λ′‖2L1(S1,R2)‖Γ′
1 − Γ′

2‖2L2(S1,R2)

which implies

‖Γ′
1I (Γ2,Λ)− Γ′

2I (Γ2,Λ)‖2L2(S1,R2) 6 C2‖Γ1 − Γ2‖2W 1,2(S1,R2) (5.14)

where C2 = α2‖Λ′‖2L1(S1,R2). Then, by (5.10), (5.13) and (5.14), the W 1,2-gradient of the energy

verifies (2.9) on every convex set of curves of bounded length. This guarantees actually that the

constant C1 is uniformly bounded and we can define the Lipschitz constant.

Therefore, the application of Theorem 2.5 on convex sets of curves of bounded length gives

Corollary 5.3. Under the assumption that the lengths of Γk are bounded, every accumulation point

of {Γk} in B = BV 2(S1,R2) is a critical point of E.

Remark 5.4. We were not able to relax the boundedness assumption although this seems rather

plausible under the assumptions that the initial and target curves are in BV 2(S1,R2). The result

of the corollary is however relatively weak in the sense that it is difficult to check numerically the

convergence in BV 2(S1,R2).
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6 Discretization

This section discretizes Problem (4.11) using finite elements in order to calculate numerically

the Finsler gradient flow. We define a n-dimensional sub-space Bn ⊂ B of piecewise linear curves.

The embedding Bn ⊂ B defines a natural finite dimensional Riemannian and Finsler structure

on Bn inherited from the ones of B. This allows us to apply our Finsler gradient flow in finite

dimension to approximate the original infinite dimensional Finsler flow.

6.1 Finite Elements Spaces

Notations. In the following, to ease the notation, we identify R
2 with C and S

1 with [0, 1] using

periodic boundary conditions. The canonical inner produced on C
n is

〈f̃ , g̃〉Cn =
n
∑

i=1

〈f̃i, g̃i〉 =
n
∑

i=1

Real(f̃i g̃i), ∀ f̃ , g̃ ∈ C
n , (6.1)

where we denote by g̃i the conjugate of g̃i.

Piecewise affine finite elements. We consider the space P1,n of the finite elements on [0, 1] (with

periodic boundary conditions) of order one with n equispaced nodes. A basis of P1,n is defined as

ξi(s) = max

{

0, 1− n

∣

∣

∣

∣

s− i

n

∣

∣

∣

∣

}

s ∈ [0, 1], ∀ i = 1, ..., n− 1

ξn(s) = max {0, 1− n |s|}+ max {0, 1− n |s− 1|} , s ∈ [0, 1].

Every f ∈ P1,n can be written as

f =
n
∑

i=1

f̃i ξi , f̃i ∈ C (6.2)

with f̃i = f(i/n) ∈ C for every i. We denote by f̃ = (f̃1, ..., f̃n) ∈ C
n the coordinates of f with

respect to the basis {ξi}i=1,...,n. Remark that there exists a bijection between P1,n and C
n, defined

by the following operator

P1 : f̃ = (f̃1, ..., f̃n) ∈ C
n 7→ P1(f̃) = f ∈ P1,n s.t. f =

n
∑

i=1

f̃i ξi . (6.3)

The forward and backward finite differences operators are defined as

∆+ : Cn → C
n , ∆+(f̃)i = n(f̃i+1 − f̃i) ,

∆− : Cn → C
n , ∆−(f̃)i = n(f̃i − f̃i−1) ,

(6.4)
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Piecewise constant finite elements. For every f ∈ P1,n, (6.2) implies that first derivative df
ds

belongs to P0,n ⊂ BV ([0, 1],R2), where P0,n is the class of the piecewise constant functions with n
equispaced nodes. A basis of P0,n is defined by

ζi(s) = I[ i
n
, i+1
n

](s) ∀ i = 1, ..., n− 1 , ζn(s) = I[0, 1
n
](s) ,

where IA is the characteristic function of a set A, and with s ∈ [0, 1]. Then, the first derivative of f
can be written as

df

ds
=

n
∑

i=1

∆+(f̃)iζi . (6.5)

We finally define the following bijection between P0,n and C
n:

P0 : f̃ = (f̃1, ..., f̃n) ∈ C
n 7→ P0(f̃) = f ∈ P0,n s.t. f =

n
∑

i=1

f̃iζi . (6.6)

6.2 Finite Element Spaces of Curves

Discretized curves. The discrete space of curves is defined as Bn = P1,n ⊂ B and every curve

Γ ∈ Bn can be written as

Γ =
n
∑

i=1

Γ̃iξi , Γ̃i = Γ(i/n) ∈ C (6.7)

where the vector Γ̃ = P−1
1 (Γ) = (Γ̃1, ..., Γ̃n) ∈ C

n contains the coefficients of Γ in the finite

element basis. By (6.5) the tangent and normal vectors (3.3) to Γ ∈ Bn are computed as

tΓ =
n
∑

i=1

∆+(Γ̃)i

|∆+(Γ̃)i|
ζi , nΓ(i) = tΓ(i)

⊥ , (6.8)

where (x, y)⊥ = (−y, x) for all (x, y) ∈ R
2. In particular we have

dΓ

ds
=

n
∑

i=1

∆+(Γ̃)iζi . (6.9)

Discretized tangent spaces. For every Γ ∈ Bn, the discrete tangent space to Bn at Γ is defined

as TΓBn = Bn equipped with the inner product 〈·, ·〉H1(Γ). Every vector field Φ ∈ TΓBn can be

written as

Φ =
n
∑

i=1

Φ̃iξi , Φ̃i = Φ(i/n) ∈ C (6.10)

where Φ̃ = (Φ̃1, ..., Φ̃n) ∈ C
n are the coordinates of Φ with respect to the basis of P1,n.

By identifying every vector field Φ ∈ TΓBn with its coordinates Φ̃, the tangent space can be

identified with C
n. In particular we have

dΦ

dΓ
=

n
∑

i=1

∆+(Φ̃)i

|∆+(Γ̃)i|
ζi . (6.11)

Moreover, Cn can be equipped with the following Riemannian metric:
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Definition 6.1 (Discrete inner product). We define ℓ2(Γ̃) and h1(Γ̃) as the set Cn equipped with

the following inner products respectively

〈Φ̃, Ψ̃〉ℓ2(Γ̃) = 〈P1(Φ̃), P1(Ψ̃)〉L2(Γ) , (6.12)

〈Φ̃, Ψ̃〉h1(Γ̃) = 〈P1(Φ̃), P1(Ψ̃)〉H1(Γ) . (6.13)

We now give the explicit formulas for the products (6.12) and (6.13), which are useful for com-

putational purposes.

Proposition (6.2) details the relationship between the product (6.12) and the canonical inner

product on C
n defined by (6.1). For this purpose, we define the mass matrix MΓ̃ ∈ R

n×n as

MΓ̃ =
n
∑

i=1

|∆+(Γ̃)i|M i where M i
h,j =

∫ (i+1)/n

i/n

ξhξj . (6.14)

The elements of the matrices M i ∈ R
n×n for i = 1, ..., n are equal to zero excepted for the following

block:
(

M i
i,i M i

i,i+1

M i
i+1,i M i

i+1,i+1

)

=
1

6n

(

2 1
1 2

)

,

where the indices i− 1 and i+ 1 should be understood modulo n.

Proposition 6.2. For all Ψ̃, Φ̃ in C
n, one has

〈Φ̃, Ψ̃〉ℓ2(Γ̃) = 〈Φ̃, MΓ̃Ψ̃〉Cn , (6.15)

where MΓ̃ is the mass matrix defined in (6.14).

Proof. Denoting Φ = P1(Φ̃) and Ψ = P1(Ψ̃), (6.10) and (6.9) imply that

〈Φ, Ψ〉L2(Γ) =

∫ 1

0

Φ ·ΨdΓ(s) =
n
∑

i=1

|∆+(Γ̃)i|
∫ (i+1)/n

i/n

(

n
∑

j=1

Φ̃jξj ·
n
∑

h=1

Ψ̃hξh

)

ds .

Then, since (6.12), we have

〈Φ̃, Ψ̃〉ℓ2(Γ̃) =
n
∑

i=1

|∆+(Γ̃)i|〈Φ̃, M iΨ̃〉Cn = 〈Φ̃, MΓ̃Ψ̃〉Cn (6.16)

where MΓ̃ is mass matrix (6.14).

Next proposition details the relationship between the product (6.13) and the canonical inner

product on C
n. To this end, we introduce the matrix NΓ̃ ∈ R

n×n defined by

NΓ̃ =
n
∑

i=1

|∆+(Γ̃)i|N i where N i
h,j =

1

|∆+(Γ̃)j||∆+(Γ̃)h|

∫ (i+1)/n

i/n

dξh
ds

· dξj
ds

. (6.17)

The elements of the matrices N i ∈ R
n×n for i = 1, ..., n are equal to zero excepted for the following

block:

(

N i
i,i N i

i,i+1

N i
i+1,i N i

i+1,i+1

)

= n









1

|∆+(Γ̃)i|2
− 1

|∆+(Γ̃)i||∆+(Γ̃)i+1|
− 1

|∆+(Γ̃)i||∆+(Γ̃)i+1|
1

|∆+(Γ̃)i+1|2









.
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Proposition 6.3. For all Ψ̃, Φ̃ in C
n, one has

〈Φ̃, Ψ̃〉h1(Γ̃) = 〈Φ̃, UΓ̃Ψ̃〉Cn , (6.18)

where UΓ̃ is the mass matrix defined by

UΓ̃ = MΓ̃ +NΓ̃ , (6.19)

where MΓ̃, NΓ̃ are the matrix (6.14) and (6.17) respectively. We point out that, since UΓ̃ is a matrix

of inner product in a basis, it is always invertible.

Proof. Denoting Φ = P1(Φ̃) and Ψ = P1(Ψ̃), (6.10) implies

〈dΦ
dΓ

,
dΨ

dΓ
〉L2(Γ) =

n
∑

i=1

|∆+(Γ̃)i|
∫ (i+1)/n

i/n

(

n
∑

j=1

Φ̃j

|∆+(Γ̃)j|
dζj
ds

·
n
∑

h=1

Ψ̃h

|∆+(Γ̃)h|
dζh
ds

)

ds .

Then, by previous proposition, we have

〈Φ̃, Ψ̃〉h1(Γ̃) = 〈Φ̃, MΓ̃Ψ̃〉Cn + 〈Φ̃, NΓ̃Ψ̃〉Cn

where MΓ̃, NΓ̃ are the matrix (6.14) and (6.17) respectively.

6.3 Discrete Finsler Flow

The initial optimization (2.1) is discretized by restricting the minimization to the space Bn,

which corresponds to the following finite dimensional optimization

min
Γ̃∈Cn

Ẽ(Γ̃) , (6.20)

where Ẽ(Γ̃) approximates E(P1(Γ̃)).
The discrete Finsler gradient is obtained in a similar way by restricting the optimization (2.3) to

Bn

∇R̃Γ̃
Ẽ(Γ̃) ∈ argmin

Φ̃∈L̃Γ̃

R̃Γ̃(Φ̃) , (6.21)

where the discrete penalty reads

R̃Γ̃(Φ̃) = RP1(Γ̃)
(P1(Φ̃)) (6.22)

and, as discrete constraint, we set

L̃Γ̃ =
{

Φ̃ ∈ C
n :

∥

∥Π̃Γ̃(∇h1(Γ̃)Ẽ(Γ̃)− Φ̃)
∥

∥

h1(Γ̃)
6 ρ
∥

∥Π̃Γ̃(∇h1(Γ̃)Ẽ(Γ̃))
∥

∥

h1(Γ̃)

}

. (6.23)

The Finsler flow discretizing the original one (2.2) reads

Γ̃k+1 = Γ̃k − τk∇R̃Γ̃k

Ẽ(Γ̃k). (6.24)

where τk > 0 is chosen following the Wolfe rule (2.8).

The following sections detail how to compute this flow for the particular case of the curve match-

ing energy introduced in Section 5.
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6.4 Discrete Energy

Exact energy for piecewise affine curves. For curves Γ = P1(Γ̃) and Λ = P1(Λ̃) in Bn, the

energy E(Γ) defined in (5.4)

E(Γ) =
1

2
H (Γ,Γ)− H (Γ,Λ) +

1

2
H (Λ,Λ)

can be computed as

H (Γ,Λ) =
n
∑

i=1

n
∑

j=1

〈∆+(Γ̃)i, ∆
+(Λ̃)j〉T (Γ̃, Λ̃)i,j

where T (Γ̃, Λ̃)i,j =

∫ i
n

i−1
n

∫ j
n

j−1
n

k(Γ(s),Λ(t)) dΓ(s)dΛ(t) .

Approximate energy for piecewise affine curves. In general there is no closed form expression

for the operator T , so that, to enable a direct computation of the energy and its gradient, we use a

first order approximation with a trapezoidal quadrature formula

T̃ (Γ̃, Λ̃)i,j =
1

4

(

k(Γ̃i, Λ̃j) + k(Γ̃i+1, Λ̃j) + k(Γ̃i, Λ̃j+1) + k(Γ̃i+1, Λ̃j+1)
)

.

One thus has the approximation

T̃ (Γ̃, Λ̃)i,j = T (Γ̃, Λ̃)i,j +O(1/n2).

This defines the discrete energy Ẽ on C
n as

Ẽ(Γ̃) =
1

2
H̃ (Γ̃, Γ̃)− H̃ (Γ̃, Λ̃) +

1

2
H̃ (Λ̃, Λ̃) (6.25)

where H̃ (Γ̃, Λ̃) =
n
∑

i=1

n
∑

j=1

〈∆+(Γ̃)i, ∆
+(Λ̃)j〉T̃ (Γ̃, Λ̃)i,j

Discrete h1-gradient. The following proposition gives the formula to calculate the gradient of Ẽ
with respect to inner product (6.12).

Proposition 6.4. The gradient of Ẽ at Γ̃ with respect to the metric defined by the inner prod-

uct (6.12) is

∇h1(Γ̃)Ẽ(Γ̃) = U−1

Γ̃
∇Ẽ(Γ̃)

where UΓ̃ is the rigidity matrix (6.19) and ∇Ẽ the gradient of Ẽ for the canonical inner product of

C
n (6.1), which is given by

∇Ẽ(Γ̃)i = ∇H̃ (Γ̃, Γ̃)i −∇H̃ (Γ̃, Λ̃)i (6.26)

where

∇H̃ (Γ̃, Λ̃)i =
1

4

n
∑

j=1

(Γ̃i+1 − Γ̃i−1)(Λ̃j+1 − Λ̃j)[∇1k(Γ̃i, Λ̃j) +∇1k(Γ̃i, Λ̃j+1)]

+
n
∑

j=1

(Λ̃j+1 − Λ̃j)[T (Γ̃, Λ̃)i−1,j − T (Γ̃, Λ̃)i,j] .
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Proof. The gradient (6.26) of Ẽ for the canonical inner product of Cn can be computed by a straight-

forward calculation. For every Φ̃ ∈ C
n we have the following expression for the derivative of Ẽ

DẼ(Γ̃)(Φ̃) = 〈Φ̃, ∇h1(Γ̃)Ẽ(Γ̃)〉h1(Γ̃) = 〈Φ̃, ∇Ẽ(Γ̃)〉Cn

and, by (6.15), we get

∇h1(Γ̃)Ẽ(Γ̃) = U−1

Γ̃
∇Ẽ(Γ̃) .

6.5 Discrete Piecewise-rigid Curve Matching

This section first describes in a general setting the discrete Finsler gradient over finite-element

spaces, then specializes it to the piecewise rigid penalty for the matching problem, and lastly gives

the explicit formula of the corresponding functionals to be minimized numerically.

Discrete piecewise-rigid penalty. To re-write conveniently the discrete Finsler gradient optimiza-

tion (6.21), we introduce the following finite-dimensional operators.

Definition 6.5 (Discrete operators). For all Γ = P1(Γ̃),Φ = P1(Φ̃) we define

ṼΓ̃(Φ̃) = TVΓ

(

dΦ

dΓ
· nΓ

)

ṼΓ̃ : Cn → R

L̃Γ̃(Φ̃) = P−1
0 (L+

Γ (Φ)), L̃Γ̃ : Cn → R
n

Π̃Γ̃(Φ̃) = P−1
0 (ΠΓ(Φ)), Π̃Γ̃ : Cn → C

n

The following proposition uses these discrete operators to compute the discrete Finsler penalty

and constraint defined in (6.22).

Proposition 6.6. One has

R̃Γ̃(Φ̃) = ṼΓ̃(Φ̃) + ι
C̃Γ̃
(Φ̃) where C̃Γ̃ =

{

Φ̃ ∈ C
n : L̃Γ̃(Φ̃) = 0

}

. (6.27)

Proof. Denoting Γ = P1(Γ̃),Φ = P1(Φ̃), by (6.22), we have

R̃Γ̃(Φ̃) = RΓ(Φ) = TVΓ

(

dΦ

dΓ
· nΓ

)

+ ιCΓ
(Φ) = ṼΓ̃(Φ̃) + ι

C̃Γ̃
(Φ̃)

where

C̃Γ̃ =
{

Φ̃ ∈ C
n : L̃Γ̃(Φ̃) = 0

}

.

The following proposition gives explicit formulae for the discrete operators introduced in Defi-

nition 6.5.
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Proposition 6.7. For every Γ̃, Φ̃ ∈ C
n, we consider Γ = P1(Γ̃) ∈ Bn, Φ = P1(Φ̃) ∈ TΓBn. One

has

L̃Γ̃(Φ̃)i = 〈 ∆
+(Φ̃)i

|∆+(Γ̃)i|
,
∆+(Γ̃)i

|∆+(Γ̃)i|
〉 , (6.28)

Π̃Γ̃(Φ̃)(s) =
n
∑

i=1

〈Φ̃iξi(s) + Φ̃i+1ξi+1(s), (ñΓ)i〉(ñΓ)iζi(s) , (6.29)

ṼΓ̃(Φ̃) = ‖∆−(H̃Γ̃(Φ̃))‖ℓ1 =
n
∑

i=1

∣

∣

∣H̃Γ̃(Φ̃)i − H̃Γ̃(Φ̃)i−1

∣

∣

∣
, (6.30)

where H̃Γ̃(Φ̃)i := 〈 ∆
+(Φ̃)i

|∆+(Γ̃)i|
, (ñΓ)i〉 (6.31)

and where ñΓ denotes the vector of the coordinates of nΓ with respect to the basis of P0.

Proof. (Proof of (6.28)) Using (6.5) the first derivative of Φ can be written (with respect to the basis

of P0,n) as

dΦ

dΓ
=

n
∑

i=1

∆+(Φ̃)i

|∆+(Γ̃)i|
ζi

which implies that

L+
Γ (Φ) =

dΦ

dΓ
· tΓ =

n
∑

i=1

〈 ∆
+(Φ̃)i

|∆+(Γ̃)i|
,
∆+(Γ̃)i

|∆+(Γ̃)i|
〉ζi .

Then, by the definitions of L
+(−)
Γ , conditions L

+(−)
Γ (Φ) = 0 become

〈 ∆
+(Φ̃)i

|∆+(Γ̃)i|
,
∆+(Γ̃)i

|∆+(Γ̃)i|
〉 = 0 ∀ i = 1, ..., n,

which is equivalent to L̃Γ̃(Φ̃) = 0.

(Proof of (6.29)) By (6.10) and (6.8), we get

ΠΓ(Φ)(s) = 〈
n
∑

i=1

Φ̃iξi(s),
n
∑

i=1

(ñΓ)iζi(s)〉
n
∑

i=1

(ñΓ)iζi(s)

=
n
∑

i=1

〈Φ̃iξi(s) + Φ̃i+1ξi+1(s), (ñΓ)i〉(ñΓ)iζi(s)

which proves the result.

(Proof of (6.30)) By (6.5) and (6.8), we get

TVΓ

(

dΦ

dΓ
· nΓ

)

= TVΓ

(

n
∑

i=1

〈 ∆
+(Φ̃)i

|∆+(Γ̃)i|
, (ñΓ)i〉ζi

)

=
n
∑

i=1

∣

∣

∣
H̃Γ̃(Φ̃)i − H̃Γ̃(Φ̃)i−1

∣

∣

∣

where we used the fact that the total variation for piecewise constant functions coincides with the

sum of jumps sizes.
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6.6 Calculation of the Discrete Finsler Gradient

One can minimize the matching energy Ẽ defined in (6.25) using the Finsler flow {Γ̃k} of (6.24).

This requires computing at each step k the Finsler gradient (6.21) for the piecewise-rigid penalty R̃Γ̃

defined in (6.27). Solving (6.21) at each step in turn requires the resolution of a finite dimensional

convex problem, and the functional to be minimized is explicitly given with closed form formula in

Proposition 6.7.

Several convex optimization algorithms can be used to solve (6.21). A convenient method con-

sists in recasting the problem into a second order cone program by introducing additional auxiliary

variables (Φ̃, S̃, Z̃, T̃ ) as follow

Min
(Φ̃,S̃,Z̃,T̃ )∈C2n×R2n

〈Z̃, 1〉Cn where 1 = (1, ..., 1) ∈ R
n

where the minimum is taken under the following set of affine and conic constraints

− Z̃i 6 ∆−(H̃Γ̃(Φ̃))i 6 Z̃i , ∀ i = 1, ..., n

L̃Γ̃(Φ̃) = 0

S̃ = U
1/2

Γ̃
(Π̃Γ̃(Φ̃)− Π̃Γ̃(∇h1(Γ̃)Ẽ(Γ̃)))

〈T,1〉 6 ρ2
∥

∥Π̃Γ̃(∇h1(Γ̃)Ẽ(Γ̃))
∥

∥

2

h1(Γ̃)

(S̃i, T̃i) ∈
{

(s, t) ∈ C× R : |s|2 6 t
}

, ∀ i = 1, ..., n.

We point out that the variable S̃ is defined by the mass matrix UΓ̃ (6.19) because of the relationship

(6.18). For the numerical simulation, we use an interior point solver, see [10]. These interior points

algorithms are powerful methods to solve medium scale SOCP problems and work remarkably well

for n up to several thousands, which is typically the case for the curve matching problem.

7 Numerical Examples

In this section we give some numerical examples to point out the properties of the piecewise

rigid Finsler evolution.

It should be noted that the resulting sequence {Γk} depends on the choice of the step sizes {τk},

which is left to the user and should only comply with the Wolfe conditions (2.8).

Numerically, we observe in practice that choosing small enough step sizes τk always provides

consistent evolutions. This phenomena is related to the existence of a limiting gradient flow (as

highlighted in Remark 2.7), and the depicted evolutions are intended to show an approximation of

this flow.

For the numerical examples shown in this section and in Section 8.3, we used a fixed finite

element discretization as detailed in Section 6 (with n = 1280). This corresponds to imposing a

fixed common parameterization of the discretized curves generated by the iterations. Note however

that applications to more complicated imaging problems might require re-parameterizing the curves

from time to time during the iterations of the gradient descent (2.7). This is important when dead-

ling with complicated shapes since the paramterization might become ill-conditionned, which can

deteriorate the numerical accuracy of the scheme.



Finsler Steepest Descent 33

7.1 Influence of ρ

To exemplify the main properties of the piecewise rigid Finsler flow, we introduce a synthetic

example where we replace in the definition (4.11) of the Finsler gradient ∇RΓ
E(Γ) (more pre-

cisely in the definition (4.10) of the constraint LΓ) the L2 gradient ∇W 1,2(Γ)E(Γ) by the vector field

F (Γ) ∈ TΓB defined as

F (Γ) : s ∈ S
1 7→ −

(

5Γ1(s), 1000(Γ2(s)− 1/2)2
)

∈ R
2 (7.1)

where Γ(s) = (Γ1(s),Γ2(s)) ∈ R
2.

The initial flow associated to this vector field reads

Γk+1 = Γk − τkF (Γk) (7.2)

for some small enough time steps τk > 0. Such a flow is represented in Figure 1 where τk = 0.0005
for every k.
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Figure 1: Evolution generated by −F .

Figure 2 shows the impact of the parameter ρ on this evolution. As ρ increases, the evolution

becomes increasingly piecewise rigid. For ρ large enough, it is globally rigid, i.e. satisfies (4.2) and

∇RΓk
E(Γk) ∈ RΓk for all k, where RΓ is defined in (4.3).

7.2 Curve Registration

We now give an example of application of the Finsler flow to the curve matching problem de-

scribed in Section 5. Figure 3 compares the results of the piecewise-rigid Finsler gradient with the

Sobolev Riemannian gradient detailed in Remark (2.4) which is very similar to the one introduced

in [40, 16].

In order to obtain good matching results, it is important to select the parameters (τ, σ, δ) (see (5.3)

and (7.2)) in accordance to the typical size of the features of the curves to be matched. For each

method, we have manually tuned the parameters (τ, σ, δ) in order to achieve the best matching re-

sults. Choosing a large value of σ and a smaller value for δ is useful to capture shapes with features

at different scales, which is the case in our examples.
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Figure 2: Evolution for different values of ρ.

The piecewise rigid gradient is particularly efficient in this setting where the curves to be matched

are naturally obtained by approximate articulations, which are well approximated by piecewise rigid

deformations. Note however that our method does not necessitate a prior segmentation of the shape

into disjoint areas undergoing rigid motions, i.e. the location of the articulations does not need to

be known beforehand. The piecewise rigid matching is obtained solely by minimizing the distance

energy E(Γ) to the target curve Λ.

The Finsler gradient thus allows to avoid poor local minima and perform an overall good global

matching. In contrast the Sobolev gradient flow is trapped in a poor local minimum and the match-

ing has failed. Note, however, that the matching achieved by the Finsler gradient is not perfect.

Some local defects near corners are mostly due to the strong constraint LΓ(Φ) = 0 which enforces

the exact conservation of the length of the curve. This constraint is alleviated in Section 8, which

presents a piecewise similarity Finsler gradient which leads to better matching results.

8 BV 2-piecewise Similarity Motions

In order to improve the matching results we augment our model by allowing the curve to shrink

or to lengthen during the evolution. The idea consists in considering evolution by piecewise simi-

larity motions instead of the rigid deformations considered in Section 4.

8.1 Similarity Curve Deformations

We extend the rigid deformations considered in Section 4.1 to smooth evolutions t 7→ Γt fol-

lowing a PDE (4.1) that includes also a global scaling of the space. This evolution is said to obey a
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Figure 3: Finsler evolution (top) with ρ = 0.8 and Sobolev evolution (bottom) for different step k
of the flow. Each image displays the target curve Λ (dash line) and the current curve Γk (solid line).

The energy is computed using σ = 0.8, δ = 0.04.

similarity transform if there exists a smooth function λ : R → R
+ such that

∀ (s, s′) ∈ S
1 × S

1, ‖Γt(s)− Γt(s
′)‖ = λ(t)‖Γ0(s)− Γ0(s

′)‖. (8.1)

The following proposition states that the set of instantaneous motion Φt giving rise to a similarity

evolution is, at each time, a linear sub-space of dimension 4 of TΓtB.

Proposition 8.1. The evolution (4.1) satisfies (8.1) if and only if, for all t ∈ R, Φt ∈ SΓt where

SΓ =
{

Φ ∈ TΓB : ∀ s ∈ S
1, Φ(s) = AΓ(s) + b : for A ∈ S2×2, b ∈ R

2
}

(8.2)

where S2×2 =

{(

α −β
β α

)

∈ R
2×2 : (α, β) ∈ R

2

}

.

Proof. Using the fact that the Lie algebra of the group of similarities is R2
⋊ S2×2, we obtain the

desired result following the proof of Proposition 4.1.

Analogously to Proposition 4.2, the next proposition characterizes in an intrinsic manner the

set SΓ.

Proposition 8.2. For a C2-curve Γ, one has Φ ∈ SΓ if and only if Φ is C2 and satisfies

dKΓ(Φ)

dΓ
= 0 (8.3)
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where we have introduced the following linear operator

KΓ(Φ) =

(

dΦ

dΓ(s)
· tΓ,

dΦ

dΓ(s)
· nΓ

)

, ∀Φ ∈ TΓB .

Proof. Given a curve Γ ∈ C2(S1,R2), every deformation Φ of Γ which is the restriction, to the

curve Γ, of an instantaneous similarity motion, can be written as

Φ(s) = AΓ(s) + b, ∀ s ∈ S
1

for some matrix A =

(

α −β
β α

)

and a vector b. Now, differentiating with respect to dΓ we obtain

dΦ

dΓ
(s) = AtΓ

which is equivalent to
dΦ

dΓ
· tΓ = α and

dΦ

dΓ
· nΓ = β (8.4)

for every s ∈ S
1. Remark that similarity is the only affine motion verifying (8.4) and this is due to

the form of the matrix A. In fact, if dΦ
dΓ

verifies dΦ
dΓ

· tΓ = α and dΦ
dΓ

· nΓ = β then

dΦ

dΓ
= αtΓ + βnΓ = αtΓ + βt⊥Γ = AtΓ .

In particular, if α = 0 then Φ is a rigid motion and (8.4) coincides with the characterization proved

in Proposition 4.2.

Then, differentiating again with respect to dΓ(s), we have

d

dΓ

(

dΦ

dΓ
· tΓ

)

= 0 and
d

dΓ

(

dΦ

dΓ
· nΓ

)

= 0

which is equivalent to (8.3).

8.2 Piecewise Similarity Deformations

Similarly to the Finsler penalty introduced in 4.2, we define a penalty that favors piecewise

similarity transformations by minimizing the L1-norm of the first derivative of KΓ. To control the

piecewise rigid transformation part, we relax the equality constraint LΓ(Φ) = 0 defined as CΓ

in (4.9) to a constraint C λ
Γ on the L1 norm of LΓ(Φ).

Definition 8.3 (Piecewise-similarity penalty). For λ > 0 and Γ ∈ B, we define for all Φ ∈ TΓB

Rλ
Γ(Φ) = TVΓ(KΓ(Φ)) + ιC λΓ where C

λ
Γ =

{

Φ ∈ TΓB : ‖LΓ(Φ)‖L1(Γ) 6 λ
}

(8.5)

where LΓ is either L+
Γ or L−

Γ as defined in (4.6) and TVΓ is defined in (3.1).

The piecewise similarity Finsler gradient ∇RλΓ
E(Γ) is defined by minimizing (2.3) with the

penalty Rλ
Γ defined in (8.5) with the constraint set LΓ defined in (4.10). The following proposition

shows that, as λ tends to 0, the set of piecewise similarity Finsler gradients tends to the set of

piecewise-rigid Finsler gradients.
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Proposition 8.4. One has R0
Γ = RΓ where RΓ is defined in (4.8).

Proof. One has C 0
Γ = CΓ. If R0

Γ(Φ) 6= +∞, one has L+
Γ (Φ) = L−

Γ (Φ) = 0 a.e., so that in this case

TVΓ(KΓ(Φ)) = TVΓ

(

dΦ

dΓ(s)
· nΓ

)

.

The following theorem extends Theorem 4.6 to the piecewise similarity penalty and ensures

existence of the corresponding Finsler gradient.

Theorem 8.5. The function Rλ
Γ defined in (8.5) admits at least a minimum on LΓ.

Proof. It suffices to adapt the proof of Theorem 4.6 by using the new constraint on the L1-norm of

LΓ(Φ).

8.3 Numerical examples

We now show some numerical examples for the piecewise similarity Finsler gradient. The com-

putation is performed with the discretization detailed in Section (6), which is extended in a straight-

forward manner to handle the piecewise similarity model.
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Figure 4: Piecewise similarity Finsler flow evolutions for ρ = 0.3 and for different values of λ.
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Influence of λ. We first re-use the synthetic example introduced in Section 7.1 to illustrate the

influence of the parameter λ. We thus use an evolution driven by the flow F (Γ) ∈ TΓB defined

in (7.1). Figure 4 shows how λ allows one to interpolate between the piecewise rigid model (when

λ = 0) to a piecewise similarity model when λ increases. For large value of λ, one clearly sees the

global scaling introduced by the model which is helpful to better follow the flow of F .

Figure 5 compares the evolution obtained with the initial flow (7.2) (corresponding to (ρ, λ) =
(0, 0), i.e. the Finsler gradient is equal to F (Γ)), the piecewise rigid flow (corresponding to ρ > 0
and λ = 0) and the piecewise similarity flow (corresponding to ρ > 0 and λ > 0).

L2 (ρ, λ) = (0.5, 0) (ρ, λ) = (0.5, 200)

Figure 5: From left to right: evolutions by using the L2 gradient, piecewise rigid Finsler gradient,

piecewise similarity Finsler gradient.

Application to the matching problem. We now show an application of the Finsler descent method

to the curve matching problem, by minimizing the energy E defined in (5.4). Figure 6 shows the

results obtained with the piecewise similarity penalty for well chosen parameters (σ, δ, λ, ρ). These

evolutions should be compared with the ones reported in Section 7.2. Allowing the length of the

curve to vary using a parameter λ > 0 allows the evolutions to better capture the geometry of the

target shape and thus leads to better matchings.

Conclusion

This paper has presented a novel way to encode piecewise regular constraints for curve evolu-

tions. This is achieved by designing Finsler penalties in the tangent space of curves. This method

offers a unifying treatment of this class of evolutions. A distinctive feature of this approach is that it

uses a convex modeling of the geometric constraints. For the particular case of piecewise rigid and

piecewise similarity transforms, this avoids the need to specify the location of the articular points,

which is a difficult problem. Instead, these articulations are obtained, at each iteration, through the

resolution of a convex program. This novel method opens the doors to many fascinating theoretical

questions, such as the definition of a continous flow when letting τk → 0, and the properties of

Finslerian spaces of curves.
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Figure 6: Curve matching by piecewise similarity motions. Each image displays the target curve

Λ (dash line) and the current curve Γk (solid line). We used the following parameters: top row:

σ = 0.8, δ = 0.04, λ = 2000, ρ = 0.85 ; middle row: σ = 0.8, δ = 0.08, λ = 2000, ρ = 0.95 ;

bottom row: σ = 0.9, δ = 0.03, λ = 2000, ρ = 0.87.

9 Appendix: BV and BV 2 functions

In this section we remind the definition of BV and BV 2 functions in dimension one.

Definition 9.1. Let u ∈ L1([0, 1],R). We say that u is a function of bounded variation in [0, 1] if

|Du|([0, 1]) = sup

{∫ 1

0

u g′ dx : g ∈ C∞
c ([0, 1],R), ‖g‖L∞([0,1],R) 6 1

}

< ∞ . (9.1)

By Riesz’s representation theorem this is equivalent to state that there exists a unique finite Radon

measure, denoted by Du, such that

∫ 1

0

u g′ dx = −
∫ 1

0

g dDu ∀ g ∈ C1
c([0, 1]) .

Clearly the total variation of the measure Du on [0, 1], i.e., |Du|([0, 1]), coincides with the quan-

tity defined in (9.1) and this justifies our notations. We denote the space of functions of bounded
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variation in [0, 1] by BV ([0, 1],R). The space BV ([0, 1],R) equipped with the norm

‖u‖BV = ‖u‖L1 + |Du|([0, 1])

is a Banach space. We say that {uh} weakly* converges in BV ([0, 1],R) to u if

uh
L1

−→ u and Duh
∗
⇀ Du , as h → ∞ .

We now define the set of BV 2-functions as the functions whose second derivative are Radon

measures:

Definition 9.2. Let u ∈ W 1,1([0, 1],R). We say that u belongs to BV 2([0, 1],R) if

|D2u|([0, 1]) := sup

{∫ 1

0

u g′′ dx : g ∈ C∞
c ([0, 1],R), ‖g‖L∞([0,1],R) 6 1

}

< ∞ . (9.2)

As for the first variation, the functional considered in (9.2) can be represented by a measure D2u
whose total variation coincides with the quantity |D2u|([0, 1]) previously defined.

BV 2([0, 1],R) equipped with the norm

‖u‖BV 2 = ‖u‖BV + |D2u|([0, 1]) (9.3)

is a Banach space. In particular we have W 2,1([0, 1],R) ⊂ BV 2([0, 1],R). We say that {uh}
weakly* converges in BV 2([0, 1],R) to u if

uh
W 1,1

−→ u and D2uh
∗
⇀ D2u , as h → ∞ .

We remind that if {uh} ⊂ BV 2([0, 1],R) is such that sup
h

‖uh‖BV 2 < M then there exists

u ∈ BV 2([0, 1],R) such that {uh} weakly* converges in BV 2([0, 1],R) toward u and

|D2u|([0, 1]) 6 lim inf
h→∞

|D2uh|([0, 1]) .

Moreover we have the following proposition showing the link between BV and BV 2 functions

Proposition 9.3. A function u belongs to BV 2([0, 1],R) if and only if u ∈ W 1,1([0, 1],R) and

u′ ∈ BV ([0, 1],R), for every i = 1, ..., n. Moreover

|D2u|([0, 1]) = |Du′| ([0, 1]) .

We also remind that BV 2([0, 1],R) is embedded in W 1,∞([0, 1],R) so BV 2 functions are Lip-

schitz continuous (see Theorem 5, [20] pag. 131). Then, in particular, as [0, 1] ⊂ R is bounded,

BV 2([0, 1],R) is embedded W 1,p([0, 1],R), for every p > 1.

A vector field u belongs to BV ([0, 1],R2)(BV 2([0, 1],R2)) if every component of u belongs

to BV ([0, 1],R)(BV 2([0, 1],R)). In this case the BV (BV 2)-norm of u is equal to the sum of the

respective norms of its components. We refer to [4] and [19] for more properties of these spaces.
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