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COMPUTING AND PROVING WITH PIVOTS

FRÉDÉRIC MEUNIER

Abstract. A simple idea used in many combinatorial algorithms is the idea of pivoting.
Originally, it comes from the method proposed by Gauss in the 19th century for solving
systems of linear equations. This method had been extended in 1947 by Dantzig for the
famous simplex algorithm used for solving linear programs. From since, a pivoting algorithm
is a method exploring subsets of a ground set and going from one subset σ to a new one σ′

by deleting an element inside σ and adding an element outside σ:

σ′ = σ \ {v} ∪ {u}, with v ∈ σ and u /∈ σ.

This simple principle combined with other ideas appears to be quite powerful for many
problems.

This present paper is a survey on algorithms in operations research and discrete mathe-
matics using pivots. We give also examples where this principle allows not only to compute
but also to prove some theorems in a constructive way. A formalisation is described, mainly
based on ideas by Michael J. Todd.

1. Introduction

1.1. Motivation. Pivoting is one of the oldest ideas used for an algorithm. The Gauss
elimination method aims at solving linear systems of the form Ax = b. This method uses
pivots. The matrix A is progressively transformed into an upper triangular matrix with 1’s
on the diagonal. At any step of the algorithm, the pivot is the nonzero entry on the diagonal
of the current matrix used to annul the entries below it. A similar idea is used in the simplex
algorithm solving linear programs. In the simplex algorithm, during the pivot operation, a
column is added to a set called a basis and another column leaves the basis, leading to a fixed
cardinality for the basis. In this framework, pivoting becomes a combinatorial operation.
During the last decades, similar algorithms, maintaining a set of fixed size with elements
entering and leaving, have been succesfully applied for other problems in mathematical
programming. Their success relies on the simplicity of this idea, and also on some special
structures of the problems that have been progressively revealed. Pivoting algorithms also
appears naturally in some constructive proofs. One of the most famous example is Sperner’s
lemma providing a simple constructive proof of Brouwer’s theorem and which, by a slight
adaptation by Scarf, becomes a fully algorithmic proof of that same theorem with the help
of pivot operations.

The purpose of our paper is to provide a survey of these various applications and to
describe a simple framework inspired mainly by the work by Todd [63] and in which it is
quite easy to describe the ideas of pivoting. This framework may help researchers to build
their own pivoting algorithms for problems they meet. Some related open questions are also
stated.
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1.2. Some tools and notations. We give here the main definitions we need for the paper.
Other definitions, less used, are introduced when needed.

1.2.1. Set, vectors, and support. For a positive integer n, we denote by [n] the set {1, . . . , n}.
Given vectors a1,a2, . . . ,ak in Rd, their conic hull is the set of all vectors

∑k
i=1 λiai with

λi ≥ 0 for all i. Their convex hull is defined similarly, with the additional condition that∑k
i=1 λi = 1. For a vector x in Rd, the support of x, denoted supp(x), is the set {i ∈ [d] :

xi 6= 0}.

1.2.2. Simplicial complexes. A useful notion in the context of algorithms using pivot opera-
tions is that of (abstract) simplicial complex. An abstract simplicial complex K is a collection
of subsets of a given ground set V called its vertex set such that, for any σ ∈ K and τ ⊆ σ,
we have also τ ∈ K. It implies in particular that ∅ ∈ K. An element of K is called a simplex
or a face of K. We decide to consider ∅ as a simplex, but not all textbooks make this choice.

The dimension of a simplex σ, denoted dim(σ), is its cardinality minus 1: dim(σ) = |σ|−1.
A d-dimensional simplex is often simply called a d-simplex. The dimension of a simplicial
complex K is the maximal dimension of its faces: maxσ∈K dim(σ).

An abstract simplicial complex all maximal faces (for inclusion) of which have same car-
dinality is said to be pure. A pure d-dimensional abstract simplicial complex M such that
any face of dimension d − 1 is contained in one or two faces of dimension d is called a
pseudomanifold. The boundary of the pseudomanifold, denoted ∂M, is the collection of the
(d− 1)-dimensional faces contained in exactly one d-dimensional face.

A geometric simplex is the convex hull of affinely independent points. A collection of
geometric simplices such that (i) the face of any of them is still in the collection and (ii) the
intersection of any two geometric simplices is a face of both, is called a geometric simplicial
complex. We allow a face to be empty. The union of all simplices of a geometric simplicial
complex K is called its polyhedron and denoted ‖K‖.

The vertex sets of the geometric simplices of a geometric simplical complex form an ab-
stract simplicial complex of same dimension. The geometric simplicial complex is said to be
a realization of the abstract one. It is quite easy to show that any abstract simplicial com-
plex has a geometric realization. Geometric and abstract simplicial complexes are thus close
notions and the adjectives geometric and abstract are often omitted: the same simplicial
complex can sometimes be considered as abstract and sometimes as geometric, the context
being generally enough to decide which point of view is taken.

A triangulation of a topological space X is a geometric simplicial complex whose polyhe-
dron is homeomorphic to X.

1.2.3. Graphs. A graph is a pair (V,E), where V is the vertex set – or node set – and E
the edge set such that E ⊆

(
V
2

)
(set of unordered pairs of vertices). Using the traditional

terminology, this definition means that we assume the graphs to be simple and without loop.
An edge e = uv ∈ E is incident to the vertices u and v. The number of edges incident to a
vertex v is its degree and denoted deg(v). A path is a sequence

v0, e0, v1, . . . , ek−1, vk, with ei = vivi+1 ∈ E for all i = 0, . . . , k − 1.
2



The quantity k is then its length. If all edges ei are distinct, the path is said to be simple; if
all vertices vi are distinct, the path is said to be elementary.

A directed graph is a pair (V,A), where V is the vertex set – or node set – and A the arc
set such that A ⊆ V ×V (set of ordered pairs of vertices). Using the traditional terminology,
this definition means that we assume the graphs to be simple. We allow loop, which are
pairs of the form (v, v). An arc a = (u, v) ∈ A is incident to the vertices u and v. A directed
path is a sequence

v0, a0, v1, . . . , ak−1, vk, with ai = (vi, vi+1) ∈ A for all i = 0, . . . , k − 1.

The quantity k is then its length. If all arcs ai are distinct, the directed path is said to be
simple; if all vertices vi are distinct, the directed path is said to be elementary.

1.3. Plan. The paper is structured as follows. Section 2 gives two main examples we use
in the paper. We try to provide for each of them a full description, but we may omit some
technical details. At this stage, we do not try to see the common structures underlying
these two examples. Then, in Section 3, we describe combinatorial structures particularily
suitable to formalize pivot operations. These structures are called primoids and duoids.
In the same section, we reinterpret the examples in light of primoids and duoids and give
other examples. Section 4 is devoted to special cases of pivoting algorithms, the so-called
complementary pivoting algorithms, which appear when both a primoid and a duoid are
present. Some of the previous examples fit into the framework of complementary pivoting
algorithms. Complexity classes related to pivoting algorithm are given in Section 5. Section 6
gathers some generalizations and extensions of pivoting algorithms. We end with open
questions (Section 7).

2. Two main examples using pivots

2.1. Simplex algorithm. A linear optimization problem consists in solving

(1)
min c · x
s.t. Ax = b

x ∈ Rn
+,

where A is a m×n matrix of rank m. Linear optimization is one of the most important class
of optimization problems. It is one of the core techniques in operations research and finds
numerous applications in industry, logistics, supply-chain management, etc. It finds also
many applications in other areas of mathematics, especially in combinatorics. For example
of such applications, see the book by Chvátal [7] or the recent book by Matoušek and
Gärtner [41].

One of the most popular algorithms to solve such a problem is the simplex algorithm
designed in 1947 by Dantzig [11] and which works roughly as follows. We assume that b is
generic with respect to A, i.e. any solution x of Ax = b has at least m nonzero components.
It is not a restriction since one can slightly perturb b in such a way that if the problem (1)
is feasible, the new problem obtained with the perturbed b is still feasible.

The simplex algorithm uses the notion of feasible basis. A feasible basis of the pair (A, b)
is an m-cardinality subset J of [n] such that the m×m matrix AJ := (Aj)j∈J , where Aj is
the jth column of A, is nonsingular and A−1J b ∈ Rm

+ . A key property of linear optimization
is that given a feasible basis J and k ∈ [n] \ J , there is at most one feasible basis in J ∪ {k}
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distinct from J . Given a feasible basis J and a k ∈ [n] \ J , a pivot operation consists in
computing the other feasible basis in J ∪ {k} if there is one. If there is none, it implies that
the polyhedron {x ∈ Rn

+ : Ax = b} is unbounded.
Under the generic assumption on b, starting from a feasible basis and repeating pivot

operations in a suitable way (more or less in a greedy way) lead eventually to the optimal
solution of the problem if there is one. To prove this fact completely needs additional
results from linear optimization, especially that there is always an optimal solution of the
problem (1) of the form A−1J b with J a feasible basis. The missing details can be found in
the books cited above.

2.2. Sperner lemma. Sperner’s lemma is an important result in combinatorial topology.
It was originally proposed by Sperner [60] to obtain a simple and constructive proof of
Brouwer’s fixed-point theorem stating that any continuous map from a finite-dimensional
ball into itself has a fixed-point. Brouwer’s fixed-point theorem has numerous applications
in mathematics and economy. The relation between Sperner’s lemma and Brouwer’s theorem
can be found for instance in the recent book by De Longueville [12]. The original proof by
Sperner, even constructive, was not algorithmic. Motivated by concrete applications, Scarf,
inspired by the Lemke algorithm, proposed later an algorithmic proof [58], which is actually
a pivot-based one. It is an adaptation of his proof that is given below.

Sperner’s lemma itself has many applications, in game theory or in combinatorics. Cloutier,
Nyman, and Su [8] show for instance how to use it to prove the celebrated envy-free cake
division theorem by Neyman [50]. They propose also an extension of this theorem in the
case when there are two cakes or more. Aharoni and Hall [2] prove a very general sufficient
condition for the existence of a system of distinct representatives for a family of hyper-
graphs. Another nice application of the Sperner lemma is a theorem due to Monsky [46]:
any dissection of a rectangle into triangles of same area needs an even number of triangles.

Let T be a triangulation of a d-dimensional sphere Sd and let λ : V (T)→ {0, 1, . . . , d} be a
map assigning integers – or labels – between 0 and d to the vertices of the triangulation. One
of the multiple versions of Sperner’s lemma is the following theorem, proposed by Scarf [56].
A simplex of T whose vertices get pairwise distinct labels is said to be rainbow.

Theorem 2.1 (Sperner’s lemma). Let T be a triangulation of a d-dimensional sphere Sd
and let λ : V (T) → {0, 1, . . . , d}. If there is a rainbow d-simplex, there is at least another
rainbow d-simplex.

There are several proofs of this theorem. A quick one is given by elementary algebraic
topology. We describe it, assuming basic knowledges in algebraic topology, which may be
found in the book by Munkres [48] for instance. The map λ induces a simplicial map from
T to the d-dimensional simplex 4d. Assume for a contradiction that there is exactly one
rainbow d-simplex, then we would have, at the level of mod 2 chains, λ#(T ) = 4d, where T
is the sum of all d-simplices of T. This would lead a nonzero morphism for the dth homology
groups, which would contradict the vanishing homology of 4d.

Algorithmic proof of Theorem 2.1. Let σ0 be a rainbow d-simplex in T. Denote by v the
vertex of σ0 labeled by 0. Since T is a triangulation of a manifold, the (d − 1)-simplex
τ0 = σ0 \ {v} is contained in exactly one d-simplex distinct from σ0, i.e. there is exactly one
vertex u not in σ0 such that σ1 = σ0 \ {v} ∪ {u} is in T. Note that τ0 is rainbow and misses
label 0.

4
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Figure 1. Sperner’s lemma in dimension 2: A part of a path followed by the
algorithm finding a rainbow simplex

If σ1 is a rainbow d-simplex, we are done. If not, σ1 has exactly one facet τ1 distinct
from τ0 that is rainbow and misses label 0. Again, τ1 is contained in exactly one d-simplex
distinct from σ1. Call this new d-simplex σ2. Repeating this process provides a sequence
σ0, σ1, . . . , σk, . . . of d-simplices such that the intersection σk ∩ σk+1 of any consecutive d-
simplices is a rainbow (d− 1)-simplex missing label 0.

This algorithm does not cycle and ends at some other rainbow d-simplex for the following
reason. Consider the graph whose nodes are the d-simplices and whose edges connect two
d-simplices if their intersection is a rainbow (d − 1)-simplex missing label 0. A rainbow
d-simplex is a degree one node of this graph. A non-rainbow d-simplex having a rainbow
facet missing label 0 is of degree two. Any other d-simplex is of degree zero. The algorithm
generating the sequence σ0, σ1, . . . , σk, . . . starts at a degree one node of this graph and follows
a path in this graph as long it is possible to follow it. It necessarily ends at another degree
one node because the graph is finite. This other degree one node is a rainbow d-simplex
distinct from σ0. �

An example of a path followed by the algorithm is given in Figure 1.

3. What is pivoting?

We describe now a combinatorial framework in which it is possible to express the most
common algorithms using pivot operations in a generic way.

In this framework, there are two types of pivots: primal and dual. To define them properly,
we need the notions of primoid and duoid, introduced by Todd [63]. This terminology does
not seem to be used anymore, but they allow a simple description of the pivots. We slightly
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modify his definition to be able to deal with examples that would not fit otherwise into the
framework.

3.1. Primal pivot. A primoid is a collection P of subsets of a given ground set V (P), called
the vertex set, satisfying the following properties.

(i) If ω ∈ P and ρ ⊇ ω, then ρ ∈ P.
(ii) All minimal subsets for inclusion in P have same cardinality, called the rank of P and

denoted rk(P).
(iii) A subset ρ ∈ P of cardinality rk(P) + 1 contains one or two subsets of cardinality

rk(P) in P.

In his definition, Todd forbids the case when there is exactly one subset of cardinality rk(P)
in ρ. We call such a subset ρ ∈ P of cardinality rk(P) + 1 containing exactly one subset of
cardinality rk(P) a boundary subset.

Given a subset ω ∈ P of cardinality rk(P) and an element v /∈ ω, the pivot operation
consists in computing the other subset ω′ ∈ P of cardinality rk(P) contained in ω ∪ {v}, if it
exists. According to the definition of a primoid, there is at most one such subset ω′. Such
a pivot operation is said to be primal. Given ω ∈ P with |ω| = rk(P) and a vertex v not in
ω, we can therefore define the function PivotP(ω, v) that computes ω′ ∈ P \ {ω} such that
ω′ ⊆ ω ∪ {v} and |ω′| = |ω|, if it exists.

A pivoting algorithm is an algorithm repeating these pivot operations until there is no
such subset ω′ or until some special condition has been met (encoded as a function f : P→
{Y ES,NO}). In addition to the pivot, the algorithm requires a way for selecting the vertex
v. Given ω ∈ P with |ω| = rk(P), any function EnteringVertexP(·, ω) computing a vertex
v not in ω fully defines an algorithm. To give more flexibility, we allow a first term ρ in the
function, EnteringVertexP(ρ, ω), with ρ ⊇ ω and |ρ| = rk(P) + 1. We can then choose the
entering vertex in a more clever way.

Algorithm 1 is then the general algorithm using a primal pivot. As an input, it takes an
implicit description of a primoid. It means that we are able to test whether a given subset
of its vertex set is an element of it or not. It can also mean that we have the function
PivotP(·, ·) at our disposal. We use a subscript f in EnteringVertexP,f to indicate that
this function is in general designed in a way taking into account the function f .

3.2. Dual pivot. A duoid is a collection D of subsets of a given ground set V (D), called the
vertex set, satisfying the following properties.

(i) If σ ∈ D and τ ⊆ σ, then τ ∈ D.
(ii) All maximal subsets for inclusion in D have same cardinality, called the rank of D

and denoted rk(D).
(iii) A subset τ ∈ D of cardinality rk(D)−1 is contained in one or two subsets of cardinality

rk(D) in D.

In his definition, Todd forbids the case when there is exactly one subset of cardinality rk(D)
containing τ . We call such a subset τ ∈ D of cardinality rk(D)− 1 contained in exactly one
subset of cardinality rk(D) a boundary subset. Note that the notions of duoid and pseudo-
manifold coincide. The first name is used rather of the latter when pivots are present or to
emphasize the duality with a primoid. Indeed, a duoid is defined exactly as a primoid except
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input : An implicit description of a primoid P, an oracle f : P→ {Y ES,NO}, and an
initial subset ωini of cardinality rk(P)

output: A subset ω ∈ P such that f(ω) = Y ES or contained in a boundary subset

v ← EnteringVertexP,f (·, ωini);
ωcurr ← ωini;
ρcurr ← ωcurr ∪ {v};
while f(ωcurr) = NO and ρcurr is not boundary do

ωcurr ← PivotP(ωcurr, v);
v ← EnteringVertexP,f (ρ

curr, ωcurr);

ρcurr ← ωcurr ∪ {v};
end
return ωcurr;

Algorithm 1: Pivoting algorithm: primal

that ‘⊇’ is replaced by ‘⊆’, ‘minimal’ by ‘maximal’, and ‘rk(P) + 1’ by ‘rk(D)− 1’. There is
another way to see the duality between primal pivot and dual pivot, see Section 6.1.

Given a subset σ ∈ D of cardinality rk(D) and an element v ∈ σ, the pivot operation
consists in computing the other subset σ′ ∈ D of cardinality rk(D) containing σ \ {v}, if it
exists. According to the definition of a duoid, there is at most one such subset σ′. Such
a pivot operation is said to be dual. Given σ ∈ D with |σ| = rk(D) and a vertex v in σ,
we can therefore define the function PivotD(σ, v) which computes σ′ ∈ D \ {σ} such that
σ′ ⊇ σ \ {v} and |σ′| = |σ| if it exists.

A pivoting algorithm is an algorithm repeating these pivot operations until there is no
such subset σ′ or until some special condition has been met (encoded as a function f : D→
{Y ES,NO}). In addition to the pivot, the algorithm requires a way for selecting the vertex
v. Given σ ∈ D with |σ| = rk(D), any function LeavingVertexD(·, σ) computing a vertex v
in σ fully defines an algorithm. Again, we allow a first term τ ⊆ σ with |τ | = rk(D) − 1 in
the function, LeavingVertexD(τ, σ).

Algorithm 2 is the general algorithm using a dual pivot. We use a subscript f in LeavingVertexP,f
to indicate that this function is in general designed in a way taking into account the function
f .

3.3. Termination of the algorithms. In the form presented above, it is not possible to
prove that in general such algorithms terminate. It depends on the functions EnteringVertexP,f (·, ·)
and LeavingVertexD,f (·, ·). The best example for this is the simplex algorithm; its termina-
tion needs ad hoc arguments. In Section 4, a special version of these pivoting algorithms –
the complementary pivoting algorithms – is presented. A nice feature is that complementary
pivoting algorithms do not have this issue.

3.4. Back to the two main examples. We show now how the main examples of Sec-
tion 2 fit into the general framework of primoids and duoids and what are exactly the pivot
operations for them.
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input : An implicit description of a duoid D, an oracle f : D→ {Y ES,NO}, and an
initial subset σini of cardinality rk(D)

output: A subset σ ∈ D such that f(σ) = Y ES or having a boundary subset

v ← LeavingVertexD,f (·, σini);
σcurr ← σini;
τ curr ← σcurr \ {v};
while f(σcurr) = NO and τ curr is not boundary do

σcurr ← PivotD(σcurr, v);
v ← LeavingVertexD,f (τ

curr, σcurr);

τ curr ← σcurr \ {v};
end
return σcurr;

Algorithm 2: Pivoting algorithm: dual

3.4.1. Simplex algorithm. The underlying algorithm uses a primal pivot. The primoid P
has vertex set V (P) = [n]. A subset J ⊆ [n] is in P if AJ contains b in its conic hull –
we still assume genericity. We call P the primoid of the feasible bases of (A, b). Because of
genericity, if J ∈ P and |J | = m, the matrix AJ is nonsingular. The function f checks whether
cT[n]\J − cTJA

−1
J A[n]\J ≥ 0 (reduced costs). Indeed, a classical result in linear programming

ensures that an optimal solution has been found when the reduced costs are nonnegative.
Note that f is only applied on elements of P of cardinality m in Algorithm 1, so we do not
have to define it for the other elements of P. The function EnteringVertex is any “pivot
rule” according to the tradtional terminology of the simplex algorithm. Usually, it selects
the index of a negative component of the reduced costs. We refer to the survey by Terlaky
and Zhang for an overview of pivot rules [61].

3.4.2. Sperner lemma. The underlying algorithm uses a dual pivot. The duoid D is the
triangulation of the sphere. The function f checks whether σcurr is a rainbow d-simplex
distinct from σini. If the current d-simplex σcurr is not rainbow, there is exactly one label
appearing twice. The function LeavingVertex selects the vertex in τ curr with the label
appearing twice. For the first call to LeavingVertex, the vertex selected in σini is the one
with label 0.

In Section 4, we will see that actually a primoid and a duoid are present simultaneously.
This point of view will allow a more systematic interpretation of the proof given in Section 2.2.

3.5. Other examples. In this section, we describe four other examples fitting into our
framework. All of these four examples are famous and important in their field.

3.5.1. Lemke algorithm. A linear complementarity problem consists in solving

(2)
Ax + y = b
x · y = 0
x,y ∈ Rm

+ ,

where A is any m × m matrix. This problem generalizes the problem of finding a Nash
equilibrium in bimatrix games (see also Section 4.1 for another yet close formulation of
this problem). Any quadratic minimization problem can also be formulated as a linear
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complementarity problem (using Karush-Kuhn-Tucker conditions). Solving such problems
is therefore particularly important. The book by Cottle, Pang, and Stone [9] presents several
techniques for solving this problems and some applications.

A way for solving it is the use of an algorithm designed by Lemke [38] in 1965. If all
components of b are nonnegative, there is the obvious solution

x = 0 and y = b.

Otherwise, we use the intermediate problem, where e is the all one vector (1, . . . , 1) of Rm,

(3)

Ax + y − λe = b
x · y = 0
λ ∈ R+

x,y ∈ Rm
+ .

The linear complementarity problem consits then in finding a solution with λ = 0. Note
that Equation (3) has always an obvious solution when at least one of the components of b
is nonpositive

x = 0, λ = − min
i=1,...,m

bi, and y = b + λe.

Note also that such a solution satisfies moreover xi = yi = 0 for some i.
The Lemke algorithm uses the notion of feasible basis developped for linear optimization.

Let A′ be the m × (2m + 1) matrix [A, Im, e]. For sake of simplicity, we make the same
assumption as for the simplex algorithm described in Section 2.1: we assume that b is
generic with respect to A′, which means that any solution of A′z = b has at least m nonzero
components. This can be obtained by a slight perturbation of b.

Given a feasible basis J ⊆ [2m + 1] for (A′, b), there is at most one feasible basis in
J ∪ {k} distinct from J , whatever the index k /∈ J is. This is the well-known result in linear
optimization already mentioned in the description of the simplex algorithm. The Lemke
algorithm uses indices k = i or k = m+ i where i is the unique index such that xi = yi = 0,
the uniqueness of the index being a consequence of the genericity assumption. In this way,
computing the other feasible basis in J ∪ {k} – the pivot operation – if it exists, leads to a
new solution of problem (3), again with a unique index i such that xi = yi = 0. We repeat
these pivot operations until there in no other feasible basis in J ∪ {k} or until we reach a
solution with 2m+ 1 /∈ J , in which case we have found a solution of (2).

The algorithm does not cycle when we repeat the pivot operations. This fact will be
proven later in the paper, see Section 4. However, there is no insurance to finish with
a solution of the original problem (2). We may reach an infinite ray in the polyhedron
{z ∈ R2m+1

+ : A′z = b}, a fact that happens when there is no other feasible basis in J ∪{k}.
We see now how the algorithm described above fits into the framework of this section.

The algorithm uses a primal pivot, i.e. Algorithm 1. The primoid P has vertex set V (P) =
[2m+ 1]. A subset J ⊆ [2m+ 1] is in P if A′J contains b in its conic hull. It is the primoid of
the feasible bases of (A′, b). The function f checks whether λ = 0 for the basic solution, i.e.
2m + 1 /∈ J . The first subset ωini is {m + 1, . . . , 2m + 1} \ {̄i} where ī = arg mini=1,...,m bi.
The function EnteringVertex selects i such that xi = yi = 0, the entering vertex being i or
m + i, depending on whether i is already in ωcurr or not. The first call to EnteringVertex

selects ī. A subset J ∪ {k} containing no other feasible basis than J – leading to an infinite
ray – is a boundary subset of P.
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3.5.2. Fan lemma. As Sperner’s lemma, Fan’s lemma [20] is an important result in combi-
natorial topology. It is actually a combinatorial generalization of the Borsuk-Ulam theorem
and a generalization of Sperner’s lemma. It has an algorithmic proof based on a pivot ar-
gument in a similar spirit as for Sperner’s lemma. The Borsuk-Ulam theorem, which states
that there is no continuous map Sd → Sd−1 commuting with the central symmetry, has
numerous applications in mathematics, and even in combinatorics. As for the Brouwer theo-
rem, constructive or algorithmic proofs for this theorem are motivated by these applications.
Actually, a combinatorial version of the Borsuk-Ulam theorem was found before Fan proved
his lemma. It is Tucker’s lemma [65] – often named “Sperner’s lemma for the Borsuk-Ulam
theorem”– but Fan’s lemma is more general and maybe slightly easier to prove. The book
by Matoušek [40] shows the link between Tucker’s lemma and the Borsuk-Ulam theorem and
gives many examples of applications of this latter.

Let ei be the unit vector of Rk having a 1 at position i and 0 elsewhere. The k-dimensional
cross-polytope 3k is the convex hull of the 2k vectors ±ei. It can alternatively be defined as
the k-dimensional ball for the L1-norm:

3k =

{
(x1, . . . , xk) ∈ Rk :

k∑
i=1

|xi| ≤ 1

}
.

Its boundary is denoted ∂3k and is homeomorphic to Sk−1. The northern (resp. southern)
hemisphere of ∂3k is the set of its points having a nonnegative (resp. nonpositive) last
coordinate and is denoted ∂3k+ (resp. ∂3k−). Note that we can alternatively define the

northern hemisphere by {(x1, . . . , xk) ∈ Rk :
∑k

i=1 |xi| = 1 and xk ≥ 0} and the southern

hemisphere by {(x1, . . . , xk) ∈ Rk :
∑k

i=1 |xi| = 1 and xk ≤ 0}. The equator – intersection of

the northern and the southern hemispheres – is the set {(x1, . . . , xk−1, 0) ∈ Rk :
∑k−1

i=1 |xi| =
1}. Note that it is homeomorphic to Sk−2.
Theorem 3.1 (Fan’s lemma). Let T be a triangulation of ∂3d+1 that is symmetric with
respect to the origin. Let λ : V (T) → {−m,−(m − 1), . . . ,−1,+1, . . . ,+(m − 1),+m} be
a map assigning signed labels to the vertices of the triangulation for some positive integer
m, such that (i) λ(−v) = −λ(v) for all v ∈ V (T) and (ii) λ(u) + λ(v) 6= 0 for all adjacent
vertices u and v of T.

Then there is an odd number of simplices σ of T such that

λ(σ) = {−j0,+j1, . . . , (−1)d+1jd}
for some integers 1 ≤ j0 < j1 < . . . < jd ≤ m.

Tucker’s lemma is the special case when m = d+ 1. Sperner’s lemma is a consequence of
Fan’s lemma, using a simple trick, see [68].

There is a proof of Theorem 3.1 using algebraic topology given by Živaljević [68], but
it requires involved tools. This gives an additional interest to the following constructive
and pivot-based proof. Let us call minus-alternating a simplex having labels of the form
{−j0,+j1, . . . , (−1)d+1jd} for some integers j0 < j1 < . . . < jd, and plus-alternating a
simplex having labels of the form {+j0,−j1, . . . , (−1)djd}. An alternating simplex is minus-
alternating or plus-alternating. The proof is a slight adaptation of the algorithmic proof
proposed by Prescott and Su [54], itself being inspired by the algorithmic proof of Tucker’s
lemma by Freund and Todd [22].

10



Algorithmic proof of Theorem 3.1. The proof works by induction on d. For d = 0, the result
is obvious. Assume d ≥ 1. By induction, there is a minus-alternating (d− 1)-simplex τ0 on
the equator of the cross-polytope.

Let σ1 be the d-simplex in the northern hemisphere having τ0 as a facet. If σ1 is not
alternating, one can easily check that σ1 has exactly one other minus-alternating facet τ1.
The facet τ1 is contained in exactly one other d-simplex σ2 – pivot operation – and so on.
Repeating this process provides a sequence σ1, σ2, . . . , σk, . . . of d-simplices in the northern
hemisphere such that the intersection σk ∩ σk+1 of any consecutive d-simplices is a minus-
alternating (d− 1)-simplex.

The algorithm does not cycle and ends either at another minus-alternating (d−1)-simplex
on the equator, or at an alternating d-simplex. The argument is similar as for Sperner’s
lemma. Consider the graph whose nodes are the d-simplices of ∂3(d+1)+ and whose edges
connect two d-simplices sharing a common minus-alternating facet. The nodes of this graph
are of degree zero, one, or two. The degree one nodes are the d-simplices having a minus-
alternating facet on the equator and the alternating d-simplices. The degree two nodes are
the non-alternating d-simplices having a minus-alternating facet. Any other d-simplex is of
degree zero. The algorithm generating the sequence σ1, σ2, . . . , σk, . . . starts at a degree one
node of this graph and follows a path in this graph as long it is possible to follow it. It ends
necessarily at another degree one node, i.e. at a d-simplex having a minus-alternating facet
on the equator or at an alternating d-simplex.

Since the number of minus-alternating (d−1)-simplices on the equator is odd by induction,
the number of alternating d-simplices in the northern hemisphere is odd as well. Using the
symmetry with respect to the origin, we get that the total number of minus-alternating
simplices on the full boundary of 3d+1 is odd. �

In Section 4, we will see that as for Sperner’s lemma a primoid and a duoid are present
simultaneously, allowing a more systematic interpretation of the proof above.

An example of a path followed by the algorithm is given in Figure 2.
We see now how it fits into the framework of this section. The underlying algorithm uses a

dual pivot, i.e. Algorithm 2. The duoid D is the triangulation induced by T on ∂3(d+1)+. The
function f checks whether σcurr is an alternating d-simplex. The first subset σini is the σ1 in
the proof. If the current d-simplex σcurr is not alternating, there are two consecutive labels of
same sign when they are sorted by increasing absolute values. The function LeavingVertex

selects the vertex in τ curr with one of these labels.

Remark 3.2. The following more general version of Theorem 3.1 in which the cross-polytope
is replaced by any triangulated sphere is true, but requires additional work (see [42], [68]).

Theorem 3.3. Let T be a triangulation of the d-dimensional sphere Sd that is symmetric
with respect to the origin. Let λ : V (T) → {−m,−(m− 1), . . . ,−1,+1, . . . ,+(m− 1),+m}
be a map assigning signed labels to the vertices of the triangulation for some positive integer
m such that (i) λ(−v) = −λ(v) for all v ∈ V (T) and (ii) λ(u) + λ(v) 6= 0 for all adjacent
vertices u and v of T.

Then there is an odd number of simplices σ of T such that

λ(σ) = {−j0,+j1, . . . , (−1)d+1jd}
for some integers 1 ≤ j0 < j1 < . . . < jd ≤ m.

11
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Figure 2. Fan’s lemma in dimension 2: A part of a path followed by the
algorithm finding another boundary alternating simplex or an alternating 2-
simplex

3.5.3. Scarf lemma. In 1967, Scarf proved a combinatorial lemma in order to get his famous
result on the core of an n-person game [57]. Actually, Scarf showed in a following paper [56]
how to use his result to compute efficiently approximate fixed-point for continuous maps
from the ball into itself. It gives an alternative approach to what he proposed later with the
help of Sperner’s lemma, see Section 2.2.

In 1998, Aharoni and Holzman [3] found a surpising application of Scarf’s lemma in
combinatorics and provided a short and constructive proof of a conjecture by Berge and
Duchet on kernels and perfect graphs [4] proved a short time before by Boros and Gurvich [5].
New applications of Scarf’s lemma in combinatorics can be found in the paper of Aharoni
and Fleiner [1].

Given a m×n real matrix C, a subset J ⊆ [n] is said to be C-dominating if for any j ∈ [n]
there is a i ∈ [m] such that cij ≤ cik for all k ∈ J .

Theorem 3.4 (Scarf’s lemma). Let m < n be positive integers and b be a vector in Rm
+ .

Assume given two m × n matrices B = (bij) and C = (cij) satisfying the following three
properties: (i) the first m columns of B form an m ×m identity matrix, (ii) the set {x ∈
Rn

+ : Bx = b} is bounded, and (iii) cii ≤ cik ≤ cij for any i ∈ [m], i 6= j ∈ [m], and
k ∈ [n] \ [m]. Then there is a vector x in Rn

+ such that Bx = b and such that supp(x) is
C-dominating.

The proof uses the following lemma, which we do not prove (details can be found for
instance in [3]).

12



Lemma 3.5. If in each row of C all entries are different, the set

C = {J ⊆ [n] : J is C-dominating} ∪ {J ⊆ [m]}

is a pseudomanifold without boundary, i.e. a duoid without boundary.

C is called the domination complex of C.

Proof of Theorem 3.4. First, by a perturbation argument, we can assume that any solution
x of Bx = b has a support of cardinality ≥ m and that, in each row of C, all entries are
different.

The proof uses a pivot-based algorithm on the domination complex C defined in the lemma
above. We label each vertex j ∈ [n] of C with a label λ(j) equal to the jth column of B,
which we denote Bj. Proving Theorem 3.4 consists in proving that there exists σ ∈ C such
that λ(σ) contains b in its conic hull.

A key remark is that, under the assumption above, if λ(σ) contains b in its conic hull for
σ ⊆ [n] \ {1} with |σ| = m, then there is a unique m-subset J ⊆ σ ∪ {1} distinct of σ such
that λ(J) contains b in its conic hull. It is the same property used for the simplex algorithm.
Note that J is not necessarily a simplex of C, but that J \ {1} is included in σ.

The algorithm starts with the simplex σ0 = [m] of C. It selects then the facet τ0 of σ0
missing the label B1 = (1, 0, . . . , 0)T . In other words, τ0 is the (m − 2)-simplex of C equal
to [m] \ {1}. Note that λ(τ0) ∪ B1 contains b in its conic hull. According to Lemma 3.5,
there is a unique (m − 1)-simplex σ1 ∈ C distinct from σ0 containing τ0. This is the pivot
operation. λ(σ1) ∪B1 contains b in its conic hull. Thus, either λ(σ1) contains b in its conic
hull and we are done, or there is a unique facet τ1 of σ1 distinct from τ0 such that λ(τ1)∪B1

contains b in its conic hull. In this latter case, τ1 is contained in another (m − 1)-simplex
σ2 ∈ C. Again, either λ(σ2) contains b in its conic hull and we are done, or there is unique
facet τ2 of σ2 distinct from τ1 such that λ(τ2) ∪ B1 contains b in its conic hull. Repeating
this process provides a sequence σ0, . . . , σk, . . . of (m − 1)-simplices of C. In this sequence,
the intersection τk = σk ∩ σk+1 of any consecutive (m− 1)-simplices is such that λ(τk) ∪ B1

contains b in its conic hull.
Again, for similar reasons as for Sperner’s lemma, this algorithm cannot cycle. The graph

whose nodes are the (m− 1)-simplices of C and whose edges connect two (m− 1)-simplices
that are adjacent by the pivot operation is made of paths and cycles. The node corresponding
to the simplex [m] is of degree one. Therefore, the algorithm ends necessarily with a simplex
of C whose labels contain b in its conic hull, which is exactly what we want to prove. �

We see now how it fits into the framework of this section. The algorithm in the proof uses
a dual pivot, i.e. Algorithm 2. The duoid D is the domination complex C. The function
f checks whether the columns of B whose indices are in σcurr contain b in their conic hull.
The initial subset σini is [m]. The function LeavingVertex selects the vertex j such that
σcurr\{j} is not τ curr and such that the columns whose indices are in σcurr\{j}∪{1} contain
b in their conic hull. The initial call to LeavingVertex selects the vertex 1.

In Section 4, we will see that as for Fan’s lemma and Sperner’s lemma a primoid and
a duoid are present simultaneously allowing a more systematic interpretation of the proof
above.

13
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Figure 3. The pivot operation in the algorithm finding a second Hamiltonian path

3.5.4. Hamiltonian cycles in cubic graphs. Now comes the sole example which is not directly
topological or geometrical in nature. The following theorem is due to Smith, see [66], and
the proposed proof to Thomason [62].

Theorem 3.6. Let G be a cubic graph (i.e. all vertices are of degree three). If there is an
Hamiltonian cycle in G, then there is another one.

Proof. Let e = uv be an edge of G = (V,E) contained in the given Hamiltonian cycle C. We
define a lasso to be a subset F ⊆ E such that (V, F ) is a connected graph whose vertices
are all of degree two except exactly two vertices: one of degree one and the other of degree
three. A key remark is that a lasso contains exactly two Hamiltonian paths of G: each of
them obtained by deleting an edge incident to the degree 3 vertex.

Now, consider C \ e to which we add the edge not in C incident to v. It gives a first lasso.
This lasso contains a new Hamiltonian path P distinct of C \ e. Let w be the endpoint of
P distinct of u. We can add to P the edge incident to w that was not in the first lasso, in
order to get a new lasso, etc. This passage from a lasso to a new one is a pivot operation.
See Figure 3. The algorithm cannot cycle. Consider the (abstract) graph whose nodes are
the lassos and whose edges correspond to the pivot operation; this graph has all its nodes of
degree one or two, the first lasso giving a node of degree one.

We reach necessarily an Hamiltonian path such that adding the edge according to the
described procedure does not give a lasso, but gives instead an Hamiltonian cycle. �

We see now how it fits into the framework of this section. The algorithm in the proof
uses a dual pivot, i.e. Algorithm 2. The duoid D is the set of all lassos with u of degree
one, of all Hamiltonian cycles, and of all edge subsets of these sets. The function f checks
whether σcurr is an Hamiltonian cycle. σini is the first lasso in the proof. The function
LeavingVertex selects an edge incident to the degree three vertex and whose removal leads
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to an Hamiltonian path distinct from τ curr. The initial call to LeavingVertex selects the
arbitrarily chosen edge uv.

4. Complementary pivoting

4.1. Complementarity: problem and algorithm. For some problems, there are simul-
taneously a primoid and a duoid. Many of them are special cases of the complementarity
problem defined below. As we will see in the next subsection, the linear complementarity
problem or the existence of a rainbow d-simplex as in Sperner’s lemma are some special cases.

Complementarity problem

Input. A primoid P and a duoid D having same vertex set and same rank; a subset σ in
P ∩ D

Task. Find σ′ 6= σ in P ∩ D if it exists.

This problem can be solved by a complementary pivoting algorithm, which is fully described
in Algorithm 3.

input : Implicit descriptions of a primoid P and a duoid D having same vertex set V
and same rank; an initial subset σini in P ∩ D

output: A subset σ in P ∩ D with σ 6= σini or a boundary subset of P or D.

σprev ← σini;
pick u0 ∈ V ;
if u0 ∈ σini then

σcurr ← PivotD(σini, u0);
ωcurr ← σini;

else
ωcurr ← PivotP(σini, u0);
σcurr ← σini;

end
while (σcurr 6= ωcurr), (σcurr ∪ ωcurr) is not a boundary subset of P, and (σcurr ∩ ωcurr)
is not a boundary subset of D do

if σprev = σcurr then
σcurr ← PivotD(σcurr, σcurr \ ωcurr);

else
σprev ← σcurr;
ωcurr ← PivotP(ωcurr, σcurr \ ωcurr);

end
end
return σcurr;

Algorithm 3: Complementary pivoting algorithm

Note that the algorithm works for any choice of u0. Once P, D, and u0 are fixed, the
algorithm is fully described.
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Todd proved that the algorithm always finishes. The way for proving consists in introduc-
ing what Todd calls the fundamental graph [63], which we denote by G(P,D, u0). The nodes
are defined as the pairs (ω, σ) ∈ P× D such that

(i) ω and σ are of cardinality rk(P), and
(ii) ω ⊆ σ ∪ {u0}.

The edges are defined as follows. There is an edge between the node (ω, σ) and the node
(ω′, σ′) if any of the following conditions is satisfied

• ω = ω′ 6= σ and σ′ = PivotD(σ, σ \ ω).
• ω 6= σ = σ′ and ω′ = PivotP(ω, σ \ ω).
• ω = ω′ = σ and σ′ = PivotD(σ, u0).
• ω = σ = σ′ and ω′ = PivotP(ω, u0).

The pivot operations correspond to the edges of the graph G(P,D, u0) (conditions (i) and
(ii) above are still satisfied after such a pivot operation). The nodes of this graph are of
degree one or two. The degree one nodes correspond to pairs (ω, σ) with ω = σ or to pairs
(ω, σ) such that σ ∪ ω or σ ∩ ω is a boundary subset. The degree two nodes correspond to
the other pairs (ω, σ). Starting from a node (ω, σ) with ω = σ, the algorithm necessarily
reaches another pair (ω′, σ′) with ω′ = σ′, or reaches a boundary subset. We have therefore
the following theorem.

Theorem 4.1. A complementary pivoting algorithm always terminates.

The proof above gives actually another interesting result, based on the fact that the
number of odd degree nodes (here of degree one) in a graph is even.

Theorem 4.2. Let P and D be respectively a primoid and a duoid without boundary subsets.
If they have same rank and share the same vertex set, then the cardinality of P ∩ D is even.

Algorithm 3 can be seen as a special version of the algorithms of Section 3. If we see it
as an algorithm with primal pivot, the EnteringVertex function is given with the function
PivotD. The part

σcurr ← PivotD(σcurr, σcurr \ ωcurr)
in Algorithm 3 plays the role of

v ← EnteringVertexP,f (ρ
curr, ωcurr)

in Algorithm 1. Indeed, the vertex v used in PivotP is then σcurr \ ωcurr. The presence of
the duoid D provides a natural way to select the vertex for the primal pivoting algorithm.

If we see the complementary pivoting algorithm as an algorithm with dual pivot, the
LeavingVertex function is given with the function PivotP. The part

ωcurr ← PivotP(ωcurr, σcurr \ ωcurr)
plays the role of

v ← LeavingVertexD,f (τ
curr, σcurr)

in Algorithm 2. Indeed, the vertex v used in PivotD is then σcurr \ ωcurr. The presence of
the primoid P provides a natural way to select the vertex for the dual pivoting algorithm.
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The message of this final remark is the following: in the case when we have a complemen-
tarity problem, there are canonical LeavingVertex and EnteringVertex functions. The
LeavingVertex and EnteringVertex functions do not need to be defined.

4.2. Examples.

4.2.1. Lemke algorithm. The complementarity problem was originally introduced as an ab-
stract generalization of the linear complementarity problem by authors like Cottle and
Dantzig [10], Eaves [15], or Kuhn [35]. The linear complementarity problem is a special
case of the complementarity problem. Indeed, Equation (3) used when b has at least one
negative component – otherwise there is an obvious solution to the linear complementarity
problem – can be written

(4)

(
A
0T

)
x +

(
Im
0T

)
y − λ

(
e
1

)
− µ

(
0
1

)
=

(
b
β

)
x · y = 0
λ, µ ∈ R+

x,y ∈ Rm
+ ,

where β is an arbitrary number smaller than the smallest component of b. Again, we look
for a solution with λ = 0. Note that Equation (4) has always an obvious solution when at
least one of the components of b is nonpositive

(5) x = 0, λ = −β, µ = 0, and y = b− βe.
Define A′′ to be the (m+ 1)× (2m+ 2) matrix

A′′ =

(
A Im −e 0
0T 0T −1 −1

)
and b′′ ∈ Rm+1 by

b′′ =

(
b
β

)
.

Similarly as for the description of the Lemke algorithm in Section 3.5.1, we assume b′′ to be
generic with respect to A′′.

Let P be the primoid of the feasible bases of (A′′, b′′) and let D be defined as

D = {L : |L ∩ {i, i+m}| ≤ 1 for all i ∈ [m] and |L ∩ {2m+ 1, 2m+ 2}| ≤ 1}.
Note that D is homeomorphic to ∂3m+1 and that P is slightly different of that defined in
Section 3.5.1 for Lemke algorithm.

The solutions of the linear complementarity problem correspond to subsets in P∩D contain-
ing the element 2m+2. The initial subset σini provided by Equation (5) is {m+1, . . . , 2m+1}.
The original algorithm described in Section 3.5.1 is exactly Algorithm 3 with u0 = 2m + 2
provided that |β| is sufficiently large. If Algorithm 3 reaches a boundary subset in P or a
subset in P∩D not containing the element 2m+ 2, it means that the original algorithm has
reached an infinite ray. With a too small |β|, it can be checked that Algorithm 3 may reach
a subset in P ∩ D not containing 2m+ 2, whereas the original version of the algorithm does
not reach an infinite ray.

Note that we get with Theorem 4.1 a full proof of the termination of the Lemke algorithm.
17



4.2.2. Sperner lemma. The problem of finding another rainbow d-simplex can be formulated
as a complementarity problem with the same duoid D as in Section 3 – the triangulation of
the d-sphere. Let V be the vertex set. The suitable primoid P is the collection of all subsets
ω of V such that λ(ω) = {0, . . . , d}. The vertex u0 used for the algorithm is any vertex
labeled with 0.

4.2.3. Fan lemma. The problem of finding an alternating d-simplex in the framework of
Fan’s lemma, given a minus-alternating (d− 1)-simplex τ on the equator, can be formulated
as a complementarity problem. We explain how this formulation works. Let T+ be the
triangulation of ∂3(d+1)+ induced by T. We define V to be the vertex set of T+, plus a
dummy vertex u, with label λ(u) = (−1)(d+1)(m+ 1). We define

D = T+ ∪ {σ ∪ {u} : σ ∈ ∂T+}
and

P = {ω ⊆ V : ω contains an alternating set of cardinality d+ 1},
where an alternating set J is a set such that J = {v0, v1, . . . , vd} with |λ(vi)| < |λ(vi+1)| and
λ(vi)λ(vi+1) < 0 for all i = 0, . . . , d − 1. In this framework, σini is the subset τ ∪ {u}. The
vertex u0 used in the complementarity algorithm is the dummy vertex u.

Note that as in the proof given in Section 3.5.2, the algorithm ends either on an alternating
d-simplex of T, or on an alternating d-simplex of the form σ ∪ {u} with σ ∈ ∂T+. The
algorithm proposed by Prescott and Su [54] has not this drawback: it necessarily ends with
an alternating d-simplex of T. Their algorithm works with variable dimensions and knows
how to explore the boundaries of the hemispheres. A complementarity formulation for Fan’s
lemma with a similar property would be interesting.

4.2.4. Scarf lemma. The problem of finding an x as in Theorem 3.4 can be formulated as a
complementarity problem with D = C and P the primoid of the feasible bases of (B, b). The
vertex u0 is the integer 1.

4.2.5. Colorful linear programming. Let S1, S2, . . . , Sd+1 be d + 1 sets of points in Rd, each
of them of cardinality two. We assume that the points are in general position. A colorful
simplex is a set S ⊆ ⋃d+1

i=1 Si such that |S∩Si| ≤ 1 for i = 1, . . . , d+1. Meunier and Deza [45],
reformulating a result of [14] (the “Octahedron Lemma”), note that the number of colorful
simplices containing the origin in its convex hull is even. They describe a pivoting algorithm
finding another colorful simplex containing the origin, provided there is already one. This
result and the algorithm are special cases of the results of the present section: the collection
of all colorful simplices forms a duoid, while the collection of all subsets of

⋃d+1
i=1 Si containing

the origin in their convex hulls forms a primoid. Therefore, the problem of finding another
colorful simplex containing the origin in its convex hull is a complementarity problem.

5. Complexity aspects

5.1. A suitable complexity class. Suitable complexity classes for pivoting algorithm are
the PPA class and the PPAD class, defined by Papadimitriou in 1994 [53]. Recall that
a functional problem is a decision problem for which a certificate has to be computed in
addition to the answer ‘Yes’.

The PPA class is the class of functional problems that can be polynomially encoded as
a problem of the following form. We are given a polynomial-time computable function
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N defined on a set of objects O such that for each o ∈ O we have (i) N(o) ⊆ O, (ii)
|N(o)| ∈ {0, 1, 2}, and (iii) if o′ ∈ N(o) then o ∈ N(o′). The function N describes then
implicitely a path in an abstract graph. A problem in the PPA class can be polynomially
encoded as the problem: given an object o of degree one, i.e. such that |N(o)| = 1, find
another object of degree one.

The PPAD class is the class of functional problems that can be polynomially encoded as
a problem of the following form. We are given two polynomial-time computable functions
N−, N+ defined on a set of objectsO such that for each o ∈ O we have (i) N−(o), N+(o) ⊆ O,
(ii) |N−(o)|, |N+(o)| ∈ {0, 1}, and (iii) o′ ∈ N+(o) if and only if o ∈ N−(o′). The functions
N−, N+ describe then implicitely a directed path in an abstract graph. A problem in the
PPAD class can be polynomially encoded as the problem: given an object o such that
|N−(o)| + |N+(o)| = 1, find another such object. For obvious reasons, the PPAD class is
also called the END OF LINE class.

Note that we have PPAD⊆PPA. Moreover, there are complete problems for these classes,
see [53] for PPAD-complete problems and [27] for the only PPA-complete problem known so
far.

Several problems involving primoids or duoids fall in the PPA class. We have explained for
each example how to see the underlying algorithm in terms of a graph with degree one and
two nodes. The same encoding proves their belonging to the PPA class. Actually, except
the problem of finding another Hamiltonian cycle, they belong all to the PPAD class. In an
informal way, a PPA problem can be identified as a problem in PPAD when the following
occurs. Given the initial object oini and the final object ofin being the other endpoint of the
path in the abstract graph, we are able to say, for any object o′ on the oini-ofin path, which
object in N(o′) is in the direction of ofin. For the problem solved by Scarf’s algorithm, see
Section 3.5.3, the proof of its PPADness is not easy and can be found in [31].

Among the problems cited above, the linear complementarity problem and the problem
solved by Scarf’s algorithm are PPAD-complete. Given an implicit description of the tri-
angulation and the labeling, the problem of finding a rainbow simplex given a first one
as in Sperner’s lemma, or an alternating simplex, as in Fan’s lemma, are PPAD-complete
[6, 52, 53] even in the case of the 2-dimensional sphere. The complexity of finding a second
Hamiltonian path given a first one in a cubic graph is not known.

5.2. Length of the path. Another way for dealing with the complexity of problems solved
by pivoting algorithms consists in studying the number of pivot operations the algorithm
will proceed. Such a study has been particularly intense for the simplex algorithm, see e.g.
Klee and Minty [32], Jeroslow [30], Friedmann [23]. Up to now, all rules for selecting the
entering variable in the simplex algorithm lead to exponential number of pivots for some
instances. Whether there exists a pivot rule leading to a polynomial time simplex algorithm
is an open question.

Morris [47] have found a infinite family of polytopes for which the number of pivots
performed by the Lemke algorithm is exponential. More recently, a family of bimatrix
games instances leading also to an exponential number of pivots has been found by Savani
and von Stengel [55].

For the second Hamiltonian cycle problem, Krawczyk [33] exhibits a graph for which
Thomason algorithm needs an exponential number of pivots.
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6. Generalizations

6.1. Duality and complements. We have seen that primoids and duoids are ‘dual’ no-
tions. There is another way to link these notions. We have indeed

Given a duoid D with vertex set V , the set {ω ⊆ V : V \ ω ∈ D} is a primoid.
Given a primoid P with vertex set V , the set {σ ⊆ V : V \ σ ∈ P} is a duoid.

It allows to write the problems considered in the paper only in terms of primoids, or only
in terms of duoids. The actual trend is to use only duoids since they have a more natural
geometric interpretation: as it has already be noted, they are equivalent to pseudomanifold.
The complementarity problem stated in Section 4.1 can be reformulated as follows. Let
D1 and D2 be two duoids sharing the same vertex set V such that rk(D1) + rk(D2) = |V |.
Assume that we are given a pair (σ1, σ2) ∈ D1 × D2 such that σ1, σ2 is a partition of V .
Find another pair in D1 × D2 forming a partition of V , if it exists. Note that we can ex-
tend this problem for more than two duoids. We describe such a generalization in Section 6.2.

The complementarity problem stated in Section 4.1 can also be reformulated in terms
of primoids. Let P1 and P2 be two primoids sharing the same vertex set V such that
rk(P1) + rk(P2) = |V |. Assume that we are given a pair (ω1, ω2) ∈ P1 × P2 such that ω1, ω2

is a partition of V . Find another pair in P1 × P2 forming a partition of V , if it exists. The
formulation of the complementary problem with two primoids finds its interest for instance
in the context of bimatrix games, see the following remark.

Remark 6.1 (Nash equilibrium in bimatrix games and Lemke-Howson algorithm). Before
stating and proving the main result in this context, we review some basic notions in game
theory. The reader may consult the book by Osborne and Rubinstein [51] for more complete
explanations of these notions and an introduction to game theory.

Let A = (aij) and B = (bij) be two m× n matrices with real coefficients. They form the
input of a bimatrix game: a first player selects an index i in [m], while a second player selects
an index j in [n]. The payoff of first player is aij while the payoff of the second player is bij.
They both try to maximize their payoff.

A Nash equilibrium is a pair (i∗, j∗) such that

ai′j∗ ≤ ai∗j∗ for all i′ ∈ [m] and bi∗j′ ≤ bi∗j∗ for all j′ ∈ [n].

It models a situation in which no player is incitated to modify his choice. Nash equilibrium
does not necessarily exist. However, with the weaker notion of mixed Nash equilibirum we
explain now, existence is always ensured.

Let ∆k be the set of vectors x ∈ Rk
+ such that

∑k
i=1 xi = 1. A mixed Nash equilibrium is

a pair (y∗, z∗) with y∗ ∈ ∆m and z∗ ∈ ∆n such that

(6) y′TAz∗ ≤ y∗TAz∗ for all y′ ∈ ∆m and y∗TBz′ ≤ y∗TBz∗ for all z′ ∈ ∆n.

It models the situation when the players choose a probability distribution on their choice set
and then let chance decides.

In such a situation, there is always a mixed Nash equilibrium. It is a corollary of the
famous Nash theorem [49]. A proof of this special case finds a natural framework with the
complementarity problem formulated in terms of primoids. Let PA be the primoid of the
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bases of ([A, Im], (1, . . . , 1)T ):

PA = {ω ⊆ [n+m] : ∃x ∈ Rn+m
+ s.t. ω ⊇ supp(x) and [A, Im]x = (1, . . . , 1)T},

and PB be the primoid of the bases of ([In, B
T ], (1, . . . , 1)T ):

PB = {ω ⊆ [n+m] : ∃x ∈ Rn+m
+ s.t. ω ⊇ supp(x) and [In, B

T ]x = (1, . . . , 1)T}.
We can assume w.l.o.g. that (1, . . . , 1)T is generic with respect to the matrices A and B.
Moreover, the game does not change if the coefficients of any matrices are translated by a
same value; we can therefore assume that both A and B have nonnegative coefficients.

Note that ωA = {n + 1, . . . , n + m} ∈ PA and ωB = {1, . . . , n} ∈ PB form a partition of
[n+m]. Since both primoids are without boundary – a consequence of the nonnegativity of
A and B – Theorem 4.2 shows that there exists a pair (ω∗A, ω

∗
B) such that ω∗A ∈ PA \ {ωA}

and ω∗B ∈ PB \ {ωB}, forming a partition of [n + m]. Therefore there exist y, z̄ ∈ Rm
+ and

ȳ, z ∈ Rn
+ such that

Az + z̄ =

 1
...
1

 and ȳT + yTB = (1, . . . , 1)

and

supp(y) ∩ supp(z̄) = ∅ and supp(ȳ) ∩ supp(z) = ∅.
Since ω∗A 6= ωA and ω∗B 6= ωB, the vectors y and z are nonzero. It is then routine to check
that y∗ = y/||y||1 and z∗ = z/||z||1 provide a mixed Nash equilibrium, i.e. they satisfy
Equation (6).

Algorithm 3 in this context was first designed by Lemke and Howson in 1964, and is now
called the Lemke-Howson algorithm [39].

6.2. Euler complexes and semi-duoids. The parity plays a special role in the proof of
the results of Section 4. A natural way for generalizing duoid without boundary consists
in replacing the condition of being contained in two maximal subsets by the condition of
being contained in an even number of maximal subsets. Consider a pure simplicial complex
D of dimension d such that each d-subset of its vertex set is contained in an even number
of d-simplices. Todd [63] uses the name semi-duoids for these structures. They are now
more commonly called Euler complexes or oiks according to a terminology popularized by
Edmonds [18].

Remark 6.2. Using terminology from combinatorial topology, one can alternatively define
oiks, or semi-duoids, of rank d as cycles of some (d − 1)-dimensional simplicial complex.
Cycle is to be understood as the kernel of the usual boundary operator ∂ acting at the level
of chains.

Semi-primoids are generalization of primoids. They are obtained by replacing the condition
of containing zero or two subsets by the condition of containing an even number of subsets.
Similarly, they can be alternatively defined as the cocycles of some (d − 1)-dimensional
simplicial complex, where d is the rank of the semi-primoids. Here again, the terminology
is the one of combinatorial topology: cocycle is to be understood as the kernel of the usual
coboundary operator δ acting at the level of cochains.

21



Edmonds and Sanità in 2008 [19] defined the following problem, which generalizes the
complementarity problem by its use of semi-duoids instead of duoids and by the number of
duoids. Let D1, . . . ,D` be ` oiks sharing a same vertex set V . A room partition of (D1, . . . ,D`)
is an `-tuple (σ1, . . . , σ`) such that σi ∈ Di for i = 1, . . . , ` and σ1, . . . , σ` form a partition of V .

Generalized complementarity problem

Input. Oiks D1, . . . ,D` sharing the same vertex set V and such that
∑`

i=1 rk(Di) = |V |; a
room partition (σ1, . . . , σ`) of (D1, . . . ,D`).

Task. Find a room partition distinct from (σ1, . . . , σ`).

This problem has always a solution. It is a consequence of the following theorem by
Edmonds and Sanità proved in the same paper. Note that it generalizes Theorem 4.2.

Theorem 6.3. Let D1, . . . ,D` be oiks sharing the same vertex set V . If
∑`

i=1 rk(Di) = |V |,
then the number of room partitions is even.

The proof is very similar to the one of Theorem 4.2. It also consists in building a graph.
In general, this graph is not a path, even for ` = 2. However, its odd degree vertices are the
room partitions. Algorithms are still possible [63] – any algorithm for exploring a graph can
be used – but they require to save the already visited edges, which makes them less natural
as the one proposed for the complementarity problem.

6.3. Orientations in primoids, duoids, and oiks. Simplicial complexes can be oriented,
see the book by Munkres [48] for instance. It is also possible to define a notion of orientation
for primoids and duoids. It has be done in 1976 by Todd [64], and extended to oiks in 2012
by Végh and von Stengel [67]. Such approaches can be used for proving that some problems
belong to the PPAD class. It can also be useful to deal with the indices of equilibria in game
theory, see [59].

6.4. Polytopes instead of simplices. There is also a literature where the duoids, which
are simplical complexes, are replaced by other kinds of cell complexes.

6.4.1. Piecewise linear manifolds. The main example of such approaches is the method de-
velopped by Eaves [16] and Eaves and Saigal [17], inspired by the pionneer works by Scarf.
They lead to an active research on what is often known under the name “path-following”
method, see for the example the works by Garcia [24], Garcia and Zangwill [25, 26], van der
Laan and Talman [36, 37], Herings and van den Elzen [29].

Eaves and Saigal extend the pivoting algorithm for manifolds subdivided into polyhedral
cells. Such a complex M is called a PL manifold (PL stands for “piecewise linear”). Denoting
‖M‖ the union of all cells in M, we assume given a map H : ‖M‖ → Rd−1, where d is
the dimension of M. This map is supposed to be affine on each cell σ of M. Assuming
nondegeneracy, a cell σ is said to be fully labeled if σ∩H−1(0) is nonempty. The usual purpose
in this framework is: given a fully-labeled boundary cell of M, find another fully-labeled
boundary cell. The algorithm produces a polygonal path from a fully-labeled boundary cell
to another fully-labeled boundary cell. This path is contained in H−1(0). The operation
consisting in going from a cell to an adjacent cell along this path is the pivot operation.
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We show now how this approach fits into the framework presented in the present sur-
vey. If M is a d-dimensional pseudomanifold, i.e. cells are simplices, this problem is a
complementarity problem: add a dummy vertex u completing all boundary simplices of M
in order to get a pseudomanifold M without boundary; denote by V the set of all vertices
of M; define a map H : ‖M‖ → Rd, affine on each cells of the completed pseudomanifold,
such that H(x) = (H(x), 1) for x ∈ ‖M‖ and H(u) = (0, . . . , 0,−1); define D = M and
P = {σ ⊆ V : 0 ∈ H(σ)}. The problem of finding a fully-labeled cell is a complementarity
problem. We can then use Algorithm 3. Taking u0 as the dummy vertex u, one can see that
the pivot operations coincide.

6.4.2. Cubical complexes. There are also papers focusing on cubical complexes. Kuhn [34]
and Wolsey [69] study versions of Sperner’s lemma where the simplices are replaced by cubes.
The pivot operation consists in going from a cube to another cube sharing a common facet.
One of the versions studied by Wolsey is a theorem by Fan [21] involving cubical vertex maps,
which are counterpart of simplicial maps for cubical complexes. It is worth noting since the
labeling used in Sperner’s lemma, Fan’s lemma, and Scarf’s lemma can be interpreted as
simplicial maps. Meunier [44] gives an algorithmic and pivot-based proof of another theorem
by Fan, in the same paper [21], which is a cubical version of Theorem 3.1. The labeling used
in this version is also a cubical vertex map. Again, the pivot operation consists in going
from a cube to another cube sharing a common facet.

7. Open questions

A first open question, already outlined, is whether it is possible to find a complementarity
formulation of Fan’s theorem that would allow to design a complementary algorithm finding
an alternating d-simplex, see Section 4.2.3.

Fan’s lemma uses signed integers. The signs are − and +. Generalizations involving more
than two signs have been proposed by De Longueville and Živaljević [13] for Tucker’s lemma,
and Lange et al. [28] and Meunier [43] for the full version of Fan’s lemma. The signs are
seen as elements of Zp. In their paper, De Longueville and Živaljević raise the question
of a constructive proof for their Zp-generalization of Tucker’s lemma. A straightforward
adaptation of the technics presented in the present survey would lead to a fundamental
graph similar to the one of Section 4, but with some nodes of degree p, and other of degree
one or two. Again, as for the generalized complementarity problems with oiks, an exploration
of the graph would require to store the already visited edges. An algorithm without this
drawback remains to be designed for these problems.

Finally, whether the second Hamiltonian cycle problem can be formulated as a comple-
mentarity problem is another open question.

Acknowledgement. The author thanks Thomas Pradeau and Pauline Sarrabezolles for
their useful remarks.
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