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Abstract  
Being able to automatically mesh composite geometry is an important issue in the context of CAD-FEA 

integration. In some specific contexts of this integration, such as using virtual topology or Meshing Constraints 
Topology (MCT), it is even a key requirement. In this paper, we present a new approach to automatic mesh 
generation over composite geometry. The proposed mesh generation approach is based on a generalization of 
the advancing front method (AFM) over curved surfaces. The adaptation of the AFM to composite faces 
(composed of multiple B-Rep faces), involves the computation of complex paths along these B-Rep faces, on 
which progression of the advancing front is based. Each mesh segment or mesh triangle generated through this 
progression on composite geometry is likely to lie on multiple B-Rep faces and is, by the way, likely to be 
associated with a composite definition across multiple parametric spaces. Collision tests between new front 
segments and existing mesh elements also require specific and significant adaptations of the AFM since a given 
front segment is also likely to lie on multiple B-Rep faces. This new mesh generation approach is presented in 
the context of MCT, which requires being able to handle composite geometry along with non-manifold boundary 
configurations, such as edges and vertices lying in the interior domain of B-Rep faces. 
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1. Introduction  

Progresses towards a better integration between Finite Element Analysis (FEA) and 

Computer Aided Design (CAD) has greatly reduced the median time requirements to prepare 

FEA models [1]. One of the key steps in the integration between CAD and FEA is automatic 

surface meshing because, in most approaches, filling the FEA domain with volume elements 

(tetrahedrons or hexahedrons) is based on a previous discretization of the domain’s boundary 

and because the quality of this discretization has a major effect on the quality of the resulting 

3D mesh with volume elements and on the reliability of the FEA solution. Surface meshing 

[2-10] has been investigated by many researchers for the last twenty years. It can basically be 

performed either on a collection of trimmed parametric patches (like when meshing the faces 

of a B-Rep model) or on a tessellated representation of geometry (a STL file for example) and 

it can either be directly generated on surfaces in 3D or indirectly generated in the parametric 

space and then mapped in 3D [11]. However, the automatic generation of surface meshes 

from CAD models and by the way the integration between FEA and CAD still faces several 

problems, especially  when these CAD models feature many small shape details, and when 

their Boundary Representation (B-Rep) contains a large number of faces, many of them being 

eventually much smaller than the desired FE size. Such configurations are likely to be at the 

origin of either poorly-shaped elements and/or over-densified elements, not only increasing 

the analysis time, but also producing poor simulation results or meshes incompatible with 
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solver requirements. Applying geometry simplification and virtual topology techniques to 

these configurations has proven to be a very interesting option.  

 

Efforts have been made, aimed at avoiding poorly-shaped elements and over-densified 

mesh elements generated from raw CAD models [12-16]. In these approaches, well-known 

mesh topological transformations perform mesh element removal (e.g. decimation of surface 

meshes) or collapsing faces of tetrahedrons to remove these tetrahedrons. These 

transformations can be applied on the mesh itself or on a discrete representation of geometry 

as proposed in [17]. One limitation of these operators holds in the fact that collapsing 

operations are not intrinsically suited for the removal of through holes, which makes that 

these operators require complex extensions when applied to real life industrial parts. 

Therefore, removing holes may require specific processing such as manually removing these 

details in the CAD model. Element distortion (poorly-shaped elements) and over-densified 

mesh elements are also closely related to the input mesh sizing objectives. Setting up 

appropriate mesh sizing objectives [18-20] can actually contribute to lower elements 

distortion and to avoid over-densified mesh elements.   

 

Other approaches consist of adapting CAD models directly. For example, feature 

recognition and extraction processes can be intended to simplify details like fillets and blends 

[21-22], bosses, pockets [23] and holes. Some of these approaches generate tree-structured 

simplified models, where each simplification is identified as a feature. Lee et al. [24] propose 

a feature removal technique which starts from a feature tree and provides the ability to 

suppress, and subsequently reinstate features, independently from the order in which they 

were suppressed, within defined limitations. Another alternative is applying geometry 

transformation with the use of CAD kernel operators aimed at locally modifying the topology 

and/or underlying geometry in the Boundary representation (B-Rep) model [22-23, 25].  

Overall, these approaches manage a restricted set of feature types and interactions between 

features remains a major issue. Moreover, even recognized features are often difficult to 

suppress, which makes these approaches non-robust and very restrictive when used alone. 

Nevertheless, these approaches are efficient when used to remove holes and bosses prior to 

mesh simplification. A very good survey of simplification techniques can be found in [26]. 

  

However, feature suppression does not guarantee that the object’s boundary decomposition 

can be directly used for automatic mesh generation purposes. In this context, virtual topology 

techniques (also referred to as virtual geometry in some papers) can be applied afterwards 

with the objective of adapting the boundary decomposition to the requirements of automatic 

mesh generation. Virtual topology approaches proposed by Sheffer et al. [27-28], Inoue et al. 

[29], Wei [30] and Tautges [31] are aimed at the edition of the B-Rep definition of a CAD 

model to produce a new topology, which is more suited to mesh generation constraints and 

which contributes to avoid poorly-shaped and over-densified mesh elements. These 

approaches implement split and merge operators aimed at clustering adjacent faces into nearly 

planar regions in order to generate a new B-Rep topology, which is better suited to mesh 

generation, while preserving its geometry. However, face clustering algorithms show 

limitations in the context of FE models preparation: they do not support the definition of 

edges and vertices interior to faces, while these non-manifold surface configurations are 

required for various needs (modelling boundary conditions, taking into account specific 

features and sharp curves lying inside faces). 

 

Toward the objective of overcoming the limitations of virtual topology, we have introduced 

Meshing Constraints Topology (MCT) concepts [32] in a previous work. One of the basic and 
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most important features of MCT is that it enables non-manifold surface transformations: edge 

deletion, vertex deletion, edge splitting, edge to vertex collapsing, vertices merging. Starting 

from a given B-Rep model to be meshed, generating the MCT is based on a local analysis of 

B-Rep faces and edges with regard to mesh generation constraints (local face width, normal 

vector deviation across edges, etc.). An interesting feature of the MCT is that it enables the 

definition of interior edges and vertices on B-Rep faces when required. As described with 

more details in the next sections, MCT models are basically defined using composite 

geometry. For instance, a composite face (referred to in our work as an MC face) is defined as 

a set of adjacent faces in the input B-Rep structure, each of which associated with an 

underlying surface and its parametric definition. Consequently, meshing models that have 

been processed with MCT concepts requires the ability of automatically generating finite 

elements across composite geometry (typically composite edges and faces). At this point, 

mesh generation techniques aimed at handling composite surfaces are based on the following 

two main approaches: 

 

The first approach is computing a global parameterization [33-34]: this basically consists of 

defining a bijective mapping between any point inside sets of surface patches and a global 

parametric domain. The bijective transformations proposed in  [33-34] are both based on a 

cellular decomposition of each reference (non-composite) surface mapped into the global 

parametric space. Each cell is associated with a specific mapping to a reference surface 

image, and with a global parametric space image. Any point of a cell in the global parametric 

space is represented using its barycentric coordinates, and projected in the equivalent cell of 

the corresponding reference surface using the same barycentric coordinates. This new 

parameterization enables a natural and transparent use of parametric meshing schemes. 

Unfortunately, this type of approach is limited because: 

• It is restricted to open and non-periodic surfaces: this method can only be applied to 

open surfaces (homeomorphic to a disc), but not to periodic surfaces and closed 

surfaces homeomorphic to an n-torus. 

• It is restricted to smooth and nearly planar domains: the parametric domain of 

distorted surfaces may cause high variations in the global parameterization metrics due 

to the surface embedding, and often results, either in failures during mesh generation 

or highly distorted meshes [33]. 

• Identifying the outer loops of composite faces is not automatic. 

 

The second approach consists of using direct 3D advancing front techniques on a 

tessellated (triangulated) model of composite surfaces [10]. This type of approach also shows 

significant limitations because: 

• Deviation of the final triangulation from the input model depends on the tessellation’s 

accuracy. 

• More sophisticated discrete representations such as subdivision surfaces and higher 

order triangulations allow curved mesh generation but still generate approximation 

errors. 

 

In order to overcome these limitations, this paper introduces a new approach to automatic 

mesh generation over composite surfaces, which is based on an adaptation of the advancing 

front method (AFM) over curved surfaces [5, 8, 10, 35-38]. The AFM [5, 7-8, 10, 35-41] is a 

very common automatic mesh generation technique and the main features of its adaptation to 

the context of composite surfaces are: 
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• Elements needs to be generated across multiple parametric surfaces: advancing front 

propagation thus needs to be adapted through the extension to composite surfaces of 

propagation direction, propagation length, and target point calculations, 

• Every mesh entity is associated with its image in each component (reference entity) of the 

composite surface, 

• Intersection tests between 3D segments are performed in the parametric domain of their 

images. 

 

The paper is structured as follows: 

• Section 2 presents the context of adapting CAD models for FEA and introduces 

Meshing Constraints Topology (MCT), which is one of the key inputs of the mesh 

generation process presented in this paper. 

• Section 3 briefly reviews the main steps involved in the Advancing Front Method 

(AFM) applied to automatic mesh generation over parametric surfaces.  

• Section 4 presents the extension (data-structures and algorithms) of the AFM, in the 

context of mesh generation over composite geometry, which is the core of this paper.  

• Section 5 illustrates the potential and efficiency of the method proposed through the 

presentation of mesh quality improvements obtained on several practical examples. 

2. Adapting CAD models for meshing 

2.1. Setting a finite element size map 

The general context of the present work is performing, as efficiently and quickly as possible, a 

FEA from the input of a detailed CAD model. This detailed CAD model is intended for 

product definition purposes and not for FEA purposes, which implies that modifications and 

simplifications are likely to be applied on this model before FEA. Also, prior to FEA itself, 

the analyst must specify mechanical hypotheses and boundary conditions on the CAD model 

(i.e. materials, loads and restraints). The analyst also needs to specify an objective with regard 

to the desired analysis accuracy. In a priori adaptive meshing, based on his FEA skills and 

experience, the analyst specifies a FE size map that is adapted to both the geometry and the 

FEA objective. This size map can either be rough (to quickly obtain an approximate solution) 

or featuring a certain degree of adaptive refinement (to obtain accurate results in zones of 

interest). This FE size map is a central issue in our automatic feature removal and topology 

adaptation processes because it represents the analyst’s intent with regard to the size of shape 

features that can be neglected for analysis purposes. This size map is likely to vary 

significantly throughout the analysis domain, depending on where the zones of interest are 

located and it is consistent with the specification of a clear analysis objective. The automatic 

feature removal and topology adaptation processes are strongly driven by this FE size map.      

2.2. CAD details causing mesh inconsistencies 

Trying to generate a mesh with large elements on a CAD model featuring rather small 

entities, i.e. an over-detailed model, leads non-convergence or to the generation of sliver (very 

flat) elements. Automatically meshing CAD models is typically performed through three 

steps, which are is closely related to the B-Rep structure’s hierarchy. At first, edges are 

discretized with sets of mesh segments, whose lengths are consistent with the FE size map. 

Then, a triangulation algorithm fills the interior of each B-Rep face with triangles; the 
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triangulation is constrained by the prior discretization of edges mesh and is also consistent 

with the FE size map required. Processing the entire B-Rep of a given part results in a closed 

triangulation of its boundary. The last step consists of using a tetrahedrization algorithm to fill 

the closed triangulation with tetrahedrons, consistently with the FE size map as for the 

discretization of edges and faces. Consequently, due to the fact that standard meshing 

procedures are constrained by the B-Rep topology (the mesh is constrained by all B-Rep 

edges) when trying to mesh an over-detailed CAD model, it results in the following mesh 

inconsistencies: 

• Mesh over-densities: e.g. small triangles are propagated from tiny segments generated on 

tiny edges of the B-Rep (see Fig. 1), 

• Poorly-shaped elements: e.g. sliver triangles are originated from small segments and narrow 

faces (see Fig. 1). 

Sliver triangles Mesh over−densitiesNarrow faces

 
Fig. 1. Example of narrow faces and small edges leading to sliver triangles or mesh over-densities 

 

2.3. A three step approach to the automatic adaptation of CAD for FEA 

(a) Initial model
(b) Feature removal

(c) MCT adaptation (d) Mesh generation

 
Fig. 1. Preparation of a CAD model for mesh generation 

 

We present a fully automated adaptation process, which is intended to improve the efficiency 

and speed of preparing CAD models for FEA. The automatic simplification criteria used are 

based on the imposed size map and the process takes place through the following three steps: 

• Step1- Feature removal: CAD design features (holes, fillets, pockets and protrusions) that 

are too small (with respect to the imposed size map) to affect analysis results in zones of 

interest are automatically identified as shape details (see fig. 1(b)). Two types of operations 

are used to remove these details automatically:  

(a) Suppressing features directly in the CAD feature-tree: this applies for details that have 

been designed as features, and for which suppression does not affect any other feature. 

(b) Using delete-face type operators: this type of operators performs the elimination of 

selected faces and the reconstruction of a closed solid envelope by filling holes [23-

24]. 
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• Step2- MCT adaptation: the B-Rep topology obtained after feature removal usually requires 

additional preparation for mesh generation. Indeed, small edges and narrow faces must be 

transformed to avoid over-constraining mesh generation as mentioned above. MCT 

operators and criteria based on adjacency hypergraphs [32, 42] have been designed for the 

automatic adaptation of B-Rep topology (see fig. 1(c)): 

° MCT criteria, based on the size map and taking into account zones where boundary 

conditions are applied, automatically identify which MCT operations are required from 

the following:  

− Removing irrelevant edges (located in narrow faces or planar surfaces) using edge 

deletion.  

− Removing irrelevant vertices (located on small edges or smooth curves) using vertex 

deletion or edge contraction.  

− Collapsing constricted sections of faces by merging vertices. 

° MCT operators are then automatically applied by editing the MCT topology hypergraphs 

and their underlying geometry [32]: edge and vertex deletion, edge splitting, edge to 

vertex collapsing. 

• Step3-Meshing the MCT model: a mesh is automatically generated from the MCT model 

(see fig. 1(d)) using the AFM. The AFM is first initialized by discretizing MC edges (which 

are composite edges). Then the mesh is propagated inside MC faces (composite faces). The 

detailed description of this automatic mesh generation process is the core of this paper. 

2.4. Meshing Constraints Topology (MCT) 

 
Fig. 2. (left) the MCT composition diagram (right) reference topology composition diagram 

 

As introduced in the previous paragraph, MCT adaptation basically consists in adapting the 

B-Rep topology to the requirements of mesh generation. Thus, MCT (see reference [32] for a 

detailed description) basically appears as an enhanced B-Rep structure, featuring MC entities, 

which are fundamentally composite entities. As for classical B-Rep structures, a MCT model 

includes a full description of the entities orientation and topological links, as shown in fig. 2.  

 

In the MCT, topological links between i-manifold MC entities and j-manifold MC entities (i ∈  

[1,2] and j < i) are represented by adjacency hypergraphs referenced as G.i.j:  



 7

• G.2.1 is the face-edge adjacency hypergraph where:  

• each node represents a MC face  

• each arc is a MC edge connecting a set of MC faces; 

• G.2.0 is the face-vertex adjacency hypergraph where:  

• each node represents a MC face  

• each arc is a MC vertex connecting a set of MC faces; 

• G.1.0 is the edge-vertex adjacency hypergraph where:  

• each node represents a MC edge 

• each arc is a MC vertex connecting a set of MC edges. 

 

MCT entities (opposed to reference entities) are defined as outlined below: 

  

Definitions 
The reference model is the B-Rep model obtained after performing the first step of the 
process presented above (after feature removal and prior to topology adaptation). 
Reference entities (namely reference face, reference edge, reference vertex) are topological 
entities of the reference model. Their underlying geometry is represented through a single 
mathematical definition: 
• the surface underlying a reference face is a Riemannian surface, i.e. a plane, a sphere, a 

torus, a NURBS, etc 
• the curve underlying a reference edge is a Riemannian curve, i.e. a line, a circle, an ellipse, 

a NURBS, etc 
MCT entities (namely MC face, MC edge, MC vertex) are topological entities representing 
meshing constraints. Their underlying geometry is composite, and represented through a set 
of adjacent reference entities: 
• The composite surface underlying a MC face is defined as the union of its reference faces, 
• The composite curve underlying a MC edge is defined as the union of its reference edges, 
• The point underlying a MC vertex is simply a point coinciding with an underlying reference 

vertex. 
 

Thus, unlike usual B-Rep curves and surfaces, Composite curves and Composite surfaces can 

feature tangency and curvature discontinuities. Fig. 3 illustrates a MC edge composed of a set 

of two adjacent reference edges. It is worth noting MC Edges and MC vertices can be located 

on the interior of a MC face (see Fig. 4).  

 

V1

V2

V3

Reference model

E1

E1 E2

E2

V2V1 V3

V1 V3

MCT model

{E1,E2}

V1 V3

Geometry

Topology

{E1,E2}

 
Fig. 3. (a) The geometry and topology of two adjacent edges in the reference model. (b) The geometry 

and topology of the MCT model obtained by merging edges E1 and E2. 
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Fig. 4. MC face featuring interior MC edges (interior and dangling), and one interior MC vertex. 

 

3. The Advancing Front Method (AFM)  

This section briefly reviews the main steps involved in the AFM when applied to mesh 

generation over parametric surfaces (see ref [5]). Section 4 will present the adaptation of this 

classical scheme in the context of mesh generation over composite surfaces. 

 

Meshing a B-Rep model with the classical AFM scheme is achieved through four main steps. 

These steps are closely related to the B-Rep structure. At first, nodes are generated on the 

vertices of the B-Rep structure, which is followed by the discretization of B-Rep edges 

(second step). The third step consists of extracting, from the former results and for each B-

Rep face, the discretization of its bounding loops. This initiates the application of the AFM to 

the triangulation of B-Rep faces which finally leads to a closed triangulation of the CAD 

model’s boundary. The tetrahedrization scheme (fourth step) completes the process and at the 

end, this closed triangulation is totally filled with tetrahedrons. 

 

When the B-Rep is triangulated, each B-Rep face is triangulated independently by 

propagating triangles from the discretization of its bounding loops. For a given face, the 

triangulation stops when the face is completely filled with triangles. For each face, this 

triangulation process starts with an initial front that is composed with segments issued from 

the discretization of the face’s bounding loops. Along the whole process, each front segment 

is oriented and defined by two nodes (Pi and Pi+1 for the i
th

 segment). Starting from the initial 

front, a recursive process is applied for which, at each step, one (two in some cases) triangle is 

propagated from one (or two) of the current front segment PiPi+1 (usually the smallest front 

segment), which is followed by updating the advancing front consistently with the generation 

of a (or two) new triangles. At each step, the local front configuration for candidate front 

segment PiPi+1 is analysed with respect to 6 possible configurations (as illustrated in Fig. 5). 

Then, one of 6 operators is applied, consistently with the local configuration. The first five 

local configurations and associated operators only use existing nodes while a new node is 

likely to be created when using the sixth operator. The first operator applies when the front is 

reduced to 3 segments (see configuration #1 in Fig. 5). In this case, a triangle is simply 

generated from these 3 segments. Similarly, when the front is reduced to a cavity bounded by 

4 segments (see configuration #2 in Fig. 5), two triangles are generated by creating a diagonal 

segment. The alternative generating two triangles with the highest quality is chosen (out of 
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two possible diagonals). For configurations #3 to #6, angles α1 and α2 between PiPi+1 and its 

previous (Pi-1Pi) and next (Pi+1Pi+2) front neighbours are considered. The criterion used is that 

a cavity in the front has to be filled with triangles if a segment features an angle that is smaller 

than 80° with one of its neighbours (see configurations #3 to #5 in Fig. 5). For configuration 

#3, the alternative (out of two possible diagonals) resulting in the highest triangle quality is 

also chosen. 

 

Generated

triangles

Configuration

of the 

candidate front

1 2 3 4 5 6
< 80°

< 80°

< 80°

> 80° < 80°

> 80° > 80°

> 80°3−cycle 4−cycle

 
Fig. 5. The 6 front configurations and their specific triangulation process 

 

The last configuration corresponds to the case where a new node (referred to as a candidate 

node) needs to be considered, and eventually created, from candidate segment PiPi+1. The 

optimal position Popt for this candidate node is defined as follows: starting from PM, the 

middle of PiPi+1, Popt is located so that segment PMPopt is perpendicular to PiPi+1 and that the 

curvilinear distance d from PM to Popt is: 

( )1)(2/3 +⋅+⋅⋅= iisMT wHwd PPP  

where wT  and ws are two weights with wT + ws = 1   

H(P) represents the target size (the FE size map) at location PM. 

P
MP

i
P

i+1

P
opt

d

 
Fig. 6. Optimal point location for triangle generation 

 

Thus, d reflects a compromise made between element shape and element size requirements 

which can be contradictory (see fig. 6). wT controls respecting the size map while wS controls 

generating elements with a good aspect ratio (the optimal aspect ratio being for an equilateral 

triangle where 
1

2/3 +⋅= iid PP ). Past experience has shown that (wT, wS)=(0.65, 0.35) is a 

good practical compromise between these two requirements. 

In the case where an existing node PF is close enough to Popt (see Fig. 7), then the triangle (Pi 

Pi+1 PF) is generated instead of (Pi Pi+1 Popt). When several existing nodes are found around 

Popt,  PF is chosen as the closest point to Popt. The details about the way vicinity between PF 

and Popt is computed can be found in [43]. 

Collision detection tests, before validating each triangle creation, are required to avoid 

overlapping triangles. The front is updated at each step and the whole process stops when the 

front is empty. 
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Fig. 7. (a) Triangle created from the candidate node at the optimal location (b) Triangle created from 

an existing node located inside the search area 

4. Extension of the AFM to composite geometry  

The main challenge in extending the AFM to MCT models is that the geometric definition of 

MCT components is composite (composite surfaces and composite curves). Consequently, it 

requires an extension of the AFM principles to composite geometry, which means being able 

to discretize composite curves and triangulating composite surfaces. The most challenging 

part of this adaptation is extending the AFM to triangulating composite surfaces. The main 

problems to overcome are related to the fact that each mesh segment and mesh triangle 

generated through the AFM progression on composite geometry is likely to lie on multiple B-

Rep faces and is, by the way, likely to be associated with a composite definition across 

multiple parametric spaces. Collision tests between new front segments and existing mesh 

elements also require specific and significant adaptations of the AFM since a given front 

segment is also likely to lie on multiple B-Rep faces.  

In this work, the basic principles applied for this extension are: 

• The triangulation process is performed over composite surfaces using the same overall 

AFM scheme as in the case of non-composite surfaces [5, 8, 10, 35-38]. This scheme 

notably allows handling non-manifold boundaries, which is an important requirement 

because, as mentioned previously, MCT naturally generates such configurations.        

• Triangles are directly generated over multiple parametric definitions of reference surfaces 

underlying composites surfaces. This allows avoiding the problems and limitations of using 

a global parameterization of composite surfaces. 

 

The extension of the AFM to the triangulation of composite surfaces raises the following 

major problems: 

• The association of mesh elements with multiple reference entities: our extension aims at 

generating mesh elements over composite curves and surfaces. In this extension, most 

algorithms (front propagation, intersection tests, shortest path estimation, and tangent 

vector evaluation) require computing and handling images of mesh elements in the 

parametric domain (for faces and edges) of the underlying reference entities of the MCT. 

This information about images of mesh elements in the parametric domain of reference 

entities should be easily accessible from mesh data-structures. 

• The creation of explicit B-Rep data-structure featuring explicit co-edges and loops: the 

front initialization, which is inherent to the AFM, relies on loops and co-edges of the B-Rep 
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data-structure. Co-edges must be sorted in loops to avoid self-overlapping problems, which 

is required to enable the front’s propagation initialization (from loops). 
• Front initialization: the front has to be initialized from the MCT, which is made of 

composite surfaces, curves, and vertices where adjacency links are described in the B-Rep 

data-structure. This initialisation consists in 2 steps: the composite curves discretization, 

and the front ordering based on the orientation of co-edges and loops. 
• Normal vector evaluation at the location of first-order discontinuities: the evaluation of 

normal and tangent vectors is mathematically undetermined on curves and surfaces at the 

location of first-order discontinuities (corners and sharp edges). Pseudo-normal vectors 

need to be defined and computed at these locations because the AFM requires such vectors 

to set front propagation direction.  

• Front propagation: front propagation and element generation have to be processed on 

multiple bi-parametric surfaces (see Fig. 8),  

• Shortest path estimation on composite surfaces: sharp edges or small details can be located 

inside composite surface and this induces important tangency discontinuities across which 

triangles must be generated. These surface discontinuities make it impossible to 

approximate curvilinear distance with Euclidian distance (see Fig. 9(a)). As a result, 

neighbouring mesh elements have to be searched by considering the curvilinear distance (in 

the context of multiple parametric surfaces as illustrated in Fig. 9(c)) between nodes instead 

of the Euclidean distance (see Fig. 9(b)). This curvilinear distance has to be estimated using 

a shortest path (over multiple parametric surfaces) search algorithm (see section 4.5.2). 

 

parametric domain parametric domain

Euclidian space  
Fig. 8. Front propagation over multiple bi-parametric surfaces, without global parameterization. 

 

Composite 

surface

Candidate

element
B A

Front

B A B A

(b) 3D sphere search zone (c) Curvilinear disc search zone(a)

 
Fig. 9. Validation of front propagation in thin walled surfaces (a) front configuration (b) neighbor 

found using the Euclidian distance (c) no neighbor found using a curvilinear distance. 

 

The following sections of the paper present how these problems can be solved. We start with 

the presentation of mesh generation data-structures and algorithms supporting the extension of 

AFM concepts to the context of composite geometry.  



 12

4.1. Introduction of explicit Co-Edges and Loops in the MCT data structure 

 Fig. 10. Transformation of MCT adjacency hypergraphs into a B-Rep-like structure 

 

A crucial point when trying to generalize the AFM to composite surfaces, in the context of 

using MC topology, is the transformation of MCT adjacency hypergraphs into a coherent B-

Rep data structure (referred to as a winged-edge structure): 

• Any MC edge has to be associated to two partner co-edges C1 and C2 whose orientation 

should be opposite [32].  

• Any MC face is associated with loops which are composed of co-edges and these loops 

underlie the front initialization in the AFM. These MC face loops must be built with the 

objective of avoiding front overlaps during the front propagation process.  

Methods for the creation of partner co-edges of MC edges and loops of MC faces are 

proposed in sections 4.1.1, 4.1.2. 

4.1.1. Creating the explicit orientation of co-edges 

 
Fig. 11. Creation of co-edges : (a) co-edges oriented with the right-hand rule in the reference topology 

(b) orientation of reference edges underlying MC edges (c) orientation of MC edges inferred from the 

reference topology 

 

In the definition of a B-Rep structure, co-edges are addressing the orientation of loops 

surrounding B-Rep faces. Co-edges associated with a given loop of a given face are oriented 

so that, at a given location along the face’s boundary, the cross product of a co-edge tangent 

vector and the face normal vector is directed towards the interior of this face, which means 

towards the front propagation direction (see Fig. 11 (a)). In MC topology, the interior domain 

of a MC face is defined explicitly by reference faces being grouped into a single composite 

surface, therefore: 
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•  The interior domain of a MC face equals the interior domain of its underlying reference 

faces, 

• The orientation of co-edges defining the orientation of a MC face is the same as those of co-

edges addressing the reference faces of this MC face (see Fig. 11 (b) and Fig. 11 (c)). 

 

Let Ei be a MC edge and Fj a MC face adjacent to Ei, ∀Eref ∈ Ei and ∀Fref ∈ Fj:  

Orientation (Ei, Fj) = Orientation (Eref, Fref) 

4.1.2. Creation of loops of MC faces with minimal interior angle criterion 

 

The boundary of a MC face is defined as non-manifold when one MC vertex is connected to 

more than 2 MC edges, these MC edges being adjacent to this MC face. This configuration is 

not specific to MCT as it can be seen in classical B-Rep structures, as shown in Fig. 12.  

 

The AFM requires that the geodesic propagation of fronts, initiated on the loops of a MC face, 

over the underlying composite surface fills completely the interior domain, without front 

overlaps. Loops are sorted list of co-edges such as the (i+1)
th

 co-edge starts at the i
th 

co-edge’s 

end. In order to avoid front overlaps caused by non-manifold configurations such as the one 

illustrated in see Fig. 12, the sequence of co-edges along a given loop of a MC face is chosen 

using considerations about the interior angle between two consecutive co-edges (between two 

alternatives, the one inducing the minimal interior angle is chosen).  

 

 
Fig. 12. Loops obtained regarding minimal interior angle criterion 

 

The theoretical definition of interior angles is geodesic: considering an arc of geodesic circle 

starting from the i
th

 co-edge and ending on the i+1
th

 co-edge, the interior angle is defined as 

the curvilinear length of arc s divided its geodesic radius r. Practically, interior angles are 

calculated from a tessellation of the MCT, where MC faces are approximated by sets of 

triangles and MC edges by sets of segments. The interior angle between two co-edges C1 and 

C2 is computed by summing interior angles of triangles chained between these co-edges and 

adjacent to their common vertex v (see Fig. 13). This tessellation of the MCT is derived from 

a tessellation of the reference B-Rep topology, which is available in any CAD kernel. The 

tessellation of the MCT is updated after any MC operation during MCT adaptation: for 

instance, merging two composite surfaces or curves is followed by merging their 

discretizations, and splitting a composite curve is followed by inserting a node in its 
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discretization. The tolerance of this tessellation is set to 1/50th of the minium value in the FE 

size map. This ensures that the accuracy of geometry definition is much better than the 

accuracy of the expected FE mesh. 

 

 
Fig. 13. Interior angle evaluation based on the evaluation of the tessellation of the MCT 

4.2. Discretization of MC edges and initialization of the advancing front 

4.2.1. General considerations 

Convention: 
N(P) represents the normal vector to a surface at location P, where P can be an Euclidian 
point or, a parametric coordinate. 
 

As introduced in the previous sections, the triangulation of MC faces is preceded by the 

discretization of MC edges. This discretization of MC edges in mesh segments sets up data 

required for initializing the advancing front when triangulating MC faces. This discretization 

of MC edges and by the way this initialization of the advancing front respects the following 

properties: 

1. The front is composed of segments generated through MC edges discretization and these 

segments are oriented with respect to the orientation of all coedges surrounding the MC 

face. Thus, each front segment is oriented (the orientation of vector PiPi+1) consistently 

with the advancing front direction, defined as Vi = N(PM) ∧ PiPi+1, (see Fig. 14 (a) and (b)). 

As illustrated in Fig. 14 (b) N(PM) is the normal vector at location PM. A detailed definition 

of normal vectors is given at section 4.3. 

2. Each front segment PiPi+1 only features two neighbours (the previous and next segments). 

Consequently, the advancing front is composed of one or more closed segment loops that 

are consistent with the loops of MC faces, (see Fig. 14(c)) 

3. There is no intersection between two segment loops of the front. 

 

 
Fig. 14. Front initialization (a) co-edge orientation (b) MC edge mesh (c) initial front 
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Convention:  
Variable t designate the curve parameter associated with a reference geometry (t is dependent 
to the curve’s intrinsic mathematical formulation), while variable t’ designate the curve 
parameter associated with a composite geometry (t’ equals the curvilinear length along the 
composite curve). 
 
The generation of the initial front segments is processed as follows. A set of nodes is first 

generated on MC vertices and then nodes are generated along MC edges. Given the 

parametric function of a Composite curve PolyC(t’) and the size map function H(x,y,z), the 

method presented in [32] generates an optimal parametric coordinate for each node Pi : 'it  

with 0,1,.., segi N= , and Nseg being the number of segments of the MC edge discretization. 

When all nodes parameters t’i are defined, the Composite curve’s mapping function provides, 

for any t’, the corresponding reference edge E and the parametric coordinate t (along this 

specific reference edge) written as: 

 

(E , t) = PolyCRef (t’)  
 

As shown in Fig. 15, each segment is associated with an image curve, which consists of a 

sequence of sub-segments, each of which representing the image of the mesh segment along a 

reference edge and on its two adjacent faces. 

 

 
Fig. 15. Images of a segment lying on multiple reference edges and faces  

4.2.2. Front initialization for specific non-manifold cases 

As mentioned previously, MCT transformations naturally generate non-manifold boundary 

topologies.  Fig. 16 illustrates two of such specific non-manifold configurations, one 

corresponding to a MC edge or a group of MC edges that are isolated on a MC face, and the 

other corresponding to a MC vertex that is isolated on a MC face. In the first case, the initial 

front segments associated with isolated MC edges are doubled (with inverse orientations) so 

that a closed loop of front segments allows it to progress in both inverse directions (for 

example at location PM in Fig. 16). In the case of an isolated MC vertex, an additional front 

segment is automatically generated from the isolated vertex and, like in the case of isolated 

MC edges, it is doubled so that the front is able to progress in both directions. This specific 
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front segment is generated arbitrarily except that it should not cross any other front segment 

and not be located too close to an existing front node (see Fig. 17).  

  

    
Fig. 16. Two specific cases of front initialization  

 

A case involving an isolated MC vertex is presented in Fig. 17a and in Fig. 17b the arbitrary 

front segment mentioned above is generated in such a way that the front node Pc is too close 

to other front segments. As illustrated in Fig. 17b, a search zone is used around candidate 

front segment MPc and if an existing front node is found in this zone, it is used instead of Pc. 

In this case (see Fig. 17c), the advancing front is updated as [Pi-1Pi], [PiM], [MPi], [PiPi+1], 

etc. 

 

 
Fig. 17. Front initialization for an isolated MC vertex  

4.3. Normal vector evaluation at the location of first-order discontinuities 

As mentioned in the previous section, the evaluation of normal vectors is crucial to compute 

the advancing front propagation direction when triangulating MC faces:  

• the front configurations 1 to 5 are validated if normal vectors of candidate triangles 

generated are consistent with that of normal vectors at midpoint PM (see Fig. 18 (a)) 

• the front configuration 6 intends to create the optimal point Popt  by advancing towards a 

direction based on the composite surface’s normal (see Fig. 18 (b)) 
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Fig. 18. Normal vector evaluation requirements at discontinuities (a) in front configuration #4, (b) in 

front configuration #6 

 

In the context of composite surfaces, some of the normal vectors have to be evaluated at 

locations where the geometry is non-differentiable (sharp edges and corners featuring C
0 

continuity), as well as at location where the domain is at least C1
 continuous (in curved 

regions). Like in the case of smooth rendering methods, the weighted average of normal 

vectors at adjacent faces smoothes the surface at points located on sharp edges and vertices of 

a Composite surface. In this work, the weights used for the computation of weighted average 

of normal vectors at location of sharp vertex are normalized interior angles βj of faces Fj 

adjacent to point Pi (see Fig. 19a). Consequently, the equivalent normal vector )( iPN  at 

location iP  is given by:  
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where N(Fj, Pi) is the normal vector to reference face Fj at location  Pi 

 

For the calculation of an equivalent normal vector along a sharp edge (see Fig. 19b), this 

expression simply becomes:  

2
)( 43

NN
PN i

+
=  where 

3N  and 
4N  are the normal vectors to the two intersecting reference 

faces at location Pi  
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Fig. 19. Interior angle and normal vectors along sharp edges and sharp vertices 

4.4. Propagation of the advancing front 

4.4.1. Calculating the optimal location of a candidate node 

 
Fig. 20. The optimal location of candidate node POPT from candidate segment PiPi+1 is computed using a 

path composed of curves CFj (lying on the underlying reference faces Fj) intersecting the composite surface 

with plane Φ 

 
Conventions 
σj(u,v) represents the parametric surface equation underlying reference face Fj. 

)(tC Fj
uv  represents a 2D curve, defined  in the parametric space of reference face Fj.  

The 3D equation of  )(tC Fj
uv  is given by: ( ))()( tCtC Fj

uvj
Fj σ= . By the way, )(tC Fj  lies on the 

surface defined by σj(u,v). 
 

The most important obstacle to adapting the AFM to composite surfaces is adapting the 

method in the case of front configuration #6 (as defined in Fig. 5). Indeed, given a candidate 

front segment PiPi+1, the problem is finding the optimal location of candidate node Popt from 

segment PiPi+1 to obtain a triangle respecting both size and shape quality requirements. In the 
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classical implementation of the AFM, the optimal location is basically estimated with the use 

of a trajectory, defined in the parametric space of the surface, which starts from midpoint PM, 

and which progresses towards the advancing front direction, until matching a target distance 

d. The adaptation of this trajectory in the context of composite surface meshing is performed 

using the 3D intersection curve between a plane (referred to in our work as Φ) and the 

composite surface. This trajectory is computed as follows: 

• Midpoint PM, lies on the curvilinear image of the candidate front segment and it is 

equidistant to Pi and Pi+1 (using the Euclidian distance), 

• Plane Φ is computed as the equidistant plane to Pi and Pi+1 

• The advancing front direction Vi is Vi =N(PM )∧ PiPi+1 

• Like in the classical implementation of the AFM (see section 3), the target distance d is 

calculated as a compromise between shape and size requirements  
 ( )1)(2/3 +⋅+⋅⋅= iisMT PPwPHwd   where wT ∈ [0; 1] and wT + ws = 1 

 

Then, the 3D intersection curve is built as follows. Midpoint PM is obtained by finding 

intersection points between Φ and the segment’s curvilinear image (see section 4.2). Then, 

the trajectory C(t’), which is defined as the intersection curve between Φ and the composite 

surface σ is obtained by creating a sequence of curves C
Fj

(t) that are defined in the parametric 

space of reference faces, and that are coincident to Φ with a given tolerance δmax. The first 

curve C
F0

(t) starts from PM and stops either if the target distance d is reached, or if the 

boundary of the current reference face. New curves C
Fj

(t) are appended to the trajectory C(t’) 
until the target distance d is reached or the MC face boundary is met (see Fig. 20 and Fig. 21). 

Each curve C
Fj

(t) along the intersection between reference faces Fj and Φ is computed in the 

parametric space associated to face Fj as a polyline (referred to as ( )Fj
uv tC ).  

 

 
Fig. 21. The Composite surface path C(t’) is constituted by multiple curves lying on reference faces of 

the Composite surface 

 
Fig. 22. Creation of the intersection curve CFj

(t) between reference face Fj and normal plane Φ 

 

The overall trajectory C(t’) is created by concatenating the curves C
Fj

(t) until target length d is 

reached, which means that dtCtC
n

j

Fj ==∑
−

=

1

0
)()'( .  

Consequently, the curvilinear length of C
Fj

(t) is limited by LFj
max , which is the difference 

between target length d and length of the curves preceding C
Fj

(t) : LFj
max=d-∑

−
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starting point of the first curve, referred to as P0,0, is located at midpoint PM. The path creation 

consists of a concatenation of parametric sub-segments Pj,mP j,m+1 along the intersection 

between Φ and the surface (see Fig. 22). The length of sub-segments, referred to as ds, is 

small enough to locally approximate the intersection curve by a straight line segment in the 

parametric space. In practice, we found that 
50

d
ds =  is small enough to reach accuracy 

maxδ  

with 
500

max

d
≈δ .  

Each sub-segment P j,m P j,m+1 is obtained as follows: 

• Compute (see Fig. 22) the 3D increment vector ∆3D j,m (length ds and collinear to the 

intersection between Φ and the plane that is tangent to Fj at location P j,m ). 

• Calculate the parametric increment ∆uv j,m by projecting ∆3D j,m in the parametric space 

associated with face Fj (with accuracy δmax). 

• Append a new point P j,m+1 to polyline )(tC Fj : P j,m+1 = Pj,m + ∆uv j,m . 

 

Following this last process, the number of parametric points constituting polyline )(tC Fj  is 

1max +
ds

LFj

. It appears that fewer points are actually required to respect δmax and in order to 

reduce the number of polyline points, an additional procedure is applied during path creation, 

with the objective of keeping the minimum number of points that are necessary to respect 

δmax. 

4.5. Validation of triangle creation 

4.5.1. New requirements for detecting collisions in the AFM  

In the classical AFM scheme, each candidate triangle creation is analysed before being 

validated to avoid triangle overlaps. As mentioned above, the extension of this analysis in the 

case of composite surfaces requires dealing with the fact that each mesh segment and mesh 

triangle generated through the AFM progression on composite geometry is likely to lie on 

multiple B-Rep faces and is, by the way, likely to be associated with a composite definition 

across multiple parametric spaces. Consequently, collision tests between new front segments 

and existing mesh elements are much more difficult to perform than in standard AFM and  

these tests require setting up specific procedures as described in the following paragraphs.  

4.5.2. Computing the image of a segment on a composite surface 

Detecting front collisions in the validation of triangle creation in the context of composite 

surfaces requires computing the curvilinear image of front segments on a composite surface. 

Constructing the curvilinear image of a segment PiPi+1 is achieved by one of the following 

schemes: 

• The first attempt (see section 4.5.3) consists of projecting PiPi+1 in the normal direction on 

the underlying Composite surface σ. This method is likely to fail when the normal 

projection is composed of several disconnected components (see Fig. 23). 

• If this first attempt fails, the shortest path between Pi and Pi+1 is evaluated with a method 

that is detailed in section 4.5.4. 
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Fig. 23. Example of segments’ normal projection composed of 2 disconnected components. 

 

4.5.3. Normal projection representing the image of a segment on a 
composite surface  

As introduced in the previous section, the normal projection method applies when the 

curvilinear image is composed of one single component, which is true in most of front 

generation situations. The projection is calculated as a plane-surface intersection, which is 

similar to the intersection used for creating a trajectory that is perpendicular to the front (as 

detailed in section 4.4.1). The intersecting plane ΦN is computed as follows: 

• Calculate normal vector N by averaging normal vectors at Pi and Pi+1 (see Fig. 23). 

• ΦN is defined as passing through to Pi and Pi+1  and as collinear to vector N. 

 

Then, curvilinear image of front segment PiPi+1 is generated by computing a trajectory, 

referred to as C(t’), at the intersection between ΦN and the composite surface σ. This 

trajectory (from Pi  to Pi+1) is obtained by creating a sequence of curves C
Fj

(t) that are defined 

in the parametric space of reference faces, and that are coincident to ΦN with a given 

tolerance δmax. The first curve C
F1

(t) starts from Pi and stops either if Pi+1 is reached, or if the 

boundary of the current reference face is reached. New curves C
Fj

(t) are appended to continue 

the trajectory C(t’) until Pi+1 is reached. (see Fig. 24). Thus, each curve C
Fj

(t) is constrained 

by ΦN and F
j
. 

 
Fig. 24. Construction of the curvilinear image of a segment on its MC Face (F1, F2) 
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4.5.4. Shortest path estimation on composite surfaces   

Composite surfaces singularities such as sharp edges and thin walls require a specific shortest 

path evaluation in the following cases: 

• When the method presented in section 4.5.3 is affected by surface singularities (see 

figure Fig. 25), the shortest path estimation provides a valid representation of the 

segment’s image. 

• When validating element creation by searching neighboring elements, the shortest path 

evaluation is a good estimator of the curvilinear distance in zones featuring singularities 

(see figure Fig. 25). 

 

The shortest path between two points PB and PC is computed following these steps: 

Step 1: A set of passing points Pk (see Fig. 25) is defined and it is composed with: 

o PB and PC , the beginning and the end of the shortest path, 

o Pke defined as points lying on reference edges of the composite surface and located in 

the neighborhood of linear segment PBPC , which means such as  

dist(PB PC, Pke) < CB PP  

where dist(PB PC, Pke)  is the distance between the linear segment PB PC and Pke ;  
o Pkv defined as coincident points with reference vertices of reference faces and located 

in the neighborhood of linear segment PBPC , which means such as  

dist(PB PC, Pkv) < CB PP  

Step 2: The set of curves Ci connecting two passing points Pk located on a reference face or 

edge G of the composite surface, 

Step 3: The point-curve adjacency graph is constructed as following: 

o Each graph node represents a passing  point Pk, 

o Each graph arc represents a curve Ci connecting two passing points, 

Step 4: Dijkstra’s algorithm [44] is used to compute the shortest path through curves (see Fig. 

25): 

o In Dijkstra’s algorithm the lengths associated with graph arcs are evaluated by 

calculating the lengths of curves Ci. 

o The length of the path is the sum of the curves’ length attached to arcs. 

 

 
Fig. 25. Shortest path passing through points Pk and curves Ci 

 

4.5.5. Calculating intersection points between segments 

As mentioned in the previous section, the validation of triangle creation mainly relies on 

detecting collisions between mesh segments (the sides of newly created triangles) and front 

segments. As illustrated in fig. 26 the intersection between two segments is tested by 
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evaluating the intersection of their curvilinear images in the parametric space of the associated 

reference faces.  

 
Fig. 26. Segments AB and CD are intersecting on reference face F1 

4.6. Updating the front and ending the process 

Once a triangle creation is validated, the advancing front needs to be updated. The 

adaptation of front update operations to composite surfaces is straightforward because it is 

identical to the process used for standard AFM. Also, like in the classical implementation of 

the AFM, the front progression stops when the front is empty, which means that the whole 

composite surfaces being triangulated is completely filled with triangles. The application of 

this adapted version of the AFM to all MC faces in the MCT model leads to a closed and 

watertight set of triangles representing the triangulation of the MCT model’s boundary. Once 

this triangulation generated, a 3D solid mesh can be derived using any automatic tetrahedral 

mesh generation scheme.    

5. Examples and results 

The algorithms described in this paper are validated by showing the improvement obtained, 

on mesh size and shape quality criteria, when using the MCT approach if compared to meshes 

that are directly generated from unprepared CAD models. An analysis of quality improvement 

shows that mesh quality obtained, after applying the MCT preparation process followed by the 

automatic triangulation process as presented in this paper, is close to optimal.  This clearly 

validates the approach by showing that, whatever the topology of the initial CAD model is, 

the whole process is successful in avoiding the generation of badly shaped elements or over-

refined meshes.  

 

Fig. 27 illustrates the triangle quality distributions obtained for the meshes presented in Fig. 

28, Fig. 30, Fig. 31 and Fig. 32. Shape quality is evaluated using a classical criterion (radius 

of the inscribed circle divided by the maximum edge length) and size quality is evaluated 

using the geodesic size criterion [5] which quantifies the difference between the actual area of 

a triangle and its optimal area with regard to the imposed size map. 
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Quality distribution of meshes using size and shape criteria
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Fig. 27. Shape and size quality distribution of meshes obtained on adapted MCT models. 

 

 

Quarter of a piston : Fig. 28 shows one quarter (due to symmetry) of a piston’s CAD 

model. The original CAD model features many narrow faces and small edges that are 

irrelevant for mesh generation. On this sample part, the MCT simplification process [32] 

operated 60 edges deletions, 62 vertex deletions, and collapsed one edge to a vertex. By the 

way, the number of faces has been reduced from 71 to 21, the number of edges from 182 to 

76, and the number of vertices from 113 to 63. Size and shape quality distributions are 

satisfying as illustrated in Fig. 28.  Fig. 28 also illustrates that the use of the method presented 

in this paper on this example completely eliminates poor quality triangles (for both shape and 

size).  
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Fig. 28. Quarter of a piston: comparison between the meshes generated on the MCT model by 

composite surface meshing and on the initial (without preparation) CAD model.  

 
In Fig. 28, a constant FE size is imposed while in Fig. 29 the FE size required varies. In this 

last figure, element colours refer to the imposed element size (instead of element quality) as 

indicated in the colour legend. This illustrates that the method proposed in this paper can 

handle both constant and varying FE maps of size. 

 

 
Fig. 29. Quarter of a piston: mesh generated on the MCT model by composite surface meshing with a 

non-constant FE map of size.  

 
Milling cutter: results presented in Fig. 30 represent the initial CAD model aside a MCT 

model automatically generated using our adaptation process. The B-Rep entities representing 

the cutter size label and other irrelevant edges have been removed. Fig. 30 shows that shape 

and size quality distributions are both significantly improved with the use of the approach 

presented in this paper. In this case 7 triangles with a shape quality inferior to 25 % remain in 

the final triangulation. It is important to outline that, for the size map imposed, the badly 

shaped triangles remaining cannot be eliminated. This is due to the fact that the geometry 
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itself still over constrains mesh generation, even once the MCT preparation process is applied. 

In this case, the elimination of the few badly shaped triangles remaining could only be 

achieved using a local mesh refinement.     

 

 
 
Fig. 30. Milling cutter: comparison between the meshes generated on the MCT model by composite 

surface meshing and on the initial (without preparation) CAD model.  

 

Carter: Fig. 31 illustrates a more complex CAD model (a carter). The MCT simplification 

process operated 540 edge deletions, 497 vertex deletions, and collapsed 7 edges. In this case, 

the number of faces has been reduced from 520 to 71, the number of edges from 1256 to 301, 

and the number of vertices from 785 to 279. 

 

Fig. 31. Carter: (a) initial topology (b) topology obtained after applying the MCT process (c) mesh 

generated on the MCT model by composite surface meshing. 

 

Tire: This last example is issued from a CAD model generated for simulating the heating 

process of a tire section (courtesy Michelin
TM

). The MCT simplification process operated 185 

edge deletions, 283 vertex deletions, and collapsed 1 edge. The number of faces has been 

reduced from 183 to 11, the number of edges from 569 to 134, and the number of vertices 

from 388 to 136.  
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Fig. 32. (Courtesy MichelinTM) Thermal simulation model for tire molding (initial topology, topology 

adapted with the MCT process and final mesh) 

5.1. Discussion with regard to closed surfaces and stretched geometries 

One of the most interesting aspects of the work presented in this paper is that using 

composite parametric definitions avoids using a global parameterization of composite 

surfaces. This is an important improvement because it overcomes the main limitations of 

approaches based on mapping composite surfaces into a single parametric domain.  

 

Thus, as illustrated in Fig. 33, the AFM adaptation presented in this paper is: 

• not restricted to specific boundary topologies: closed composite surfaces that are  

homeomorphic to a sphere or to a n-torus can be meshed as well as open composite 

surfaces. 

• not limited by stretched geometries and steep metrics variations: highly stretched 

surfaces, such as the one representing a glove inspired shape, are handled easily and 

efficiently and it results in very good quality elements, even in high curvature zones. 

In fact, with the approach presented here, these high curvature zones are handled as 

easily as when using the AFM on single surfaces. 

6. Conclusion  

This paper presents an extension of the advancing front method to surfaces composed of 

multiple parametric faces, avoiding the construction of a global parameterization and by the 

way, overcoming the limitations of this type of approaches. This extension is intended to be 

used in the scope of a MCT adaptation procedure aimed at improving and automating the 

preparation of FEA models from CAD models. Unlike previous re-parameterization based 

schemes, the proposed method has no limitations concerning the type and topology of 

composite surfaces involved.  

 

However, the approach proposed shows some limitations when applied to over-featured 

CAD models. For example, location of the candidate point when calculated according to Fig. 

20 can be inadequate in some specific configurations (in the case of a twisted intersection 

curve for example). In general, the process presented in this paper requires prior feature 
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removal when applied to such CAD models. We have set up automatic feature removal tools 

that are not presented in this paper but a failure in this feature-removal preparation step often 

cause the presence of small features disturbing the convergence of advancing front mesh 

generation. The ideal feature-removal algorithm would transform the initial model into a 

model that conforms to the specified size map. Further work could overcome this weakness 

by improving the robustness of feature-removal and advancing front mesh generation 

processes.  

 

 
Fig. 33. Models after topology adaptation and resulting triangulations, obtained on closed composite 

surfaces. For each example, the remaining MC edge (in blue for each CAD model) has been used for the 

advancing front initialization. For these 3 types of configurations, approaches based on a mapping into a 

unique parameterization would fail. 

 

CPU time is also a matter of potential improvement. Indeed, processing geometries like those 

presented in this paper usually takes more than one minute to be fulfilled. The classical AFM 

is indeed known as being quite slower than Delaunay based methods and the extension 

proposed in this paper is slower that the classical AFM for obvious reasons (computing 

trajectories over multiple surface patches is iterative). However, the overall quantitative 

benefits of using this method are also obvious. Indeed, it significantly reduces CPU time 

dedicated to the FEA itself and in some cases it allows meshing geometries that could not 

even be meshed without adapting boundary topology. Moreover, at this point of our research, 

no specific effort has been put on optimizing CPU time, neither for algorithms themselves nor 

for data structures used, which makes that potential gains are likely to be made. To reduce 

CPU time, a possible enhancement would be parrallelizing the method by simultaneously 

progressing on several MC Edges when generating the initial front and then simultaneously 

progressing on several MC Faces with our adapted AFM.  

  

Along with improving feature removal procedures and CPU time, the future potential 

directions in this research include: 

 
Extension to high order elements, quadrangles and anisotropy: quadratic triangles (T6) can be 

easily generated on the exact geometry by inserting a middle node on each segment’s image 

curve. This method should include a quality criterion to avoid squeezed elements in highly 

curved zones. The segment-swapping and node moving optimization steps will require quality 
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criteria that are adapted to curvilinear mesh elements. An adaptation of our method could also 

be foreseen towards generating quadrangular meshes. The MCT adaptation and AFM mesh 

generation could also be extended for anisotropic mesh generation. For instance, the criteria 

used for shape detail identification could be extended to compare the width of shape details 

with the expected FE size in the direction of element generation, as well as the size criteria 

used for the MCT adaptation. 

Extension to surface models with overlaps and gaps: at the intersection between two B-Rep 

faces there is a very small numerical inconsistency that cannot be avoided because there is a 

tiny difference between the actual intersection curve, the 3D parametric definition of the 

intersection curve in the B-Rep and the images of this intersection curves lying on both 

intersecting surfaces. This numerical inconsistency is handled in all our developments 

involving B-Reps and by the way, if the B-Rep is consistent it is necessarily watertight. The 

other possible context is a model with two connecting trimmed patches featuring an actual 

gap or overlap at the interface (due to CAD format conversion issues for example). This type 

of configuration (which cannot be considered as part of a consistent B-Rep) is not handled in 

our work and handling it would require significant adaptations of the method presented. 

However, this could be an interesting extension. 

Extension to mixed-dimensional models: extending feature-removal and MCT preparation 

algorithms to 3D geometric models mixing curves (meshed with beam elements), surfaces 

(meshed with shell elements), and solids (meshed with solid elements). 

 

Extension to assembly models: even if the method proposed in this paper is not primarily 

intended for being applied on assembly models, it appears that it actually is one potential 

significant enhancement. Overall, applying our method to assembly models could be achieved 

by applying the following steps:  

 

• Detect faces that are in contact between B-Rep models associated with the assembly 

components.   

• Similar to what is done in [45], pre-process B-Rep models in the assembly with an 

imprinting operator [46] for splitting B-Rep faces that are in contact.   

• Generate the MCT for each B-Rep in the assembly: specific processing should be 

applied so that vertices and edges lying on faces that are in contact are preserved. 

• Meshing each B-Rep in the assembly while taking into account faces that are in 

contact: along with the previous operators, this guarantees that meshes are conformal 

at interfaces between parts in contact. 
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