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Abstract

In this article, we are interested in the study of the asymptotic
behavior, in terms of finite-dimensional attractors, of a generalization
of the Cahn-Hilliard equation with a fidelity term (integrated over
Ω\D instead of the entire domain Ω, D ⊂⊂ Ω). Such a model has,
in particular, applications in image inpainting. The difficulty here is
that we no longer have the conservation of mass, i.e. of the spatial
average of the order parameter u, as in the Cahn-Hilliard equation.
Instead, we prove that the spatial average of u is dissipative. We
finally give some numerical simulations which confirm previous ones
on the efficiency of the model.
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1 Introduction

The Cahn–Hilliard equation,

∂u

∂t
+∆2u−∆f(u) = 0, (1.1)

is very important in materials science. This equation is a simple model for
phase separation processes of a binary alloy at a fixed temperature. We
refer the reader to [5, 6] for more details. The function f : R → R is of
“bistable type” with three simple zeros and is the derivative of a double-well
potential F whose wells correspond to the phases of the material. A typical
model nonlinearity is given by

F (s) =
1

4
(s2 − 1)2,

i.e.
f(s) = s3 − s.

The function u(x, t) represents the concentration of one of the metallic
components of the alloy.

It is interesting to note that the Cahn–Hilliard equation is also relevant
in other phenomena than phase separation. We can mention, for instance,
population dynamics [10], bacterial films [20], biology [8, 18, 22], thin films
[25, 28], image processing [7], shape recovery in computer vision [11], and
even the rings of Saturn [29].

We are interested in this article in the following generalization of the
Cahn–Hilliard equation introduced in [1] in view of applications in image
inpainting:

∂u

∂t
+ ε∆2u− 1

ε
∆f(u) + λ01Ω\D(x)(u− h) = 0, ε, λ0 > 0, (1.2)

where h(x) is a given binary image, D ⊂⊂ Ω is the inpainting domain, and
the last term on the left-hand side is added to keep the solution constructed
close to the given image h(x) in the complement of the inpainting domain
(Ω\D), where there is image information available. The idea here is to solve
the equation up to equilibrium to have an inpainted version u(x) of h(x).

Image inpainting involves filling in parts of an image or video using in-
formation from the surrounding area. Its applications include restoration
of old paintings by museum artists [16], removing scratches from old pho-
tographs [3], altering scenes in photographs [19], and restoration of motion
pictures [21].

Well-posedness results for (1.2) have been obtained in [1] (see also [4]
for the study of the stationary problem).

Equation (1.1) is endowed with Neumann boundary conditions,

∂u

∂ν
=

∂∆u

∂ν
= 0 on ∂Ω.

In particular, this yields the conservation of mass, i.e. of the spatial average
of the order parameter u,

< u(t) >=< u(0) >, ∀t ≥ 0,
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where

< . >=
1

|Ω|

∫

Ω
.dx.

Then assuming that | < u(0) > | is bounded, we can prove the existence
of finite-dimensional global attractors (see, e.g., [24] and [27]).

On the contrary, equation (1.2), which is also endowed with Neumann
boundary conditions, does not satisfy this conservation property. We prove
instead that < u > is dissipative, which then allows us to prove the existence
of finite-dimensional attractors.

We also give numerical simulations which show that a dynamic one
step scheme involving the diffuse interface ε (we note that, in [1] and [2],
the authors first consider a larger value of ε and then a smaller one in
order to obtain their numerical simulations) allows us to connect regions
across large inpainting domains. While the simulations in [1] and [2] are
programmed in MATLAB, we use FreeFem++. These simulations confirm
the ones performed in [1] and [2] on the efficiency of the model.

2 Setting of the problem

Let Ω be an open bounded domain of Rn, n = 1, 2, or 3, with a smooth
boundary Γ, and D be an open bounded subset of Ω with a smooth
boundary ∂D such that D ⊂⊂ Ω. The unknown function is a scalar
u = u(x, t), x ∈ Ω, t ∈ R, and the equation reads (for simplicity, we set
ε equal to 1)

∂u

∂t
+∆2u−∆f(u) + λ01Ω\D(x)(u − h) = 0, (2.3)

where f is the cubic function

f(s) = s3 − s (2.4)

and h ∈ L2(Ω).
We denote by F the antiderivative of f vanishing at s = 0,

F (s) =
1

4
s4 − 1

2
s2. (2.5)

The equation is associated with the Neumann boundary conditions

∂u

∂ν
=

∂∆u

∂ν
= 0 on Γ. (2.6)

We finally supplement the equation with the initial condition

u(x, 0) = u0(x), x ∈ Ω. (2.7)

We denote by ‖.‖ the L2−norm (with associated scalar product ((., .)))
and set

V =

{

φ ∈ H2(Ω),
∂φ

∂ν
= 0 on Γ

}

. (2.8)
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The space V in (2.8) makes sense by the trace theorem. Furthermore, V

is a closed subspace of H2(Ω) and is equipped with the norm induced by
H2(Ω) denoted by ‖.‖2.

We denote by < φ > the average over Ω of a function φ in L1(Ω),

< φ >=
1

|Ω|

∫

Ω
φ(x)dx, (2.9)

and we write φ̄ = φ− < φ >.
We set L̇2(Ω) = {φ ∈ L2(Ω), < φ >= 0}.
For φ given in L̇2(Ω), we denote by Ψ = N(φ) the solution to the poisson

equation
−∆Ψ = φ

associated with the Neumann boundary condition

∂Ψ

∂ν
= 0 on Γ.

It is easily seen that {((N(φ), φ))}1/2 is a continuous norm on L̇2(Ω); we
denote it by ‖φ‖−1. Similarly, ((φ1, φ2))−1 = ((N(φ1), φ2)) = ((φ1, N(φ2)))
is a (pre-Hilbertian) continuous scalar product on L̇2(Ω).

We note that

v → (‖v− < v > ‖2−1+ < v >2)
1

2 ,

v → (‖v− < v > ‖2+ < v >2)
1

2 ,

v → (‖∇v‖2+ < v >2)
1

2

and
v → (‖∆v‖2+ < v >2)

1

2 ,

are norms in H−1(Ω), L2(Ω), H1(Ω) and H2(Ω), respectively, which are
equivalent to the usual ones.

We finally set Ḣ−1(Ω) = {φ ∈ H−1(Ω), < φ, 1 >H−1(Ω),H1(Ω)= 0}.
Throughout this article, the same letter c (and, sometimes, c′ and c′′)

denotes constants which may vary from line to line, or even in a same line.
Similarly, the same letter Q denotes monotone increasing functions which
may vary from line to line, or even in a same line.

3 A priori estimates

The weak formulation of the problem is obtained by multiplying (2.3) by a
test function v ∈ V , integrating over Ω, and using the Green formula and
the boundary conditions. We find

d

dt
((u, v)) + ((∆u,∆v)) + ((f ′(u)∇u,∇v)) + λ0((1Ω\D(x)(u− h), v))

= 0, ∀v ∈ V.

(3.10)
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Now, we replace v by 1 in (3.10) to have

d

dt

∫

Ω
u(x, t)dx = −λ0

∫

Ω
1Ω\D(x)(u(x, t) − h(x))dx, (3.11)

hence
d

dt
< u >= − λ0

|Ω|

∫

Ω
1Ω\D(x)(u(x, t) − h(x))dx. (3.12)

Owing to (3.12), we can rewrite (2.3) in the form

∂ū

∂t
+∆2u−∆f(u)+λ01Ω\D(x)(u−h)− λ0

|Ω|

∫

Ω
1Ω\D(x)(u−h)dx = 0. (3.13)

Recalling that u = ū+ < u >, we have

∂ū

∂t
+∆2ū−∆f(ū+ < u >)+λ01Ω\D(x)(u−h)− λ0

|Ω|

∫

Ω
1Ω\D(x)(u−h)dx = 0,

(3.14)
which is equivalent to

∂

∂t
N(ū)−∆ū+ f(ū+ < u >)− < f(ū+ < u >) > +N

(

λ01Ω\D(x)(u− h)

− λ0

|Ω|

∫

Ω
1Ω\D(x)(u− h)dx

)

= 0.

(3.15)
We take the scalar product of this equation by ū in L2(Ω) and obtain

1

2

d

dt
‖ū‖2−1 − ((∆ū, ū)) + ((f(ū+ < u >)− f(< u >), ū))

+ ((λ01Ω\D(x)(u− h)− λ0

|Ω|

∫

Ω
1Ω\D(x)(u − h)dx,N(ū))) = 0.

(3.16)

We have

((f(ū+ < u >)−f(< u >), ū))

=

∫

Ω
(ū4 + 3ū3 < u > +3ū2 < u >2)dx− ‖ū‖2

≥
∫

Ω
(ū4 + 3ū2 < u >2)dx− 3

∫

Ω
|ū|3| < u > |dx− ‖ū‖2

≥ c0

∫

Ω
(ū4 + ū2 < u >2)dx− ‖ū‖2, c0 > 0,

(3.17)
owing to Young’s inequality (e.g., 3ab ≤ 7

8a
2 + 18

7 b
2, a, b ≥ 0; here, a = ū2

and b = |ū < u > |), and

|((λ01Ω\D(x)(u(x, t) − h(x)),N(ū)))| ≤ c‖u− h‖‖ū‖
≤ c(‖ū‖2 + | < u > |‖ū‖) + c′‖h‖2

≤ c0

4

∫

Ω
(ū4 + ū2 < u >2)dx+ c(‖h‖2 + 1).

(3.18)
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It follows from (3.16), (3.17) and (3.18) that

1

2

d

dt
‖ū‖2−1 + ‖∇ū‖2 + c0

∫

Ω
(ū4 + ū2 < u >2)dx ≤c0

4

∫

Ω
(ū4 + ū2 < u >2)dx

+ ‖ū‖2 + c(‖h‖2 + 1),

hence
d

dt
‖ū‖2−1 + ‖∇ū‖2 + c0

∫

Ω
(ū4 + ū2 < u >2)dx ≤ c. (3.19)

It thus follows from (3.19) that

1

2

d

dt
‖ū‖2−1 + c‖ū‖2−1 ≤ c′, c > 0. (3.20)

By Gronwall’s lemma, we find

‖ū(t)‖2−1 ≤ e−ct‖ū0‖2−1 + c′, c > 0, t ≥ 0. (3.21)

Let B be a bounded subset of Ḣ−1(Ω) and t0 be such that ū0 ∈ B and
t ≥ t0 implies ū(t) ∈ B0, where B0 = {φ ∈ Ḣ−1(Ω), ‖φ‖2−1 ≤ 2c′}, c′ being
the constant in (3.21). We then deduce from (3.19) that, for t ≥ t0,

∫ t+r

t
‖∇ū‖2ds ≤ c(r),

∫ t+r

t
ds

∫

Ω
(ū4 + ū2 < u >2)dx ≤ c(r), (3.22)

for r > 0 fixed.
We then multiply (3.14) by ū and find, noting that

f ′ ≥ −c1, c1 > 0, (3.23)

the inequality

1

2

d

dt
‖ū‖2 + ‖∆ū‖2 + ((λ01Ω\D(x)(u − h)− λ0

|Ω|

∫

Ω
1Ω\D(x)(u− h)dx, ū))

≤ c1‖∇ū‖2.
(3.24)

We have

|((λ01Ω\D(x)(u(x, t) − h(x))− λ0

|Ω|

∫

Ω
1Ω\D(x)(u(x, t) − h(x))dx, ū))|

= λ0|((1Ω\D(u− h), ū))|
≤ c‖u− h‖‖ū‖
≤ c(‖ū‖2 + | < u > |‖ū‖) + c′‖h‖2

≤ c
(

∫

Ω
(ū4 + ū2 < u >2)dx+ ‖h‖2 + 1

)

.

(3.25)
Therefore, we obtain

d

dt
‖ū‖2+‖∆ū‖2 ≤ c‖∇u‖2+c′

(

∫

Ω
(ū4+ ū2 < u >2)dx+‖h‖2+1

)

. (3.26)
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We finally deduce from (3.22), (3.26) and the uniform Gronwall’s lemma
that

‖ū(t)‖2 ≤ c, t ≥ t0 + r, (3.27)

where the constant c is independent of ū0 and t, hence

‖ū(t)‖2 ≤ Q(‖ū0‖), t ≥ 0, (3.28)

for some monotone increasing function Q.
Now, setting u =< u > +ū in (3.11), we have

d

dt
< u > +

λ0

|Ω|

∫

Ω\D
(< u > +ū− h)dx = 0.

Therefore,
d

dt
< u > +c < u >= − λ0

|Ω|

∫

Ω\D
(ū− h)dx,

where c = λ0|Ω\D|
|Ω| , hence

d

dt
(ect < u >) = − λ0

|Ω|e
ct

∫

Ω\D
(ū− h)dx

and

< u >= e−ct < u0 > − λ0

|Ω|e
−ct

∫ t

0
ecs

∫

Ω\D
(ū− h)dxds.

Thus,

| < u > | ≤ e−ct| < u0 > |+ c′e−ct

∫ t

0
ecs(‖ū‖+ ‖h‖)ds, ∀t ≥ 0,

where c′ = λ0

|Ω|
1
2

. Here,

c′e−ct

∫ t

0
ecs‖h‖ds ≤ c′e−ct‖h‖ect

≤ c′‖h‖
≤ c′′.

Furthermore, for t ≥ t0 + r,

c′e−ct

∫ t

0
ecs‖ū‖ds = c′e−ct

∫ t0+r

0
ecs‖ū‖ds + c′e−ct

∫ t

t0+r
ecs‖ū‖ds

≤ (use (3.28))

≤ Q(‖ū0‖)e−ctec(t0+r) + c′e−ct

∫ t

t0+r
ecs‖ū‖ds

≤ Q(‖ū0‖)e−ct + c′e−ct

∫ t

t0+r
ecs‖ū‖ds

≤ (use (3.27))

≤ Q(‖ū0‖)e−ct + c′′e−ct(ect − ec(t0+r))

≤ Q(‖ū0‖)e−ct + c′′.
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Finally, we obtain

| < u > | ≤
(

Q(‖ū0‖) + | < u0 > |
)

e−ct + c′′, ∀t ≥ 0, (3.29)

where c and c′′ are two constants which are nonnegative and independent
of t and u0.

4 Further a priori estimates

We multiply (2.3) by ∆2u and have

1

2

d

dt
‖∆u‖2 + ‖∆2u‖2 − ((∆f(u),∆2u)) + ((λ01Ω\D(x)(u − h),∆2u)) = 0.

(4.30)
Noting that

|((λ01Ω\D(x)(u− h),∆2u))| ≤ c‖u− h‖‖∆2u‖

≤ c′‖u− h‖2 + 1

4
‖∆2u‖2

≤ c′‖u‖2 + c′‖h‖2 + 1

4
‖∆2u‖2,

(4.31)

we find

1

2

d

dt
‖∆u‖2+‖∆2u‖2 ≤ ((∆f(u),∆2u))+c′‖u‖2+c′‖h‖2+1

4
‖∆2u‖2, (4.32)

where
((∆f(u),∆2u)) ≤ ‖∆f(u)‖‖∆2u‖

≤ c‖∆f(u)‖2 + 1

8
‖∆2u‖2.

(4.33)

We further have (see, e.g., [27])

‖∆f(u)‖2 ≤ 1

8
‖∆2u‖2 + c′′,

hence, owing to (4.32) and (4.33),

d

dt
‖∆u‖2 + ‖∆2u‖2 ≤ c‖u‖2 + c′ ∀t ≥ 0. (4.34)

Noting that

d

dt
| < u > |2 ≤ 2| < u > |

∣

∣

∣

∣

d

dt
< u >

∣

∣

∣

∣

≤ c| < u > |
∣

∣

∣

∣

∫

Ω\D
(u− h)dx

∣

∣

∣

∣

≤ c′(| < u > |2 + ‖u‖2 + 1),

owing to (3.12), we find

d

dt
(‖∆u‖2 + | < u > |2) + ‖∆2u‖2 ≤ c(‖u‖2 + | < u > |2) + c′ ∀t ≥ 0,

(4.35)
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and, owing to (3.27) and (3.29), ∃t′0 such that, ∀t ≥ t′0, we have

| < u(t) > | ≤ c and ‖ū(t)‖2 ≤ c, (4.36)

where the constant c is independent of u0 and t, hence

d

dt
(‖∆u‖2 + | < u > |2) + ‖∆2u‖2 ≤ c ∀t ≥ t′0. (4.37)

We note that, integrating (3.26) over (t, t+ r), for 0 < r < 1 fixed and
owing to (3.22), we have, for t ≥ t′0,

∫ t+r

t
‖∆u‖2ds ≤ c(r).

Finally, using the uniform Gronwall’s lemma in (4.37), we deduce that

‖u(t)‖2H2(Ω) ≤ c ∀t ≥ t′0 + r, (4.38)

where c is independent of u0 and t, for 0 < r < 1 fixed.
Multiplying (3.14) by ∂ū

∂t , we have, for t ≥ t′0 + 1,

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

+
1

2

d

dt
‖∆u‖2 ≤

∣

∣

∣

∣

((

∆f(u),
∂ū

∂t

))
∣

∣

∣

∣

+

∣

∣

∣

∣

λ0

((

1Ω\D(x)(u− h),
∂ū

∂t

))
∣

∣

∣

∣

.

(4.39)
Here,

∣

∣

∣

∣

λ0

((

1Ω\D(x)(u− h),
∂ū

∂t

))∣

∣

∣

∣

=

∣

∣

∣

∣

λ0

((

1Ω\D(x)(u− h),
∂ū

∂t

))∣

∣

∣

∣

≤ c‖u− h‖
∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

≤ c(‖u‖2 + ‖h‖2) + 1

4

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

.

Furthermore,
∣

∣

∣

∣

((

∆f(u),
∂ū

∂t

))
∣

∣

∣

∣

≤ ‖∆f(u)‖
∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

≤ c‖∆f(u)‖2 + 1

4

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

,

and, owing to (4.38), we note that (see, e.g., [26])

‖∆f(u)‖2 ≤ c‖u‖2H2(Ω).

Thus, owing to (4.38), (4.39) and by the above estimate, we have

d

dt
‖u‖2H2(Ω) +

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

≤ c‖u‖2H2(Ω) + c′, ∀t ≥ t′0 + 1, (4.40)

and deduce that
∫ t+r

t

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

dτ ≤ c, ∀t ≥ t′0 + 1. (4.41)
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Differentiating (3.14) with respect to time, we rewrite the resulting equa-
tion as, setting θ = ∂ū

∂t ,

∂θ

∂t
+∆2θ −∆

(

f ′(u)
∂u

∂t

)

+ λ01Ω\D(x)
∂u

∂t
= 0. (4.42)

We multiply (4.42) by θ and have, for t ≥ t′0 + 1,

1

2

d

dt
‖θ‖2 + ‖∆θ‖2 ≤

∣

∣

∣

∣

((

f ′(u)
∂u

∂t
,∆θ

))∣

∣

∣

∣

+

∣

∣

∣

∣

λ0

((

1Ω\D(x)
∂u

∂t
, θ

))∣

∣

∣

∣

.

(4.43)
Here,

∣

∣

∣

∣

λ0

((

1Ω\D(x)
∂u

∂t
, θ

))
∣

∣

∣

∣

=

∣

∣

∣

∣

λ0

((

1Ω\D(x)
∂u

∂t
, θ

))
∣

∣

∣

∣

≤ c

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

‖θ‖

≤ c(‖θ‖+
∣

∣

∣
<

∂u

∂t
>

∣

∣

∣
)‖θ‖

≤ c(‖θ‖2 +
∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2
).

Furthermore,
∣

∣

∣

∣

((

f ′(u)
∂u

∂t
,∆θ

))∣

∣

∣

∣

≤
∥

∥

∥
f ′(u)

∂u

∂t

∥

∥

∥
‖∆θ‖

≤ (thanks to (4.38) and the continuous

embedding H2(Ω) ⊂ C(Ω̄))

≤ c
∥

∥

∥

∂u

∂t

∥

∥

∥
‖∆θ‖

≤ c(‖θ‖2 +
∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2
) +

1

4
‖∆θ‖2,

which yields

d

dt
‖θ‖2 + ‖∆θ‖2 ≤ c(‖θ‖2 + | < ∂u

∂t
> |2), ∀t ≥ t′0 + 1. (4.44)

Noting that
∣

∣

∣

∣

<
∂u

∂t
>

∣

∣

∣

∣

2

=

∣

∣

∣

∣

d

dt
< u >

∣

∣

∣

∣

2

≤ (use (3.12))

≤ c‖u− h‖2

≤ c(‖u‖2 + ‖h‖2)
≤ c(‖u‖2H1(Ω) + ‖h‖2)
≤ (thanks to (4.38))

≤ c,

(4.45)

we have, owing to (4.44),

d

dt
‖θ‖2 + ‖∆θ‖2 ≤ c‖θ‖2 + c′. (4.46)
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Thus, by (4.41), (4.46), and the uniform Gronwall’s lemma,

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

≤ c, ∀t ≥ t′0 + 1 + r, 0 < r < 1. (4.47)

We now rewrite (2.3) in the form

∆2u = hu,
∂u

∂ν
=

∂∆u

∂ν
= 0 on Γ, (4.48)

where

hu = −∂u

∂t
+∆f(u)− λ01Ω\D(x)(u− h) (4.49)

satisfies, for t ≥ t′0 + 2,
‖hu‖ ≤ c. (4.50)

It then follows from (4.50) that

‖u‖2H4(Ω) ≤ c, ∀t ≥ t′0 + 2. (4.51)

We note that, integrating (4.46) over (t, t + r), for 0 < r < 1 fixed, we
have, for t ≥ t′0 + 2,

∫ t+r

t
‖∆θ‖2ds ≤ c(r). (4.52)

Differentiating (2.3) with respect to time, we rewrite the resulting equa-
tion as, setting Ψ = ∂u

∂t ,

∂Ψ

∂t
+∆2Ψ−∆(f ′(u)Ψ) + λ01Ω\D(x)Ψ = 0. (4.53)

We multiply (4.53) by ∆Ψ and have, for t ≥ t′0 + 2,

1

2

d

dt
‖∇Ψ‖2 + ‖∇∆Ψ‖2 ≤

∣

∣

∣

∣

((∆(f ′(u)Ψ),∆Ψ))

∣

∣

∣

∣

+

∣

∣

∣

∣

λ0((1Ω\D(x)Ψ,∆Ψ))

∣

∣

∣

∣

.

(4.54)

Here,
∣

∣

∣

∣

λ0((1Ω\D(x)Ψ,∆Ψ))

∣

∣

∣

∣

≤ c‖Ψ‖‖∆Ψ‖

≤ c‖Ψ‖2 + 1

2
‖∆Ψ‖2.

Furthermore,
∣

∣

∣

∣

((∆(f ′(u)Ψ),∆Ψ))

∣

∣

∣

∣

=

∣

∣

∣

∣

((∇(f ′(u)Ψ),∇∆Ψ))

∣

∣

∣

∣

≤ ‖∇(f ′(u)Ψ)‖‖∇∆Ψ‖

≤ c‖∇(f ′(u)Ψ)‖2 + 1

2
‖∇∆Ψ‖2,

and
‖∇(f ′(u)Ψ)‖2 = ‖f ′′(u)Ψ∇u+ f ′(u)∇Ψ‖2

≤ (thanks to (4.51))

≤ c‖Ψ‖2 + c′‖∇Ψ‖2,
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which yields

d

dt
‖∇Ψ‖2 + ‖∇∆Ψ‖2 ≤ c(‖Ψ‖2 + ‖∇Ψ‖2) + ‖∆Ψ‖2 + c′′. (4.55)

Thus, by (4.45), (4.52), (4.55) and the uniform Gronwall’s lemma,

∥

∥

∥
∇∂u

∂t

∥

∥

∥

2
≤ c, ∀t ≥ t′0 + 2 + r, 0 < r < 1. (4.56)

5 Existence of the global attractor

We first have the

Proposition 5.1. For every u0 ∈ L2(Ω) and every T > 0, the initial-
boundary value problem (3.10) has a unique solution u which belongs to
C([0, T ], L2(Ω)) ∩ L2(0, T, V ) ∩ L4(0, T, L4(Ω)).

Proof. See [1], [27], and [24].

Proposition 5.2. We have the continuous (with respect to the H−1-norm)
semigroup S(t) defined as

S(t) : L2(Ω) → L2(Ω), u0 → u(t), t ≥ 0.

Proof. Let u1 and u2 be two solutions to (2.3)–(2.6) with initial data u0,1
and u0,2, respectively. We set u = u1 − u2 and u0 = u0,1 − u0,2 and have

∂u

∂t
+∆2u−∆(f(u1)− f(u2)) + λ01Ω\D(x)u = 0, (5.57)

∂u

∂ν
=

∂∆u

∂ν
= 0 on Γ, (5.58)

u|t=0 = u0. (5.59)

Integrating (5.57) over Ω, we have

d

dt
< u >= −λ0

∫

Ω\D
udx,

which yields

∂ū

∂t
+∆2u−∆(f(u1)− f(u2)) + λ01Ω\D(x)u = 0. (5.60)

Thus,

∂

∂t
N(ū)−∆u+ f(u1)− f(u2)− < f(u1)− f(u2) >

+ λ0N(1Ω\D(x)u) = 0.
(5.61)

We multiply (5.61) by ū and have

1

2

d

dt
‖ū‖2−1 + ‖∇u‖2 + ((f(u1)− f(u2), u)) − ((f(u1)− f(u2), < u >))

+ λ0((N(1Ω\D(x)u), ū)) = 0.
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Here,
|λ0((N(1Ω\D(x)u), ū))| = λ0|(1Ω\D(x)u,N(ū)))|

≤ c‖u‖‖ū‖
≤ c(‖ū‖2 + | < u > |‖ū‖)
≤ c‖ū‖2 + c′| < u > |2.

Furthermore,
((f(u1)− f(u2), u)) ≥ −c1‖u‖2

and

|((f(u1)− f(u2), < u >))| = | < u >

∫

Ω
u

∫ 1

0
f ′(u1 + s(u2 − u1))dsdx|

≤ c| < u > |
∫

Ω
(|u1|2 + |u2|2 + 1)|u|dx

≤ c| < u > |(‖u1‖2L4(Ω) + ‖u2‖2L4(Ω) + 1)‖u‖
≤ c(‖u1‖2L4(Ω) + ‖u2‖2L4(Ω) + 1)(| < u > |2 + ‖ū‖2),

which yields

d

dt
‖ū‖2−1+‖∇u‖2 ≤ c(‖u1‖4L4(Ω)+‖u2‖4L4(Ω)+1)(‖ū‖2−1+| < u > |2), (5.62)

owing to the interpolation inequality ‖ū‖2 ≤ c‖ū‖−1‖∇u‖. Noting then
that

d

dt
| < u > |2 ≤ 2| < u > |

∣

∣

∣

∣

d

dt
< u >

∣

∣

∣

∣

≤ c| < u > ||
∫

Ω\D
udx|

≤ c| < u > |‖u‖
≤ c(| < u > |2 + ‖ū‖2),

(5.63)

it follows that

d

dt
(‖ū‖2−1 + | < u > |2) + 1

2
‖∇u‖2 ≤ c(‖u1‖4L4(Ω) + ‖u2‖4L4(Ω)

+1)(‖ū‖2−1 + | < u > |2).
(5.64)

We deduce from (5.64), Proposition 5.1, and Gronwall’s lemma that

‖u1(t)− u2(t)‖H−1(Ω) ≤ Q(T, ‖u0,1‖, ‖u0,2‖)‖u0,1 − u0,2‖H−1(Ω)

0 ≤ t ≤ T.
(5.65)

It follows from (4.51) that S(t) possesses a bounded absorbing set B′
0

which is compact in L2(Ω) and bounded in H4(Ω). We thus deduce from
standard results (see, e.g., [23, 27]) the following theorem.

Theorem 5.3. The semigroup S(t) possesses the connected global attractor
A such that A in compact in L2(Ω) and bounded in H4(Ω).

Remark 5.4. It is easy to see that we can assume, without loss of generality,
that B′

0 is positively invariant by S(t), i.e. S(t)B′
0 ⊂ B′

0, ∀t ≥ 0.
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6 Existence of exponential attractors

Let u1 and u2 be two solutions of (2.3)–(2.6) with initial data u0,1 and u0,2,
respectively. We again set u = u1 − u2 and u0 = u0,1 − u0,2 and have

∂u

∂t
+∆2u−∆(f(u1)− f(u2)) + λ01Ω\D(x)u = 0, (6.66)

∂u

∂ν
=

∂∆u

∂ν
= 0 on Γ, (6.67)

u|t=0 = u0. (6.68)

Furthermore, it is sufficient here to take initial data belonging to the
bounded absorbing set B′

0 defined in the previous section.
We rewrite (6.66) as

∂

∂t
N(ū)−∆u+ f(u1)−f(u2)− < f(u1)− f(u2) >

+ λ0N(1Ω\D(x)u) = 0.
(6.69)

Multiplying (6.69) by t∂ū∂t , we have

t

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

−1

+
t

2

d

dt
‖∇u‖2 + t

((

f(u1)− f(u2),
∂ū

∂t

))

+ λ0t

((

N(1Ω\D(x)u),
∂ū

∂t

))

= 0.

(6.70)

Here,

∣

∣

∣

∣

λ0

((

(N(1Ω\D(x)u),
∂ū

∂t

))∣

∣

∣

∣

=

∣

∣

∣

∣

λ0

((

1Ω\D(x)u,N(
∂ū

∂t
)

))∣

∣

∣

∣

≤ c‖u‖
∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

,

where the constant c depends only on B′
0. Furthermore,

∣

∣

∣

∣

((

f(u1)−f(u2),
∂ū

∂t

))∣

∣

∣

∣

≤ c‖∇(f(u1)− f(u2))‖
∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

≤c
∥

∥

∥
∇
(

∫ 1

0
f ′(u1 + s(u2 − u1))dsu

)
∥

∥

∥

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

≤c
∥

∥

∥

∫ 1

0
f ′(u1 + s(u2 − u1))ds∇u

∥

∥

∥

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

+ c
∥

∥

∥
u

∫ 1

0
f ′′(u1 + s(u2 − u1))(∇u1 + s(∇u2 −∇u1))ds

∥

∥

∥

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

≤c(‖∇u‖ + ‖u∇u1‖+ ‖u∇u2‖)
∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

≤c‖u‖H1(Ω)

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

−1

,
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where the constant c depends only on B′
0, which yields

t
d

dt
‖∇u‖2 + ct

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

−1

≤ c′t‖u‖2H1(Ω), (6.71)

and, owing to (5.63), we find

d

dt
(t‖∇u‖2 + t| < u(t) > |2) + ct

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

−1

≤ c′t(‖u‖2H1(Ω)

+| < u(t) > |2) + c′′(‖∇u‖2 + | < u(t) > |2),

hence
d

dt
(t‖u‖2H1(Ω)) + ct

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

−1

≤ c′t‖u‖2H1(Ω)

+ c′′‖u‖2H1(Ω).

(6.72)

We note that, integrating (5.64) over (0, t), we have

∫ t

0
‖∇u‖2ds ≤ ceαt‖u0,1 − u0,2‖2H−1(Ω), (6.73)

where the constant α depends only on B′
0, hence

∫ t

0
‖u‖2H1(Ω)ds ≤ ceαt‖u0,1 − u0,2‖2H−1(Ω). (6.74)

By (6.72), (6.74), and Gronwall’s lemma, we obtain

‖u1 − u2‖2H1(Ω) ≤
c

t
eαt‖u0,1 − u0,2‖2H−1(Ω) ∀t > 0. (6.75)

Now multiplying (6.69) by ∂ū
∂t , we obtain, proceeding as above,

d

dt
(‖∇u‖2 + | < u > |2) +

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

−1

≤ c(‖∇u‖2 + | < u > |2), (6.76)

where the constant c depends only on B′
0. Therefore, integrating (6.76) over

(1, t) and owing to (6.75) (for t = 1), we have

∫ t

1

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

H−1(Ω)

dτ ≤ ceαt‖u0,1 − u0,2‖2H−1(Ω), (6.77)

where the constant c depends only on B′
0.

We note that, integrating (6.66) over (0, t), we easily obtain

∫ t

0
<

∂u

∂t
>2 dτ ≤ ceαt‖u0,1 − u0,2‖2H−1(Ω), (6.78)

where the constant c depends only on B′
0.

Differentiating (6.69) with respect to time, we find

∂

∂t
N(θ)−∆θ + l(t)

∂u

∂t
+ l′(t)u− <

∂

∂t
l(t)u >

+ λ0N
(

1Ω\D(x)
∂u

∂t

)

= 0,

(6.79)
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where l(t) =
∫ 1
0 f ′(u1 + s(u2 − u1))ds and θ = ∂ū

∂t .
We multiply (6.79) by (t− 1)θ and have

t− 1

2

d

dt
‖θ‖2−1 + (t− 1)‖∇θ‖2 + (t− 1)((l(t)

∂u

∂t
, θ)) + (t− 1)((l′(t)u, θ))

+λ0(t− 1)((N
(

1Ω\D(x)
∂u

∂t

)

, θ)) = 0.

(6.80)
Here,

∣

∣

∣

∣

λ0((N
(

1Ω\D(x)
∂u

∂t

)

, θ))

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

λ0((1Ω\D(x)
∂u

∂t
,N(θ)))

∣

∣

∣

∣

∣

≤ c
∥

∥

∥

∂u

∂t

∥

∥

∥
‖θ‖−1

≤ c
(

‖θ‖2 +
∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2)

+ c′‖θ‖2−1

≤ c
(

‖θ‖2−1 +
∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2)

+ c′‖∇θ‖2,

owing to the above estimates and a proper interpolation inequality. Fur-
thermore,

∥

∥

∥

∥

((l(t)
∂u

∂t
, θ))

∥

∥

∥

∥

≤ c

∥

∥

∥

∥

∇
(

l(t)
∂u

∂t

)

∥

∥

∥

∥

‖θ‖−1

≤ c(‖l‖L∞(Ω) + ‖∇l‖L4(Ω))
∥

∥

∥

∂u

∂t

∥

∥

∥

H1(Ω)
‖θ‖−1

≤ (thanks to (4.51))

≤ c
(

‖∇θ‖+
∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

)

‖θ‖−1

and

‖l′(t)u‖ = ‖
∫ 1

0
f ′′(u1 − s(u2 − u1))(

∂u1

∂t
+ s(

∂u2

∂t
− ∂u1

∂t
))dsu‖

≤ c(‖∂u1
∂t

‖L4(Ω) + ‖∂u2
∂t

‖L4(Ω))‖u‖L4(Ω)

≤ c(‖∂u1
∂t

‖H1(Ω) + ‖∂u2
∂t

‖H1(Ω))‖u‖H1(Ω)

≤ (thanks to (4.47) and (4.56))

≤ c‖u‖H1(Ω),

which yields

d

dt
((t− 1)(‖θ‖2−1 +

∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2
)) + (t− 1)‖θ‖2H1(Ω) ≤ c(t− 1)(‖θ‖2−1+

∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2
) + ‖θ‖2−1 +

∣

∣

∣
<

∂u

∂t
>

∣

∣

∣

2
+ c′(t− 1)‖u‖2H1(Ω).

(6.81)
We thus deduce from (6.74), (6.75), (6.77), (6.78), and Gronwall’s lemma
that

‖θ(t)‖2H−1(Ω) ≤
c

t− 1
eαt‖u0‖2H−1(Ω), ∀t > 1. (6.82)
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We finally rewrite (6.69) in the form

−∆u = h̃u,
∂u

∂ν
= 0 on Γ, (6.83)

where

h̃u = −N
(∂ū

∂t

)

− (f(u1)− f(u2))+ < f(u1)− f(u2) >

− λ0N
(

1Ω\D(x)u
)

(6.84)

satisfies

‖h̃u‖ ≤ c

(

∥

∥

∥

∂ū

∂t

∥

∥

∥

−1
+ ‖u‖H1(Ω)

)

, (6.85)

where the constant c depends only on B′
0. It then follows from (6.75), (6.82),

(6.85), and standard elliptic regularity results that

‖u1(t)− u2(t)‖H2(Ω) ≤
c√
t− 1

ec
′t‖u0,1 − u0,2‖H−1(Ω), c, c′ ≥ 0, t > 1,

(6.86)
where the constant c depends only on B′

0.
Next, we derive a Hölder (both with respect to space and time) estimate.

Actually, owing to (5.65), it suffices to prove the Hölder continuity with
respect to time. We have

‖u(t1)− u(t2)‖H−1(Ω) =

∥

∥

∥

∥

∫ t2

t1

∂u

∂t
dτ

∥

∥

∥

∥

H−1(Ω)

≤
∣

∣

∣

∣

∫ t2

t1

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

H−1(Ω)

dτ

∣

∣

∣

∣

≤ |t1 − t2|
1

2

∣

∣

∣

∣

∫ t2

t1

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

H−1(Ω)

dτ

∣

∣

∣

∣

1

2

,

(6.87)
where u is solution of (2.3)–(2.6)–(2.7).

We note that, owing to (4.40),

∣

∣

∣

∣

∫ t2

t1

∥

∥

∥

∥

∂ū

∂t

∥

∥

∥

∥

2

H−1(Ω)

dτ

∣

∣

∣

∣

≤ c, (6.88)

where the constant c depends only on B′
0 and T such that t1, t2 ∈ [0, T ], so

that
‖u(t1)− u(t2)‖H−1(Ω) ≤ c|t1 − t2|

1

2 , (6.89)

where the constant c depends only on B′
0 and T such that t1, t2 ∈ [0, T ].

We finally deduce from (5.65), (6.86), and (6.89) the following result
(see, e.g., [13, 12]).

Theorem 6.1. The semigroup S(t) possesses an exponential attractor M ⊂
B′
0, i.e.

(i) M is compact in H−1(Ω);

(ii) M is positively invariant, S(t)M ⊂ M, ∀t ≥ 0;

(iii) M has finite fractal dimension in H−1(Ω);
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(iv) M attracts exponentially fast the bounded subsets of Φ,

∀B ⊂ Φ bounded, distH−1(Ω)(S(t)B,M) ≤ Q(‖B‖H2(Ω))e
−ct,

c > 0, t ≥ 0,

where the constant c is independent of B and distH−1(Ω) denotes the Haus-
dorff semidistance between sets defined by

distH−1(Ω)(A,B) = sup
a∈A

inf
b∈B

‖a− b‖H−1(Ω).

Remark 6.2. Setting M̃ = S(1)M, we can prove that M̃ is an exponential
attractor for S(t), but now in the topology of H2(Ω) (see, e.g., [14]).

Since M (or M̃) is a compact attracting set, we deduce from Theorem
6.1 the following corollary.

Corollary 6.3. The semigroup S(t) possesses the finite-dimensional global
attractor A ⊂ B′

0.

Remark 6.4. We can more generally consider a nonlinear term f of the
form

f(s) =

2p+1
∑

k=0

aks
k, a2p+1 > 0

(see [8]).

7 Numerical simulations

As far as the numerical simulations are concerned, we rewrite the problem
in the form

∂u

∂t
+∆µ+ λ01Ω\D(x)(u− h) = 0 in Ω, (7.90)

µ = ε∆u− 1

ε
f(u) in Ω, (7.91)

∂u

∂ν
=

∂µ

∂ν
= 0 on Γ, (7.92)

u|t=0 = u0, (7.93)

which has the advantage of splitting the fourth-order (in space) equation
into a system of two second-order ones (see [15] and [9]). Consequently,
we use a P1-finite element for the space discretization, together with a
semi-implicit Euler time disretization (i.e. implicit for the linear terms and
explicit for the nonlinear ones). The numerical simulations are performed
with the software Freefem++ [17].

In the numerical results presented below, Ω is a (0, 0.5)×(0, 0.5)-square.
The triangulation is obtained by dividing Ω into 120 × 120 rectangles and
by dividing every rectangle along the same diagonal.
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

(a)

(b) (c)

Figure 1: (a) Inpainting region in gray, random initial datum between 0
and 1 in inpainting region, ε = 0.03, f(s) = s3 − s. (b) Solution at t = 1.
(c) Replacing the values larger than 1

2 by 1 and those smaller than 1
2 by 0.

7.1 Inpainting of a triangle

The gray region in Figure 1(a) denotes the inpainting region. We run the
modified Cahn-Hilliard equation with f(s) = s3− s, ε = 0.03 and, at t = 1,
we come close to a steady state, shown in Figure 1(b). We finally replace
all the values larger than 1

2 by 1 and all those smaller than 1
2 by 0 to obtain

the final inpainting result in Figure 1(c). The parameters are ∆t = 0.05,
λ0 = 900000.

7.2 Inpainting of four 3/4 circles

In Figure 2(a), the gray region denotes the region to be inpainted. The
modified Cahn-Hilliard equation is run close to a steady state with ε = 0.05
and f(s) = s3 − s, resulting in Figure 2(b) at t = 1.25. We replace all the
values larger than 1

2 by 1 and all those smaller than 1
2 by 0 to obtain the

final inpainting result in Figure 2(c).
Furthermore, we run again the modified Cahn–Hilliard equation with

the same initial datum as in Figure 2(a) and the same ε = 0.05, but we now
take f(s) = 4s3−6s2+2s as in [1]. We are close to a steady state at t = 1.25,
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IsoValue
-0.0526316
0.0263158
0.0789474
0.131579
0.184211
0.236842
0.289474
0.342105
0.394737
0.447368
0.5
0.552632
0.605263
0.657895
0.710526
0.763158
0.815789
0.868421
0.921053
1.05263

(a)

(b) (c)

(d) (e)

Figure 2: (a) Inpainting region in gray, random initial datum between 0 and
1 in inpainting region, ε = 0.05, f(s) = s3− s. (b) Solution at t = 1.25. (c)
Replacing the values larger than 1

2 by 1 and those smaller than 1
2 by 0. (d)

Solution at t = 1.25 when f(s) = 4s3 − 6s2 + 2s. (e) Replacing the values
larger than 1

2 by 1 and those smaller than 1
2 by 0.

as shown in Figure 2(d). As above, we replace all the values larger than
1
2 by 1 and all those smaller than 1

2 by 0 to obtain the final inpainting in
Figure 2(e). We finally deduce that, in the inpainting of a circle, the result
obtained is better when considering the function f(s) = 4s3−6s2+2s than
f(s) = s3 − s. In this test, ∆t = 0.05, λ0 = 900000.

Remark 7.1. In the examples of the four circles, the choice f(s) = s3 − s

gives a bad inpainting result. We note that, if we take f(s) = 1
4(s

3 − s) in
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the example of the circles, the inpainting result is better.

Acknowledgments: The authors wish to thank S. Zellik for several useful
comments.
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