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In this article, we are interested in the study of the asymptotic behavior, in terms of finite-dimensional attractors, of a generalization of the Cahn-Hilliard equation with a fidelity term (integrated over Ω\D instead of the entire domain Ω, D ⊂⊂ Ω). Such a model has, in particular, applications in image inpainting. The difficulty here is that we no longer have the conservation of mass, i.e. of the spatial average of the order parameter u, as in the Cahn-Hilliard equation. Instead, we prove that the spatial average of u is dissipative. We finally give some numerical simulations which confirm previous ones on the efficiency of the model.

Introduction

The Cahn-Hilliard equation,

∂u ∂t + ∆ 2 u -∆f (u) = 0, (1.1) 
is very important in materials science. This equation is a simple model for phase separation processes of a binary alloy at a fixed temperature. We refer the reader to [START_REF] Cahn | On spinodal decomposition[END_REF][START_REF] Cahn | Free energy of a nonuniform system I. Interfacial free energy[END_REF] for more details. The function f : R → R is of "bistable type" with three simple zeros and is the derivative of a double-well potential F whose wells correspond to the phases of the material. A typical model nonlinearity is given by

F (s) = 1 4 (s 2 -1) 2 ,
i.e. f (s) = s 3s.

The function u(x, t) represents the concentration of one of the metallic components of the alloy.

It is interesting to note that the Cahn-Hilliard equation is also relevant in other phenomena than phase separation. We can mention, for instance, population dynamics [START_REF] Cohen | A generalized diffusion model for growth and dispersion in a population[END_REF], bacterial films [START_REF] Klapper | Role of cohesion in the material description of biofilms[END_REF], biology [START_REF] Cherfils | On a generalized Cahn-Hilliard equation with biological applications[END_REF][START_REF] Khain | A generalized Cahn-Hilliard equation for biological applications[END_REF][START_REF] Miranville | Asymptotic behavior of a generalized Cahn-Hilliard equation with a proliferation term[END_REF], thin films [START_REF] Oron | Long-scale evolution of thin liquid films[END_REF][START_REF] Thiele | Thin liquid films on a slightly inclined heated plate[END_REF], image processing [START_REF] Chalupecki | Numerical studies of Cahn-Hilliard equations and applications in image processing[END_REF], shape recovery in computer vision [START_REF] Dolcetta | Area-preserving curveshortening flows: From phase separation to image processing[END_REF], and even the rings of Saturn [START_REF] Tremaine | On the origin of irregular structure in Saturn's rings[END_REF].

We are interested in this article in the following generalization of the Cahn-Hilliard equation introduced in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] in view of applications in image inpainting:

∂u ∂t + ε∆ 2 u - 1 ε ∆f (u) + λ 0 1 Ω\D (x)(u -h) = 0, ε, λ 0 > 0, (1.2) 
where h(x) is a given binary image, D ⊂⊂ Ω is the inpainting domain, and the last term on the left-hand side is added to keep the solution constructed close to the given image h(x) in the complement of the inpainting domain (Ω\D), where there is image information available. The idea here is to solve the equation up to equilibrium to have an inpainted version u(x) of h(x).

Image inpainting involves filling in parts of an image or video using information from the surrounding area. Its applications include restoration of old paintings by museum artists [START_REF] Emile-Male | The restorer's handbook of easel painting[END_REF], removing scratches from old photographs [START_REF] Braverman | Photoshop retouching handbook[END_REF], altering scenes in photographs [START_REF] King | The Commissar vanishes[END_REF], and restoration of motion pictures [START_REF] Kokaram | Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video[END_REF].

Well-posedness results for (1.2) have been obtained in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] (see also [START_REF] Burger | Cahn-Hilliard inpainting and a generalization for grayvalue images[END_REF] for the study of the stationary problem).

Equation (1.1) is endowed with Neumann boundary conditions,

∂u ∂ν = ∂∆u ∂ν = 0 on ∂Ω.
In particular, this yields the conservation of mass, i.e. of the spatial average of the order parameter u, < u(t) >=< u(0) >, ∀t ≥ 0,

where < . >= 1 |Ω| Ω .dx.
Then assuming that | < u(0) > | is bounded, we can prove the existence of finite-dimensional global attractors (see, e.g., [START_REF] Nicolaenko | Some global dynamical properties of a class of pattern formation equations[END_REF] and [START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]).

On the contrary, equation (1.2), which is also endowed with Neumann boundary conditions, does not satisfy this conservation property. We prove instead that < u > is dissipative, which then allows us to prove the existence of finite-dimensional attractors.

We also give numerical simulations which show that a dynamic one step scheme involving the diffuse interface ε (we note that, in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] and [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF], the authors first consider a larger value of ε and then a smaller one in order to obtain their numerical simulations) allows us to connect regions across large inpainting domains. While the simulations in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] and [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF] are programmed in MATLAB, we use FreeFem++. These simulations confirm the ones performed in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF] and [START_REF] Bertozzi | Inpainting of binary images using the Cahn-Hilliard equation[END_REF] on the efficiency of the model.

Setting of the problem

Let Ω be an open bounded domain of R n , n = 1, 2, or 3, with a smooth boundary Γ, and D be an open bounded subset of Ω with a smooth boundary ∂D such that D ⊂⊂ Ω. The unknown function is a scalar u = u(x, t), x ∈ Ω, t ∈ R, and the equation reads (for simplicity, we set ε equal to 1)

∂u ∂t + ∆ 2 u -∆f (u) + λ 0 1 Ω\D (x)(u -h) = 0, (2.3) 
where f is the cubic function

f (s) = s 3 -s (2.4)
and h ∈ L 2 (Ω). We denote by F the antiderivative of f vanishing at s = 0,

F (s) = 1 4 s 4 - 1 2 s 2 . (2.5)
The equation is associated with the Neumann boundary conditions

∂u ∂ν = ∂∆u ∂ν = 0 on Γ. (2.6)
We finally supplement the equation with the initial condition

u(x, 0) = u 0 (x), x ∈ Ω. (2.7)
We denote by . the L 2 -norm (with associated scalar product ((., .))) and set

V = φ ∈ H 2 (Ω), ∂φ ∂ν = 0 on Γ . (2.8)
The space V in (2.8) makes sense by the trace theorem. Furthermore, V is a closed subspace of H 2 (Ω) and is equipped with the norm induced by H 2 (Ω) denoted by . 2 . We denote by < φ > the average over Ω of a function φ in L 1 (Ω),

< φ >= 1 |Ω| Ω φ(x)dx, (2.9) 
and we write φ = φ-< φ >.

We set L2 (Ω) = {φ ∈ L 2 (Ω), < φ >= 0}.

For φ given in L2 (Ω), we denote by Ψ = N (φ) the solution to the poisson equation -∆Ψ = φ associated with the Neumann boundary condition

∂Ψ ∂ν = 0 on Γ.
It is easily seen that {((N (φ), φ))} 1/2 is a continuous norm on L2 (Ω); we denote it by φ -1 . Similarly,

((φ 1 , φ 2 )) -1 = ((N (φ 1 ), φ 2 )) = ((φ 1 , N (φ 2 )))
is a (pre-Hilbertian) continuous scalar product on L2 (Ω).

We note that

v → ( v-< v > 2 -1 + < v > 2 ) 1 2 , v → ( v-< v > 2 + < v > 2 ) 1 2 , v → ( ∇v 2 + < v > 2 ) 1 2 and v → ( ∆v 2 + < v > 2 ) 1 2 ,
are norms in H -1 (Ω), L 2 (Ω), H 1 (Ω) and H 2 (Ω), respectively, which are equivalent to the usual ones. We finally set Ḣ-

1 (Ω) = {φ ∈ H -1 (Ω), < φ, 1 > H -1 (Ω),H 1 (Ω) = 0}.
Throughout this article, the same letter c (and, sometimes, c ′ and c ′′ ) denotes constants which may vary from line to line, or even in a same line. Similarly, the same letter Q denotes monotone increasing functions which may vary from line to line, or even in a same line.

A priori estimates

The weak formulation of the problem is obtained by multiplying (2.3) by a test function v ∈ V , integrating over Ω, and using the Green formula and the boundary conditions. We find

d dt ((u, v)) + ((∆u, ∆v)) + ((f ′ (u)∇u, ∇v)) + λ 0 ((1 Ω\D (x)(u -h), v)) = 0, ∀v ∈ V. (3.10) 
Now, we replace v by 1 in (3.10) to have

d dt Ω u(x, t)dx = -λ 0 Ω 1 Ω\D (x)(u(x, t) -h(x))dx, (3.11) hence d dt < u >= - λ 0 |Ω| Ω 1 Ω\D (x)(u(x, t) -h(x))dx. (3.12) 
Owing to (3.12), we can rewrite (2.3) in the form

∂ ū ∂t +∆ 2 u-∆f (u)+λ 0 1 Ω\D (x)(u-h)- λ 0 |Ω| Ω 1 Ω\D (x)(u-h)dx = 0. (3.13)
Recalling that u = ū+ < u >, we have

∂ ū ∂t +∆ 2 ū-∆f (ū+ < u >)+λ 0 1 Ω\D (x)(u-h)- λ 0 |Ω| Ω 1 Ω\D (x)(u-h)dx = 0, (3.14) which is equivalent to ∂ ∂t N (ū) -∆ū + f (ū+ < u >)-< f (ū+ < u >) > +N λ 0 1 Ω\D (x)(u -h) - λ 0 |Ω| Ω 1 Ω\D (x)(u -h)dx = 0.
(3.15) We take the scalar product of this equation by ū in L 2 (Ω) and obtain 1 2

d dt ū 2 -1 -((∆ū, ū)) + ((f (ū+ < u >) -f (< u >), ū)) + ((λ 0 1 Ω\D (x)(u -h) - λ 0 |Ω| Ω 1 Ω\D (x)(u -h)dx, N (ū))) = 0.
(3.16)

We have 

((f (ū+ < u >)-f (< u >), ū)) = Ω (ū 4 + 3ū 3 < u > +3ū 2 < u > 2 )dx -ū 2 ≥ Ω (ū 4 + 3ū 2 < u > 2 )dx -3 Ω |ū| 3 | < u > |dx -ū 2 ≥ c 0 Ω (ū 4 + ū2 < u > 2 )dx -ū 2 , c 0 > 0, (3.17 
|((λ 0 1 Ω\D (x)(u(x, t) -h(x)),N (ū)))| ≤ c u -h ū ≤ c( ū 2 + | < u > | ū ) + c ′ h 2 ≤ c 0 4 Ω (ū 4 + ū2 < u > 2 )dx + c( h 2 + 1). (3.18) 
It follows from (3.16), (3.17) and (3.18) that 1 2

d dt ū 2 -1 + ∇ū 2 + c 0 Ω (ū 4 + ū2 < u > 2 )dx ≤ c 0 4 Ω (ū 4 + ū2 < u > 2 )dx + ū 2 + c( h 2 + 1), hence d dt ū 2 -1 + ∇ū 2 + c 0 Ω (ū 4 + ū2 < u > 2 )dx ≤ c. (3.19) 
It thus follows from (3.19) that

1 2 d dt ū 2 -1 + c ū 2 -1 ≤ c ′ , c > 0. (3.20)
By Gronwall's lemma, we find

ū(t) 2 -1 ≤ e -ct ū0 2 -1 + c ′ , c > 0, t ≥ 0. (3.21)
Let B be a bounded subset of Ḣ-1 (Ω) and t 0 be such that ū0 ∈ B and t ≥ t 0 implies ū(t) ∈ B 0 , where

B 0 = {φ ∈ Ḣ-1 (Ω), φ 2 -1 ≤ 2c ′ }, c ′ being the constant in (3.21). We then deduce from (3.19) that, for t ≥ t 0 , t+r t ∇ū 2 ds ≤ c(r), t+r t ds Ω (ū 4 + ū2 < u > 2 )dx ≤ c(r), (3.22) 
for r > 0 fixed. We then multiply (3.14) by ū and find, noting that

f ′ ≥ -c 1 , c 1 > 0, (3.23) 
the inequality

1 2 d dt ū 2 + ∆ū 2 + ((λ 0 1 Ω\D (x)(u -h) - λ 0 |Ω| Ω 1 Ω\D (x)(u -h)dx, ū)) ≤ c 1 ∇ū 2 . (3.24) We have |((λ 0 1 Ω\D (x)(u(x, t) -h(x))- λ 0 |Ω| Ω 1 Ω\D (x)(u(x, t) -h(x))dx, ū))| = λ 0 |((1 Ω\D (u -h), ū))| ≤ c u -h ū ≤ c( ū 2 + | < u > | ū ) + c ′ h 2 ≤ c Ω (ū 4 + ū2 < u > 2 )dx + h 2 + 1 .
(3.25) Therefore, we obtain

d dt ū 2 + ∆ū 2 ≤ c ∇u 2 + c ′ Ω (ū 4 + ū2 < u > 2 )dx + h 2 + 1 . (3.26)
We finally deduce from (3.22), (3.26) and the uniform Gronwall's lemma that

ū(t) 2 ≤ c, t ≥ t 0 + r, (3.27) 
where the constant c is independent of ū0 and t, hence

ū(t) 2 ≤ Q( ū0 ), t ≥ 0, (3.28) 
for some monotone increasing function Q. Now, setting u =< u > +ū in (3.11), we have

d dt < u > + λ 0 |Ω| Ω\D (< u > +ū -h)dx = 0. Therefore, d dt < u > +c < u >= - λ 0 |Ω| Ω\D (ū -h)dx, where c = λ 0 |Ω\D| |Ω| , hence d dt (e ct < u >) = - λ 0 |Ω| e ct Ω\D (ū -h)dx and < u >= e -ct < u 0 > - λ 0 |Ω| e -ct t 0 e cs Ω\D (ū -h)dxds.
Thus,

| < u > | ≤ e -ct | < u 0 > | + c ′ e -ct t 0 e cs ( ū + h )ds, ∀t ≥ 0, where c ′ = λ 0 |Ω| 1 2
. Here, ≤ Q( ū0 )e -ct + c ′′ e -ct (e cte c(t 0 +r) )

c ′ e -ct t 0 e cs h ds ≤ c ′ e -ct h e ct ≤ c ′ h ≤ c ′′ . Furthermore, for t ≥ t 0 + r, c ′ e -ct
≤ Q( ū0 )e -ct + c ′′ .
Finally, we obtain

| < u > | ≤ Q( ū0 ) + | < u 0 > | e -ct + c ′′ , ∀t ≥ 0, (3.29) 
where c and c ′′ are two constants which are nonnegative and independent of t and u 0 .

Further a priori estimates

We multiply (2.3) by ∆ 2 u and have 1 2

d dt ∆u 2 + ∆ 2 u 2 -((∆f (u), ∆ 2 u)) + ((λ 0 1 Ω\D (x)(u -h), ∆ 2 u)) = 0. (4.30) Noting that |((λ 0 1 Ω\D (x)(u -h), ∆ 2 u))| ≤ c u -h ∆ 2 u ≤ c ′ u -h 2 + 1 4 ∆ 2 u 2 ≤ c ′ u 2 + c ′ h 2 + 1 4 ∆ 2 u 2 , (4.31) 
we find

1 2 d dt ∆u 2 + ∆ 2 u 2 ≤ ((∆f (u), ∆ 2 u))+c ′ u 2 +c ′ h 2 + 1 4 ∆ 2 u 2 , (4.32) 
where

((∆f (u), ∆ 2 u)) ≤ ∆f (u) ∆ 2 u ≤ c ∆f (u) 2 + 1 8 ∆ 2 u 2 . (4.33)
We further have (see, e.g., [START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF])

∆f (u) 2 ≤ 1 8 ∆ 2 u 2 + c ′′ ,
hence, owing to (4.32) and (4.33),

d dt ∆u 2 + ∆ 2 u 2 ≤ c u 2 + c ′ ∀t ≥ 0. (4.34) Noting that d dt | < u > | 2 ≤ 2| < u > | d dt < u > ≤ c| < u > | Ω\D (u -h)dx ≤ c ′ (| < u > | 2 + u 2 + 1),
owing to (3.12), we find

d dt ( ∆u 2 + | < u > | 2 ) + ∆ 2 u 2 ≤ c( u 2 + | < u > | 2 ) + c ′ ∀t ≥ 0, (4.35) 
and, owing to (3.27) and (3.29), ∃t ′ 0 such that, ∀t ≥ t ′ 0 , we have

| < u(t) > | ≤ c and ū(t) 2 ≤ c, (4.36)
where the constant c is independent of u 0 and t, hence

d dt ( ∆u 2 + | < u > | 2 ) + ∆ 2 u 2 ≤ c ∀t ≥ t ′ 0 . (4.37)
We note that, integrating (3.26) over (t, t + r), for 0 < r < 1 fixed and owing to (3.22), we have, for t ≥ t ′ 0 , t+r t ∆u 2 ds ≤ c(r).

Finally, using the uniform Gronwall's lemma in (4.37), we deduce that

u(t) 2 H 2 (Ω) ≤ c ∀t ≥ t ′ 0 + r, (4.38) 
where c is independent of u 0 and t, for 0 < r < 1 fixed.

Multiplying (3.14) by ∂ ū ∂t , we have, for t ≥ t ′ 0 + 1, ∂ ū ∂t 2 + 1 2 d dt ∆u 2 ≤ ∆f (u), ∂ ū ∂t + λ 0 1 Ω\D (x)(u -h), ∂ ū ∂t .
(4.39) Here,

λ 0 1 Ω\D (x)(u -h), ∂ ū ∂t = λ 0 1 Ω\D (x)(u -h), ∂ ū ∂t ≤ c u -h ∂ ū ∂t ≤ c( u 2 + h 2 ) + 1 4 ∂ ū ∂t 2 . Furthermore, ∆f (u), ∂ ū ∂t ≤ ∆f (u) ∂ ū ∂t ≤ c ∆f (u) 2 + 1 4 ∂ ū ∂t 2 ,
and, owing to (4.38), we note that (see, e.g., [START_REF] Saoud | Attracteurs pour des systèmes dissipatifs non autonomes[END_REF])

∆f (u) 2 ≤ c u 2 H 2 (Ω) .
Thus, owing to (4.38), (4.39) and by the above estimate, we have 

d dt u 2 H 2 (Ω) + ∂ ū ∂t 2 ≤ c u 2 H 2 (Ω) + c ′ , ∀t ≥ t ′ 0 + 1, ( 4 
∂θ ∂t + ∆ 2 θ -∆ f ′ (u) ∂u ∂t + λ 0 1 Ω\D (x) ∂u ∂t = 0. (4.42)
We multiply (4.42) by θ and have, for

t ≥ t ′ 0 + 1, 1 2 
d dt θ 2 + ∆θ 2 ≤ f ′ (u) ∂u ∂t , ∆θ + λ 0 1 Ω\D (x) ∂u ∂t , θ . 
(4.43) Here,

λ 0 1 Ω\D (x) ∂u ∂t , θ = λ 0 1 Ω\D (x) ∂u ∂t , θ ≤ c ∂u ∂t θ ≤ c( θ + < ∂u ∂t > ) θ ≤ c( θ 2 + < ∂u ∂t > 2 ).
Furthermore,

f ′ (u) ∂u ∂t , ∆θ ≤ f ′ (u) ∂u ∂t ∆θ
≤ (thanks to (4.38) and the continuous embedding

H 2 (Ω) ⊂ C( Ω)) ≤ c ∂u ∂t ∆θ ≤ c( θ 2 + < ∂u ∂t > 2 ) + 1 4 ∆θ 2 ,
which yields 

d dt θ 2 + ∆θ 2 ≤ c( θ 2 + | < ∂u ∂t > | 2 ), ∀t ≥ t ′ 0 + 1. (4.44) Noting that < ∂u ∂t > 2 = d dt < u > 2 ≤ (use (3.12)) ≤ c u -h 2 ≤ c( u 2 + h 2 ) ≤ c( u 2 H 1 (Ω) + h 2 ) ≤ (thanks to (4.38)) ≤ c,
∂ ū ∂t 2 ≤ c, ∀t ≥ t ′ 0 + 1 + r, 0 < r < 1. (4.47)
We now rewrite (2.3) in the form

∆ 2 u = h u , ∂u ∂ν = ∂∆u ∂ν = 0 on Γ, (4.48) 
where 

h u = - ∂u ∂t + ∆f (u) -λ 0 1 Ω\D (x)(u -h) (4.49) satisfies, for t ≥ t ′ 0 + 2, h u ≤ c. ( 4 
, ∂Ψ ∂t + ∆ 2 Ψ -∆(f ′ (u)Ψ) + λ 0 1 Ω\D (x)Ψ = 0. (4.53) 
We multiply (4.53) by ∆Ψ and have, for t ≥ t ′ 0 + 2, 1 2

d dt ∇Ψ 2 + ∇∆Ψ 2 ≤ ((∆(f ′ (u)Ψ), ∆Ψ)) + λ 0 ((1 Ω\D (x)Ψ, ∆Ψ)) . (4.54)
Here,

λ 0 ((1 Ω\D (x)Ψ, ∆Ψ)) ≤ c Ψ ∆Ψ ≤ c Ψ 2 + 1 2 ∆Ψ 2 .
Furthermore,

((∆(f ′ (u)Ψ), ∆Ψ)) = ((∇(f ′ (u)Ψ), ∇∆Ψ)) ≤ ∇(f ′ (u)Ψ) ∇∆Ψ ≤ c ∇(f ′ (u)Ψ) 2 + 1 2 ∇∆Ψ 2 ,
and

∇(f ′ (u)Ψ) 2 = f ′′ (u)Ψ∇u + f ′ (u)∇Ψ 2 ≤ (thanks to (4.51)) ≤ c Ψ 2 + c ′ ∇Ψ 2 ,
which yields 

d dt ∇Ψ 2 + ∇∆Ψ 2 ≤ c( Ψ 2 + ∇Ψ 2 ) + ∆Ψ 2 + c ′′ . ( 4 

Existence of the global attractor

We first have the Proposition 5.1. For every u 0 ∈ L 2 (Ω) and every T > 0, the initialboundary value problem (3.10) has a unique solution u which belongs to

C([0, T ], L 2 (Ω)) ∩ L 2 (0, T, V ) ∩ L 4 (0, T, L 4 (Ω)).
Proof. See [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF], [START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF], and [START_REF] Nicolaenko | Some global dynamical properties of a class of pattern formation equations[END_REF].

Proposition 5.2. We have the continuous (with respect to the H -1 -norm) semigroup S(t) defined as

S(t) : L 2 (Ω) → L 2 (Ω), u 0 → u(t), t ≥ 0.
Proof. Let u 1 and u 2 be two solutions to (2.3)-(2.6) with initial data u 0,1 and u 0,2 , respectively. We set u = u 1u 2 and u 0 = u 0,1u 0,2 and have 

∂u ∂t + ∆ 2 u -∆(f (u 1 ) -f (u 2 )) + λ 0 1 Ω\D (x)u = 0, ( 5 
∂ ū ∂t + ∆ 2 u -∆(f (u 1 ) -f (u 2 )) + λ 0 1 Ω\D (x)u = 0. (5.60) Thus, ∂ ∂t N (ū) -∆u + f (u 1 ) -f (u 2 )-< f (u 1 ) -f (u 2 ) > + λ 0 N (1 Ω\D (x)u) = 0.
(5.61)

We multiply (5.61) by ū and have

1 2 d dt ū 2 -1 + ∇u 2 + ((f (u 1 ) -f (u 2 ), u)) -((f (u 1 ) -f (u 2 ), < u >)) + λ 0 ((N (1 Ω\D (x)u), ū)) = 0.
Here,

|λ 0 ((N (1 Ω\D (x)u), ū))| = λ 0 |(1 Ω\D (x)u, N (ū)))| ≤ c u ū ≤ c( ū 2 + | < u > | ū ) ≤ c ū 2 + c ′ | < u > | 2 .
Furthermore,

((f (u 1 ) -f (u 2 ), u)) ≥ -c 1 u 2 and |((f (u 1 ) -f (u 2 ), < u >))| = | < u > Ω u 1 0 f ′ (u 1 + s(u 2 -u 1 ))dsdx| ≤ c| < u > | Ω (|u 1 | 2 + |u 2 | 2 + 1)|u|dx ≤ c| < u > |( u 1 2 L 4 (Ω) + u 2 2 L 4 (Ω) + 1) u ≤ c( u 1 2 L 4 (Ω) + u 2 2 L 4 (Ω) + 1)(| < u > | 2 + ū 2 ), which yields d dt ū 2 -1 + ∇u 2 ≤ c( u 1 4 L 4 (Ω) + u 2 4 L 4 (Ω) +1)( ū 2 -1 +| < u > | 2 ), (5.62) owing to the interpolation inequality ū 2 ≤ c ū -1 ∇u . Noting then that d dt | < u > | 2 ≤ 2| < u > | d dt < u > ≤ c| < u > || Ω\D udx| ≤ c| < u > | u ≤ c(| < u > | 2 + ū 2 ), (5.63) it follows that d dt ( ū 2 -1 + | < u > | 2 ) + 1 2 ∇u 2 ≤ c( u 1 4 L 4 (Ω) + u 2 4 L 4 (Ω) +1)( ū 2 -1 + | < u > | 2 ).
(5.64)

We deduce from (5.64), Proposition 5.1, and Gronwall's lemma that

u 1 (t) -u 2 (t) H -1 (Ω) ≤ Q(T, u 0,1 , u 0,2 ) u 0,1 -u 0,2 H -1 (Ω) 0 ≤ t ≤ T.
(5.65)

It follows from (4.51) that S(t) possesses a bounded absorbing set B ′ 0 which is compact in L 2 (Ω) and bounded in H 4 (Ω). We thus deduce from standard results (see, e.g., [START_REF] Miranville | Attractors for dissipative partial differential equations in bounded and unbounded domains[END_REF][START_REF] Temam | Infinite-Dimensional Dynamical Systems in Mechanics and Physics[END_REF]) the following theorem.

Theorem 5.3. The semigroup S(t) possesses the connected global attractor A such that A in compact in L 2 (Ω) and bounded in H 4 (Ω).

Remark 5.4. It is easy to see that we can assume, without loss of generality, that B ′ 0 is positively invariant by S(t), i.e. S(t)B ′ 0 ⊂ B ′ 0 , ∀t ≥ 0.

Existence of exponential attractors

Let u 1 and u 2 be two solutions of (2.3)-(2.6) with initial data u 0,1 and u 0,2 , respectively. We again set u = u 1u 2 and u 0 = u 0,1u 0,2 and have 

∂u ∂t + ∆ 2 u -∆(f (u 1 ) -f (u 2 )) + λ 0 1 Ω\D (x)u = 0, ( 6 
u| t=0 = u 0 . (6.68)
Furthermore, it is sufficient here to take initial data belonging to the bounded absorbing set B ′ 0 defined in the previous section. We rewrite (6.66) as 

∂ ∂t N (ū) -∆u + f (u 1 )-f (u 2 )-< f (u 1 ) -f (u 2 ) > + λ 0 N (1 Ω\D (x)u) = 0. ( 6 
+ t 2 d dt ∇u 2 + t f (u 1 ) -f (u 2 ), ∂ ū ∂t + λ 0 t N (1 Ω\D (x)u), ∂ ū ∂t = 0. (6.70)
Here,

λ 0 (N (1 Ω\D (x)u), ∂ ū ∂t = λ 0 1 Ω\D (x)u, N ( ∂ ū ∂t ) ≤ c u ∂ ū ∂t -1 ,
where the constant c depends only on B ′ 0 . Furthermore,

f (u 1 )-f (u 2 ), ∂ ū ∂t ≤ c ∇(f (u 1 ) -f (u 2 )) ∂ ū ∂t -1 ≤c ∇ 1 0 f ′ (u 1 + s(u 2 -u 1 ))dsu ∂ ū ∂t -1 ≤c 1 0 f ′ (u 1 + s(u 2 -u 1 ))ds∇u ∂ ū ∂t -1 + c u 1 0 f ′′ (u 1 + s(u 2 -u 1 ))(∇u 1 + s(∇u 2 -∇u 1 ))ds ∂ ū ∂t -1 ≤c( ∇u + u∇u 1 + u∇u 2 ) ∂ ū ∂t -1 ≤c u H 1 (Ω) ∂ ū ∂t -1 ,
where the constant c depends only on B ′ 0 , which yields

t d dt ∇u 2 + ct ∂ ū ∂t 2 -1 ≤ c ′ t u 2 H 1 (Ω) , (6.71) 
and, owing to (5.63), we find

d dt (t ∇u 2 + t| < u(t) > | 2 ) + ct ∂ ū ∂t 2 -1 ≤ c ′ t( u 2 H 1 (Ω) +| < u(t) > | 2 ) + c ′′ ( ∇u 2 + | < u(t) > | 2 ), hence d dt (t u 2 H 1 (Ω) ) + ct ∂ ū ∂t 2 -1 ≤ c ′ t u 2 H 1 (Ω) + c ′′ u 2 H 1 (Ω) . (6.72) 
We note that, integrating (5.64) over (0, t), we have

t 0 ∇u 2 ds ≤ ce αt u 0,1 -u 0,2 2 
H -1 (Ω) , (6.73) 
where the constant α depends only on B ′ 0 , hence

t 0 u 2 H 1 (Ω) ds ≤ ce αt u 0,1 -u 0,2 2 
H -1 (Ω) . (6.74) 
By (6.72), (6.74), and Gronwall's lemma, we obtain

u 1 -u 2 2 H 1 (Ω) ≤ c t e αt u 0,1 -u 0,2 2 
H -1 (Ω) ∀t > 0. (6.75) 
Now multiplying (6.69) by ∂ ū ∂t , we obtain, proceeding as above,

d dt ( ∇u 2 + | < u > | 2 ) + ∂ ū ∂t 2 -1 ≤ c( ∇u 2 + | < u > | 2 ), (6.76) 
where the constant c depends only on B ′ 0 . Therefore, integrating (6.76) over (1, t) and owing to (6.75) (for t = 1), we have

t 1 ∂ ū ∂t 2 H -1 (Ω) dτ ≤ ce αt u 0,1 -u 0,2 2 
H -1 (Ω) , (6.77) 
where the constant c depends only on B ′ 0 . We note that, integrating (6.66) over (0, t), we easily obtain

t 0 < ∂u ∂t > 2 dτ ≤ ce αt u 0,1 -u 0,2 2 
H -1 (Ω) , (6.78) 
where the constant c depends only on B ′ 0 . Differentiating (6.69) with respect to time, we find

∂ ∂t N (θ) -∆θ + l(t) ∂u ∂t + l ′ (t)u-< ∂ ∂t l(t)u > + λ 0 N 1 Ω\D (x) ∂u ∂t = 0, (6.79) 
where

l(t) = 1 0 f ′ (u 1 + s(u 2 -u 1 )
)ds and θ = ∂ ū ∂t . We multiply (6.79) by (t -1)θ and have

t -1 2 d dt θ 2 -1 + (t -1) ∇θ 2 + (t -1)((l(t) ∂u ∂t , θ)) + (t -1)((l ′ (t)u, θ)) +λ 0 (t -1)((N 1 Ω\D (x) ∂u ∂t , θ)) = 0. (6.80) Here, λ 0 ((N 1 Ω\D (x) ∂u ∂t , θ)) = λ 0 ((1 Ω\D (x) ∂u ∂t , N (θ))) ≤ c ∂u ∂t θ -1 ≤ c θ 2 + < ∂u ∂t > 2 + c ′ θ 2 -1 ≤ c θ 2 -1 + < ∂u ∂t > 2 + c ′ ∇θ 2 ,
owing to the above estimates and a proper interpolation inequality. Furthermore,

((l(t) ∂u ∂t , θ)) ≤ c ∇ l(t) ∂u ∂t θ -1 ≤ c( l L ∞ (Ω) + ∇l L 4 (Ω) ) ∂u ∂t H 1 (Ω) θ -1
≤ (thanks to (4.51))

≤ c ∇θ + < ∂u ∂t > θ -1 and l ′ (t)u = 1 0 f ′′ (u 1 -s(u 2 -u 1 ))( ∂u 1 ∂t + s( ∂u 2 ∂t - ∂u 1 ∂t ))dsu ≤ c( ∂u 1 ∂t L 4 (Ω) + ∂u 2 ∂t L 4 (Ω) ) u L 4 (Ω) ≤ c( ∂u 1 ∂t H 1 (Ω) + ∂u 2 ∂t H 1 (Ω)
) u H 1 (Ω) ≤ (thanks to (4.47) and (4.56))

≤ c u H 1 (Ω) , which yields d dt ((t -1)( θ 2 -1 + < ∂u ∂t > 2 )) + (t -1) θ 2 H 1 (Ω) ≤ c(t -1)( θ 2 -1 + < ∂u ∂t > 2 ) + θ 2 -1 + < ∂u ∂t > 2 + c ′ (t -1) u 2 H 1 (Ω) .
(6.81) We thus deduce from (6.74), (6.75), (6.77), (6.78), and Gronwall's lemma that θ(t) where

hu = -N ∂ ū ∂t -(f (u 1 ) -f (u 2 ))+ < f (u 1 ) -f (u 2 ) > -λ 0 N 1 Ω\D (x)u (6.84) satisfies hu ≤ c ∂ ū ∂t -1 + u H 1 (Ω) , (6.85) 
where the constant c depends only on B ′ 0 . It then follows from (6.75), (6.82), (6.85), and standard elliptic regularity results that

u 1 (t) -u 2 (t) H 2 (Ω) ≤ c √ t -1 e c ′ t u 0,1 -u 0,2 H -1 (Ω) , c, c ′ ≥ 0, t > 1,
(6.86) where the constant c depends only on B ′ 0 . Next, we derive a Hölder (both with respect to space and time) estimate. Actually, owing to (5.65), it suffices to prove the Hölder continuity with respect to time. We have

u(t 1 ) -u(t 2 ) H -1 (Ω) = t 2 t 1 ∂u ∂t dτ H -1 (Ω) ≤ t 2 t 1 ∂u ∂t H -1 (Ω) dτ ≤ |t 1 -t 2 | 1 2 t 2 t 1 ∂u ∂t 2 H -1 (Ω) dτ 1 2 
, (6.87) where u is solution of (2.3)-(2.6)-(2.7).

We note that, owing to (4.40),

t 2 t 1 ∂ ū ∂t 2 H -1 (Ω) dτ ≤ c, (6.88) 
where the constant c depends only on B ′ 0 and T such that

t 1 , t 2 ∈ [0, T ], so that u(t 1 ) -u(t 2 ) H -1 (Ω) ≤ c|t 1 -t 2 | 1 2 , (6.89) 
where the constant c depends only on B ′ 0 and T such that t 1 , t 2 ∈ [0, T ]. We finally deduce from (5.65), (6.86), and (6.89) the following result (see, e.g., [START_REF] Efendiev | Exponential attractors for a nonlinear reaction-diffusion system in R 3[END_REF][START_REF] Eden | Expenential Attractors for Dissipative Evolution Equations[END_REF]). Theorem 6.1. The semigroup S(t) possesses an exponential attractor M ⊂ B ′ 0 , i.e.

(i) M is compact in H -1 (Ω);

(ii) M is positively invariant, S(t)M ⊂ M, ∀t ≥ 0;

(iii) M has finite fractal dimension in H -1 (Ω);

(iv) M attracts exponentially fast the bounded subsets of Φ,

∀B ⊂ Φ bounded, dist H -1 (Ω) (S(t)B, M) ≤ Q( B H 2 (Ω) )e -ct , c > 0, t ≥ 0,
where the constant c is independent of B and dist H -1 (Ω) denotes the Hausdorff semidistance between sets defined by

dist H -1 (Ω) (A, B) = sup a∈A inf b∈B a -b H -1 (Ω) .
Remark 6.2. Setting M = S(1)M, we can prove that M is an exponential attractor for S(t), but now in the topology of H 2 (Ω) (see, e.g., [START_REF] Efendiev | Exponential attractors for a singularly perturbed Cahn-Hilliard system[END_REF]).

Since M (or M) is a compact attracting set, we deduce from Theorem 6.1 the following corollary. Remark 6.4. We can more generally consider a nonlinear term f of the form

f (s) = 2p+1 k=0 a k s k , a 2p+1 > 0
(see [START_REF] Cherfils | On a generalized Cahn-Hilliard equation with biological applications[END_REF]).

Numerical simulations

As far as the numerical simulations are concerned, we rewrite the problem in the form ∂u ∂t

+ ∆µ + λ 0 1 Ω\D (x)(u -h) = 0 in Ω, (7.90) 
µ = ε∆u - 1 ε f (u) in Ω, (7.91) 
∂u ∂ν = ∂µ ∂ν = 0 on Γ, (7.92) 
u |t=0 = u 0 , (7.93) 
which has the advantage of splitting the fourth-order (in space) equation into a system of two second-order ones (see [START_REF] Elliott | A second order splitting method for the Cahn-Hilliard equation[END_REF] and [START_REF] Cherfils | A numerical analysis of the Cahn-Hilliard equation with dynamic boundary conditions[END_REF]). Consequently, we use a P1-finite element for the space discretization, together with a semi-implicit Euler time disretization (i.e. implicit for the linear terms and explicit for the nonlinear ones). The numerical simulations are performed with the software Freefem++ [17].

In the numerical results presented below, Ω is a (0, 0.5)× (0, 0.5)-square. The triangulation is obtained by dividing Ω into 120 × 120 rectangles and by dividing every rectangle along the same diagonal. (c) Replacing the values larger than 1 2 by 1 and those smaller than 1 2 by 0.

Inpainting of a triangle

The gray region in Figure 1(a) denotes the inpainting region. We run the modified Cahn-Hilliard equation with f (s) = s 3s, ε = 0.03 and, at t = 1, we come close to a steady state, shown in Figure 1(b). We finally replace all the values larger than 1 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting result in Figure 1(c). The parameters are ∆t = 0.05, λ 0 = 900000.

Inpainting of four 3/4 circles

In Figure 2(a), the gray region denotes the region to be inpainted. The modified Cahn-Hilliard equation is run close to a steady state with ε = 0.05 and f (s) = s 3s, resulting in Figure 2(b) at t = 1.25. We replace all the values larger than 1 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting result in Figure 2(c).

Furthermore, we run again the modified Cahn-Hilliard equation with the same initial datum as in Figure 2(a) and the same ε = 0.05, but we now take f (s) = 4s 3 -6s 2 +2s as in [START_REF] Bertozzi | Analysis of a two-scale Cahn-Hilliard model for binary image inpainting[END_REF]. We are close to a steady state at t = 1. 2 by 1 and all those smaller than 1 2 by 0 to obtain the final inpainting in Figure 2(e). We finally deduce that, in the inpainting of a circle, the result obtained is better when considering the function f (s) = 4s 3 -6s 2 + 2s than f (s) = s 3s. In this test, ∆t = 0.05, λ 0 = 900000. Remark 7.1. In the examples of the four circles, the choice f (s) = s 3s gives a bad inpainting result. We note that, if we take f (s) = 1 4 (s 3s) in

  ) owing to Young's inequality (e.g., 3ab ≤ 7 8 a 2 + 18 7 b 2 , a, b ≥ 0; here, a = ū2 and b = |ū < u > |), and

t 0 e

 0 cs ū ds = c ′ e -ct t 0 +r 0 e cs ū ds + c ′ e -ct t t 0 +r e cs ū ds ≤ (use (3.28)) ≤ Q( ū0 )e -ct e c(t 0 +r) + c ′ e -ct t t 0 +r e cs ū ds ≤ Q( ū0 )e -ct + c ′ e -ct t t 0 +r e cs ū ds ≤ (use (3.27))

( 4 .

 4 45)we have, owing to (4.44),d dt θ 2 + ∆θ 2 ≤ c θ 2 + c ′ . (4.46)Thus, by (4.41), (4.46), and the uniform Gronwall's lemma,
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 63 The semigroup S(t) possesses the finite-dimensional global attractor A ⊂ B ′ 0 .

Figure 1 :

 1 Figure 1: (a) Inpainting region in gray, random initial datum between 0 and 1 in inpainting region, ε = 0.03, f (s) = s 3s. (b) Solution at t = 1.(c) Replacing the values larger than1 2 by 1 and those smaller than 1 2 by 0.

Figure 2 :

 2 Figure 2: (a) Inpainting region in gray, random initial datum between 0 and 1 in inpainting region, ε = 0.05, f (s) = s 3s. (b) Solution at t = 1.25. (c)Replacing the values larger than1 2 by 1 and those smaller than 1 2 by 0. (d) Solution at t = 1.25 when f (s) = 4s 3 -6s 2 + 2s. (e) Replacing the values larger than1 2 by 1 and those smaller than 1 2 by 0.
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the example of the circles, the inpainting result is better.