
HAL Id: hal-00849720
https://hal.science/hal-00849720

Submitted on 31 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Model selection for the ℓ2-SVM by following the
regularization

Rémi Bonidal, Samy Tindel, Yann Guermeur

To cite this version:
Rémi Bonidal, Samy Tindel, Yann Guermeur. Model selection for the ℓ2-SVM by following the regu-
larization. Transactions on Computational Collective Intelligence, 2013, 13, pp.83-112. �10.1007/978-
3-642-54455-2_4�. �hal-00849720�

https://hal.science/hal-00849720
https://hal.archives-ouvertes.fr

Model Selection for the ℓ2-SVM by Following the

Regularization Path

Rémi Bonidal

LORIA-UHP

Campus Scienti�que, BP 239

54506 Vand÷uvre-lès-Nancy Cedex, France

(e-mail: remi.bonidal@loria.fr)

Samy Tindel

IECN

Campus Scienti�que, BP 239

54506 Vand÷uvre-lès-Nancy Cedex, France

(e-mail: tindel@iecn.u-nancy.fr)

Yann Guermeur

LORIA-CNRS

Campus Scienti�que, BP 239

54506 Vand÷uvre-lès-Nancy Cedex, France

(e-mail: yann.guermeur@loria.fr)

September 7, 2012

Running Title: Model selection for the ℓ2-SVM

Keywords: ℓ2-SVM, model selection, regularization path, leave-one-out cross-validation

error

Abstract

For a support vector machine, model selection consists in selecting the kernel func-

tion, the values of its parameters, and the amount of regularization. To set the value

of the regularization parameter, one can minimize an appropriate objective function

over the regularization path. A priori, this requires the availability of two elements:

the objective function and an algorithm computing the regularization path at a re-

duced cost. The literature provides us with several upper bounds and estimates for

the leave-one-out cross-validation error of the ℓ2-SVM. However, no algorithm was

available so far for �tting the entire regularization path of this machine. In this ar-

ticle, we introduce the �rst algorithm of this kind. It is involved in the speci�cation

of new methods to tune the corresponding penalization coe�cient, whose objective

function is a leave-one-out error bound or estimate. From a computational point of

view, these methods appear especially appropriate when the Gram matrix is of low

rank. A comparative study involving state-of-the-art alternatives provides us with an

empirical con�rmation of this advantage.

1 Introduction

During the last decade, Vapnik's main model of soft margin pattern recognition support

vector machine (SVM) [12], hereafter referred to as the ℓ1-SVM, has become one of the most

popular methods to compute dichotomies. Several variants exist, such as the ℓ2-SVM [12]

and the least squares SVM (LS-SVM) [29], which have also been the subject of extensive

studies. Two main reasons can be put forward to explain this success. On the �rst hand,

these machines perform well in practice. On the other hand, their implementation is, at

least in principle, very simple. These advantages are tempered by the fact that in spite of

important e�orts performed over the years [9, 18, 4, 23], model selection for SVMs remains

an open problem. Generally speaking, model selection raises two main issues. The �rst

one regards the criterion used to evaluate the quality of a model. The second one is the

search for the model optimizing this criterion.

During the last decade, a great many methods have been proposed to estimate the

generalization performance of the SVMs. As usual, the solution of reference is the V-

fold cross-validation [27, 5], with its extremal variant, the leave-one-out one, providing

1

an almost unbiased estimator of the generalization error [24]. Since computing the leave-

one-out cross-validation error can be practically intractable, one usually resorts to upper

bounds or estimates. This is known to provide good results in practice (see for instance

[9]). Among the bounds, the radius-margin one [30] provides a good compromise between

e�ciency and computational complexity [9, 10]. It applies to the hard margin machine,

and, by extension, to the ℓ2-SVM. The span bound [9] is tighter, but at the expense of a

higher running time complexity.

In the same way as a great many criteria are available for model selection, the options

to optimize them can be multiple. A solution that is always available is the most naive

(and most expensive) one: a grid search over the parameter space. Since some criteria are

di�erentiable, such as the radius-margin bound and the leave-one-out test error prediction

using di�erentiable spans (named span prediction with regularization in [9]), methods based

on a gradient descent have also been developed [9, 10]. Usually, these local methods provide

satisfactory results at a low cost, but they can also get stuck in plateaus of the objective

function, or converge to suboptimal minima (when the objective function is not convex).

A good illustration of this phenomenon is provided in [10]. In [21], the �rst algorithm

for computing all the solutions of an ℓ1-SVM along its regularization path was proposed.

Experimental results show that its computational complexity is only slightly superior to

that of a single training of the corresponding machine. Furthermore, its use makes it

possible to �nd a global minimum of the selected criterion.

Given the positive judgment passed by the literature on the radius-margin bound, it

appears interesting to derive an algorithm �tting the entire regularization path of the

ℓ2-SVM, and use it to perform a comparative study of di�erent criteria (radius-margin

bound, test error predictions) available to tune the value of the corresponding penalization

coe�cient. This is the subject of this paper. This algorithm is based on a continuation

technique [1] that makes use of an active set method [16].

The organization of the paper is as follows. Section 2 introduces our algorithm per-

forming the exploration of the regularization path for the ℓ2-SVM. Section 3 details upper

bounds on the generalization error of this machine, as well as estimates of this quantity.

It addresses the integration of their computation in the framework of the regularization

path algorithm. Section 4 presents experimental results on both synthetic and real data

sets. The path following algorithm is �rst assessed alone, in terms of �tness and speed.

It is then reassessed for model selection, in the framework of a comparative study with a

gradient based method. At last, we draw conclusions and outline our ongoing research in

2

Section 5.

2 Regularization Path for the ℓ2-SVM

We are interested in binary discrimination. Each object is represented by its description

x ∈ X and the set Y of the categories y can be identi�ed with the set {−1, 1}. The

assignment of the descriptions to the categories is performed by means of a classi�er, i.e.,

a real-valued function on X . For such a function g, the corresponding decision rule f is

de�ned as follows:

∀x ∈ X ,























g(x) < 0 ⇐⇒ f(x) = −1

g(x) = 0 ⇐⇒ f(x) = ∗

g(x) > 0 ⇐⇒ f(x) = 1

,

where ∗ denotes a dummy category introduced to deal with the cases of ex æquo. Thus,

the example (x, y) ∈ X × Y is correctly classi�ed by g if and only if yg (x) > 0. In the

sequel, the family of classi�ers of interest is the class H of the functions implemented by

an SVM. Let κ be a real-valued positive type function [3] on X 2 and let (Hκ, 〈·, ·〉κ) be

the corresponding reproducing kernel Hilbert space (RKHS) [2, 3]. Let {1} be the one-

dimensional space of real-valued constant functions on X . Then, the formula giving H

is

H = (Hκ, 〈·, ·〉κ) + {1} .

The reproducing property allows us to write the functions of H as a�ne functions on Hκ,

i.e.,

∀h ∈ H, ∀x ∈ X , h(x) = h̄(x) + b = 〈h̄, κx〉κ + b,

where h̄ ∈ Hκ, κx = κ(x, ·) ∈ Hκ, and b ∈ R. Hκ is thus one of the possible feature spaces,

associated with the feature map given by

Φ : X −→ Hκ

x 7→ κx
.

To keep this article self-contained, the ℓ2-SVM is now brie�y introduced. Then, following

the structure of [21], the three constitutive elements of our regularization path algorithm

are detailed:

• computation of the Lagrange multipliers,

3

• identi�cation of the breakpoints (transitions between regimes),

• initialization.

The main di�erence in the way they combine is that the identi�cation of the breakpoints

makes use, in an iterative manner, of the computation of Lagrange multipliers. Thus these

elements combine themselves in a continuation method similar to the algorithm introduced

in [26]. The section concludes with the �owchart of the algorithm and an analysis of its

implementation.

2.1 Learning Problem of the ℓ2-SVM

The ℓ2-SVM is the variant of the standard bi-class SVM obtained by replacing the ℓ1 norm

of the vector of slack variables ξ with the square of the ℓ2 norm of the same vector in the

objective function of the primal formulation of the learning problem. A direct consequence

is the fact that it is no longer necessary to consider explicitly the constraints of nonneg-

ativity of the slack variables. Thus, given a training set dm = {(xi, yi) : 1 6 i 6 m}, the

primal formulation of the learning problem corresponds to the following convex quadratic

programming (QP) problem.

Problem 1 (Learning problem of the ℓ2-SVM, primal formulation)

min
h,ξ

{

‖ξ‖22 +
λ

2

∥

∥h̄
∥

∥

2

κ

}

s.t. ∀i ∈ [[1,m]] , yih(xi) > 1− ξi .

Let y = (yi)16i6m ∈ {−1, 1}m be the vector of the labels of the training examples. For

n in N
∗, let Mn,n (R) be the algebra of n× n matrices over R. Let H ∈ Mm,m (R) be the

matrix of general term:

∀ (i, j) ∈ [[1,m]]2 , hi,j = yiyjκ (xi, xj) .

For λ ∈ R
∗
+, let H (λ) = (hi,j (λ))16i,j6m ∈ Mm,m (R) be the matrix deduced from H by

replacing the kernel κ with the kernel κλ given by:

∀(i, j) ∈ [[1,m]]2 , κλ (xi, xj) = κ (xi, xj) +
λ

2
δi,j ,

where δ is the Kronecker symbol. Let β = (βi)16i6m ∈ R
m
+ be the vector of the Lagrange

multipliers associated with the constraints of good classi�cation and α = 1
λβ. Then, the

4

Wolfe dual of Problem 1 is the following QP problem.

Problem 2 (Learning problem of the ℓ2-SVM, dual formulation)

max
α

{

−
1

2
αTH(λ)α+ 1Tmα

}

s.t.











∀i ∈ [[1,m]] , αi > 0

yTα = 0
.

Problem 2 is also the Wolfe dual formulation of the learning problem of a hard margin

SVM using κλ as kernel. This property is important since it implies that results holding

for the hard margin machine also hold for the ℓ2-SVM. As pointed out in the introduction,

among these results is the radius-margin bound. For a given value of λ, let (hλ, ξ (λ)) =
(

h̄λ, bλ, ξ (λ)
)

be the optimal solution of Problem 1 and α(λ) = (αi(λ))16i6m the optimal

solution of Problem 2. Noticeable equations obtained when deriving Problem 2 (applying

the Lagrangian duality) are:

ξ (λ) =
λ

2
α (λ) (1)

and

hλ =
m
∑

i=1

αi (λ) yiκxi
+ α0 (λ) , (2)

with α0 (λ) = bλ. A direct consequence of (2) and the de�nition of the matrix H is that

∀i ∈ [[1,m]] , yihλ (xi) = Hi,·α (λ) + yiα0 (λ) (3)

where Hi,· stands for the row of index i of H (H·,j would stand for its column of index j).

Let h̃λ be the function computed by the hard margin machine associated with Problem 2.

Then,

∀i ∈ [[1,m]] , h̃λ (xi) =

m
∑

j=1

{

αj (λ) yjκ (xj , xi) +
λ

2
αj (λ) yjδi,j

}

+ α0 (λ)

= hλ (xi) +
λ

2
αi (λ) yi . (4)

2.2 Partitioning the Training Set

To follow the path of interest, taking our inspiration from the algorithm introduced in [21],

we focus on the study of the way the values of the positive Lagrange multipliers vary as a

5

function of λ, while the set of null multipliers remains unchanged. This requires to identify

both sets. The Kuhn-Tucker (KT) optimality conditions provide us with such information.

The KT complementary conditions corresponding to the two machines are given by:

∀i ∈ [[1,m]] , αi (λ) [yihλ (xi)− 1 + ξi (λ)] = αi (λ)
[

yih̃λ (xi)− 1
]

= 0 . (5)

It springs from (1) and (5) that for each example, there are three possibilities:

• yihλ (xi) < 1: the example is inside the margin or misclassi�ed, so ξi(λ) > 0 and

αi (λ) > 0,

• yihλ (xi) = 1: the example is on the margin, and αi (λ) = 0,

• yihλ (xi) > 1: the example is correctly classi�ed and outside the margin, αi (λ) = 0.

To sum up, αi (λ) > 0 if and only if yihλ (xi) < 1. This leads to the following partition of

[[1,m]]:

E (λ) = {i ∈ [[1,m]] : yihλ (xi) < 1}

I (λ) = {i ∈ [[1,m]] : yihλ (xi) > 1} .

This partition is reminiscent of active set methods (see for instance Section 10.3 of [16]),

since i ∈ I (λ) if and only if the constraint αi > 0 is active at the optimum of Problem 2.

More precisely, solving Problem 2 under the assumption that the partition associated with

the optimum is known amounts to performing the last step of an active set mehod. It is well

known that each of these steps corresponds to solving a linear system. We now exhibit the

linear system of interest, which calls for the introduction of additional notation. For ease

of notation, in the sequel, we use E (respectively I) in place of E (λ) (respectively I (λ))

when no confusion is possible. The cardinalities of these sets are respectively denoted by

mE and mI . The examples are reordered in such a way that the �rst of them are those

belonging to E . This enables us to introduce compact notations with obvious meaning:

y = (yi)16i6m =
(

yTE yTI

)T
,

α (λ) = (αi (λ))16i6m =
(

αE (λ)
T αI (λ)

T
)T

,

dE(λ) = {(xi, yi) : i ∈ E(λ)} ,

6

and

H =





HE,E HE,I

HI,E HI,I



 ,

where the submatrixHK,L with (K,L) ∈ {E , I}2 is the matrix (hi,j)i∈K,j∈L = (yiyjκ (xi, xj))i∈K,j∈L.

The matrix H (λ) is split in the same way as H.

2.3 Analytical Expression of the Lagrange Multipliers

To derive this expression simply, we make use of the following implication, which is a

consequence of (5) and (1):

i ∈ E =⇒ yih̃λ (xi) = 1 .

In other words, we work with the hard margin machine. According to our notation, the

equality constraint of Problem 2 and the KT conditions associated with the examples in

dE become:










yTE αE (λ) + yTI αI (λ) = 0

HE,E (λ)αE (λ) +HE,I (λ)αI (λ) + α0 (λ) yE = 1mE

.

Due to the fact that αI(λ) = 0, these equations simplify into











yTE αE (λ) = 0

HE,E (λ)αE (λ) + α0 (λ) yE = 1mE

. (6)

By noting

AE (λ) =





0 yTE

yE HE,E (λ)



 =





0 yTE

yE HE,E + λ
2 ImE



 ,

CE =
(

0 1Tm
E

)T
,

and

αa
E (λ) =

(

α0(λ) αE(λ)
T
)T

,

we obtain the following proposition.

Proposition 1 For all λ ∈ R
∗
+, the vector αa

E (λ) is a solution of the linear system:

AE (λ)α
a
E (λ) = CE . (7)

7

This formulation also appears equivalent to the one derived in Appendix 2.B. of [8].

Once E is known, training the ℓ2-SVM boils down to solving (7). The main di�erence with

the corresponding formula obtained for the ℓ1-SVM (see for instance Section 4 in [21])

rests in the dependency of the matrix of the linear system on λ. This implies that the

Lagrange multipliers do not vary linearly as a function of λ anymore. We now discuss the

connection of the linear system of Proposition 1 with the learning problem of an LS-SVM.

The interest of this discussion is twofold. First, it will be at the basis of the method

proposed to compute the Lagrange multipliers. Second, it will highlight a link between

the leave-one-out cross-validation error of the LS-SVM and the leave-one-out test error

prediction of the ℓ2-SVM de�ned in [31]. The (primal) objective function of the LS-SVM

is the same as the one of Problem 1. The di�erence between the two learning problems

rests in the fact that for the LS-SVM, the constraints of correct classi�cation are equality

constraints (with the consequence that the slack variables are not constrained in sign).

Problem 3 (Learning problem of the LS-SVM, primal formulation)

min
h,ξ

{

‖ξ‖22 +
λ

2

∥

∥h̄
∥

∥

2

κ

}

s.t. ∀i ∈ [[1,m]] , yih (xi) = 1− ξi .

Suykens and Vandewalle have shown that solving Problem 3 is equivalent to solving

the following linear system (Equation 20 in [29]):





0 yT

y H + λ
2 Im









α0 (λ)

α (λ)



 =





0

1m



 .

Thus, solving (7) can alternatively be seen as training an LS-SVM on dE(λ). This allows

us to state the following proposition.

Proposition 2 Training an ℓ2-SVM on dm reduces itself to training an LS-SVM on dE(λ)

once the set E (λ) is known.

We now address the practical resolution of the linear system.

2.4 Practical Computation of the Lagrange Multipliers

Our path-following strategy for setting the value of the regularization coe�cient involves

multiple solutions of the linear system (7), for di�erent values of λ. This calls for a dedicated

8

algorithm. In this section, we �rst reformulate (7) using a standard technique, and then

make use of this reformulation to derive an algorithm solving it for a reduced computational

cost in the regularization path framework.

2.4.1 Stand-Alone Solution for a Given Value of λ

We take our inspiration from the approach of [28], which uses a classical trick in active

set method algorithms. We �rst note that since HE,E is symmetric positive semi-de�nite,

HE,E (λ) is symmetric positive de�nite (SPD) and thus invertible. We want to reformulate

(7) so as to make HE,E (λ)
−1 appear. It springs from (6) that:

αE (λ) = HE,E (λ)
−1 (1mE

− α0 (λ) yE) . (8)

By substitution in the equality constraint of Problem 2, we have:

yTE HE,E (λ)
−1 1mE

= α0 (λ) y
T
E HE,E (λ)

−1 yE . (9)

Still following [28], in order to get compact expressions for α0 (λ) and αE (λ), we introduce

two vectors of RmE , ν and ρ, such that











HE,E (λ) ν = yE

HE,E (λ) ρ = 1mE

. (10)

By substitution into (8) and (9) we get











αE (λ) = ρ− α0 (λ) ν

yTE ρ = α0 (λ) y
T
E ν

.

Thus, the expressions of α0 (λ) and αE (λ) as a function of ν and ρ are:











α0 (λ) =
yT
E
ρ

yT
E
ν

αE (λ) = ρ− α0 (λ) ν
. (11)

All in all, solving (7) for a given value of λ boils down to computing the corresponding

values of ν and ρ. Since matrix HE,E (λ) is SPD, this can be done by applying a Cholesky

decomposition, such as the Gaxpy Cholesky one (see for instance [19]), whose complexity

9

is 1
3m

3
E . However, signi�cant improvements can result from the global handling of the

sequence of systems (10) (parameterized by λ) that are actually to be solved all along the

path. We now describe a reduced-cost algorithm of this kind.

2.4.2 Computation of a Series of Solutions

Our method makes central use of a proposition that states that if the matrix H can

be approximated by a matrix of low rank (independent of m), then the complexity of

solving the system (10) grows linearly with mE . Thus, we �rst introduce a low-rank

approximation of H and then use it for calculating the Lagrange multipliers. In order to

avoid numerical di�culties, we introduce a small positive constant: ε. It is supposed to

be large enough so that H (ε) is �numerically SPD� (with �not too small� eigenvalues). To

derive an approximate solution of (10) for λ0 > ε such that E (λ0) is known, we use a

low-rank approximation of HE(λ0),E(λ0) (ε), approximation which can be directly deduced

from a low-rank approximation of H (ε). The approximation of H (ε) (and thus H) we

consider is a matrix Hr (ε) satisfying

Hr (ε) = RrR
T
r

with Rr ∈ Mm,r (R). Note that this factorization can actually rest on the fact that H (ε)

is SPD. Let us reorder the training examples and decompose the corresponding matrix

Rr according to the principle introduced in Section 2.2. Thus, Rr =





RE(λ0)

RI(λ0)



, with

RE(λ0) ∈ MmE(λ0)
,r(R) and RI(λ0) ∈ MmI(λ0)

,r(R), and we get

Hr (ε) =





HE(λ0),E(λ0),r (ε) HE(λ0),I(λ0),r (ε)

HI(λ0),E(λ0),r (ε) HI(λ0),I(λ0),r (ε)



 =





RE(λ0)R
T
E(λ0)

RE(λ0)R
T
I(λ0)

RI(λ0)R
T
E(λ0)

RI(λ0)R
T
I(λ0)



 .

By construction,

HE(λ0),E(λ0) (λ0) = HE(λ0),E(λ0) (ε) +
λ0 − ε

2
ImE(λ0)

,

thus, HE(λ0),E(λ0) (λ0) can be approximated by

HE(λ0),E(λ0),r (λ0, ε) = HE(λ0),E(λ0),r (ε) +
λ0 − ε

2
ImE(λ0)

.

10

The point of that approximation is that in the end, we work with a matrix, RE(λ0), which

can be directly derived from the initial matrix Rr, i.e., from one single low-rank approxi-

mation of H (ε). The fact that HE(λ0),E(λ0),r (ε) is not the matrix we would have obtained

by approximating directly HE(λ0),E(λ0) (ε) raises no di�culty. Furthermore, this matrix is

regular.

Proposition 3 Let us consider the system of linear equations

HE(λ0),E(λ0),r (λ0, ε) v = z,

with HE(λ0),E(λ0),r (λ0, ε) ∈ MmE(λ0)
,mE(λ0)

(R) being the sum of a rank r matrix and a scaled

identity matrix. The computational complexity of solving this system is linear in mE(λ0).

Proof

By applying the Sherman-Morrison-Woodbury identity (see for instance [19]), we ob-

tain:

(

HE(λ0),E(λ0),r (ε) +
λ0 − ε

2
ImE(λ0)

)−1

=

(

RE(λ0)R
T
E(λ0)

+
λ0 − ε

2
ImE(λ0)

)−1

=
2

λ0 − ε
ImE(λ0)

−
4

(λ0 − ε)2
RE(λ0)

(

Ir +
2

λ0 − ε
RT

E(λ0)
RE(λ0)

)−1

RT
E(λ0)

=
2

λ0 − ε
ImE (λ0) −

4

(λ0 − ε)2
RE(λ0)T (λ0)

−1RT
E(λ0)

with

T (λ0) = Ir +
2

λ0 − ε
RT

E(λ0)
RE(λ0) .

Solving the system of interest boils down to solving a system involving the matrix T (λ0), of

size r, and performing a series of matrix-vector calculations from the right to the left. Once

T (λ0) is obtained in O
(

mE(λ0)r
2
)

, the system of size r is solved by a Cholesky decompo-

sition in only 1
3r

3 operations (see the preceding section). Since the matrix multiplications

involve matrices of size lower than
(

mE(λ0), r
)

, their complexity does not exeedO(mE(λ0)r
2).

Summing the two complexities provides the overall complexity in O(mE(λ0)r
2 + r3). This

concludes the proof.

To derive an approximate solution of (10) for λ = λ0, the matrix HE(λ0),E(λ0) (λ0) is

replaced with HE(λ0),E(λ0),r (ε) +
λ0−ε
2 ImE(λ0)

. The corresponding values of ν and ρ are

thus obtained by solving a system involving T (λ0). In order to obtain triangular sys-

11

tems for both equations, a Cholesky decomposition of this matrix is performed so that

T (λ0) = LT
E(λ0)

LE(λ0). Thanks to Proposition 3, the complexity of computing ν and ρ

reduces from O(m3
E) to O(mEr

2+r3), hence the linear complexity in mE announced at the

beginning of the section. This establishes the advantage of our algorithm computing glob-

ally approximate solutions for all the systems (10) of interest compared to solving indepen-

dently these systems. By abuse of notation, we keep using αa
E (λ0) =

(

α0 (λ0) αE (λ0)
T
)T

to designate the resulting approximate solution of (7) (for λ = λ0). Details regarding com-

plexity and the consequences of the approximation are given in Section 2.7. This approach

assumes that E(λ0) is known. The following section presents our method for updating the

set E .

2.5 Detecting Changes in the Partition of the Training Set

Let
(

λl
)

l∈N∗ be the strictly decreasing sequence of values of the regularization coe�cient

associated with changes in the sets E and I. These events can be directly inferred from the

de�nitions of the sets. Indeed, if the sequence is known up to its term of index l, �nding

λl+1 boils down to identifying the largest value λ in the interval
(

0, λl
)

for which there is

a new index i ∈ [[1,m]] such that yihλ (xi) = 1. Given (3), this corresponds to solving for

λ the set of equations indexed by i:

Hi,E(λl)αE(λl) (λ) + yiα0 (λ) = 1 . (12)

Implemented in a straightforward way, this method to detect the changes is numerically

intractable for large values of mE , and we will see in Section 2.6 that the extreme case

E (λ) = [[1,m]] is met in practice. Fortunately, the system (11) provides us with an an-

alytical expression of the dual variables that can be used to apply a crude �rst order

approximation, which corresponds to taking a Newton step. To this end, we de�ne

∀i ∈ [[1,m]] , λl+1
i = λl −

1− yihλ (xi)
∂(1−yihλ(xi))

∂λ

= λl +
1− yihλ (xi)

yi
∂hλ(xi)

∂λ

.

Thanks to (3), the expression of ∂hλ(xi)
∂λ is easily obtained once ∂α0(λ)

∂λ and ∂αE(λ)
∂λ are known.

After some algebra, these quantities are derived from (10):











∂α0(λ)
∂λ = −1

2
νT ρyT

E
ν−νT νyT

E
ρ

(yTE ν)
2

∂αE (λ)
∂λ = −1

2HE,E (λ)
−1 αE (λ)−

∂α0(λ)
∂λ ν

. (13)

12

If the λl+1
i were the roots of the equations (12), then the expression of λl+1 would be

simply

λl+1 = max
{i:λl+1

i <λl}
λl+1
i .

However, the use of an approximation calls for another formula, to prevent the algorithm

from performing either empty steps or too big steps. We found the following rule of thumb

to be especially e�cient: λl+1 is chosen so that 2% of the indices of E(λl) satisfy λl+1 <

λl+1
i < λl. Due to the possible �atness of the function, the approximation may still provide

inappropriate solutions. In order to overcome this problem, when λl+1 should be chosen

smaller than 1
2λ

l, it is chosen equal to 1
2λ

l. Our experiments have shown that this �atness

problem only occurs when λ is very large. The prediction of the partition at λl+1 is based

on the sign of the �rst order approximation of 1− yihλ(xi). A priori, due to the nonlinear

behavior of the Lagrange multipliers, this prediction must be corrected. The exact partition

is obtained thanks to the approach implemented by the active set methods. For a given

partition, the values of the Lagrange multipliers are computed, and the consistency of the

result is checked. In case of inconsistency, a new partition is inferred from the values of

the Lagrange multipliers and so on. Since the predicted partition is close to the optimal

one, this correcting step is not too expensive. In the experiments presented below, except

in the vicinity of the end of the path, convergence was reached after a single update.

2.6 Starting Point of the Path

In order to de�ne a starting point for the path, we take bene�t of the speci�cities of

Problem 2 when λ goes to in�nity. Asymptotically, H(λ) is equivalent to λ
2 Im, so that the

contribution of the training examples to the learning problem is restricted to the constraint

yTα = 0. The learning problem is �equivalent� to

Problem 4 (Problem equivalent to Problem 2 when λ goes to in�nity)

max
α

{

−
λ

4
αTα+ 1Tmα

}

s.t.











∀i ∈ [[1,m]] , αi > 0

yTα = 0
.

13

In [10] (Appendix C), the authors pointed out that the solution of Problem 4 is given by:

∀i ∈ [[1,m]] ,











αi(λ) =
4m−

mλ if yi = 1

αi(λ) =
4m+

mλ otherwise
(14)

where m+ is the cardinality of the subset of the training set made up of the examples

whose label is 1 and m− = m−m+. With the values of the Lagrange multipliers at hand,

it su�ces to compute the limit b∞ of bλ as λ goes to in�nity to characterize the asymptotic

behavior of the classi�er. To that end, we make use of the fact that since all the Lagrange

multipliers are asymptotically positive, the KT complementary conditions (5) imply that

for all i in [[1,m]], yih̃λ (xi) goes to 1. Then, the combination of (4) and (14) gives

b∞ =
m+ −m−

m
.

A direct consequence of this last formula is that if m+ 6= m−, the limit classi�er used

in test always returns the category of highest cardinality. Contrary to the case of the

ℓ1 norm, there is no value λ∞ such that above this value the Lagrange multipliers are

constant. All what is known is the asymptotic behavior of the Lagrange multipliers, which

is not su�cient to de�ne a starting point in a way similar to that of [21]. However, this

knowledge remains useful to derive two criteria: one to check whether a given value is large

enough to be the initial value for λ (hereafter noted λ1), and one to start computing the

model selection criterion.

2.7 Overview of the Algorithm and Complexity Analysis

Figure 1 presents the integration of the constitutive elements of the path-following algo-

rithm.

There are basically �ve distinct components:

• the low-rank approximation of H(ε),

• the computation of Lagrange multipliers,

• the outer loop that generates the sequence
(

λl
)

,

• the inner loop which updates E (for the current value of λ),

• a post-processing for returning the classi�er.

14

Approximate H(ε)

Compute α for λ1 (large value of λ)

Determine λl and predict E(λl)

Compute α(λl) and α0(λ
l)

Feasible solution?

Correct the estimation of
E(λl)

End of the path?

Expansion of the classi�er on κ

l := 2

yes

no
no

l := l + 1

yes

Figure 1: Flowchart of the path-following algorithm.

We now discuss the complexity of the key parts of the algorithm and some choices regarding

their implementation.

2.7.1 Low-Rank Hessian Approximation

The following discussion regards the derivation of Hr(ε) and the consequences of the ap-

proximation. Among all the di�erent algorithms available for matrix factorization are the

Incomplete Cholesky Factorization (ICF) proposed in [15], the eigenvalue decomposition

truncated to select only the largest eigenvalues, and the density-weighted Nyström method

proposed in [32]. Their complexities are respectively in O
(

mr2
)

, O
(

m3
)

, and O
(

l3 + lm
)

with l the number of landmarks (l can be viewed as a guess of an upper bound on r). Given

the results of the comparative study presented in [33], we decided to use Nyström methods.

Note that the use of an eigenvalue decomposition (and thus a Nyström decomposition) in

our method corresponds to performing a kernel-PCA prior to training a linear SVM with

the selected features.

If the RKHS spanned by κ is of �nite dimension, the choice of l is straightforward

since the value of r is the minimum between this dimension and the number of examples.

Otherwise, one cannot expect the matrices H (ε) and Hr (ε) to be equal, so that the choice

for the value of r is harder. It is of major importance as it directly a�ects the capacity of

15

the class of functions (see [4]). The two main options consist in using a pre-speci�ed �xed

rank and selecting every eigenvalue above a given threshold. The �xed-rank method can

be connected with the training of a classi�er with reduced complexity (see [22]). The use

of a threshold on the eigenvalues allows to control the precision of the solution, due to the

very nature of the underlying criterion (the spectral norm). For the kernel ridge regression,

Proposition 1 of [11] gives an upper bound on the di�erence of the functions calculated

with and without the approximation. When the model is linear (and not a�ne) in the

feature space, this proposition applies to the LS-SVM and thus the ℓ2-SVM. Such a result

allows to gain some insight in the impact of the approximations of the matrix H(ε) and

the regularization coe�cient on the classi�er. An additional advantage of this technique

is that it ensures that Hr (ε) is SPD. Thus, we selected the approximation using all the

eigenvalues above a given threshold.

It must be borne in mind that using an approximation of H(ε) does not leave the learn-

ing problem unchanged. It induces a change of kernel (all the smaller as the approximation

is more accurate). Furthermore, making use of the analytical expression of the new kernel

κr is intractable in practice (see the analytical expression of its eigenfunctions in [17]).

This raises di�culties which are addressed in Section 2.7.3.

2.7.2 Complexity Analysis of the Outer Loop

As seen in Section 2.5, the computation of λl+1 and the prediction of the corresponding set

E is based on the computation of the derivative of αa
E with respect to λ. This derivative,

given by (13), is obtained by solving a linear system involving the matrix HE,E

(

λl
)−1

already handled when computing the values of the dual variables (10). More precisely, the

computation of the derivative bene�ts from the availability of the Cholesky decomposition

of T
(

λl
)

. As a consequence, it only takes one forward and one back substitution with

several additional matrix multiplications, for a global complexity of 2mE(λl)r+2r2+4mE(λl)

operations. Computing the values of all the λl+1
i takes 4mr +m operations. The overall

complexity of the computation of λl+1 is then in O
(

mr + r2
)

.

The complexity for deriving the approximate solution of (10) at λl+1 is inO
(

mE(λl+1)r + r3
)

once RT
E(λl+1)

RE(λl+1) is known. The naive computation of the product RT
E(λl+1)

RE(λl+1)

requires mE(λl+1)r
2 operations making it one of the most expensive steps of the algo-

rithm. In practice, taking bene�t of the fact that E changes slowly, we compute an

update of the matrix RT
E(λl)

RE(λl) which only takes 2r2∆E
(

λl+1, λl
)

operations with

∆E
(

λl+1, λl
)

=
∣

∣

∣
mE(λl+1) −mE(λl)

∣

∣

∣
the cardinality di�erence of the two consecutive sets.

16

Given the rule of thumb used to choose λl+1 (see Section 2.5), ∆E
(

λl+1, λl
)

can be expected

to be close to 2% of mE(λl).

2.7.3 Expansion of hλ in Terms of κ

As stated in Section 2.7.1, the classi�er produced by the algorithm is built on the kernel κr

(whose computation requires O(mr) computations of the value of the kernel κ). In order

to obtain a classi�er ĥλ which can be e�ciently used in test, we propose to switch back

from κr to κ by taking our inspiration from [4]. Given a subset J of [[1,m]], this amounts

to �nding a vector of coe�cients γ (λ) ∈ R
mJ so that

ĥλ =
∑

i∈J

γi (λ) yiκxi
+ α0 (λ)

and ĥλ is identical to the classi�er built on κr on the training set, i.e.,

(

yi

[

ĥλ (xi)− α0 (λ)
])

16i6m
=



yi

mE(λ)
∑

j=1

αj (λ) yjκr (xj , xi)





16i6m

.

This last equation can be reformulated algebraically as follows:

H·,J (ε)γ (λ) = RrR
T
E(λ)αE (λ) .

In the case of an in�nite dimensional feature space, we suggest to choose the set J equal to

E(λ) to preserve the sparsity of the initial SVM. Then, deriving γ (λ) requires O
(

m3
E(λ)

)

operations. When the dimension of the feature space is r, we can set mJ = r (due to the

linear independence of only r rows of H), thus obtaining γ (λ) in O
(

r3
)

operations. This

result proves to be of particular interest when using polynomial kernels of low degree since

it implies that the time needed to evaluate ĥλ on a test example depends on r instead of

mE(λ).

3 Model Selection

In this section, we present the criteria of model selection used for our experiments. As

pointed out in the introduction, a candidate of choice is the radius-margin bound which

is thus presented �rst. Then, the leave-one-out test error prediction based on the span

bound is detailed. We show that this estimate can be obtained as a by-product of the

17

computations of our algorithm �tting the regularization path. This leads us to propose

a global model selection procedure integrating this criterion in the regularization path

algorithm.

3.1 Radius-Margin Bound

In [30], Vapnik has derived a bound on the leave-one-out cross-validation error of a hard

margin SVM.

Theorem 1 (After Sections 10.3 and 10.4 in [30]) Let us consider a hard margin SVM

trained on dm. Let γ =
∥

∥h̄
∥

∥

−1

κ
be its margin and R the radius of the smallest ball of Hκ

enclosing the set {Φ(xi) : 1 6 i 6 m}. Then,

1

m

m
∑

i=1

1l{yihi(xi)60} 6
4

m

R2

γ2

where 1l is the standard indicator function and hi is the function computed by the SVM

trained on dm \ {(xi, yi)}.

It must be borne in mind that applying this bound to the ℓ2-SVM requires to consider

the appropriate feature space, i.e., the RKHS induced by κλ, which depends on λ. As

a consequence, the radius must be computed again for each value of λ considered. This

amounts to solving an additional series of QP problems.

3.2 Leave-One-Out Test Error Prediction Based on the Span Bound

The span bound is an exact bound on the leave-one-out cross-validation error of the ℓ1-

SVM introduced by Vapnik and Chapelle in [31]. It is based on the concept of span of

support vectors. We detail here the (leave-one-out) test error prediction derived from the

span bound using the hypothesis that the set of support vectors remains the same during

the leave-one-out cross-validation procedure. The notation uses explicitly λ to remind that

this result holds for both the soft and the hard margin SVM (corresponding to λ −→ 0).

Theorem 2 (Theorem 3 in [31]) Let us consider an ℓ1-SVM trained on dm. Under the

hypothesis that the set of support vectors remains the same during the leave-one-out cross-

validation procedure, the following equality holds

∀i ∈ [[1,m]] , yi
(

hλ (xi)− hiλ (xi)
)

= αi (λ)Si (λ)
2

18

with Si (λ) the distance between Φ (xi) and the set Λi (λ) de�ned by

Λi (λ) =







∑

j:αj(λ)∈(0,λ−1)∧j 6=i

τjΦ (xj) ,
∑

j:αj(λ)∈(0,λ−1)∧j 6=i

τj = 1







.

The de�nition of Λi (λ) is slightly di�erent from the one given in [31] but is identical under

the hypothesis of invariance of the support vectors.

Corollary 1 (Corollary 1 in [31]) Under the hypotheses of Theorem 2,

1

m

m
∑

i=1

1l{yihi
λ
(xi)60} =

1

m

m
∑

i=1

1l{αi(λ)Si(λ)
2−yihλ(xi)>0}, (15)

where the right-hand side of (15) is the aforementioned test error prediction.

When implemented in a naive way, the computation of the test error prediction has a

complexity of the same order as the leave-one-out (cross-validation) procedure. We now

focus on the case of interest in the framework of this study (following the regularization

path), the one of the hard margin machine. It is speci�cally addressed in [9]. In that

framework, (15) simpli�es into

1

m

m
∑

i=1

1l{yihi(xi)60} =
1

m

m
∑

i=1

1l{αiS2
i −1>0} .

The authors provide a pratical result for obtaining the values of the spans Si based on the

following algebraic reformulation:

∀i ∈ [[1,m]] , S2
i = min

τ
max
µ



Φ (xi)−
∑

j:αj>0∧j 6=i

τjΦ (xj)





2

+ 2µ





∑

j:αj>0∧j 6=i

τj − 1





with µ the Lagrange multiplier associated with the constraint
∑

τi = 1. Let K be the

Gram matrix and K̄ the matrix given by:

K̄ =





KE,E 1mE

1TmE
0





19

with E being the set of indices of the support vectors. By setting τ̄ =
(

τT , µ
)T

, the previous

min-max problem can be formulated as:

S2
p = min

τ
max
µ

{

κ (xp, xp)− 2vT τ̄ + τ̄TV τ̄
}

with V the submatrix of K̄ obtained by removing the row and column of index p and v

the pth column of K̄ minus its pth component. The existence of V −1 in the general case

is not discussed here, as only the case of a full rank Gram matrix will be of our concern.

From the optimal value of τ̄ being equal to V −1v, Equation 12 of [9] gives the value of Sp:

S2
p = κ (xp, xp)− vTV −1v

= 1/(K̄−1)p,p .

The last step comes from the block inversion formula. Thus the most expensive part of

the computation of the leave-one-out test error prediction is the inversion of K̄. As this

result is only valid for the hard margin machine, in order to apply it to the ℓ2-SVM, it is

required to make use of its hard margin formulation. This imply constructing K from the

kernel κλ.

3.3 Integration in the Regularization Path Algorithm

This section proposes an e�cient implementation of the leave-one-out test error prediction

in the framework of the regularization path when the Hessian matrix is of low rank. First

we demonstrate a proposition inspired by the method proposed by Cawley et al. in [6] for

computing the exact leave-one-out (cross-validation) error for the LS-SVM as a by-product

of its training. Then from this proposition we present a means to calculate the leave-one-

out test error prediction using the low rank property of Hr (ε) and thus scaling linearly

with mE .

Proposition 4 The number of errors associated to the leave-one-out test error prediction

of the ℓ2-SVM is equal to that of the leave-one-out cross-validation procedure of the LS-SVM

trained on dE which is

∑

i∈E

1l{yihi
λ
(xi)60} =

∑

i∈E

1l{
αi(λ)

(AE (λ)−1)i,i
−1>0

} . (16)

20

Proof Let αi
0(λ), α

i
E(λ) and h̃iλ be respectively the bias, the vector of Lagrange multipliers

and the function calculated by the LS-SVM trained on dE \ {(xi, yi)} with the kernel κλ.

It will be shown latter in this proof that h̃iλ (xi) is equal to hiλ (xi) and thus is the quantity

of interest for the leave-one-out procedure.

Cawley et al. have shown in [6] that h̃iλ (xi) can be deduced from quantities involved in

the expression of the LS-SVM trained on the whole set dm. Their demonstration involves

the Gram matrix and will be performed here with the Hessian matrix so that it �ts in the

current framework.

As this computation makes extensive use of (7), let us recall it:





0 yTE

yE HE,E + λ
2 ImE









α0(λ)

αE(λ)



 =





0

1mE



 .

For ease of notation, let the coe�cients of AE(λ) range from 0 to mE so that the index

of column matches the index of αa
E(λ):

AE(λ) = (ai,j)06i,j6mE
.

From this matrix, we de�ne:

• Ai ∈ MmE ,mE
(R) the matrix AE(λ) with the row and the column of index i removed,

• ai ∈ R
mE the column of index i with its coe�cient of index i removed,

• ai,i ∈ R the coe�cient of index (i, i).

With these notations at hand, the row of index i (i ∈ [[1,mE]]) of system (7), corresponding

to the Kuhn-Tucker optimality condition for the example i, can be rewritten as

aTi
(

α0(λ)αE\{i}(λ)
T
)T

= 1− ai,iαi(λ) (17)

while the other rows are

(

Ai ai
) (

α0(λ)αE\{i}(λ)
Tαi(λ)

)T
= (0 1TmE−1)

T . (18)

This decomposition of AE(λ) allows to express the learning problem of the LS-SVM trained

on E \ {i} in terms of Ai:

Ai





αi
0(λ)

αi
E(λ)



 =





0

1mE−1



 . (19)

21

From the de�nition of ai we have yih̃
i
λ(xi) = Hi,E(λ)α

i
E(λ)+yiα

i
0(λ) = aTi

(

αi
0(λ) α

i
E(λ)

T
)T

.

By substituting (19) in this expression:

yih̃
i
λ(xi) = aTi

(

Ai
)−1 (

0 1TmE−1

)T
.

Equations (17) and (18) allow to simplify this formula to express yih̃
i
λ(xi) as a function of

αi (λ):

yih̃
i
λ(xi) = aTi

(

Ai
)−1 (

Ai ai
) (

α0(λ) αE\{i}(λ)
Tαi(λ)

)T

= aTi
(

Ai
)−1

Ai
(

α0(λ)αE\{i}(λ)
T
)T

+ αi(λ)a
T
i

(

Ai
)−1

ai

= 1− αi(λ)ai,i + αi(λ)a
T
i

(

Ai
)−1

ai

= 1− αi(λ)
(

ai,i − aTi
(

Ai
)−1

ai

)

= 1−
αi(λ)

(AE(λ)−1)i,i
. (20)

The last line comes from the application of the block inversion formula. As previously

mentioned, the outputs of the hard margin classi�er and the soft margin classi�er for the

example i are equal:

h̃iλ(xi) =
∑

j 6=i

(

αj(λ)yjκ(xi, xj) + δi,j
λ

2

)

+ α0(λ)

=
∑

j 6=i

αj(λ)yjκ(xi, xj) + α0(λ)

= hiλ(xi) . (21)

Combining Equations (20) and (21) gives the number of misclassi�ed examples of dE

for the LS-SVM trained on dE . As only the examples of dE are of interest, the number of

errors of (15) and (16) are exactly the same, which concludes the proof.

This proposition is twofold as it ensures good model selection properties due to the well

established leave-one-out test error prediction based on the spans and it allows to compute

it e�ciently. As previously seen, the matrix AE(λ) plays a central role for model selection.

22

The block inversion formula gives the elements of the diagonal of the inverse of AE(λ):

AE(λ)
−1 =





s−1 −s−1yTE HE,E(λ)
−1

−HE,E(λ)
−1yEs

−1 HE,E(λ)
−1 +HE,E(λ)

−1yEs
−1yTE HE,E(λ)

−1





=





1
s −1

sν
T

−1
sν HE,E(λ)

−1 + 1
sνν

T



 (22)

with s = −yTE HE,E(λ)
−1yE = −yTE ν.

For i ∈ [[1,mE]], the elements of the diagonal are:

AE(λ)
−1
i,i = (HE,E(λ)

−1)i,i +
1

s
ν2i . (23)

Thanks to the low-rank approximation of HE,E(ε), the computational complexity of the

diagonal elements of the inverse matrix is linear in mE . Hereafter comes the detail of this

proposition. Keeping the notations of Section 2.4, we obtain

HE,E(λ)
−1 ≃

(

HE,E,r (ε) +
λ− ε

2
ImE

)−1

=
2

λ− ε
ImE

−
4

(λ− ε)2
RET (λ)−1RT

E

=
2

λ− ε
ImE

−
4

(λ− ε)2
(L−1

E RT
E)

T (L−1
E RT

E).

Computing the matrix L−1
E RT

r yields a complexity in O(mEr
2) operations. Let ui,j be

its general term. The diagonal terms of HE,E(λ)
−1 are given by

∀i ∈ [[1,mE]] , (HE,E,r(λ, ε)
−1)i,i =

2

λ− ε
−

4

(λ− ε)2

r
∑

j=1

u2j,i . (24)

Combining (23) and (24), and using the fact that ν and LE are already precomputed, allows

to obtain a complexity in only O(mEr
2) operations for calculating the leave-one-out test

error prediction. When r is small compared to m, this complexity is inferior to that of the

QP problem solved to derive the radius.

The integration of the model selection in the regularization path algorithm results in

the algorithm presented in Figure 2. The main di�erences are the computation of the

leave-one-out test error prediction and the expansion of the optimal (according to the test

error prediction) classi�er on κ.

23

Approximate H(ε)

Compute α for λ1 (a large value of λ)

Determine λl and predict E(λl)

Compute α(λl) and α0(λ
l)

Feasible solution?

Correct the estimation of
E(λl)

Compute leave-one-out
test error prediction

End of the path?

Expansion of the optimal classi�er on κ

l := 2

yes

no
no

yes

no

l := l + 1

Figure 2: Flowchart of the model selection procedure using the regularization path.

4 Experimental Results

We now present results from various numerical simulations. First a comparison of the

solution obtained by our path-following algorithm and a state-of-the-art algorithm is per-

formed. Then we illustrate the good behavior of the leave-one-out test error prediction.

The central experiment is the comparison of our model selection procedure with another

state-of-the-art method on severals data sets. We conclude with a comparison of the

computation time of our model selection procedure and a dedicated large scale training

algorithm.

4.1 Setup

All Hessian matrix approximations involve a Nyström decomposition method. When the

training set is smaller than 4000 examples, a density-weighted Nyström method is used,

otherwise, a uniform sampling method is applied. Each data set is standardized.

Table 1 shows some statistics about the data sets. Most of them are from the Rätsch

database (http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark). The Spam

24

http://www.fml.tuebingen.mpg.de/Members/raetsch/benchmark

data set is taken from the UCI repository while ijcnn1 and a9a are taken from Lin's

homepage (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). The arti�-

cial data set will be detailed later.

Data set #features #training #test #realizations

banana 2 400 4900 100
breast cancer 9 200 77 100
diabetis 8 468 300 100
�aresolar 9 666 400 100
german 20 700 300 100
heart 13 170 100 100
image 18 1300 1010 20
ringnorm 20 400 7000 20
splice 60 1000 2175 20
tyroid 5 140 75 100
titanic 3 150 2051 100
twonorm 20 400 7000 100
waveform 21 400 4600 100
Spam 57 3601 1000 30
ijcnn1 22 49990 91701 1
a9a 123 32561 16281 1

Table 1: Statistics about the data sets. #realizations corresponds to the number of real-
izations of training sets and test sets for each data set.

Unless speci�ed otherwise, a Gaussian kernel with bandwidth σ is used. To avoid nu-

merical instabilities, ε was set equal to 10−8. The regularization coe�cient ranges from

10−6 to 107. The leave-one-out test error prediction is evaluated for each λl. All the compu-

tational times include the approximation of H(ε), the path-following itself, the evaluations

of the leave-one-out test error prediction and the expansion of the optimal classi�er (when

required). All our codes are in MATLAB (R2010B).

4.2 Optimality of the Solution Obtained by the Regularization Path

This section illustrates the fact that the low-rank approximation can lead to the same result

as the classical approach. A state-of-the-art algorithm, the ℓ2 version of libsvm (ℓ2-libsvm),

is used for comparison on three data sets with di�erent kernels. As a good approximation

is required, the following settings are chosen:

• the threshold on the eigenvalues is set at 10−6,

• 80% of the training set is used for building the approximation.

Good quality of the �rst eigenvalues and eigenvectors estimations is ensured by performing

the density-weighted Nyström approximation on a large part of the training set. Table 2

25

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

Data set Kernel Rank Path (s) ℓ2-libsvm (s) Ratio

Linear 2 0.5996 (44) 1.6229 (10) 0.99988
Gaussian (0.2) 317 1.5592 (49) 0.8799 (10) 0.98236

banana Gaussian (0.6) 147 0.95875 (45) 1.455 (10) 0.99993
Gaussian (1) 81 0.84712 (46) 16.0839 (10) 0.99945
Gaussian (1.4) 56 0.79836 (45) 18.8339 (10) 1.0001
Gaussian (1.8) 44 0.8895 (44) 13.0951 (10) 0.9991

Linear 20 0.69215 (50) 0.99338 (10) 0.99963
Gaussian (10) 319 1.0794 (49) 1.1886 (10) 0.99304
Gaussian (15) 319 1.0554 (49) 1.1857 (10) 0.99361

twonorm Gaussian (20) 319 1.0842 (49) 1.1932 (10) 0.99231
Gaussian (25) 319 1.0724 (49) 1.1952 (10) 0.99305
Gaussian (30) 289 0.99932 (49) 1.2005 (10) 0.99553
Gaussian (35) 244 0.90694 (49) 1.2022 (10) 0.99558
Gaussian (40) 231 0.90001 (49) 1.2066 (10) 0.99672

Linear 14 2.267 (44) 33.7736 (10) 1.0001
Gaussian (2) 905 9.3627 (47) 5.4173 (10) 0.98943
Gaussian (3) 873 7.8396 (46) 5.2021 (10) 0.99386

image Gaussian (4) 778 7.7303 (45) 5.5274 (10) 0.99759
Gaussian (5) 683 6.0358 (45) 6.3224 (10) 0.99899
Gaussian (6) 598 5.3664 (41) 5.6593 (10) 0.99977
Gaussian (7) 527 5.3114 (41) 5.7693 (10) 0.99987

Table 2: Comparison of the values of the objective function evaluated with the Lagrange
multipliers obtained from ℓ2-libsvm and with our path-following algorithm. For our path-
following algorithm, the number in parentheses corresponds to the number of changes in
set detected. For ℓ2-libsvm, the time corresponds to ten times the average (over all the
values of λ considered) of the training time.

shows that the solutions found by our path-following method and ℓ2-libsvm are close. It

is important to note that ℓ2-libsvm has di�culties to converge when the bandwidth of the

Gaussian kernel is large, thus explaining why its training time is so high. For ℓ2-libsvm,

we display ten times the average value in the table, assuming that when selecting model

by means of a grid, one would use 10 di�erent values of λ.

4.3 Comparison of the Model Selection Criteria

The relative behavior of the leave-one-out cross-validation bounds (or test error estimators)

has already been extensively studied in the literature (for example in [9, 10]). Two main

conclusions can be drawn: the minima of both the radius-margin bound and the leave-one-

out test error prediction are adequate criteria for model selection and the leave-one-out test

error prediction is an accurate estimator of the generalization error. Figure 3 illustrates

such properties on the banana data set.

26

Figure 3: Evolution of the radius-margin bound (truncated to 1), the leave-one-out test
error prediction and the test error along the regularization path.

4.4 Accuracy in Terms of Model Selection

This section illustrates the use of a low-rank approximation of the Hessian matrix for

computing the regularization path to perform model selection. The algorithm of reference

for model selection, introduced in [9], is based on the gradient descent using di�erentiable

spans. Three experiments are performed with data sets of increasing size. Here are the

details of the comparison procedure:

• For each realization of the data set, the optimal classi�er computed by the algorithm

on the training set is tested on the corresponding test set. The mean value and the

standard deviation over all the realizations are given in the tables.

• A resampled paired student t test (described in Section 3.3 of [13]) is performed on

the frequency of test errors. If a di�erence is statistically signi�cant, the best result

is written in bold.

The Rätsch database The Rätsch database has been extensively used as benchmark

for binary classi�cation (see for example [25, 14, 22, 6]). In this trial, due to the small size

of the data sets, the density-weighted Nyström decomposition is computed by using 60%

of the training set as landmarks and only the eigenvalues greater than 10−4 are kept.

Table 3 presents comparative results based on the σ selected by the gradient method

while Table 4 corresponds to the heuristic proposed in [33]. This method sets σ equal to

27

Data set Test error(%) Time(s)
Path Gradient Path Gradient

banana 11.07 (0.88) 10.85 (0.73) 0.6319 0.5612
breast cancer 27.10 (4.67) 26.64 (4.56) 0.4613 0.2551
diabetis 24.04 (1.94) 23.81 (1.94) 0.8224 1.2781
�aresolar 34.49 (1.87) 34.84 (1.82) 0.4011 2.4215
german 23.77 (2.13) 23.65 (2.03) 1.9661 2.8821
heart 16.83 (3.47) 16.71 (3.11) 0.4741 0.1586
image 03.32 (0.72) 03.90 (0.69) 6.5991 8.1389
ringnorm 01.69 (0.40) 01.61 (0.15) 0.9900 0.4171
splice 11.87 (0.72) 11.16 (0.70) 4.0894 5.8144
tyroid 07.08 (3.69) 07.01 (3.66) 0.4575 0.0728
titanic 23.05 (1.11) 22.59 (0.88) 0.3804 0.1292
twonorm 02.67 (0.34) 02.69 (0.18) 0.9998 0.4748
waveform 10.09 (0.56) 09.90 (0.39) 1.0605 0.7644

Table 3: Performance on the Rätsch database with the value of σ given by Chapelle's
algorithm.

the square root of the mean distance of each point to the center of mass of the training

set. Even with this simple heuristic, the performance of our algorithm matches the one of

Chapelle's algorithm. The recognition rate is on par with the literature (see for example

[10]). These two tables show that both methods provide good performance in terms of

model selection when no assumption on the rank needed to approximate H(ε) is made.

The data sets of the Rätsch database have a relatively large number of features for a

small number of training examples. Thus the rank needed to obtain good performance on

this database is not very small compared to the number examples, explaining the similarity

of the computation times.

The Spam data set The Spam data set is much larger than the data sets of the Rätsch

database. This increase in the number of examples allows to show that our path-following

method for model selection scales well with the number of examples. As there is no

prede�ned training and test sets, for each realization 1000 test examples are randomly

chosen from the database while keeping the rest for the training set.

The choice of the number of eigenvectors retained (600) is based on the classical "ankle"

criterion used for eigenvector selection in PCA. Table 5 shows that although the approxi-

mation is loose, the recognition rate is still good.

A synthetic case: Large training set in low dimension In order to evaluate the

scalability of the algorithm in a favourable case, we built an arti�cial data set. The exam-

28

Data set Test error(%) Time(s)
Path Gradient Path Gradient

banana 11.24 (0.95) 10.85 (0.73) 0.7149 0.7017
breastcancer 27.35 (4.22) 26.64 (4.56) 0.5152 0.3171
diabetis 24.05 (2.03) 23.81 (1.94) 1.1452 1.6742
�aresolar 34.40 (1.99) 34.84 (1.82) 0.4521 3.1518
german 23.76 (2.19) 23.65 (2.03) 2.2267 3.3662
heart 17.30 (3.51) 16.71 (3.11) 0.5602 0.2204
image 03.24 (0.74) 03.90 (0.69) 2.8286 9.1764
ringnorm 02.08 (0.37) 01.61 (0.15) 0.9758 0.4092
splice 11.67 (0.74) 11.16 (0.70) 4.7143 6.9180
thyroid 06.71 (3.28) 07.01 (3.66) 0.5089 0.1000
titanic 23.45 (4.28) 22.59 (0.88) 0.3827 0.1586
twonorm 02.68 (0.34) 02.69 (0.18) 0.9846 0.4683
waveform 10.29 (0.75) 09.90 (0.39) 0.9157 0.6260

Table 4: Performance on the Rätsch database with σ
set with the heuristic of [33].

Criterion Test error(%) Time(s)
Path Gradient Path Gradient

default 6.22 (0.87) 6.58 (0.84) 27.8510 97.5712
rank=600 6.64 (0.97) 6.56 (0.76) 15.9084 102.9281

Table 5: Performance on the Spam data set with σ computed using the heuristic of [33].
The line "default" corresponds to a Nyström approximation using 60% of the training set
while "rank=600" uses 600 landmarks (the approximation of the Hessian matrix can be at
most of rank 600). Both experiments use an eigenvalue threshold of 10−3.

ples belonging to the positive category are drawn from a Gaussian distribution while the

negative ones are drawn from a mixture of Gaussians, both categories being equiprobable.

p(x|y = +1) = pN (µ+,Σ+, x)

p(x|y = −1) =
1

2
pN (µ−

1 ,Σ
−
1 , x) +

1

2
pN (µ−

2 ,Σ
−
2 , x)

where

pN (µ,Σ, x) =
1

(2π)det(Σ)1/2
exp−

1
2 (x−µ)T (Σ)−1(x−µ),

µ+ =





1

1



 ,Σ+ =





8 −6

−6 8



 , µ−
1 =





0

0



 ,Σ−
1 =





1/4 0

0 1/4



 , µ−
2 =





5

−2



 ,Σ−
2 =





1 0

0 1



 .

A Monte Carlo estimate of the Bayes error is 12.11%. Ten realizations of the training

set have been built for each selected value of m (see Table 6). The evaluation of the

29

generalization error of each classi�er is based on a large test set (30000 examples).

m Test error(%) Time(s) rank
Path Gradient Path Gradient

1000 14.22 (0.28) 14.05 (0.25) 5.68 9.21 127.5
2000 13.97 (0.16) 13.93 (0.13) 12.84 57.55 165.8
3000 13.86 (0.17) 13.85 (0.19) 20.87 101.1 181.4
4000 13.85 (0.33) 13.83 (0.33) 28.41 262.56 155.2
5000 13.84 (0.19) 13.82 (0.2) 37.98 446.56 154.7

Table 6: Performance on the arti�cial data set with the value of σ obtained by Chapelle's
algorithm.

Table 6 illustrates that both model selection procedures achieve similar performance.

The gain in computation time is clearly due to the low-rank approximation. It is noteworthy

to recall that Chapelle's algorithm is not designed to handle large data sets. Therefore, the

following section compares our algorithm to a training algorithm dedicated to this kind of

problem.

4.5 Performance and Training Time Comparison on Large Data Sets

Obviously, the low-rank approximation is well suited for a low-rank basic Hessian matrix.

A low-degree polynomial kernel can induce such a behavior. To our knowledge, there is no

model selection procedure devised for this case. Thus, two training algorithms dedicated to

these kernels are used for comparison: the modi�ed versions of ℓ2-liblinear and ℓ2-libsvm

intoduced in [7] (liblinear is known as one of the fastest solvers for linear SVMs). For

both of them, model selection results from a 5-fold cross-validation implemented over a

grid search. Proceeding as in [7] (preprint), we chose the following range: C = λ−1 ∈
{

2−3, 2−1, . . . 27, 29
}

.

The parameterization of the algorithm is presented in Table 7 while the result of the

comparison is in Table 8. This last table shows a signi�cant reduction i of the training

ijcnn1 a9a
Kernel (32〈x1, x2〉+ 1)2 (0.032〈x1, x2〉+ 1)2

ℓ2-liblinear/ℓ2-libsvm C 0.125 8
Termination criteron 10−6 10−6

Path Number of landmarks 500 1500
Threshold 10−6 10−6

Table 7: Parameterization of the algorithms for the comparison. Due to the size of the
data sets, the approximation method is the uniform Nyström method. The value of C
corresponds to the optimal value provided by the grid search.

30

Data set Algorithm Training time Testing time Test error Rank

ijcnn1 Path 30.2s 1.9s 2.44% 208
ℓ2-liblinear 57.8s 0.4s 2.46% -
ℓ2-libsvm > 24 hours 27s 2.46% -

a9a Path 179.9s 1.9s 14.8% 1178
ℓ2-liblinear 459.7s 0.05s 14.7% -
ℓ2-libsvm 46803s 31s 15.2% -

Table 8: Training times and testing times for ijcnn1 and a9a data sets with a degree 2
polynomial kernel.

time. Furthermore, the expansion of the classi�er on r examples allows to keep the testing

time small. These results are all the more interesting as our procedure is not restricted to

polynomial kernels of degree two but can also be used with task speci�c kernels. Therefore,

the use of our procedure is very appealing in this framework.

5 Conclusions and Ongoing Research

In this article, a path-following algorithm for setting the value of the regularization coe�-

cient of the ℓ2-SVM has been introduced. Its main advantage is to avoid local minima of

the objective function. When the rank of the Gram matrix does not depend on the num-

ber of examples and the objective function is the leave-one-out test error prediction, the

complexity of model selection is linear in the number of examples. An automatic method

for selecting the rank of the approximation is under investigation. Two main options are

at hand. The �rst one is the use of the work of Girolami [17] dealing with the kernel-PCA,

the second one relies on a variable rank for the approximation. Our �nal objective is to

extend this work to the multi-class case, more precisely the M-SVM2 [20].

Acknowledgments

This work was funded by the Fédération Charles Hermite and the Région Lorraine.

References

[1] E.L. Allgower and K. Georg. Continuation and path following. Acta Numerica, 2:1�64,

1993.

31

[2] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathe-

matical Society, 68(3):337�404, 1950.

[3] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability

and Statistics. Kluwer Academic Publishers, Boston, 2004.

[4] G. Blanchard, P. Massart, R. Vert, and L. Zwald. Kernel projection machine: a new

tool for pattern recognition. In NIPS 17, pages 1649�1656, 2005.

[5] P. Burman. A comparative study of ordinary cross-validation, ν-fold cross-validation

and the repeated learning-testing methods. Biometrika, 76(3):503�514, 1989.

[6] G.C. Cawley and N.L.C. Talbot. Preventing over-�tting during model selection using

bayesian regularisation. Journal of Machine Learning Research, 8:841�861, 2007.

[7] Y.-W. Chang, C.-J. Hsieh, K.-W. Chang, M. Ringgaard, and C.-J. Lin. Training and

testing low-degree polynomial data mappings via linear SVM. Journal of Machine

Learning Research, 11:1471�1490, 2010.

[8] O. Chapelle. Training a support vector machine in the primal. In L. Bottou,

O. Chapelle, D. DeCoste, and J. Weston, editors, Large-Scale Kernel Machines, chap-

ter 2, pages 29�50. The MIT Press, Cambridge, MA, 2007.

[9] O. Chapelle, V.N. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple param-

eters for support vector machines. Machine Learning, 46(1):131�159, 2002.

[10] K.-M. Chung, W.-C. Kao, C.-L. Sun, L.-L. Wang, and C.-J. Lin. Radius margin

bounds for support vector machines with the RBF kernel. Neural Computation,

15(11):2643�2681, 2003.

[11] C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on

learning accuracy. In AISTATS 2010, pages 113�120, 2010.

[12] C. Cortes and V.N. Vapnik. Support-vector networks. Machine Learning, 20(3):273�

297, 1995.

[13] T.G. Dietterich. Approximate statistical tests for comparing supervised classi�cation

learning algorithms. Neural computation, 10(7):1895�1923, 1998.

[14] K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for

tuning SVM hyperparameters. Neurocomputing, 51:41�59, 2003.

32

[15] S. Fine and K. Scheinberg. E�cient SVM training using low-rank kernel representa-

tions. Journal of Machine Learning Research, 2:243�264, 2001.

[16] R. Fletcher. Practical Methods of Optimization. John Wiley & Sons, Chichester,

second edition, 1987.

[17] M. Girolami. Orthogonal series density estimation and the kernel eigenvalue problem.

Neural Computation, 14(13):669�688, 2002.

[18] C. Gold and P. Sollich. Model selection for support vector machine classi�cation.

Neurocomputing, 55(1-2):221�249, 2003.

[19] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University

Press, Baltimore, MD, third edition, 1996.

[20] Y. Guermeur and E. Monfrini. A quadratic loss multi-class SVM for which a radius-

margin bound applies. Informatica, 22(1):73�96, 2011.

[21] T. Hastie, S. Rosset, R. Tibshirani, and J. Zhu. The entire regularization path for the

support vector machine. Journal of Machine Learning Research, 5:1391�1415, 2004.

[22] S.S. Keerthi, O. Chapelle, and D. DeCoste. Building support vector machines with

reduced classi�er complexity. Journal of Machine Learning Research, 7:1493�1515,

2006.

[23] S.S. Keerthi, V. Sindhwani, and O. Chapelle. An e�cient method for gradient-based

adaptation of hyperparameters in SVM models. In NIPS 19, pages 673�380, 2007.

[24] A. Luntz and V. Brailovsky. On estimation of characters obtained in statistical pro-

cedure of recognition. Technicheskaya Kibernetica, 3, 1969. (in Russian).

[25] G. Rätsch, T. Onoda, and K.-R. Müller. Soft margins for AdaBoost. Technical Report

NC-TR-1998-021, Department of Computer Science, Royal Holloway, University of

London, Egham, UK, August 1998. Submitted to Machine Learning.

[26] S. Rosset. Following curved regularized optimization solution paths. In NIPS 17,

pages 1153�1160, 2005.

[27] M. Stone. Asymptotics for and against cross-validation. Biometrika, 64(1):29�35,

1977.

33

[28] J.A.K. Suykens, L. Lukas, P. Van Dooren, B. De Moor, and J. Vandewalle. Least

squares support vector machine classi�ers: a large scale algorithm. Proceeding of the

European Conference on Circuit Theory and Design, pages 839�842, 1999.

[29] J.A.K. Suykens and J. Vandewalle. Least squares support vector machine classi�ers.

Neural Processing Letters, 9(3):293�300, 1999.

[30] V.N. Vapnik. Statistical Learning Theory. John Wiley & Sons, Inc., New York, 1998.

[31] V.N. Vapnik and O. Chapelle. Bounds on error expectation for support vector ma-

chines. Neural Computation, 12(9):2013�2036, 2000.

[32] K. Zhang and J.T. Kwok. Density-weighted Nyström method for computing large

kernel eigensystems. Neural Computation, 21(1):121�146, 2009.

[33] K. Zhang, I.W. Tsang, and J.T. Kwok. Improved Nyström low-rank approximation

and error analysis. In ICML'08, pages 1232�1239, 2008.

34

	Introduction
	Regularization Path for the 2-SVM
	Learning Problem of the 2-SVM
	Partitioning the Training Set
	Analytical Expression of the Lagrange Multipliers
	Practical Computation of the Lagrange Multipliers
	Stand-Alone Solution for a Given Value of
	Computation of a Series of Solutions

	Detecting Changes in the Partition of the Training Set
	Starting Point of the Path
	Overview of the Algorithm and Complexity Analysis
	Low-Rank Hessian Approximation
	Complexity Analysis of the Outer Loop
	Expansion of h in Terms of

	Model Selection
	Radius-Margin Bound
	Leave-One-Out Test Error Prediction Based on the Span Bound
	Integration in the Regularization Path Algorithm

	Experimental Results
	Setup
	Optimality of the Solution Obtained by the Regularization Path
	Comparison of the Model Selection Criteria
	Accuracy in Terms of Model Selection
	Performance and Training Time Comparison on Large Data Sets

	Conclusions and Ongoing Research

