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Introduction

During the last decade, Vapnik's main model of soft margin pattern recognition support vector machine (SVM) [START_REF] Cortes | Support-vector networks[END_REF], hereafter referred to as the ℓ 1 -SVM, has become one of the most popular methods to compute dichotomies. Several variants exist, such as the ℓ 2 -SVM [START_REF] Cortes | Support-vector networks[END_REF] and the least squares SVM (LS-SVM) [START_REF] Suykens | Least squares support vector machine classiers[END_REF], which have also been the subject of extensive studies. Two main reasons can be put forward to explain this success. On the rst hand, these machines perform well in practice. On the other hand, their implementation is, at least in principle, very simple. These advantages are tempered by the fact that in spite of important eorts performed over the years [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF][START_REF] Gold | Model selection for support vector machine classication[END_REF][START_REF] Blanchard | Kernel projection machine: a new tool for pattern recognition[END_REF][START_REF] Keerthi | An ecient method for gradient-based adaptation of hyperparameters in SVM models[END_REF], model selection for SVMs remains an open problem. Generally speaking, model selection raises two main issues. The rst one regards the criterion used to evaluate the quality of a model. The second one is the search for the model optimizing this criterion.

During the last decade, a great many methods have been proposed to estimate the generalization performance of the SVMs. As usual, the solution of reference is the Vfold cross-validation [START_REF] Stone | Asymptotics for and against cross-validation[END_REF][START_REF] Burman | A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods[END_REF], with its extremal variant, the leave-one-out one, providing an almost unbiased estimator of the generalization error [START_REF] Luntz | On estimation of characters obtained in statistical procedure of recognition[END_REF]. Since computing the leaveone-out cross-validation error can be practically intractable, one usually resorts to upper bounds or estimates. This is known to provide good results in practice (see for instance [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF]). Among the bounds, the radius-margin one [START_REF] Vapnik | Statistical Learning Theory[END_REF] provides a good compromise between eciency and computational complexity [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF][START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]. It applies to the hard margin machine, and, by extension, to the ℓ 2 -SVM. The span bound [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF] is tighter, but at the expense of a higher running time complexity.

In the same way as a great many criteria are available for model selection, the options to optimize them can be multiple. A solution that is always available is the most naive (and most expensive) one: a grid search over the parameter space. Since some criteria are dierentiable, such as the radius-margin bound and the leave-one-out test error prediction using dierentiable spans (named span prediction with regularization in [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF]), methods based on a gradient descent have also been developed [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF][START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]. Usually, these local methods provide satisfactory results at a low cost, but they can also get stuck in plateaus of the objective function, or converge to suboptimal minima (when the objective function is not convex). A good illustration of this phenomenon is provided in [START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]. In [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF], the rst algorithm for computing all the solutions of an ℓ 1 -SVM along its regularization path was proposed. Experimental results show that its computational complexity is only slightly superior to that of a single training of the corresponding machine. Furthermore, its use makes it possible to nd a global minimum of the selected criterion.

Given the positive judgment passed by the literature on the radius-margin bound, it appears interesting to derive an algorithm tting the entire regularization path of the ℓ 2 -SVM, and use it to perform a comparative study of dierent criteria (radius-margin bound, test error predictions) available to tune the value of the corresponding penalization coecient. This is the subject of this paper. This algorithm is based on a continuation technique [START_REF] Allgower | Continuation and path following[END_REF] that makes use of an active set method [START_REF] Fletcher | Practical Methods of Optimization[END_REF].

The organization of the paper is as follows. Section 2 introduces our algorithm performing the exploration of the regularization path for the ℓ 2 -SVM. Section 3 details upper bounds on the generalization error of this machine, as well as estimates of this quantity. It addresses the integration of their computation in the framework of the regularization path algorithm. Section 4 presents experimental results on both synthetic and real data sets. The path following algorithm is rst assessed alone, in terms of tness and speed. It is then reassessed for model selection, in the framework of a comparative study with a gradient based method. At last, we draw conclusions and outline our ongoing research in 2 Section 5.

2 Regularization Path for the ℓ 2 -SVM We are interested in binary discrimination. Each object is represented by its description

x ∈ X and the set Y of the categories y can be identied with the set {-1, 1}. The assignment of the descriptions to the categories is performed by means of a classier, i.e., a real-valued function on X . For such a function g, the corresponding decision rule f is dened as follows:

∀x ∈ X ,            g(x) < 0 ⇐⇒ f (x) = -1 g(x) = 0 ⇐⇒ f (x) = * g(x) > 0 ⇐⇒ f (x) = 1 ,
where * denotes a dummy category introduced to deal with the cases of ex aequo. Thus, the example (x, y) ∈ X × Y is correctly classied by g if and only if yg (x) > 0. In the sequel, the family of classiers of interest is the class H of the functions implemented by an SVM. Let κ be a real-valued positive type function [START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF] on X 2 and let (H κ , •, • κ ) be the corresponding reproducing kernel Hilbert space (RKHS) [START_REF] Aronszajn | Theory of reproducing kernels[END_REF][START_REF] Berlinet | Reproducing Kernel Hilbert Spaces in Probability and Statistics[END_REF]. Let {1} be the onedimensional space of real-valued constant functions on X . Then, the formula giving

H is H = (H κ , •, • κ ) + {1} .
The reproducing property allows us to write the functions of H as ane functions on H κ , i.e.,

∀h ∈ H, ∀x ∈ X , h(x) = h(x) + b = h, κ x κ + b,
where h ∈ H κ , κ x = κ(x, •) ∈ H κ , and b ∈ R. H κ is thus one of the possible feature spaces, associated with the feature map given by

Φ : X -→ H κ x → κ x .
To keep this article self-contained, the ℓ 2 -SVM is now briey introduced. Then, following the structure of [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF], the three constitutive elements of our regularization path algorithm are detailed:

• computation of the Lagrange multipliers,

• identication of the breakpoints (transitions between regimes),

• initialization.

The main dierence in the way they combine is that the identication of the breakpoints makes use, in an iterative manner, of the computation of Lagrange multipliers. Thus these elements combine themselves in a continuation method similar to the algorithm introduced in [START_REF] Rosset | Following curved regularized optimization solution paths[END_REF]. The section concludes with the owchart of the algorithm and an analysis of its implementation.

2.1

Learning Problem of the ℓ 2 -SVM

The ℓ 2 -SVM is the variant of the standard bi-class SVM obtained by replacing the ℓ 1 norm of the vector of slack variables ξ with the square of the ℓ 2 norm of the same vector in the objective function of the primal formulation of the learning problem. A direct consequence is the fact that it is no longer necessary to consider explicitly the constraints of nonnegativity of the slack variables. Thus, given a training set d m = {(x i , y i ) : 1 i m}, the primal formulation of the learning problem corresponds to the following convex quadratic programming (QP) problem.

Problem 1 (Learning problem of the ℓ 2 -SVM, primal formulation) 

min h,ξ ξ 2 2 + λ 2 h 2 κ s.t. ∀i ∈ [ [ 1, m ] ] , y i h(x i ) 1 -ξ i . Let y = (y i ) 1 i m ∈ {-1, 1}
∀ (i, j) ∈ [ [ 1, m ] ] 2 , h i,j = y i y j κ (x i , x j ) . For λ ∈ R * + , let H (λ) = (h i,j (λ)) 1 i,j m ∈ M m,m ( 
R) be the matrix deduced from H by replacing the kernel κ with the kernel κ λ given by:

∀(i, j) ∈ [ [ 1, m ] ] 2 , κ λ (x i , x j ) = κ (x i , x j ) + λ 2 δ i,j ,
where δ is the Kronecker symbol. Let β = (β i ) 1 i m ∈ R m + be the vector of the Lagrange multipliers associated with the constraints of good classication and α = 1 λ β. Then, the Wolfe dual of Problem 1 is the following QP problem.

Problem 2 (Learning problem of the ℓ 2 -SVM, dual formulation)

max α - 1 2 α T H(λ)α + 1 T m α s.t.      ∀i ∈ [ [ 1, m ] ] , α i 0 y T α = 0 .
Problem 2 is also the Wolfe dual formulation of the learning problem of a hard margin SVM using κ λ as kernel. This property is important since it implies that results holding for the hard margin machine also hold for the ℓ 2 -SVM. As pointed out in the introduction, among these results is the radius-margin bound. For a given value of λ, let (h λ , ξ (λ)) = hλ , b λ , ξ (λ) be the optimal solution of Problem 1 and α(λ) = (α i (λ)) 1 i m the optimal solution of Problem 2. Noticeable equations obtained when deriving Problem 2 (applying the Lagrangian duality) are:

ξ (λ) = λ 2 α (λ) (1) 
and

h λ = m i=1 α i (λ) y i κ x i + α 0 (λ) , (2) 
with α 0 (λ) = b λ . A direct consequence of (2) and the denition of the matrix H is that

∀i ∈ [ [ 1, m ] ] , y i h λ (x i ) = H i,• α (λ) + y i α 0 (λ) (3) 
where H i,• stands for the row of index i of H (H •,j would stand for its column of index j).

Let hλ be the function computed by the hard margin machine associated with Problem 2.

Then,

∀i ∈ [ [ 1, m ] ] , hλ (x i ) = m j=1 α j (λ) y j κ (x j , x i ) + λ 2 α j (λ) y j δ i,j + α 0 (λ) = h λ (x i ) + λ 2 α i (λ) y i . (4) 

Partitioning the Training Set

To follow the path of interest, taking our inspiration from the algorithm introduced in [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF],

we focus on the study of the way the values of the positive Lagrange multipliers vary as a function of λ, while the set of null multipliers remains unchanged. This requires to identify both sets. The Kuhn-Tucker (KT) optimality conditions provide us with such information.

The KT complementary conditions corresponding to the two machines are given by:

∀i ∈ [ [ 1, m ] ] , α i (λ) [y i h λ (x i ) -1 + ξ i (λ)] = α i (λ) y i hλ (x i ) -1 = 0 . (5) 
It springs from ( 1) and (5) that for each example, there are three possibilities:

• y i h λ (x i ) < 1: the example is inside the margin or misclassied, so ξ i (λ) > 0 and

α i (λ) > 0,
• y i h λ (x i ) = 1: the example is on the margin, and α i (λ) = 0,

• y i h λ (x i ) > 1: the example is correctly classied and outside the margin, α i (λ) = 0.

To sum up, α i (λ) > 0 if and only if y i h λ (x i ) < 1. This leads to the following partition of

[ [ 1, m ] ]: E (λ) = {i ∈ [ [ 1, m ] ] : y i h λ (x i ) < 1} I (λ) = {i ∈ [ [ 1, m ] ] : y i h λ (x i ) 1} .
This partition is reminiscent of active set methods (see for instance Section 10.3 of [START_REF] Fletcher | Practical Methods of Optimization[END_REF]), since i ∈ I (λ) if and only if the constraint α i 0 is active at the optimum of Problem 2.

More precisely, solving Problem 2 under the assumption that the partition associated with the optimum is known amounts to performing the last step of an active set mehod. It is well known that each of these steps corresponds to solving a linear system. We now exhibit the linear system of interest, which calls for the introduction of additional notation. For ease of notation, in the sequel, we use E (respectively I) in place of E (λ) (respectively

I (λ))
when no confusion is possible. The cardinalities of these sets are respectively denoted by m E and m I . The examples are reordered in such a way that the rst of them are those belonging to E. This enables us to introduce compact notations with obvious meaning:

y = (y i ) 1 i m = y T E y T I T , α (λ) = (α i (λ)) 1 i m = α E (λ) T α I (λ) T T , d E(λ) = {(x i , y i ) : i ∈ E(λ)} , and H =   H E,E H E,I H I,E H I,I   ,
where the submatrix H K,L with (K, L) ∈ {E, I} 2 is the matrix (h i,j ) i∈K,j∈L = (y i y j κ (x i , x j )) i∈K,j∈L .

The matrix H (λ) is split in the same way as H.

Analytical Expression of the Lagrange Multipliers

To derive this expression simply, we make use of the following implication, which is a consequence of ( 5) and (1):

i ∈ E =⇒ y i hλ (x i ) = 1 .
In other words, we work with the hard margin machine. According to our notation, the equality constraint of Problem 2 and the KT conditions associated with the examples in

d E become:      y T E α E (λ) + y T I α I (λ) = 0 H E,E (λ) α E (λ) + H E,I (λ) α I (λ) + α 0 (λ) y E = 1 m E .
Due to the fact that α I (λ) = 0, these equations simplify into

     y T E α E (λ) = 0 H E,E (λ) α E (λ) + α 0 (λ) y E = 1 m E . ( 6 
)
By noting

A E (λ) =   0 y T E y E H E,E (λ)   =   0 y T E y E H E,E + λ 2 I m E   , C E = 0 1 T m E T , and 
α a E (λ) = α 0 (λ) α E (λ) T T ,
we obtain the following proposition.

Proposition 1 For all λ ∈ R * + , the vector α a E (λ) is a solution of the linear system:

A E (λ) α a E (λ) = C E . (7) 
This formulation also appears equivalent to the one derived in Appendix 2.B. of [START_REF] Chapelle | Training a support vector machine in the primal[END_REF]. Once E is known, training the ℓ 2 -SVM boils down to solving [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF]. The main dierence with the corresponding formula obtained for the ℓ 1 -SVM (see for instance Section 4 in [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]) rests in the dependency of the matrix of the linear system on λ. This implies that the Lagrange multipliers do not vary linearly as a function of λ anymore. We now discuss the connection of the linear system of Proposition 1 with the learning problem of an LS-SVM. The interest of this discussion is twofold. First, it will be at the basis of the method proposed to compute the Lagrange multipliers. Second, it will highlight a link between the leave-one-out cross-validation error of the LS-SVM and the leave-one-out test error prediction of the ℓ 2 -SVM dened in [START_REF] Vapnik | Bounds on error expectation for support vector machines[END_REF]. The (primal) objective function of the LS-SVM is the same as the one of Problem 1. The dierence between the two learning problems rests in the fact that for the LS-SVM, the constraints of correct classication are equality constraints (with the consequence that the slack variables are not constrained in sign).

Problem 3 (Learning problem of the LS-SVM, primal formulation)

min h,ξ ξ 2 2 + λ 2 h 2 κ s.t. ∀i ∈ [ [ 1, m ] ] , y i h (x i ) = 1 -ξ i .
Suykens and Vandewalle have shown that solving Problem 3 is equivalent to solving the following linear system (Equation 20 in [START_REF] Suykens | Least squares support vector machine classiers[END_REF]):

  0 y T y H + λ 2 I m     α 0 (λ) α (λ)   =   0 1 m   .
Thus, solving [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF] can alternatively be seen as training an LS-SVM on d E(λ) . This allows us to state the following proposition. We now address the practical resolution of the linear system.

Practical Computation of the Lagrange Multipliers

Our path-following strategy for setting the value of the regularization coecient involves multiple solutions of the linear system [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF], for dierent values of λ. This calls for a dedicated algorithm. In this section, we rst reformulate (7) using a standard technique, and then make use of this reformulation to derive an algorithm solving it for a reduced computational cost in the regularization path framework.

2.4.1

Stand-Alone Solution for a Given Value of λ

We take our inspiration from the approach of [START_REF] Suykens | Least squares support vector machine classiers: a large scale algorithm[END_REF], which uses a classical trick in active set method algorithms. We rst note that since H E,E is symmetric positive semi-denite, λ) is symmetric positive denite (SPD) and thus invertible. We want to reformulate (7) so as to make H E,E (λ) -1 appear. It springs from ( 6) that:

H E,E ( 
α E (λ) = H E,E (λ) -1 (1 m E -α 0 (λ) y E ) . (8) 
By substitution in the equality constraint of Problem 2, we have:

y T E H E,E (λ) -1 1 m E = α 0 (λ) y T E H E,E (λ) -1 y E . (9) 
Still following [START_REF] Suykens | Least squares support vector machine classiers: a large scale algorithm[END_REF], in order to get compact expressions for α 0 (λ) and α E (λ), we introduce two vectors of R m E , ν and ρ, such that

     H E,E (λ) ν = y E H E,E (λ) ρ = 1 m E . ( 10 
)
By substitution into (8) and ( 9) we get

     α E (λ) = ρ -α 0 (λ) ν y T E ρ = α 0 (λ) y T E ν .
Thus, the expressions of α 0 (λ) and α E (λ) as a function of ν and ρ are:

     α 0 (λ) = y T E ρ y T E ν α E (λ) = ρ -α 0 (λ) ν . ( 11 
)
All in all, solving [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF] for a given value of λ boils down to computing the corresponding values of ν and ρ. Since matrix H E,E (λ) is SPD, this can be done by applying a Cholesky decomposition, such as the Gaxpy Cholesky one (see for instance [START_REF] Golub | Matrix Computations[END_REF]), whose complexity is 1 3 m 3 E . However, signicant improvements can result from the global handling of the sequence of systems (10) (parameterized by λ) that are actually to be solved all along the path. We now describe a reduced-cost algorithm of this kind.

Computation of a Series of Solutions

Our method makes central use of a proposition that states that if the matrix H can be approximated by a matrix of low rank (independent of m), then the complexity of solving the system (10) grows linearly with m E . Thus, we rst introduce a low-rank approximation of H and then use it for calculating the Lagrange multipliers. In order to avoid numerical diculties, we introduce a small positive constant: ε. It is supposed to be large enough so that H (ε) is numerically SPD (with not too small eigenvalues). To derive an approximate solution of (10) for λ 0 > ε such that E (λ 0 ) is known, we use a low-rank approximation of H E(λ 0 ),E(λ 0 ) (ε), approximation which can be directly deduced from a low-rank approximation of H (ε). The approximation of H (ε) (and thus H) 

we consider is a matrix H r (ε) satisfying H r (ε) = R r R T r with R r ∈ M m,r (R).
=   R E(λ 0 ) R I(λ 0 )   , with R E(λ 0 ) ∈ M m E(λ 0 ) ,r (R) and R I(λ 0 ) ∈ M m I(λ 0 ) ,r (R), and we get H r (ε) =   H E(λ 0 ),E(λ 0 ),r (ε) H E(λ 0 ),I(λ 0 ),r (ε) 
H I(λ 0 ),E(λ 0 ),r (ε) H I(λ 0 ),I(λ 0 ),r (ε)   =   R E(λ 0 ) R T E(λ 0 ) R E(λ 0 ) R T I(λ 0 ) R I(λ 0 ) R T E(λ 0 ) R I(λ 0 ) R T I(λ 0 )   .
By construction,

H E(λ 0 ),E(λ 0 ) (λ 0 ) = H E(λ 0 ),E(λ 0 ) (ε) + λ 0 -ε 2 I m E(λ 0 ) , thus, H E(λ 0 ),E(λ 0 ) (λ 0 ) can be approximated by H E(λ 0 ),E(λ 0 ),r (λ 0 , ε) = H E(λ 0 ),E(λ 0 ),r (ε) + λ 0 -ε 2 I m E(λ 0 ) .
The point of that approximation is that in the end, we work with a matrix, R E(λ 0 ) , which can be directly derived from the initial matrix R r , i.e., from one single low-rank approximation of H (ε). The fact that H E(λ 0 ),E(λ 0 ),r (ε) is not the matrix we would have obtained by approximating directly H E(λ 0 ),E(λ 0 ) (ε) raises no diculty. Furthermore, this matrix is regular.

Proposition 3 Let us consider the system of linear equations

H E(λ 0 ),E(λ 0 ),r (λ 0 , ε) v = z, with H E(λ 0 ),E(λ 0 ),r (λ 0 , ε) ∈ M m E(λ 0 ) ,m E(λ 0 ) (R)
being the sum of a rank r matrix and a scaled identity matrix. The computational complexity of solving this system is linear in m E(λ 0 ) .

Proof

By applying the Sherman-Morrison-Woodbury identity (see for instance [START_REF] Golub | Matrix Computations[END_REF]), we obtain:

H E(λ 0 ),E(λ 0 ),r (ε) + λ 0 -ε 2 I m E(λ 0 ) -1 = R E(λ 0 ) R T E(λ 0 ) + λ 0 -ε 2 I m E(λ 0 ) -1 = 2 λ 0 -ε I m E(λ 0 ) - 4 (λ 0 -ε) 2 R E(λ 0 ) I r + 2 λ 0 -ε R T E(λ 0 ) R E(λ 0 ) -1 R T E(λ 0 ) = 2 λ 0 -ε I m E (λ 0 ) - 4 (λ 0 -ε) 2 R E(λ 0 ) T (λ 0 ) -1 R T E(λ 0 ) with T (λ 0 ) = I r + 2 λ 0 -ε R T E(λ 0 ) R E(λ 0 ) .
Solving the system of interest boils down to solving a system involving the matrix T (λ 0 ), of size r, and performing a series of matrix-vector calculations from the right to the left. Once T (λ 0 ) is obtained in O m E(λ 0 ) r 2 , the system of size r is solved by a Cholesky decomposition in only 1 3 r 3 operations (see the preceding section). Since the matrix multiplications involve matrices of size lower than m E(λ 0 ) , r , their complexity does not exeed O(m E(λ 0 ) r 2 ). Summing the two complexities provides the overall complexity in O(m E(λ 0 ) r 2 + r 3 ). This concludes the proof.

To derive an approximate solution of [START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF] 

for λ = λ 0 , the matrix H E(λ 0 ),E(λ 0 ) (λ 0 ) is replaced with H E(λ 0 ),E(λ 0 ),r (ε) + λ 0 -ε 2 I m E(λ 0 )
. The corresponding values of ν and ρ are thus obtained by solving a system involving T (λ 0 ). In order to obtain triangular sys-tems for both equations, a Cholesky decomposition of this matrix is performed so that

T (λ 0 ) = L T E(λ 0 ) L E(λ 0 )
. Thanks to Proposition 3, the complexity of computing ν and ρ reduces from O(m 3 E ) to O(m E r 2 + r 3 ), hence the linear complexity in m E announced at the beginning of the section. This establishes the advantage of our algorithm computing globally approximate solutions for all the systems (10) of interest compared to solving independently these systems. By abuse of notation, we keep using α a

E (λ 0 ) = α 0 (λ 0 ) α E (λ 0 ) T T
to designate the resulting approximate solution of (7) (for λ = λ 0 ). Details regarding complexity and the consequences of the approximation are given in Section 2.7. This approach assumes that E(λ 0 ) is known. The following section presents our method for updating the set E. Let λ l l∈N * be the strictly decreasing sequence of values of the regularization coecient associated with changes in the sets E and I. These events can be directly inferred from the denitions of the sets. Indeed, if the sequence is known up to its term of index l, nding λ l+1 boils down to identifying the largest value λ in the interval 0, λ l for which there is 3), this corresponds to solving for λ the set of equations indexed by i:

a new index i ∈ [ [ 1, m ] ] such that y i h λ (x i ) = 1. Given (
H i,E(λ l ) α E(λ l ) (λ) + y i α 0 (λ) = 1 . (12)
Implemented in a straightforward way, this method to detect the changes is numerically intractable for large values of m E , and we will see in Section 2.6 that the extreme case

E (λ) = [ [ 1, m ]
] is met in practice. Fortunately, the system [START_REF] Cortes | On the impact of kernel approximation on learning accuracy[END_REF] provides us with an analytical expression of the dual variables that can be used to apply a crude rst order approximation, which corresponds to taking a Newton step. To this end, we dene

∀i ∈ [ [ 1, m ] ] , λ l+1 i = λ l - 1 -y i h λ (x i ) ∂(1-y i h λ (x i )) ∂λ = λ l + 1 -y i h λ (x i ) y i ∂h λ (x i ) ∂λ .
Thanks to (3), the expression of ∂h λ (x i ) ∂λ is easily obtained once ∂α 0 (λ) ∂λ and ∂α E (λ) ∂λ are known.

After some algebra, these quantities are derived from [START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]:

     ∂α 0 (λ) ∂λ = -1 2 ν T ρy T E ν-ν T νy T E ρ (y T E ν) 2 ∂α E (λ) ∂λ = -1 2 H E,E (λ) -1 α E (λ) -∂α 0 (λ) ∂λ ν . ( 13 
)
If the λ l+1 i were the roots of the equations ( 12), then the expression of λ l+1 would be simply

λ l+1 = max {i:λ l+1 i <λ l } λ l+1 i .
However, the use of an approximation calls for another formula, to prevent the algorithm from performing either empty steps or too big steps. We found the following rule of thumb to be especially ecient: λ l+1 is chosen so that 2% of the indices of E(λ l ) satisfy λ l+1 < λ l+1 i < λ l . Due to the possible atness of the function, the approximation may still provide inappropriate solutions. In order to overcome this problem, when λ l+1 should be chosen smaller than 1 2 λ l , it is chosen equal to 1 2 λ l . Our experiments have shown that this atness problem only occurs when λ is very large. The prediction of the partition at λ l+1 is based on the sign of the rst order approximation of 1 -y i h λ (x i ). A priori, due to the nonlinear behavior of the Lagrange multipliers, this prediction must be corrected. The exact partition is obtained thanks to the approach implemented by the active set methods. For a given partition, the values of the Lagrange multipliers are computed, and the consistency of the result is checked. In case of inconsistency, a new partition is inferred from the values of the Lagrange multipliers and so on. Since the predicted partition is close to the optimal one, this correcting step is not too expensive. In the experiments presented below, except in the vicinity of the end of the path, convergence was reached after a single update.

Starting Point of the Path

In order to dene a starting point for the path, we take benet of the specicities of 

max α - λ 4 α T α + 1 T m α s.t.      ∀i ∈ [ [ 1, m ] ] , α i 0 y T α = 0 .
In [START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF] (Appendix C), the authors pointed out that the solution of Problem 4 is given by: ], y i hλ (x i ) goes to 1. Then, the combination of ( 4) and ( 14)

∀i ∈ [ [ 1, m ] ] ,      α i (λ) = 4m - mλ if y i = 1 α i (λ) = 4m + mλ otherwise (14 
gives b ∞ = m + -m - m .
A direct consequence of this last formula is that if m + = m -, the limit classier used in test always returns the category of highest cardinality. Contrary to the case of the ℓ 1 norm, there is no value λ ∞ such that above this value the Lagrange multipliers are constant. All what is known is the asymptotic behavior of the Lagrange multipliers, which is not sucient to dene a starting point in a way similar to that of [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF]. However, this knowledge remains useful to derive two criteria: one to check whether a given value is large enough to be the initial value for λ (hereafter noted λ 1 ), and one to start computing the model selection criterion.

Overview of the Algorithm and Complexity Analysis

Figure 1 presents the integration of the constitutive elements of the path-following algorithm.

There are basically ve distinct components:

• the low-rank approximation of H(ε),

• the computation of Lagrange multipliers,

• the outer loop that generates the sequence λ l ,

• the inner loop which updates E (for the current value of λ),

• a post-processing for returning the classier.

the class of functions (see [START_REF] Blanchard | Kernel projection machine: a new tool for pattern recognition[END_REF]). The two main options consist in using a pre-specied xed rank and selecting every eigenvalue above a given threshold. The xed-rank method can be connected with the training of a classier with reduced complexity (see [START_REF] Keerthi | Building support vector machines with reduced classier complexity[END_REF]). The use of a threshold on the eigenvalues allows to control the precision of the solution, due to the very nature of the underlying criterion (the spectral norm). For the kernel ridge regression, Proposition 1 of [START_REF] Cortes | On the impact of kernel approximation on learning accuracy[END_REF] gives an upper bound on the dierence of the functions calculated with and without the approximation. When the model is linear (and not ane) in the feature space, this proposition applies to the LS-SVM and thus the ℓ 2 -SVM. Such a result allows to gain some insight in the impact of the approximations of the matrix H(ε) and the regularization coecient on the classier. An additional advantage of this technique is that it ensures that H r (ε) is SPD. Thus, we selected the approximation using all the eigenvalues above a given threshold.

It must be borne in mind that using an approximation of H(ε) does not leave the learning problem unchanged. It induces a change of kernel (all the smaller as the approximation is more accurate). Furthermore, making use of the analytical expression of the new kernel κ r is intractable in practice (see the analytical expression of its eigenfunctions in [START_REF] Girolami | Orthogonal series density estimation and the kernel eigenvalue problem[END_REF]). This raises diculties which are addressed in Section 2.7.3.

Complexity Analysis of the Outer Loop

As seen in Section 2.5, the computation of λ l+1 and the prediction of the corresponding set E is based on the computation of the derivative of α a E with respect to λ. This derivative, given by [START_REF] Dietterich | Approximate statistical tests for comparing supervised classication learning algorithms[END_REF], is obtained by solving a linear system involving the matrix H E,E λ l -1 already handled when computing the values of the dual variables [START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]. More precisely, the computation of the derivative benets from the availability of the Cholesky decomposition of T λ l . As a consequence, it only takes one forward and one back substitution with several additional matrix multiplications, for a global complexity of 2m E(λ l ) r+2r 2 +4m E(λ l ) operations. Computing the values of all the λ l+1 i takes 4mr + m operations. The overall complexity of the computation of λ l+1 is then in O mr + r 2 .

The complexity for deriving the approximate solution of [START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF] 

at λ l+1 is in O m E(λ l+1 ) r + r 3 once R T E(λ l+1 ) R E(λ l+1 ) is known. The naive computation of the product R T E(λ l+1 ) R E(λ l+1 )
requires m E(λ l+1 ) r 2 operations making it one of the most expensive steps of the algorithm. In practice, taking benet of the fact that E changes slowly, we compute an update of the matrix R T E(λ l ) R E(λ l ) which only takes 2r 2 ∆E λ l+1 , λ l operations with ∆E λ l+1 , λ l = m E(λ l+1 ) -m E(λ l ) the cardinality dierence of the two consecutive sets.

Given the rule of thumb used to choose λ l+1 (see Section 2.5), ∆E λ l+1 , λ l can be expected to be close to 2% of m E(λ l ) .

2.7.3

Expansion of h λ in Terms of κ

As stated in Section 2.7.1, the classier produced by the algorithm is built on the kernel κ r (whose computation requires O(mr) computations of the value of the kernel κ). In order to obtain a classier ĥλ which can be eciently used in test, we propose to switch back from κ r to κ by taking our inspiration from [START_REF] Blanchard | Kernel projection machine: a new tool for pattern recognition[END_REF]. Given a subset J of [ [ 1, m ] ], this amounts to nding a vector of coecients γ (λ) ∈ R m J so that

ĥλ = i∈J γ i (λ) y i κ x i + α 0 (λ)
and ĥλ is identical to the classier built on κ r on the training set, i.e.,

y i ĥλ (x i ) -α 0 (λ) 1 i m =   y i m E(λ) j=1 α j (λ) y j κ r (x j , x i )   1 i m .
This last equation can be reformulated algebraically as follows:

H •,J (ε)γ (λ) = R r R T E(λ) α E (λ) .
In the case of an innite dimensional feature space, we suggest to choose the set J equal to E(λ) to preserve the sparsity of the initial SVM. Then, deriving γ (λ) requires O m 3

E(λ)
operations. When the dimension of the feature space is r, we can set m J = r (due to the linear independence of only r rows of H), thus obtaining γ (λ) in O r 3 operations. This result proves to be of particular interest when using polynomial kernels of low degree since it implies that the time needed to evaluate ĥλ on a test example depends on r instead of m E(λ) .

Model Selection

In this section, we present the criteria of model selection used for our experiments. As pointed out in the introduction, a candidate of choice is the radius-margin bound which is thus presented rst. Then, the leave-one-out test error prediction based on the span bound is detailed. We show that this estimate can be obtained as a by-product of the computations of our algorithm tting the regularization path. This leads us to propose a global model selection procedure integrating this criterion in the regularization path algorithm.

Radius-Margin Bound

In [START_REF] Vapnik | Statistical Learning Theory[END_REF], Vapnik has derived a bound on the leave-one-out cross-validation error of a hard margin SVM. 

1l {y i h i (x i ) 0} 4 m R 2 γ 2
where 1l is the standard indicator function and h i is the function computed by the SVM trained on d m \ {(x i , y i )}.

It must be borne in mind that applying this bound to the ℓ 2 -SVM requires to consider the appropriate feature space, i.e., the RKHS induced by κ λ , which depends on λ. As a consequence, the radius must be computed again for each value of λ considered. This amounts to solving an additional series of QP problems.

Leave-One-Out Test Error Prediction Based on the Span Bound

The span bound is an exact bound on the leave-one-out cross-validation error of the ℓ 1 -SVM introduced by Vapnik and Chapelle in [START_REF] Vapnik | Bounds on error expectation for support vector machines[END_REF]. It is based on the concept of span of support vectors. We detail here the (leave-one-out) test error prediction derived from the span bound using the hypothesis that the set of support vectors remains the same during the leave-one-out cross-validation procedure. The notation uses explicitly λ to remind that this result holds for both the soft and the hard margin SVM (corresponding to λ -→ 0).

Theorem 2 (Theorem 3 in [START_REF] Vapnik | Bounds on error expectation for support vector machines[END_REF]) Let us consider an ℓ 1 -SVM trained on d m . Under the hypothesis that the set of support vectors remains the same during the leave-one-out crossvalidation procedure, the following equality holds

∀i ∈ [ [ 1, m ] ] , y i h λ (x i ) -h i λ (x i ) = α i (λ) S i (λ) 2
with S i (λ) the distance between Φ (x i ) and the set Λ i (λ) dened by

Λ i (λ) =    j:α j (λ)∈(0,λ -1 )∧j =i τ j Φ (x j ) , j:α j (λ)∈(0,λ -1 )∧j =i τ j = 1    .
The denition of Λ i (λ) is slightly dierent from the one given in [START_REF] Vapnik | Bounds on error expectation for support vector machines[END_REF] but is identical under the hypothesis of invariance of the support vectors.

Corollary 1 (Corollary 1 in [START_REF] Vapnik | Bounds on error expectation for support vector machines[END_REF]) Under the hypotheses of Theorem 2,

1 m m i=1 1l {yih i λ (x i ) 0} = 1 m m i=1 1l {αi(λ)Si(λ) 2 -y i h λ (x i ) 0} , ( 15 
)
where the right-hand side of ( 15) is the aforementioned test error prediction.

When implemented in a naive way, the computation of the test error prediction has a complexity of the same order as the leave-one-out (cross-validation) procedure. We now focus on the case of interest in the framework of this study (following the regularization path), the one of the hard margin machine. It is specically addressed in [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF]. In that framework, ( 15) simplies into

1 m m i=1 1l {y i h i (x i ) 0} = 1 m m i=1 1l {αiS 2 i -1 0} .
The authors provide a pratical result for obtaining the values of the spans S i based on the following algebraic reformulation:

∀i ∈ [ [ 1, m ] ] , S 2 i = min τ max µ   Φ (x i ) - j:α j >0∧j =i τ j Φ (x j )   2 + 2µ   j:α j >0∧j =i τ j -1  
with µ the Lagrange multiplier associated with the constraint τ i = 1. Let K be the Gram matrix and K the matrix given by:

K =   K E,E 1 m E 1 T m E 0  
with E being the set of indices of the support vectors. By setting τ = τ T , µ T , the previous min-max problem can be formulated as:

S 2 p = min τ max µ κ (x p , x p ) -2v T τ + τ T V τ
with V the submatrix of K obtained by removing the row and column of index p and v the p th column of K minus its p th component. The existence of V -1 in the general case is not discussed here, as only the case of a full rank Gram matrix will be of our concern.

From the optimal value of τ being equal to V -1 v, Equation 12 of [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF] gives the value of S p :

S 2 p = κ (x p , x p ) -v T V -1 v = 1/( K-1 ) p,p .
The last step comes from the block inversion formula. Thus the most expensive part of the computation of the leave-one-out test error prediction is the inversion of K. As this result is only valid for the hard margin machine, in order to apply it to the ℓ 2 -SVM, it is required to make use of its hard margin formulation. This imply constructing K from the kernel κ λ .

Integration in the Regularization Path Algorithm

This section proposes an ecient implementation of the leave-one-out test error prediction in the framework of the regularization path when the Hessian matrix is of low rank. First we demonstrate a proposition inspired by the method proposed by Cawley et al. in [START_REF] Cawley | Preventing over-tting during model selection using bayesian regularisation[END_REF] for computing the exact leave-one-out (cross-validation) error for the LS-SVM as a by-product of its training. Then from this proposition we present a means to calculate the leave-oneout test error prediction using the low rank property of H r (ε) and thus scaling linearly with m E .

Proposition 4 The number of errors associated to the leave-one-out test error prediction of the ℓ 2 -SVM is equal to that of the leave-one-out cross-validation procedure of the LS-SVM

trained on d E which is i∈E 1l {yih i λ (x i ) 0} = i∈E 1l α i (λ) (A E (λ) -1 ) i,i -1 0 . ( 16 
)

20

Proof Let α i 0 (λ), α i E (λ) and hi λ be respectively the bias, the vector of Lagrange multipliers and the function calculated by the LS-SVM trained on d E \ {(x i , y i )} with the kernel κ λ .

It will be shown latter in this proof that hi λ (x i ) is equal to h i λ (x i ) and thus is the quantity of interest for the leave-one-out procedure.

Cawley et al. have shown in [6] that hi

λ (x i ) can be deduced from quantities involved in the expression of the LS-SVM trained on the whole set d m . Their demonstration involves the Gram matrix and will be performed here with the Hessian matrix so that it ts in the current framework.

As this computation makes extensive use of [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF], let us recall it:

  0 y T E y E H E,E + λ 2 I m E     α 0 (λ) α E (λ)   =   0 1 m E   .
For ease of notation, let the coecients of A E (λ) range from 0 to m E so that the index of column matches the index of α a E (λ):

A E (λ) = (a i,j ) 0 i,j m E .
From this matrix, we dene:

• A i ∈ M m E ,m E (R) the matrix A E (λ)
with the row and the column of index i removed,

• a i ∈ R m E the column of index i with its coecient of index i removed,

• a i,i ∈ R the coecient of index (i, i).
With these notations at hand, the row of index

i (i ∈ [ [ 1, m E ]
]) of system [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF], corresponding to the Kuhn-Tucker optimality condition for the example i, can be rewritten as

a T i α 0 (λ)α E\{i} (λ) T T = 1 -a i,i α i (λ) (17) 
while the other rows are

A i a i α 0 (λ)α E\{i} (λ) T α i (λ) T = (0 1 T m E -1 ) T . (18) 
This decomposition of A E (λ) allows to express the learning problem of the LS-SVM trained on E \ {i} in terms of A i :

A i   α i 0 (λ) α i E (λ)   =   0 1 m E -1   . (19) 
From the denition of a i we have

y i hi λ (x i ) = H i,E (λ)α i E (λ)+y i α i 0 (λ) = a T i α i 0 (λ) α i E (λ) T T
. By substituting [START_REF] Golub | Matrix Computations[END_REF] in this expression:

y i hi λ (x i ) = a T i A i -1 0 1 T m E -1 T .
Equations ( 17) and ( 18) allow to simplify this formula to express y i hi λ (x i ) as a function of α i (λ):

y i hi λ (x i ) = a T i A i -1 A i a i α 0 (λ) α E\{i} (λ) T α i (λ) T = a T i A i -1 A i α 0 (λ)α E\{i} (λ) T T + α i (λ)a T i A i -1 a i = 1 -α i (λ)a i,i + α i (λ)a T i A i -1 a i = 1 -α i (λ) a i,i -a T i A i -1 a i = 1 - α i (λ) (A E (λ) -1 ) i,i . (20) 
The last line comes from the application of the block inversion formula. As previously mentioned, the outputs of the hard margin classier and the soft margin classier for the example i are equal:

hi λ (x i ) = j =i α j (λ)y j κ(x i , x j ) + δ i,j λ 2 + α 0 (λ) = j =i α j (λ)y j κ(x i , x j ) + α 0 (λ) = h i λ (x i ) . (21) 
Combining Equations ( 20) and [START_REF] Hastie | The entire regularization path for the support vector machine[END_REF] gives the number of misclassied examples of d E for the LS-SVM trained on d E . As only the examples of d E are of interest, the number of errors of ( 15) and ( 16) are exactly the same, which concludes the proof.

This proposition is twofold as it ensures good model selection properties due to the well established leave-one-out test error prediction based on the spans and it allows to compute it eciently. As previously seen, the matrix A E (λ) plays a central role for model selection.

The block inversion formula gives the elements of the diagonal of the inverse of A E (λ):

A E (λ) -1 =   s -1 -s -1 y T E H E,E (λ) -1 -H E,E (λ) -1 y E s -1 H E,E (λ) -1 + H E,E (λ) -1 y E s -1 y T E H E,E (λ) -1   =   1 s -1 s ν T -1 s ν H E,E (λ) -1 + 1 s νν T   (22) 
with s = -y T E H E,E (λ) -1 y E = -y T E ν. For i ∈ [ [ 1, m E ]
], the elements of the diagonal are:

A E (λ) -1 i,i = (H E,E (λ) -1 ) i,i + 1 s ν 2 i . (23) 
Thanks to the low-rank approximation of H E,E (ε), the computational complexity of the diagonal elements of the inverse matrix is linear in m E . Hereafter comes the detail of this proposition. Keeping the notations of Section 2.4, we obtain

H E,E (λ) -1 ≃ H E,E,r (ε) + λ -ε 2 I m E -1 = 2 λ -ε I m E - 4 (λ -ε) 2 R E T (λ) -1 R T E = 2 λ -ε I m E - 4 (λ -ε) 2 (L -1 E R T E ) T (L -1 E R T E ).
Computing the matrix L -1 E R T r yields a complexity in O(m E r 2 ) operations. Let u i,j be its general term. The diagonal terms of H E,E (λ) -1 are given by

∀i ∈ [ [ 1, m E ] ] , (H E,E,r (λ, ε) -1 ) i,i = 2 λ -ε - 4 (λ -ε) 2 r j=1 u 2 j,i . (24) 
Combining ( 23) and [START_REF] Luntz | On estimation of characters obtained in statistical procedure of recognition[END_REF], and using the fact that ν and L E are already precomputed, allows to obtain a complexity in only O(m E r 2 ) operations for calculating the leave-one-out test error prediction. When r is small compared to m, this complexity is inferior to that of the QP problem solved to derive the radius.

The integration of the model selection in the regularization path algorithm results in the algorithm presented in Figure 2. The main dierences are the computation of the leave-one-out test error prediction and the expansion of the optimal (according to the test error prediction) classier on κ.

data set is taken from the UCI repository while ijcnn1 and a9a are taken from Lin's homepage (http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/). The articial data set will be detailed later. Unless specied otherwise, a Gaussian kernel with bandwidth σ is used. To avoid numerical instabilities, ε was set equal to 10 -8 . The regularization coecient ranges from 10 -6 to 10 7 . The leave-one-out test error prediction is evaluated for each λ l . All the computational times include the approximation of H(ε), the path-following itself, the evaluations of the leave-one-out test error prediction and the expansion of the optimal classier (when required). All our codes are in MATLAB (R2010B). This section illustrates the fact that the low-rank approximation can lead to the same result as the classical approach. A state-of-the-art algorithm, the ℓ 2 version of libsvm (ℓ 2 -libsvm), is used for comparison on three data sets with dierent kernels. As a good approximation is required, the following settings are chosen:

• the threshold on the eigenvalues is set at 10 -6 ,

• 80% of the training set is used for building the approximation.

Good quality of the rst eigenvalues and eigenvectors estimations is ensured by performing the density-weighted Nyström approximation on a large part of the training set. • For each realization of the data set, the optimal classier computed by the algorithm on the training set is tested on the corresponding test set. The mean value and the standard deviation over all the realizations are given in the tables.

• A resampled paired student t test (described in Section 3.3 of [START_REF] Dietterich | Approximate statistical tests for comparing supervised classication learning algorithms[END_REF]) is performed on the frequency of test errors. If a dierence is statistically signicant, the best result is written in bold.

The Rätsch database The Rätsch database has been extensively used as benchmark for binary classication (see for example [START_REF] Rätsch | Soft margins for AdaBoost[END_REF][START_REF] Duan | Evaluation of simple performance measures for tuning SVM hyperparameters[END_REF][START_REF] Keerthi | Building support vector machines with reduced classier complexity[END_REF][START_REF] Cawley | Preventing over-tting during model selection using bayesian regularisation[END_REF]). In this trial, due to the small size of the data sets, the density-weighted Nyström decomposition is computed by using 60% of the training set as landmarks and only the eigenvalues greater than 10 -4 are kept. Table 3 presents comparative results based on the σ selected by the gradient method while Table 4 corresponds to the heuristic proposed in [START_REF] Zhang | Improved Nyström low-rank approximation and error analysis[END_REF]. This method sets σ equal to 5: Performance on the Spam data set with σ computed using the heuristic of [START_REF] Zhang | Improved Nyström low-rank approximation and error analysis[END_REF]. The line "default" corresponds to a Nyström approximation using 60% of the training set while "rank=600" uses 600 landmarks (the approximation of the Hessian matrix can be at most of rank 600). Both experiments use an eigenvalue threshold of 10 -3 . ples belonging to the positive category are drawn from a Gaussian distribution while the negative ones are drawn from a mixture of Gaussians, both categories being equiprobable. A Monte Carlo estimate of the Bayes error is 12.11%. Ten realizations of the training set have been built for each selected value of m (see The gain in computation time is clearly due to the low-rank approximation. It is noteworthy to recall that Chapelle's algorithm is not designed to handle large data sets. Therefore, the following section compares our algorithm to a training algorithm dedicated to this kind of problem.

Performance and Training Time Comparison on Large Data Sets

Obviously, the low-rank approximation is well suited for a low-rank basic Hessian matrix.

A low-degree polynomial kernel can induce such a behavior. To our knowledge, there is no model selection procedure devised for this case. Thus, two training algorithms dedicated to these kernels are used for comparison: the modied versions of ℓ 2 -liblinear and ℓ 2 -libsvm intoduced in [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF] (liblinear is known as one of the fastest solvers for linear SVMs). For both of them, model selection results from a 5-fold cross-validation implemented over a grid search. Proceeding as in [START_REF] Chang | Training and testing low-degree polynomial data mappings via linear SVM[END_REF] (preprint), we chose the following range: time. Furthermore, the expansion of the classier on r examples allows to keep the testing time small. These results are all the more interesting as our procedure is not restricted to polynomial kernels of degree two but can also be used with task specic kernels. Therefore, the use of our procedure is very appealing in this framework.

C = λ -1 ∈ 2 -3 ,

Conclusions and Ongoing Research

In this article, a path-following algorithm for setting the value of the regularization coe- for selecting the rank of the approximation is under investigation. Two main options are at hand. The rst one is the use of the work of Girolami [START_REF] Girolami | Orthogonal series density estimation and the kernel eigenvalue problem[END_REF] dealing with the kernel-PCA, the second one relies on a variable rank for the approximation. Our nal objective is to extend this work to the multi-class case, more precisely the M-SVM 2 [START_REF] Guermeur | A quadratic loss multi-class SVM for which a radiusmargin bound applies[END_REF].

Proposition 2

 2 Training an ℓ 2 -SVM on d m reduces itself to training an LS-SVM on d E(λ) once the set E (λ) is known.

2 . 5

 25 Detecting Changes in the Partition of the Training Set

Problem 2

 2 when λ goes to innity. Asymptotically, H(λ) is equivalent to λ 2 I m , so that the contribution of the training examples to the learning problem is restricted to the constraint y T α = 0. The learning problem is equivalent to Problem 4 (Problem equivalent to Problem 2 when λ goes to innity)

  )where m + is the cardinality of the subset of the training set made up of the examples whose label is 1 and m -= m -m + . With the values of the Lagrange multipliers at hand, it suces to compute the limit b ∞ of b λ as λ goes to innity to characterize the asymptotic behavior of the classier. To that end, we make use of the fact that since all the Lagrange multipliers are asymptotically positive, the KT complementary conditions[START_REF] Burman | A comparative study of ordinary cross-validation, ν-fold cross-validation and the repeated learning-testing methods[END_REF] imply that for all i in [[ 1, m ] 
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 42 Optimality of the Solution Obtained by the Regularization Path

Figure 3 :

 3 Figure 3: Evolution of the radius-margin bound (truncated to 1), the leave-one-out test error prediction and the test error along the regularization path.
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 44 Accuracy in Terms of Model SelectionThis section illustrates the use of a low-rank approximation of the Hessian matrix for computing the regularization path to perform model selection. The algorithm of reference for model selection, introduced in[START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF], is based on the gradient descent using dierentiable spans. Three experiments are performed with data sets of increasing size. Here are the details of the comparison procedure:

  p(x|y = +1) = p N (µ + , Σ + , x) p(x|y = -1) det(Σ) 1/2 exp -1 2 (x-µ) T (Σ) -1 (x-µ) ,

cient of the ℓ 2 -

 2 SVM has been introduced. Its main advantage is to avoid local minima of the objective function. When the rank of the Gram matrix does not depend on the number of examples and the objective function is the leave-one-out test error prediction, the complexity of model selection is linear in the number of examples. An automatic method

  Theorem 1 (After Sections 10.3 and 10.4 in[START_REF] Vapnik | Statistical Learning Theory[END_REF]) Let us consider a hard margin SVM trained on d m . Let γ = h -1 κ be its margin and R the radius of the smallest ball of H κ enclosing the set {Φ(x i ) : 1 i m}. Then,

	1	m
	m	i=1

Table 1 :

 1 Statistics about the data sets. #realizations corresponds to the number of realizations of training sets and test sets for each data set.

	Data set	#features #training #test #realizations
	banana	2	400	4900	100
	breast cancer	9	200	77	100
	diabetis	8	468	300	100
	aresolar	9	666	400	100
	german	20	700	300	100
	heart	13	170	100	100
	image	18	1300	1010	20
	ringnorm	20	400	7000	20
	splice	60	1000	2175	20
	tyroid	5	140	75	100
	titanic	3	150	2051	100
	twonorm	20	400	7000	100
	waveform	21	400	4600	100
	Spam	57	3601	1000	30
	ijcnn1	22	49990	91701	1
	a9a	123	32561	16281	1

Table 2

 2 

Table 3 :

 3 Performance on the Rätsch database with the value of σ given by Chapelle's algorithm. the square root of the mean distance of each point to the center of mass of the training This increase in the number of examples allows to show that our path-following method for model selection scales well with the number of examples. As there is no predened training and test sets, for each realization 1000 test examples are randomly chosen from the database while keeping the rest for the training set.

	Data set	Test error(%)	Time(s)
		Path	Gradient	Path Gradient
	banana	11.07 (0.88) 10.85 (0.73) 0.6319 0.5612
	breast cancer 27.10 (4.67) 26.64 (4.56) 0.4613 0.2551
	diabetis	24.04 (1.94) 23.81 (1.94) 0.8224 1.2781
	aresolar	34.49 (1.87) 34.84 (1.82) 0.4011 2.4215
	german	23.77 (2.13) 23.65 (2.03) 1.9661 2.8821
	heart	16.83 (3.47) 16.71 (3.11) 0.4741 0.1586
	image	03.32 (0.72) 03.90 (0.69) 6.5991 8.1389
	ringnorm	01.69 (0.40) 01.61 (0.15) 0.9900 0.4171
	splice	11.87 (0.72) 11.16 (0.70) 4.0894 5.8144
	tyroid	07.08 (3.69) 07.01 (3.66) 0.4575 0.0728
	titanic	23.05 (1.11) 22.59 (0.88) 0.3804 0.1292
	twonorm	02.67 (0.34) 02.69 (0.18) 0.9998 0.4748
	waveform	10.09 (0.56) 09.90 (0.39) 1.0605 0.7644

set. Even with this simple heuristic, the performance of our algorithm matches the one of Chapelle's algorithm. The recognition rate is on par with the literature (see for example

[START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]

). These two tables show that both methods provide good performance in terms of model selection when no assumption on the rank needed to approximate H(ε) is made.

The data sets of the Rätsch database have a relatively large number of features for a small number of training examples. Thus the rank needed to obtain good performance on this database is not very small compared to the number examples, explaining the similarity of the computation times.

The Spam data set

The Spam data set is much larger than the data sets of the Rätsch database.

A synthetic case: Large training set in low dimension

In order to evaluate the scalability of the algorithm in a favourable case, we built an articial data set. The exam-

Table 4 :

 4 Performance on the Rätsch database with σ set with the heuristic of[START_REF] Zhang | Improved Nyström low-rank approximation and error analysis[END_REF].

	Criterion	Test error(%)	Time(s)
		Path	Gradient	Path	Gradient
	default	6.22 (0.87) 6.58 (0.84) 27.8510 97.5712
	rank=600 6.64 (0.97) 6.56 (0.76) 15.9084 102.9281
	Table			

Table 6 )

 6 . The evaluation of the generalization error of each classier is based on a large test set (30000 examples).

	m	Test error(%)	Time(s)	rank
		Path	Gradient	Path Gradient
	1000 14.22 (0.28) 14.05 (0.25) 5.68	9.21	127.5
	2000 13.97 (0.16) 13.93 (0.13) 12.84	57.55	165.8
	3000 13.86 (0.17) 13.85 (0.19) 20.87	101.1	181.4
	4000 13.85 (0.33) 13.83 (0.33) 28.41 262.56 155.2
	5000 13.84 (0.19) 13.82 (0.2) 37.98 446.56 154.7

Table 6 :

 6 Performance on the articial data set with the value of σ obtained by Chapelle's algorithm.Table6illustrates that both model selection procedures achieve similar performance.

  2 -1 , . . . 2 7 , 2 9 . The parameterization of the algorithm is presented in Table 7 while the result of the comparison is in Table 8. This last table shows a signicant reduction i of the training ijcnn1 a9a Kernel (32 x 1 , x 2 + 1) 2 (0.032 x 1 , x 2 + 1) 2 ℓ 2 -liblinear/ℓ 2 -libsvm

		C	0.125	8
		Termination criteron	10 -6	10 -6
	Path	Number of landmarks	500	1500
		Threshold	10 -6	10 -6

Table 7 :

 7 Parameterization of the algorithms for the comparison. Due to the size of the data sets, the approximation method is the uniform Nyström method. The value of C corresponds to the optimal value provided by the grid search.

	Data set Algorithm Training time Testing time Test error Rank
	ijcnn1	Path	30.2s	1.9s	2.44%	208
		ℓ 2 -liblinear	57.8s	0.4s	2.46%	-
		ℓ 2 -libsvm	> 24 hours	27s	2.46%	-
	a9a	Path	179.9s	1.9s	14.8%	1178
		ℓ 2 -liblinear	459.7s	0.05s	14.7%	-
		ℓ 2 -libsvm	46803s	31s	15.2%	-

Table 8 :

 8 Training times and testing times for ijcnn1 and a9a data sets with a degree 2 polynomial kernel.
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We now discuss the complexity of the key parts of the algorithm and some choices regarding their implementation.

2.7.1

Low-Rank Hessian Approximation

The following discussion regards the derivation of H r (ε) and the consequences of the approximation. Among all the dierent algorithms available for matrix factorization are the Incomplete Cholesky Factorization (ICF) proposed in [START_REF] Fine | Ecient SVM training using low-rank kernel representations[END_REF], the eigenvalue decomposition truncated to select only the largest eigenvalues, and the density-weighted Nyström method proposed in [START_REF] Zhang | Density-weighted Nyström method for computing large kernel eigensystems[END_REF]. Their complexities are respectively in O mr 2 , O m 3 , and O l 3 + lm with l the number of landmarks (l can be viewed as a guess of an upper bound on r). Given the results of the comparative study presented in [START_REF] Zhang | Improved Nyström low-rank approximation and error analysis[END_REF], we decided to use Nyström methods. Note that the use of an eigenvalue decomposition (and thus a Nyström decomposition) in our method corresponds to performing a kernel-PCA prior to training a linear SVM with the selected features.

If the RKHS spanned by κ is of nite dimension, the choice of l is straightforward since the value of r is the minimum between this dimension and the number of examples. Otherwise, one cannot expect the matrices H (ε) and H r (ε) to be equal, so that the choice for the value of r is harder. It is of major importance as it directly aects the capacity of 

Experimental Results

We now present results from various numerical simulations. First a comparison of the solution obtained by our path-following algorithm and a state-of-the-art algorithm is performed. Then we illustrate the good behavior of the leave-one-out test error prediction.

The central experiment is the comparison of our model selection procedure with another state-of-the-art method on severals data sets. We conclude with a comparison of the computation time of our model selection procedure and a dedicated large scale training algorithm.

Setup

All Hessian matrix approximations involve a Nyström decomposition method. When the training set is smaller than 4000 examples, a density-weighted Nyström method is used, otherwise, a uniform sampling method is applied. Each data set is standardized. shows that the solutions found by our path-following method and ℓ 2 -libsvm are close. It is important to note that ℓ 2 -libsvm has diculties to converge when the bandwidth of the Gaussian kernel is large, thus explaining why its training time is so high. For ℓ 2 -libsvm, we display ten times the average value in the table, assuming that when selecting model by means of a grid, one would use 10 dierent values of λ.

Comparison of the Model Selection Criteria

The relative behavior of the leave-one-out cross-validation bounds (or test error estimators) has already been extensively studied in the literature (for example in [START_REF] Chapelle | Choosing multiple parameters for support vector machines[END_REF][START_REF] Chung | Radius margin bounds for support vector machines with the RBF kernel[END_REF]). Two main conclusions can be drawn: the minima of both the radius-margin bound and the leave-oneout test error prediction are adequate criteria for model selection and the leave-one-out test error prediction is an accurate estimator of the generalization error. Figure 3 illustrates such properties on the banana data set.