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PROBABILISTIC ALGORITHM FOR POLYNOMIAL

OPTIMIZATION OVER A REAL ALGEBRAIC SET

AURÉLIEN GREUET ∗ † ‡ AND MOHAB SAFEY EL DIN † ‡

Abstract. Let f, f1, . . . , fs be polynomials with rational coefficients in the indeterminates
X = X1, . . . , Xn of maximum degree D and V be the set of common complex solutions of F =
(f1, . . . , fs). We give an algorithm which, up to some regularity assumptions on F, computes an
exact representation of the global infimum f⋆ = inf

x∈V∩Rn
f (x), i.e. a univariate polynomial vanishing

at f⋆ and an isolating interval for f⋆. Furthermore, this algorithm decides whether f⋆ is reached
and if so, it returns x⋆

∈ V ∩ Rn such that f (x⋆) = f⋆.

This algorithm is probabilistic. It makes use of the notion of polar varieties. Its complexity is
essentially cubic in (sD)n and linear in the complexity of evaluating the input. This fits within the
best known deterministic complexity class DO(n).

We report on some practical experiments of a first implementation that is available as a Maple
package. It appears that it can tackle global optimization problems that were unreachable by previous
exact algorithms and can manage instances that are hard to solve with purely numeric techniques. As
far as we know, even under the extra genericity assumptions on the input, it is the first probabilistic
algorithm that combines practical efficiency with good control of complexity for this problem.

Key words. Global optimization, polynomial optimization, polynomial system solving, real
solutions
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14Q20 Effectivity, complexity.
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1. Introduction. Let X = X1, . . . , Xn be indeterminates, f, f1, . . . , fs be poly-
nomials in Q [X] of maximal degree D and V = V (F) be the set of common complex
solutions of F = (f1, . . . , fs). We focus on the design and the implementation of exact
algorithms for solving the polynomial optimization problem which consists in com-
puting and exact representation of the global infimum f⋆ = inf

x∈V∩Rn
f (x). Remark

that, at least under some genericity assumptions, polynomial optimization problems
whose constraints are non-strict inequalities can be reduced to the one with polyno-
mial equations.

Motivation and prior work. While polynomial optimization is well-known to be
NP-hard (see e.g. [52]), it has attracted a lot of attention since it appears in various
areas of engineering sciences (e.g. control theory [35, 37], static analysis of programs
[17, 51], computer vision [1, 2], economics, to mention just a few). In this area, one
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challenge is to combine practical efficiency with reliability of the polynomial optimiza-
tion solver.

One way to reach this goal is to relax the polynomial optimization problem by
computing algebraic certificates of positivity proving lower bounds on f⋆. This is
achieved with methods computing sums of squares decompositions of polynomials. In
this context, one difficulty is to overcome the fact that a nonnegative polynomial is
not necessarily a sum of squares. Various techniques have been studied, see e.g. [19,
30, 33, 36, 44, 54, 64]. These approaches use semi-definite programming relaxations
([55, 66]) and numerical solvers of semi-definite programs. Likewise, a sum of squares
decomposition with rational coefficients instead of floating points can be recovered
(see [41, 56]), algorithms for computing sums of squares decompositions with rational
coefficients have also been designed [32, 63]. Some cases of ill-conditionedness have
been identified ([31]), but there is no general method to overcome them. It should also
be noticed that techniques introduced to overcome situations where a non-negative
polynomial is not a sum of squares rely on using gradient varieties [19, 30, 54] which
are close to polar varieties introduced in the context of symbolic computation for
studying real algebraic sets (see e.g. [4, 5, 7, 61]).

Another way to combine reliability and practical efficiency is to design algorithms
relying on symbolic computation that solve the polynomial optimization problem.
Indeed, it can be seen as a special quantifier elimination problem over the reals and
a goal would be to design a dedicated algorithm whose complexity meets the best
known bounds and whose practical behaviour reflects its complexity.

Quantifier elimination can be solved by the cylindrical algebraic decomposition
algorithm [13]. This algorithm deals with general instances and has been intensively
studied and improved (see e.g. [11, 14, 15, 38, 50]). However, its complexity is doubly
exponential in the number of variables. In practice, its best implementations are
limited to problems involving 4 variables at most.

In [8], a deterministic algorithm whose complexity is singly exponential in the
number of quantifiers alternates is given. For the optimization problem of a n-variate
polynomial of degree D, this complexity becomes DO(n) but there is no practical im-
plementation (see [9, Chapter 14]). The techniques that allow to get such complexity
results such as infinitesimal deformations did not provide yet practical results that
reflect this complexity gain. Thus, our goal is to obtain an algorithm for solving the
polynomial optimization problem with good control on the complexity constant in
the exponent. We allow to have regularity assumptions on the input that are reason-
able in practice (e.g. rank conditions on the jacobian matrix of the input equality
constraints). We also allow probabilistic algorithms provided that probabilistic as-
pects do not depend on the input but on random choices performed when running
the algorithm.

A first attempt towards this goal is in [21]. Given a n-variate polynomial f of
degree D, a probabilistic algorithm computing inf

x∈Rn
f (x) in O

(
n7D4n

)
operations in

Q is given. Furthermore, it is practically efficient and has solved problems intractable
before (up to 6 variables). Our goal is to generalize this approach to the case of
equality constraints and get an algorithm whose complexity is essentially cubic in
(sD)

n
and linear in the evaluation complexity of the input.

Main results. We provide a probabilistic algorithm based on symbolic computa-
tion solving the polynomial optimization problem up to some regularity assumptions
on the equality constraints whose complexity is essentially cubic in (sD)n. We also
provide an implementation of it and report on its practical behaviour which reflects
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its complexity and allows to solve problems that are either hard from the numerical
point of view or unreachable by previous algorithms based on symbolic computation.

Before describing these contributions in detail, we start by describing our regu-
larity assumptions. These regularity assumptions hold on the equality constraints.
In most of applications, the Jacobian matrix of F = (f1, . . . , fs) has maximal rank
at all points of the set of common solutions of F. In algebraic terms, this implies
that this solution set is smooth of co-dimension s, complete intersection and the ideal
generated by F (i.e. the set of algebraic relations generated by F) is radical.

Our regularity assumptions are a bit more general than the situation we just
described. In the sequel, we say that F satisfies assumptions R if the following holds:

• the ideal 〈F〉 is radical,
• V (F) is equidimensional of dimension d > 0,
• V (F) has finitely many singular points.

Under these assumptions, we provide an algorithm decides the existence of f⋆ =
inf

x∈V (F)∩Rn
f (x) and, if f⋆ exists, it computes an exact representation of it (i.e. a

univariate polynomial vanishing at f⋆ and an isolating interval for f⋆). It can also
decide if f⋆ is reached and if this is the case it can return a minimizer x⋆ such that
f (x⋆) = f⋆. We count arithmetic operations +,−,×,÷ in Q and sign evaluation at

unit cost. We use the soft-O notation: Õ(a) indicates the omission of polylogarithmic
factors in a. The complexity of the algorithm described in this paper is essentially
cubic in (sD)

n
and linear in the complexity of evaluating f and F. For instance if the

Jacobian matrix of F has full rank at all points of V (F) (this is a bit more restrictive
than R) then the algorithm performs

Õ

(
LD6

(
3
√
2 (s+ 1) (D − 1)

)3n
)

arithmetic operations in Q (see Theorem 6.4 for the general case).
Note that this algorithm is a strict generalization of the one given in [21]. Note also

that when the infimum is reached, we compute a minimizer without any assumption
on the dimension of the set of minimizers.

Our algorithm follows a classical pattern. It first performs a change of coordinates
to ensure some technical assumptions that are satisfied in general position. Then,
roughly speaking, it computes a finite set of real points containing f⋆. Moreover,
for any interval between two consecutive real points in this set is either contained in
f (V (F) ∩Rn) or has an empty intersection with f (V (F) ∩Rn).

To compute this set, we use geometric objects which are close to the notion of
polar varieties which, under R, are critical loci of some projections ; we refer to [7]
for an expository of several properties of polar varieties and to [6] for geometric ob-
jects similar to the ones we manipulate in a more restrictive context. Our modified
polar varieties are defined incrementally and have a degree which is well controlled
(essentially singly exponential in n). Algebraic representations of these modified po-
lar varieties can be computed using many algebraic algorithms for polynomial system
solving. Properties of the systems defining these modified polar varieties are exploited
by some probabilistic algebraic elimination algorithms (see e.g. the geometric reso-
lution algorithm [28] and references therein) which allows to state our complexity
results.

Our implementation is based on Gröbner bases computations which have a good
behaviour in practice (see also [26] for preliminary complexity estimates explaining
this behaviour) and is available at http://www-polsys.lip6.fr/~greuet/. Recall
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that most of algorithms for computing Gröbner bases are deterministic. We describe
the implementation in detail at the end of the paper; in particular, we show how
to check if the generic assumptions required for the correctness are satisfied after
performing a linear change of coordinates. We report on experiments showing that
its practical performances outperform other implementations of previous algorithms
using symbolic computation and can handle non-trivial problems which are difficult
from the numerical point of view.

Plan of the paper. We introduce notations and definitions of geometric objects in
Section 2. Section 3 describes the algorithm and its subroutines. In Section 4, the
correctness is proved, under assumptions of regularity. Then in Section 5, we prove
that the previous assumptions are true up to a generic change of coordinates. Finally,
Section 6 provides a bound on the degrees of the objects computed by the algorithm.
Then a complexity analysis is performed. Some details on the implementation and
practical results are presented in Section 7.

2. Notations and Basic Definitions.

2.1. Standard notions.

Algebraic sets. LetX = (X1, . . . , Xn) and F = {f1, . . . , fs} ⊂ Q [X]. An algebraic
variety is the complex solution set of a finite set of polynomials. The algebraic variety
V (F) is the set {x ∈ Cn | f1 (x) = · · · = fs (x) = 0}. The Zariski topology on Cn is a
topology where the closed sets are the algebraic varieties. Given a set U ⊂ Cn, the

Zariski-closure of U , denoted by U
Z
, is the closure of U for the Zariski topology. It

is the smallest algebraic variety containing U . A Zariski-open set is the complement
of a Zariski-closed set. An algebraic variety V is reducible if it can be written as
the union of two proper algebraic varieties, irreducible else. For any variety V , there
exist irreducible varieties V1, . . . , Vs such that for i 6= j, Vi 6⊂ Vj and such that
V = V1 ∪ · · · ∪ Vs. The algebraic varieties Vi are the irreducible components of V .
The decomposition of V as the union of its irreducible components is unique. In this
paper, the dimension of V = V (f1, . . . , fs) is the Krull dimension of its coordinate
ring, that is the maximal length of the chains p0 ⊂ p1 ⊂ · · · ⊂ pd of prime ideals of
the quotient ring C [X] / 〈f1, . . . , fs〉 (see [22, Chapter 8]). We write dimV = d. The
variety is equidimensional of dimension d if its irreducible components have dimension
d.

Polynomial mapping and Jacobian matrices. Given f ∈ Q [X], we still write f for
the polynomial mapping x 7→ f (x). Given F = {f1, . . . , fs} ⊂ Q [X], Jac (F) is the

Jacobian matrix

(
∂fi
∂Xj

)

1≤i≤s
1≤j≤n

. Likewise, Jac (F, k) denotes the truncated Jacobian

matrix of size p× (n− k + 1) with respect to the variables Xk, . . . , Xn.

Projections. Let f ∈ Q [X] and T be a new indeterminate. For 1 ≤ i ≤ n, π≤i is
the projection

π≤i :
V (f − T ) ∩ V −→ Ci+1

(x1, . . . , xn, t) 7−→ (x1, . . . , xi, t) .
.

For i = 0, the projection π≤0 : (x1, . . . , xn, t) 7−→ t is denoted by πT .
Given a set W , the set of nonproperness of the restriction of πT to W ∩V (f−T )

is denoted by NP (πT ,W ). This is the set of values t ∈ C such that for all closed
neighborhood O of t (for the euclidean topology), π−1

T (O) ∩W ∩ V (f − T ) is un-
bounded.
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Change of coordinates. Given A ∈ GLn(Q), fA (resp. FA, V A) is the the poly-
nomial f

(
AXT

)
(resp. the family

{
fA
1 , . . . , fA

s

}
, the variety V

(
FA

)
). We keep the

notation fA to denote the polynomial mapping x 7→ fA (x). A property on an alge-
braic set V (g1, . . . , gp) is called generic if there exists a non-empty Zariski-open subset
of GLn(C) such that for all matrices A ∈ GLn(Q) in this open set, the property holds
for V

(
gA1 , . . . , gAp

)
.

Regular and singular points. The Zariski-tangent space to V at x ∈ V is the
vector space TxV defined by the equations

∂f

∂X1
(x)v1 + · · ·+

∂f

∂Xn
(x)vn = 0,

for all polynomials f that vanish on V . If V is equidimensional, the regular points

on V are the points x ∈ V where dim(TxV ) = dim(V ); the singular points are all
other points. The set of singular points of V is denoted by Sing (V ). If V = V (F) is
equidimensional of dimension d then the set of singular points is the set of points in
V where the minors of size n− d of Jac (F) vanish.

Critical points. A point x ∈ V \Sing (V ) is a critical point of f|V , the restriction of
f to V , if it lies in the variety defined by all the minors of size n−d+1 of Jac ([f,F]).

We denote by Crit (f, V ) the algebraic variety defined as the vanishing set of
• the polynomials in F,
• and the minors of size n− d+ 1 of Jac ([f,F]).

2.2. Definitions.

Assumptions of regularity. Let F ⊂ Q [X] be a polynomial family such that 〈F〉
is radical and V = V (F) is equidimensional of dimension d. In this context, the set
of singular points of V is the variety Sing (V ) defined as the vanishing set of

• the polynomials in F,
• and the minors of size n− d of Jac (F),

The algebraic variety V is smooth if Sing (V ) = ∅.

The polynomial family F satisfies assumptions R if

• the ideal 〈F〉 is radical,
• V (F) is equidimensional of dimension d > 0,
• V (F) has finitely many singular points.

In this paper, we consider a polynomial family F = {f1, . . . , fs} that satisfies
assumptions R. We denote by V the algebraic variety V (F).

Remark that if V satisfies assumptions R then the variety Crit (f, V ) defined
above is the union of the critical points of f|V and Sing (V ).

Sample points and modified polar varieties . We denote by S (F) any finite set
that contains at least one point in each connected component of V ∩ Rn. Such a set
can be computed using [61].

Definition 2.1. For 1 ≤ i ≤ d− 1, let C (f,F, i) be the algebraic variety defined

as the vanishing set of

• the polynomials in F,

• the minors of size n− d+ 1 of Jac ([f,F] , i+ 1),
• and the variables X1, . . . , Xi−1.

By convention, C (f,F, d) = V ∩ V (X1, . . . , Xd−1). Let

C (f,F) =
⋃

1≤i≤d

C (f,F, i).
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For 1 ≤ i ≤ d − 1, let P (f,F, i) = C (f,F, i) \ Crit (f, V )
Z ∩ Crit (f, V ). For

i = d, let P (f,F, d) = C (f,F, d). Finally, let

P (f,F) =
⋃

1≤i≤d

P (f,F, i).

Remark that under assumptions R, C (f,F) is the union of
• the set of singular points Sing (V ),
• the intersection of V (X1, . . . , Xi) and the critical locus of the projection π≤i

restricted to V ∩ V (f − T ), for 1 ≤ i ≤ d.
This definition is inspired by the one of the polar varieties (see [4, 5, 7, 61]). Up

to removing Crit (f, V ), C (f,F) is expected to have generically dimension one.

2.3. Some properties for optimization. We state the properties requested
to solve the optimization problem.

Definition 2.2. Given a set W , we say that property Opt (W ) holds if:

• W is finite,

• W contains every local extremum of f|V ∩Rn,

• let W = {a1, . . . , ak} and a0 = −∞. There exists a non-empty Zariski-open

set Q ⊂ C such that for all 0 ≤ i ≤ k − 1:
– either for all t ∈ ]ai, ai+1[ ∩Q, (f)−1

(t) ∩ V ∩Rn = ∅,

– or for all t ∈ ]ai, ai+1[ ∩ Q, (f)−1 (t) ∩ V ∩ Rn 6= ∅.

2.4. Genericity properties. In the sequel we will assume some properties that
will be proved to be generically true. A value c ∈ R is isolated in f (V ∩ Rn) if
and only if there exists a neighborhood B of c such that B ∩ f (V ∩ Rn) = {c}. For
simplicity, given f ∈ Q [X] and F ⊂ Q [X], we will denote by

• R (f,F) the property: for all t ∈ R \ f (Crit (f, V ) ∪ Sing (V )), the ideal
〈F, f − t〉 is radical, equidimensional and V (F, f − t) is either smooth of
dimension d− 1 or is empty.
• P1 (f,F) the property: there exists a non-empty Zariski-open set Q ⊂ C such
that for all t ∈ R ∩ Q, the restriction of π≤i−1 to V ∩ V (f − T ) ∩ C (f,F, i)
is proper for 1 ≤ i ≤ d.
• P2 (f,F) the property: for any critical value c of f|V ∩Rn that is not isolated
in f (V ∩ Rn), there exists xc ∈P (f,F) such that f (xc) = c.

3. Algorithm.

3.1. Specifications. In the descriptions of the algorithms, a polynomial family
F = {f1, . . . , fs} ⊂ Q [X] is represented by the list [f1, . . . , fs]. Likewise, an ideal
(resp. an algebraic variety) is represented by a finite list of polynomials generating it
(resp. defining it), for instance a Gröbner basis.

Let Y ⊂ Rn be a 0-dimensional set defined by polynomials in Q [X]. It can
be represented by a rational parametrization, that is a sequence of polynomials
q, q1, . . . , qn ∈ Q [U ] such that for all x = (x1, . . . , xn) ∈ Y , there exists u ∈ R

such that




q(u) = 0
x1 = q1(u)/q0(u)

...
xn = qn(u)/q0(u)
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Moreover, a single point in Y can be represented using isolating intervals. Note that
such a representation can be computed from a Gröbner basis ([58]) and algorithms
computing such a representation are implemented in computer algebra systems.

Likewise, a real algebraic number α is represented by a univariate polynomial P
and an isolating interval I.

3.2. Main Algorithm. We introduce the subroutines used in the description
of the main algorithm. A complete description will be given in the sequel. Given a
univariate polynomial P , we denote by RootsR (P ) the set of its real roots.

The routine SetContainingLocalExtrematakes as input f ∈ Q [X] and F ⊂ Q [X]
satisfying assumptions R. If P1 (f,F), P2 (f,F) and R (f,F) hold, it returns a list
ListSamplePoints ⊂ Q [X], a list ListCriticalPoints ⊂ Q [X] and a polynomial PNP ∈
Q [T ] such that, if W denotes the set

W = f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP) ,

property Opt (W ) holds.
The routine FindInfimumtakes as input f ∈ Q [X], F ⊂ Q [X] satisfying assump-

tions R, a list ListSamplePoints ⊂ Q [X], a list ListCriticalPoints ⊂ Q [X] and a poly-
nomial PNP ∈ Q [T ] such that, if W denotes the set

W = f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP) ,

property Opt (W ) holds. If R (f,F) holds, it returns
• −∞ if f is not bounded below on V (F) ∩ Rn;
• if f⋆ > −∞ is not reached: PNP ∈ Q [T ] and an interval I such that f⋆ is the
only root of PNP in I;
• if f⋆ is reached, a rational parametrization with isolating intervals represent-
ing f⋆ and a minimizer x⋆.

The main routine Optimize takes as input f ∈ Q[X] and F ⊂ Q[X] satisfying
assumptions R. It returns

• −∞ if f is not bounded below on V (F) ∩ Rn;
• if f⋆>−∞ is not reached: PNP ∈ Q [T ] and an interval I isolating f⋆;
• if f⋆ is reached, a rational parametrization encoding x⋆ and f⋆ (x⋆).

Optimize(f,F).
• A← a random matrix in GLn(Q);
• (ListSamplePoints, ListCriticalPoints, PNP)← SetContainingLocalExtrema

(
fA,FA

)
;

• Infimum ← FindInfimum
(
fA,FA, ListSamplePoints, ListCriticalPoints, PNP

)
;

• return Infimum.

3.3. Subroutines. We describe the subroutines SetContainingLocalExtrema and
FindInfimum, which are themselves based on other standard subroutines. The algo-
rithm SetContainingLocalExtrema uses the subroutines RealSamplePoints and SetOf-

NonProperness.
Given F ⊂ Q [X] satisfying assumptions R, RealSamplePoints returns a list of

equations ListSamplePoints ⊂ Q [X] such that V (ListSamplePoints) contains at least
one point in each connected component of V (F) ∩ Rn.

The routine SetOfNonProperness takes as input f ∈ Q[X] and G ⊂ Q[X] such
that the set of nonproperness of the projection πT restricted to V (f − T ) ∩ V (G) is
finite. It returns a univariate polynomial in T whose set of roots contains the set of
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nonproperness of the restriction of πT to V (f − T ) ∩ V (G). Such an algorithm is
given in [46, 62].

The algorithm SetContainingLocalExtrema is described below. It takes as input
f ∈ Q [X] and F ⊂ Q [X] satisfying assumptions R, P1 (f,F), P2 (f,F) and R (f,F).
It returns a list ListSamplePoints ⊂ Q [X], a list ListCriticalPoints ⊂ Q [X] and a
polynomial PNP ∈ Q [T ] such that the property

Opt (f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP))

holds.
To this end, a list containing polynomials that generates a 0-dimensional set of

sample points of V ∩ Rn is first computed, using the subroutine RealSamplePoints.
Then, for 1 ≤ i ≤ d, it computes a list of polynomials generating C (f,F, i). After-
ward, a polynomial whose set of roots contains the set NP (πT ,C (f,F, i)) is computed
by SetOfNonProperness. It is multiplied by the polynomial obtained at the previous

step. Then at step i, a polynomial whose set of roots contains
⋃

j≤i

NP (πT ,C (f,F, j))

is obtained. Finally, a list of equations defining P (f,F, i) is computed from the one
defining C (f,F, i). We can now describe the algorithm.

SetContainingLocalExtrema(f,F)
• ListSamplePoints← RealSamplePoints (F);
• PNP ← 1;
• for 1 ≤ i ≤ d do

– LC [i]← a list of equations defining C (f,F, i);
– PNP ← the univariate polynomial PNP × SetOfNonProperness (f,C (f,F, i));
– ListCriticalPoints[i]← a list of equations defining P (f,F, i).

• return (ListSamplePoints, ListCriticalPoints, PNP);

Its correctness is stated in Proposition 4.2. Its proof relies on intermediate results
presented in Section 4.1.

We describe the subroutines used in FindInfimum.
The routine RealRootIsolation: given P ∈ Q [T ] whose set of real roots is a1 <

· · · < ak, this routine returns a sorted list of k pairwise disjoint intervals with rational
endpoints [qi, qi+1] such that ai ∈ [qi, qi+1] (since the intervals are disjoint, the list is
sorted for the natural order : [a, b] < [c, d] if and only if b < c). We refer to [9, 60] for
an algorithm with this specification.

The routine IsEmpty: given G ⊂ Q [X] satisfying assumptions R, this routine
returns either true if V (G) ∩ Rn is empty of false if it is nonempty. The routine
SamplePoints can be adapted to provide such an algorithm.

The routine FindInfimum takes as input:
• f ∈ Q[X],
• F ⊂ Q[X] satisfying assumptions R and R (f,F),
• ListSamplePoints ⊂ Q [X], ListCriticalPoints ⊂ Q [X] and PNP ∈ Q [T ] such
that Opt (f (V (ListSamplePoints))∪f (V (ListCriticalPoints)) ∪ RootsR (PNP))
holds.

It returns
• −∞ if f is not bounded below on V (F) ∩ Rn;
• if f⋆>−∞ is not reached: PNP ∈ Q [T ] and an interval I isolating f⋆;
• if f⋆ is reached, a rational parametrization encoding x⋆ and f⋆ (x⋆).
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Let W = f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP) . By
definition, f⋆ is the smallest value c in V ∩ Rn such that

(i) if t < c then t 6∈ f (V ∩ Rn) and
(ii) for all t ≥ c, [c, t] meets V ∩ Rn.

Since Opt (W ) holds, f⋆ ∈ W . Thus, it is the smallest value in W satisfying the
above condition. We proceed as follow. We consider a0 = −∞ and a1 < · · · < ak the
values in W . If the algorithm get in step i then this means that f⋆ 6∈ {a0, . . . , ai−1}.
Then it first checks whether ai is the image of a point x⋆ in RealSamplePoints (F) or
in C (f,F). If it is, then the minimizer x⋆ and ai = f⋆ are returned. Else, it checks
whether ai satisfies condition (ii). By the last point in property Opt (W ) (Definition
2.2), it can be done by testing the emptiness of f−1 (t) ∩ V ∩ Rn for only one value
t ∈ ]ai, ai+1[. If f

−1 (qi)∩V ∩Rn is not empty for some random rational qi ∈ ]ai, ai+1[
then f⋆ = ai and it is not reached. Else, ai 6= f⋆ and we go on with ai+1. We can
now describe the algorithm.

FindInfimum(f,F, ListSamplePoints, ListCriticalPoints, PNP)
• a1 < · · ·< ak ← f (V (ListSamplePoints))∪f (V (ListCriticalPoints))∪RootsR (PNP);
• q0 ← a random rational < a1;
• if IsEmpty({f − q0,F})=false then
– return −∞;
• i← 1;
• while i ≤ k − 1 do
– if ai ∈ f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) then
∗ RP ← a rational parametrization encoding a minimizer x⋆ and f (x⋆) = ai;
∗ return RP

else
∗ qi ← a random rational in ]ai, ai+1[;
∗ if IsEmpty({f − qi,F})=false then
· return (PNP, ]qi−1, qi[)

else
· i← i+ 1

• return ak

Its proof of correctness is given by Proposition 4.6 in Section 4.6.

4. Proof of correctness of Optimize. We first assume the following theorem,
for which a proof is given in Section 5.

Theorem 4.1. Let f ∈ Q [X] and F ⊂ Q [X] satisfying assumptions R. There

exists a non-empty Zariski-open set O ⊂ GLn(C) such that for all A ∈ GLn(Q) ∩ O,

the properties R
(
fA,FA

)
, P1

(
fA,FA

)
and P2

(
fA,FA

)
hold.

Let O ⊂ GLn(C) be the Zariski-open set given in Theorem 4.1. We prove in the
sequel that if the random matrix chosen in Optimize lies in O then Optimize is correct.

The correctness of Optimize is a consequence of the correctness of the subrou-
tines SetContainingLocalExtrema and FindInfimum. The correctness of SetContain-

ingLocalExtrema is given in Section 4.1 below while the one of FindInfimum is given in
Section 4.2 page 13.

4.1. Correctness of SetContainingLocalExtrema. We first state the correctness
of SetContainingLocalExtrema

(
fA,FA

)
.

Proposition 4.2. Let f ∈ Q [X] and F = {f1, . . . , fs} ⊂ Q [X] satisfying as-

sumptions R. Let O ⊂ GLn(C) be the Zariski-open set given in Theorem 4.1. Then
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for all A ∈ GLn(Q) ∩ O, SetContainingLocalExtrema
(
fA,FA

)
is correct.

Given A ∈ GLn(Q), let WA be the set of values

WA = fA
(
S

(
FA

))
∪ fA

(
P

(
fA,FA

))
∪ NP

(
πT ,C

(
fA,FA

))
⊂ C.

To prove the above proposition, we prove that the property Opt
(
WA

)
holds.

That is the purpose of Propositions 4.3, 4.4 and 4.5 below.

Since V A is an algebraic variety, the image fA
(
V A ∩ Rn

)
is a semi-algebraic

subset of R. Hence, it is a finite union of real disjoint intervals. They are either of the
form [bi, bi+1], [bi, bi+1[, ]bi, bi+1] or {bi}, for some b0 ∈ R∪ {−∞} and b1, . . . , br ∈ R.
Then the local extrema of fA

|V A∩Rn are the bi. If bi is an endpoint included in the

interval, then it is reached, meaning that it is either a minimum or a maximum. If the
interval is a single point then bi is isolated in fA

(
V A ∩ Rn

)
. Else, it is not isolated.

If bi is an endpoint that is not included in the interval, then bi 6∈ fA
(
V A ∩ Rn

)
is an

extremum that is not reached. Remark that our goal is to find b0, that is equal to f⋆.

Proposition 4.3. For all A ∈ GLn(Q) ∩ O, the set WA contains every local

extremum of fA

|V A∩Rn . More precisely, let ℓ ∈ R be a local extremum of fA

|V A∩Rn.

1. If ℓ is a value that is isolated in fA
(
V A ∩ Rn

)
then ℓ ∈ fA

(
S

(
FA

))
;

2. if ℓ is a value that is not isolated in fA
(
V A ∩ Rn

)
such that there exists

xℓ ∈ V A ∩Rn with fA (xℓ) = ℓ then ℓ ∈ fA
(
P

(
fA,FA

))
;

3. if ℓ 6∈ fA
(
V A ∩ Rn

)
then ℓ ∈ NP

(
πT ,C

(
fA,FA

))
.

Proof. Let ℓ ∈ R be a local extremum.

Case 1. Since ℓ is isolated, there exists xℓ ∈ V A ∩ Rn such that fA (xℓ) = ℓ.
Let CA be the connected component of V A ∩ Rn containing xℓ. We prove that fA

is constant on CA. Let x′ ∈ CA and assume that fA (x′) 6= ℓ. Since ℓ is isolated,
there exists a neighborhood B of ℓ such that fA

(
CA

)
is the union of {ℓ} and some

set S that contains fA (x′) but that does not meet B. In particular, fA
(
CA

)
is not

connected. This is a contradiction since fA is continuous and CA connected.

The set S
(
FA

)
is a set containing at least one point in each connected component

of V A ∩Rn. In particular it contains a point y in the connected component CA of xℓ.
Since the restriction of fA to CA is constant, fA (y) = ℓ, so that ℓ ∈ fA

(
S

(
FA

))
.

Case 2. Since A ∈ GLn(Q) ∩ O, property P2

(
fA,FA

)
holds. This means that

there exists xℓ ∈P
(
fA,FA

)
such that fA (xℓ) = ℓ, that is ℓ ∈ fA

(
P

(
fA,FA

))
.

Case 3. If ℓ 6∈ fA
(
V A ∩ Rn

)
, by definition, as a local extremum, there exists

a closed neighborhood U of ℓ such that we can construct a sequence (x(k))k∈N ⊂(
fA

)−1
(U)∩V A∩Rn such that fA

(
x(k)

)
→ ℓ. We first prove that we can not extract

a converging subsequence from (x(k)). Indeed, assume that there exists a converging

subsequence (x′(k)) and denote by x its limit. Since V A ∩ Rn and
(
fA

)−1
(U) ∩ Rn

are closed sets for the euclidean topology, x lies in
(
fA

)−1
(U) ∩ V A ∩ Rn.

As a subsequence of fA
(
x(k)

)
, the sequence fA

(
x′(k)

)
tends to ℓ. Moreover, by

continuity of fA, fA
(
x′(k)

)
tends to fA (x). This implies that fA(x) = ℓ, that is ℓ

is attained, which is a contradiction. Since this is true for all converging subsequence
(x′(k)) of (x(k)), this implies that (x(k)) can not be bounded. Finally, this proves that
‖(x(k))‖ tends to ∞.

Let ε > 0. There exists k0 ∈ N such that for all k ≥ k0, f
A
(
x(k)

)
∈ [ℓ− ε, ℓ+ ε].

By construction of x(k),
(
fA

)−1 (
fA

(
x(k)

))
∩ V A ∩ Rn 6= ∅.
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By Theorem 4.1 and because A ∈ O by assumption, R
(
FA

)
and P1

(
fA,FA

)

hold. Thus [30, Proposition 1.3] ensures that for all t ∈ R∩QA, V A∩V
(
fA − t

)
∩Rn

is empty if and only if C
(
fA,FA

)
∩ V

(
fA − t

)
∩Rn is empty.

Then
(
fA

)−1 (
fA

(
x(k)

))
∩ C

(
fA,FA

)
∩ Rn 6= ∅. Picking a point x̃k in this

last set, for each k ≥ k0, leads to the construction of a sequence of points (x̃k) in
C
(
fA,FA

)
∩Rn, that converges to ℓ. Since C

(
fA,FA

)
⊂ V A and ℓ is not reached,

this sequence is unbounded. Then considering the sequence
(
x̃k, t = fA (x̃k)

)
proves

that πT restricted to V
(
fA − T

)
∩ C

(
fA,FA

)
is not proper at ℓ.

Proposition 4.4. For all A ∈ GLn(Q) ∩ O, the set WA is finite.

Proof. Since WA = fA
(
S

(
FA

))
∪fA

(
P

(
fA,FA

))
∪NP

(
πT ,C

(
fA,FA

))
, we

prove that

1. S
(
FA

)
is finite,

2. for 1 ≤ i ≤ d, P
(
fA,FA, i

)
is finite and

3. NP
(
πT ,C

(
fA,FA

))
is finite.

Assertion 1. The first assertion is true for all A, since by assumption, S
(
FA

)

is a finite set.

Assertion 2. Let 1 ≤ i ≤ d. Recall that

P
(
fA,FA, i

)
= C (fA,FA, i) \ Crit (fA, V A)

Z ∩ Crit
(
fA, V A

)
.

We first prove that C (fA,FA, i) \ Crit (fA, V A)
Z

has dimension 1. Next, it will be
easy to deduce that its intersection with Crit

(
fA, V A

)
has dimension at most 0.

By Theorem 4.1 and since we assumed A ∈ O, R
(
FA

)
and P1

(
fA,FA

)
holds.

Thus [30, Proposition 1.3] ensures that for all t ∈ QA, the algebraic set V
(
fA − t

)
∩

C
(
fA,FA, i

)
has dimension at most zero.

Now let ZA be an irreducible component of C (fA,FA, i) \ Crit (fA, V A)
Z
. In

particular, ZA is an irreducible component of C
(
fA,FA, i

)
that is not contained in

Crit
(
fA, V A

)
. Consider the restriction fA

|ZA : ZA −→ C. Its image has a Zariski-

closure of dimension 0 or 1.

Assume first that fA
(
ZA

)
is 0-dimensional. Then as a continuous function, fA

|ZA

is locally constant. This implies that ZA is contained in the critical locus of fA

|V A . In

particular, this means that ZA ⊂ Crit
(
fA, V A

)
, which is a contradiction.

Then all irreducible components ZA are such that fA (ZA)
Z

has dimension 1.
From the Theorem on the dimension of fibers ([65, Theorem 7, Chapter 1, pp. 76]),

there exists a Zariski-open set U ⊂ C such that for all y ∈ U , dim
(
fA

)−1
= dimZA−

1. In particular if t lies in the non-empty Zariski-open set U ∩ QA, we get

0 ≥ dim
(
fA

)−1
= dimZA − 1.

Then every irreducible component ZA of C (fA,FA, i) \ Crit (fA, V A)
Z

has di-

mension ≤ 1, so that dimC (fA,FA, i) \ Crit (fA, V A)
Z ≤ 1.

Now let ZA
1 ∪ · · · ∪ ZA

α ∪ · · · ∪ ZA

β be the decomposition of C
(
fA,FA, i

)
as a

union of irreducible components. Up to reordering, assume that

• for 1 ≤ i ≤ α, ZA

i 6⊂ Crit
(
fA, V A

)
,

• for α+ 1 ≤ j ≤ β, ZA

i ⊂ Crit
(
fA, V A

)
.
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Then the decomposition of C (fA,FA, i) \ Crit (fA, V A)
Z

as a union of irreducible
components is ZA

1 ∪ · · · ∪ ZA
α .

Let 1 ≤ i ≤ α and consider ZA

i ∩ Crit
(
fA, V A

)
. If it is non-empty, since

ZA
i 6⊂ Crit

(
fA, V A

)
, [43, Corollary 3.2 p. 131] implies that ZA

i ∩ Crit
(
fA, V A

)

has dimension less than or equal to dimZA

i − 1 ≤ 1− 1 = 0. Finally, this proves that

C (fA,FA, i) \ Crit (fA, V A)
Z ∩ Crit

(
fA, V A

)
has dimension ≤ 0.

Assertion 3. By Theorem 4.1 and since A ∈ O, R
(
FA

)
and P1

(
fA,FA

)
holds.

By [30, Proposition 1.3], the set of values t ∈ C such that there exists a sequence
(x(k))k∈N ⊂ C

(
fA,FA

)
satisfying lim

k→+∞
||x(k)|| = +∞ and lim

k→+∞
fA(x(k)) = t is

finite. We prove in the sequel that such a value lies in NP
(
πT ,C

(
fA,FA

))
and

conversely.

Let t0 ∈ C and
(
x(k)

)
=

(
x
(k)
1 , . . . , x

(k)
n

)
be a sequence of points in C

(
fA,FA, i

)

satisfying lim
k→+∞

∥∥∥x(k)
∥∥∥ = +∞ and lim

k→+∞
fA

(
x(k)

)
= t0.

Let ε > 0. There exists N ∈ N such that for all k ≥ N ,
∣∣fA

(
x(k)

)
− t0

∣∣ ≤ ε. In

particular, for all k ≥ N ,
(
fA

) (
x(k)

)
lies in the closed ball B (t0, ε). This means that

π−1
T

(
B (t0, ε)

)
∩ V

(
fA − T

)
∩ C

(
fA,FA, i

)
contains all the points

(
x
(k)
1 , . . . , x(k)

n , t = fA

(
x(k)

))

for k ≥ N . Since
(
x(k)

)
is not bounded, neither is

π−1
T

(
B (t0, ε) ∩ V

(
fA − T

)
∩ C

(
fA,FA, i

))
.

This means that t0 is a point where the projection πT restricted to V
(
fA − T

)
∩

C
(
fA,FA, i

)
is not proper.

Conversely, if t0 ∈ C is such that for all ε > 0,

π−1
T

(
B (t0, ε) ∩ V

(
fA − T

)
∩ C

(
fA,FA, i

))

is not bounded, we can construct by induction a sequence
((
x(k), fA

(
x(k)

)))
k∈N

, such
that:

• for all k ∈ N,
(
x(k), fA

(
x(k)

))
∈ π−1

T

(
B
(
t0,

1
k

)
∩V

(
fA − T

)
∩ C

(
fA,FA, i

))
;

• for all k ∈ N, ‖xk+1‖ > 2
∥∥x(k)

∥∥.
In particular,

(
x(k)

)
k∈N
⊂ C

(
fA,FA, i

)
, lim
k→+∞

∥∥∥x(k)
∥∥∥ = +∞ and lim

k→+∞
fA(x(k)) =

t0.
Proposition 4.5. For all A ∈ GLn(Q) ∩ O, writing WA = {a1, . . . , ak} and

a0 = −∞, there exists a non-empty Zariski-open set QA ⊂ C such that for all 0 ≤
i ≤ k − 1:

• either for all t ∈ ]ai, ai+1[ ∩ QA,
(
fA

)−1
(t) ∩ V A ∩ Rn = ∅,

• or for all t ∈ ]ai, ai+1[ ∩QA,
(
fA

)−1
(t) ∩ V A ∩ Rn 6= ∅.

Proof. Assume on the contrary that there exists i such that there exists a ∈
]ai, ai+1[ ∩ QA such that

(
fA

)−1
(a) ∩ V A ∩ Rn = ∅ and b ∈ ]ai, ai+1[ ∩ QA such

that
(
fA

)−1
(b)∩ V A ∩Rn 6= ∅. Then without loss of generality, we can assume that

a < b and

b = inf
{
t ∈ ]ai, ai+1[ ∩ QA s.t.

(
fA

)−1
(t) ∩ V A ∩Rn 6= ∅

}
.
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Then b is a local infimum of fA

|V A∩Rn . According to Proposition 4.3, b lies in WA.

Hence there exists i such that b = ai, which is a contradiction.
We are now able to give a proof of correctness of SetContainingLocalExtrema, that

relies on the above propositions.
Proof. [of Proposition 4.2] Let ListSamplePoints ⊂ Q [X], ListCriticalPoints ⊂

Q [X] and PNP ∈ Q [T ] be the output of SetContainingLocalExtrema(f,F). Denote by
W the set

f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪RootsR (PNP) .

The routine SetContainingLocalExtrema is correct if property Opt (W ) holds. Then
we check that

1. W is finite,
2. W contains every local extremum of f|V ∩Rn ,
3. let W = {a1, . . . , ak} and a0 = −∞. There exists a non-empty Zariski-open

set Q ⊂ C such that for all 0 ≤ i ≤ k − 1:
• either for all t ∈ ]ai, ai+1[ ∩Q, (f)−1 (t) ∩ V ∩ Rn = ∅,

• or for all t ∈ ]ai, ai+1[ ∩ Q, (f)−1
(t) ∩ V ∩ Rn 6= ∅.

The first assertion comes from Proposition 4.4. The second one is a consequence of
Proposition 4.3. Finally, the last assertion corresponds to Proposition 4.5.

4.2. Correctness of FindInfimum. Finally, we prove that FindInfimum is correct.
Proposition 4.6. Let A ∈ GLn(Q) ∩ O, f ∈ Q [X], F ⊂ Q [X] satisfying

assumptions R, ListSamplePointsA ⊂ Q [X], ListCriticalPointsA ⊂ Q [X] and PA

NP
∈

Q [T ] such that

Opt
(
fA

(
V
(
ListSamplePointsA

))
∪ fA

(
V
(
ListCriticalPointsA

))
∪RootsR

(
PA

NP

))

is satisfied. Then let a0 = −∞ and WA = {a1, . . . , ak} and let QA ⊂ C be a Zariski-

open set satisfying, for all 0 ≤ i ≤ k − 1:

• either for all t ∈ ]ai, ai+1[ ∩ QA,
(
fA

)−1
(t) ∩ V A ∩ Rn = ∅,

• or for all t ∈ ]ai, ai+1[ ∩QA,
(
fA

)−1
(t) ∩ V A ∩ Rn 6= ∅.

If the random rational numbers computed in FindInfimum lie in QA then FindInfimum

is correct.

Proof. Let WA be the set

Opt (f (V (ListSamplePoints)) ∪ f (V (ListCriticalPoints)) ∪ RootsR (PNP)) .

Because the second assertion of Opt
(
WA

)
holds, it remains to know the smallest local

extremum of fA

|V A∩Rn in WA. To this end, the aim is to detect eventual redundant

values. Because of assertion 3 of Opt
(
WA

)
, it can be done by testing the emptiness

of fibers at some rational numbers qi ∈ QA. Furthermore, since we assumed Theorem
4.1 and A ∈ O, property R

(
fA,FA

)
is satisfied. Hence IsEmpty is called with a

correct input and FindInfimum is correct.

5. Proof of genericity properties. This section is devoted to prove that the
genericity properties R (f,F), P1 (f,F) and P2 (f,F), stated in Section 2.4, are sat-
isfied in generic coordinates.

Proposition 5.1. If F satisfies assumptions R then R (f,F) holds.
Proof. According to [30, Lemma 2.2], this is true when F defines a smooth variety.

In fact, the smoothness assumption is not used to prove that 〈F, f − t〉 is radical and
13



equidimensional of dimension d − 1 or empty. To prove that V (F, f − t) is smooth,
remark that x is a singular point of V (F, f − t) if and only Jac (f,F) has a rank
defect at x. In other words, x is a singular point of V (F, f − t) if and only if it is a
singular point of V or a point such that t = f (x) is a critical value of f|V . This is
not possible since t ∈ R \ f (Crit (f, V ) ∪ Sing (V )).

Proposition 5.2. There exists a non-empty Zariski-open set O1 ⊂ GLn(C) such
that for all A ∈ GLn(Q) ∩O1, P1

(
fA,FA

)
holds.

Proof. It comes from [30, Lemma 2.3] where the result is proved when in addition
to assumptions R, F defines a smooth variety. In fact, the smoothness assumption is
not used in the proof, then the result still holds in our case.

Proposition 5.3. There exists a non-empty Zariski-open set O2 ⊂ GLn(C) such
that for all A ∈ GLn(Q) ∩O2, P2

(
fA,FA

)
holds.

We recall the first two points in [29, Theorem 3, pp 134]:
Theorem 5.4. Let V ⊂ Cn be an algebraic variety of dimension d. There exists

a non-empty Zariski-open set O2 ⊂ GLn(C) such that for all A ∈ GLn(Q) ∩ O2, and

1 ≤ i ≤ d + 1, there exist algebraic sets V A
n−i+1 ⊂ V A such that for all connected

component CA of V A ∩ Rn,

(i) the restriction of π≤i−1 to V A
n−i+1 is proper;

(ii) the boundary of π≤i

(
CA

)
is contained in π≤i

(
CA ∩ V A

n−i+1

)
.

Then we state some notations about infinitesimals and Puiseux series. We denote
by R〈ε〉 the real closed field of algebraic Puiseux series with coefficients in R, where ε
is an infinitesimal. We use the classical notions of bounded elements in R〈ε〉n over Rn

and their limits. The limit of a bounded element z ∈ R〈ε〉n is denoted by lim0 (z). The
ring homomorphism lim0 is also used on sets of R〈ε〉n. For semi-algebraic sets S ⊂ Rn

defined by a system of polynomial equations, we denote by ext (S) the solution set of
the considered system in R〈ε〉n. We refer to [9, Chapter 2.6] for precise statements of
these notions.

Then we are able to give a proof of Proposition 5.3.
Proof. Let A ∈ GLn(Q) ∩ O2 and c be a critical value of fA

|V A∩Rn not isolated

in fA
(
V A ∩ Rn

)
. We prove that there exists xc ∈ P

(
fA,FA

)
∩ Rn such that

fA (xc) = c. Let CA be a connected component of V
(
fA − c

)
∩ V A ∩ Rn.

Consider the largest i ∈ {1, . . . , d} such that CA ∩ V (X≤i−1) 6= ∅ while CA ∩
V (X≤i) = ∅.

Let ϕi be the projection
ϕi : Cn −→ C

(x1, . . . , xn) 7−→ xi

. Then ϕi

(
CA ∩ V (X≤i−1)

)
⊂

R∗ is a strict subset of R. Moreover, it is closed because of (i) and (ii) in Theorem 5.4.
Then every extremum of the projection ϕi is reached. Since ϕi

(
CA ∩ V (X≤i−1)

)
6=

R, there exists at least either a minimizer or a maximizer of ϕi. Without loss of
generality, we assume that it is a local minimizer, denoted by x⋆.

Since c is not an isolated point in fA
(
V A ∩ Rn

)
, the set

(
V
(
fA − c− ε

)
∪ V

(
fA − c+ ε

))
∩ V A ∩ V (X≤i−1) ∩Rn

is nonempty. Then by [59, Lemma 3.6], the following sets coincide:
• V

(
fA − c

)
∩ V A ∩ V (X≤i−1) ∩ Rn

• lim0

(
V
(
fA − c± ε

)
∩ V A ∩ V (X≤i−1)

)
∩ Rn

Then, there exists a connected component CA
ε ⊂ R 〈ε〉n of

V
(
fA − c± ε

)
∩ V A ∩ V (X≤i−1) ∩ R 〈ε〉n
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such that CA
ε contains a xε such that lim0 (xε) = x⋆. Furthermore, we can assume

that xε minimize the projection ϕi over CA
ε . Indeed, in the converse, there exists

x′
ε ∈ CA

ε such that ϕi (x
′
ε) < ϕi (xε), that implies lim0 ϕi (x

′
ε) ≤ ϕi (x

⋆). Since x⋆ is
a minimizer, this implies that lim0 ϕi (x

′
ε) = ϕi (x

⋆) and we replace xε with x′
ε.

As a minimizer of the projection, xε lies in the algebraic set defined as the van-
ishing set of

• the polynomials in FA,
• the minors of size n− d+ 1 of Jac

([
fA − c± ε,FA

]
, i+ 1

)
,

• and the variables X1, . . . , Xi−1.

Since Jac
([
fA − c± ε,FA

]
, i+ 1

)
= Jac

([
fA,FA

]
, i+ 1

)
, this algebraic set is ex-

actly ext
(
C
(
fA,FA, i

))
. Furthermore, since ε is an infinitesimal, c±ε is not a critical

value of fA. Then xε 6∈ ext
(
Crit

(
fA, V A

))
. This means that x⋆ is the limit of a se-

quence that lies in ext
(
C (fA,FA, i) \ Crit (fA, V A)

Z
)
. Hence x⋆ = lim0 xε lies in

C (fA,FA, i) \ Crit (fA, V A)
Z
. Moreover since fA (x⋆) = c that is a local extremum

of fA

|V A∩Rn , x
⋆ ∈ Crit

(
fA, V A

)
. In other words,

x⋆ ∈ C (fA,FA, i) \ Crit (fA, V A)
Z ∩ Crit

(
fA, V A

)
= P

(
fA,FA, i

)
,

that concludes the proof.

Finally, Theorem 4.1 is true with O = O1 ∩ O2. Since O1 and O2 are non-empty
Zariski-open sets, so is O.

6. Complexity analysis.

6.1. Geometric degree bounds. In this section, we assume that the poly-
nomial f and the polynomials fi have degree ≤ D. Recall that the degree of an
irreducible algebraic variety V ⊂ Cn is defined as the maximum finite cardinal of
V ∩ L for every linear subspace L ⊂ Cn. If V is reducible, degV =

∑
degC where

the sum is over every irreducible component C of V . The degree of a hypersurface
V (f) is bounded by deg f . Given a variety V = V (g1, . . . , gp), we denote by δ (V )
the maximum of the degrees deg (V (g1, . . . , gi)), for 1 ≤ i ≤ p.

Proposition 6.1. For all A ∈ GLn(Q) ∩ O, for 1 ≤ i ≤ d, δ
(
C
(
fA,FA, i

))

and δ
(
P

(
fA,FA, i

))
are bounded by D ((n− d+ 1) (D − 1))

n
.

Proof. Let E1 = V
(
fA

)
and denote by E2, E3, . . . , Ep the zero-sets of each

polynomial in FA and each minor of size n − d + 1 of Jac
([
fA,FA

]
, i+ 1

)
. Then

for 2 ≤ j ≤ p, each Ej has degree bounded by (n− d+ 1) (D − 1). Moreover, E1

has degree bounded by D and dimension n − 1. Let 1 ≤ k ≤ p. Then using [34,
Proposition 2.3] we get

deg




⋂

1≤j≤k

Ej


 ≤ degE1

(
max
1<j≤k

degEj

)dimE1

. (6.1)

In particular,

deg




⋂

1≤j≤k

Ej


 ≤ D ((n− d+ 1) (D − 1))

n−1
.
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By Bézout’s inequality ([34, Proposition 2.3]), it follows that
⋂

1≤j≤k

Ej ∩ V (X≤i−1)

has also its degree bounded by D ((n− d+ 1) (D − 1))
n−1

. Finally, this means that

δ
(
C
(
fA,FA, i

))
≤ D ((n− d+ 1) (D − 1))n−1 . (6.2)

It remains to prove that δ
(
P

(
fA,FA, i

))
≤ D ((n− d+ 1) (D − 1))n. From the

above inequality 6.2, we deduce that

δ
(
C (fA,FA, i) \ Crit (fA, V A)

Z
)
≤ D ((n− d+ 1) (D − 1))

n−1
.

Finally, we apply [34, Proposition 2.3] with the varieties F1, . . . , Ft, where

F1 = C (fA,FA, i) \ Crit (fA, V A)
Z

and F2, F3, . . . , Ft are the zero-sets of each minor defining Crit
(
fA, V A

)
. Since these

minors have degree bounded by (n− d+ 1) (D − 1), so are their associated varieties.

By Proposition 4.4, F1 = C (fA,FA, i) \ Crit (fA, V A)
Z

has dimension 1. Then in-
equality 6.1 becomes

deg




⋂

1≤j≤t

Fj


 ≤ D ((n− d+ 1) (D − 1))

n−1 × (n− d+ 1) (D − 1) .

This means that

δ
(
P

(
fA,FA, i

))
≤ D ((n− d+ 1) (D − 1))

n
.

6.2. Complexity. Let A ∈ GLn(Q) ∩ O. Let F = {f1, . . . , fs} ⊂ Q [X], f
and g in Q [X] of degree bounded by D. Assume that each polynomial is given by
a straight-line program (SLP) of size ≤ L. Recall that d denotes the dimension of
V = V (F).

We study the complexity of the computations of the varieties C
(
fA,FA, i

)
and

P
(
fA,FA, i

)
in SetContainingLocalExtrema, that are the most expensive steps. Grö-

bner bases can be used to compute a set of polynomials defining each variety. However,
to estimate the complexity, we use the subroutines of the Geometric Resolution, a
probabilistic polynomial system solver (see [28, 47]).

6.2.1. Geometric Resolution subroutines. We give the list of the Geometric
Resolution probabilistic subroutines used to represent the varieties in our algorithm.

• GeometricSolve ([47]): let F and g as above. In case of success, the procedure

returns an equidimensional decomposition of V (F) \ V (g)
Z
, encoded by a

set of irreducible lifting fibers in time

Õ
(
sn4

(
nL+ n4

)
(Dδ (V (F)))

3
)
.

• LiftCurve ([47]): given an irreducible lifting fiber F of the above output, in
case of success, the routine returns a rational parametrization of the lifted
curve of F in time

Õ
(
sn4

(
nL+ n4

)
(Dδ (V (F)))

2
)
.
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• OneDimensionalIntersect ([28]): let 〈F〉 be a 1-dimensional ideal, I be a geo-
metric resolution of 〈F〉, and f and g be polynomials. In case of success, the

routine returns a rational parametrization of V (I+ f) ∩ V (g)
Z

in time

Õ
(
n
(
L+ n2

)(
Dδ (V (F))

2
))

.

6.2.2. Size of SLP. We want to estimate some parameters depending on the
inputs of the Geometric Resolution routines, that are the polynomials defining the
varieties C

(
fA,FA, i

)
and P

(
fA,FA, i

)
. Since bounds on δ

(
C

(
fA,FA, i

))
and

δ
(
P

(
fA,FA, i

))
have been obtained in the previous section, it remains to estimates

the size of the straight-line programs representing these polynomials. These polyno-
mials are either a polynomial fA or fA

i or a minor of size n− d+ 1 of the Jacobian
matrix Jac

([
fA,FA

]
, i+ 1

)
. The polynomials f and fi are given as a SLP of size L.

Then fA and fA

i , can be represented by a SLP of size O
(
L+ n2

)
. Then we estimate

the size of the minors. Let ω be the matrix-multiplication exponent.
Proposition 6.2. Each minors of size n− d+1 of Jac

([
fA,FA

]
, i+ 1

)
can be

represented by a SLP of size Õ
(
(n− d+ 1)

ω/2+2 (
L+ n2

))
.

Proof. The partial derivatives appearing in the Jacobian matrix come from fA

and fA

i , represented by a SLP of size O
(
L+ n2

)
. According to [10], each partial

derivative
∂fA

i

∂xj
and ∂fA

∂xj
can be represented by a SLP of size O

(
L+ n2

)
. Moreover,

according to [40], the determinant of an n × n matrix can be computed using only

+, − and × in Õ
(
(n− d+ 1)

ω/2+2
)

operations. We combine these two results to

conclude the proof.
Remark 6.3. Recall that ω ≤ 3. In the sequel, to lighten the expressions

of complexity, we replace the above complexity Õ
(
(n− d+ 1)

ω/2+2 (
L+ n2

))
with

Õ
(
n4

(
L+ n2

))
, that is less accurate but that dominates the first one.

6.2.3. Computing C
(
fA,FA, i

)
. Recall that C

(
fA, FA, i

)
is defined as the

vanishing set of
• the polynomials fA

1 , . . . , fA
s ,

• the minors of size n− d+ 1 of Jac
([
fA,FA

]
, i+ 1

)
,

• and the variables X1, . . . , Xi−1.
Practically, X1, . . . , Xi−1 are set to 0. Hence, C

(
fA, FA, i

)
can be computed by

GeometricSolve called with s+
(

s+1
n−d+1

)(
n−i

n−d+1

)
= O

(
s+

(
s+1

n−d+1

)(
n

n−d+1

))
polynomials

in n − i = O (n) variables, each polynomial being a SLP of size in Õ
(
n4

(
L+ n2

))
.

By Proposition 6.1, δ
(
C
(
fA, FA, i

))
is bounded by D ((n− d+ 1) (D − 1))

n
. Thus

in case of success, GeometricSolve has a complexity dominated by

Õ

((
s+

(
s+ 1

n− d+ 1

)(
n

n− d+ 1

))
LD6 ((n− d+ 1) (D − 1))

3n

)
.

6.2.4. Computing P
(
fA,FA, i

)
. Since P

(
fA,FA, i

)
is defined as

C (fA,FA, i) \ Crit (fA, V A)
Z ∩ Crit

(
fA, V A

)
,

a geometric resolution of P
(
fA,FA, i

)
can be get from the one of C

(
fA,FA, i

)
.

Thus the first step, which cost is insignificant, is to use LiftCurve with the output
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of GeometricSolve to get a parametrization of the curve C
(
fA,FA, i

)
. Then we

use the routine OneDimensionalIntersect at most
(

s+1
n−d+1

)(
n

n−d+1

)
times to compute

P
(
fA,FA, i

)
. The cost of OneDimensionalIntersect is negligible compared with the

cost of GeometricSolve. Then the cost of the computation of P
(
fA,FA, i

)
is negli-

gible compared with the cost of the computation of C
(
fA,FA, i

)
.

6.2.5. Complexity of the Algorithm. In this section, we state complexity
results for our probabilistic algorithm. Using the results obtained in the previous
sections, we are able to estimate the complexity of the algorithm. As explained
before, the most significant cost is the one of the routine GeometricSolve called in the
loop of our subroutine SetContainingLocalExtrema. There are d steps in this loop, and
we prove in Section 6.2.3 that the computation at step i is, in case of success, in time

Õ

((
s+

(
s+ 1

n− d+ 1

)(
n

n− d+ 1

))
LD6 ((n− d+ 1) (D − 1))

3n

)
.

In particular, we get the following complexity result for the the cost of all d steps,
using that the second binomial coefficient is bounded by 2n.

Theorem 6.4. In case of success, the algorithm Optimize performs

Õ

(
d2n

(
s+ 1

n− d+ 1

)
LD6 ((n− d+ 1) (D − 1))

3n

)
.

arithmetic operations in Q.

6.2.6. Complexity in some special cases. In the sequel we study some spe-
cial instances of the problem to get an easier expression for the complexity. These
instances often appears in practical applications.

When s ≤ n. Assume that there are s constraints with s ≤ n. Then s +(
s+1

n−d+1

)(
n

n−d+1

)
can be roughly bounded by n+2n.2n that is a O (4n). In particular,

the complexity in Theorem 6.4 becomes the following singly exponential expression

Õ

(
dLD6

(
3
√
4 (n− d+ 1) (D − 1)

)3n
)
.

Complete Intersection. Assume that s ≤ n and that the polynomials defining
the constraints, f1, . . . , fs, are a complete intersection so that the dimension of V =
V (f1, . . . , fs) is d = n−s ≥ 0. Hence, the expression in Theorem 6.4 can be simplified.
Indeed, s+

(
s+1

n−d+1

)(
n

n−d+1

)
becomes s+

(
s+1
s+1

)(
n

n−d+1

)
that is a O (2n). Replacing d

with its expression d = n− s = O (n) we obtain the singly exponential complexity

Õ

(
LD6

(
3
√
2 (s+ 1) (D − 1)

)3n
)
.

Over a hypersurface. Assume that s = 1 so that V = V (f1, . . . , fs) has dimension
d = n− 1 and s+

(
s+1

n−d+1

)(
n

n−d+1

)
=

(
2
2

)(
n

n−1

)
= n+ 1 = O (n). Thus the complexity

becomes

Õ
(
LD6 (2 (D − 1))

3n
)
.
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7. Implementation and practical experiments. We give details about our
implementation in Section 7.1. Instead of using the geometric resolution algorithm
[28] for algebraic elimination, we use Gröbner bases that still allow to perform all
geometric operations needed to implement the algorithm (see [18] for an introduction
to Gröbner bases). Moreover, there exist deterministic algorithms for computing
Gröbner bases [24, 25]. This way, the probabilistic aspect of our algorithm relies on
the random choice of a linear change of variables. In practice, we check if a given linear
change of variables is good so that one can guarantee exactness. This is explained in
Section 7.1.

In Sections 7.2 and 7.3, we present practical experiments. First, we run our imple-
mentation with random dense polynomials, that is the hardest case for the inputs. As
an example, considering an objective polynomial and one constraint, both of degree 2
and increasing the number of variables, our implementation can solve problems with
up to 32 variables in 4 hours. With two constraints, our implementation can solve
problems with up to 11 variables in 5.3 hours. With a linear objective polynomial
subject to one constraint of degree 4, both in 5 variables it takes 34 minutes. These
results show that our implementation outperforms general symbolic solvers based on
the Cylindrical Algebraic Decomposition.

Then we run examples coming from applications. Some of these examples can be
solved by QEPCAD. The timings are given in Section 7.3.

Thanks to a private communication with D. Henrion, it appears that tools based
on moment relaxations like GloptiPoly [36] are designed to solve global optimization
problems on bounded sets or for which the infimum is reached. These assumptions
are either difficult to check automatically or not satisfied for most of our examples,
hence it is meaningless to compare our implementation with such tools. Likewise, we
do not report timings of methods based on sums of squares, e.g. [48, 57] because their
outputs are numerical approximation while we look for exact representations.

7.1. Implementation. Since our algorithm depends on the choice of a matrix
that defines a change of coordinates, it is probabilistic. However, we present a tech-
nique to make sure that this choice is a correct one. This technique is used in our
implementation.

As stated in Section 4, the algorithm is correct if the subroutines SetContainingLo-
calExtrema and FindInfimum are correct. According to Proposition 4.2, if the random
matrix chosen at the first step of Optimize is such that P1

(
fA,FA

)
, P2

(
fA,FA

)

and R
(
fA,FA

)
hold, then SetContainingLocalExtrema is correct. Then its output

satisfies property Opt (W ). Hence, FindInfimum can be called with the output of
SetContainingLocalExtrema.

Then the choice of the matrix A leads to a correct output if P1

(
fA,FA

)
,

P2

(
fA,FA

)
and R

(
fA,FA

)
hold.

Property R (f,F) always holds if F satisfies assumptions R. Since for any change
of coordinates, F satisfies assumptions R if and only if FA does, R

(
fA,FA

)
holds

for any A ∈ GLn(Q). Then it remains to check P1

(
fA,FA

)
and P2

(
fA,FA

)
. Both

properties depend on the properness of projections of the form

π≤d : W ⊂ Cn −→ Cd

(x1, . . . , xn) 7−→ (x1, . . . , xd)

where W is an algebraic variety. According to [39, Proposition 3.2], if IV is an ideal
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such that V = V (IV ) has dimension d then the projection

π≤d : V ⊂ Cn −→ Cd

(x1, . . . , xn) 7−→ (x1, . . . , xd)

is proper if and only if IV is in Noether position.

Thus we choose the matrix A such that after the change of variables, the ideals
are in Noether position. This can be done using techniques described in [42, Section
4.1.2] and [49]. These techniques are used in our implementation to obtain a matrix
as sparse as possible that makes SetContainingLocalExtrema correct.

7.2. Practical experiments. The analysis of the degree of the algebraic vari-
eties involved in the computations provides a singly exponential bound in the num-
ber of indeterminates. This matches the best complexity bounds for global opti-
mization algorithms using quantifier elimination. Our implementation is written
in Maple. Gröbner bases are computed using Faugère’s FGb package, available at
http://www-polsys.lip6.fr/~jcf/Software/.

The computations were performed on a Intel Xeon CPU E7540 @ 2.00GHz and
250GB of RAM.

The notations below are used in the following tables :

• d: degree of the objective polynomial f ;
• D: upper bound for the degree of the constraints;
• n: number of indeterminates;
• s: number of constraints;
• obj terms: number of terms in the objective polynomial;
• terms: average number of terms.

To test the behavior of the algorithm, we run it with randomly generated poly-
nomials and constraints as inputs.

Considering an objective polynomial and one constraint, both of degree 2 and
increasing the number of variables, our implementation can solve problems with up
to 32 variables in 4 hours. For this special case, the algorithm seems to be sub-
exponential.

Constraints of degree 2.

n d D s obj terms terms time

8 2 2 1 44 45 9 sec.
12 2 2 1 91 91 30 sec.
16 2 2 1 153 153 2 min..
20 2 2 1 229 231 8 min.
24 2 2 1 323 323 27 min.
28 2 2 1 433 433 1.5 hours
32 2 2 1 559 557 4 hours
7 2 2 2 36 36 92 sec.
8 2 2 2 45 45 7 min.
9 2 2 2 55 55 27 min.
10 2 2 2 65 66 1.6 hours
11 2 2 2 78 78 5.3 hours

Constraints of degree 3.
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n d D s obj terms terms time

4 2 3 1 15 34 4 sec.
5 2 3 1 21 55 28 sec.
6 2 3 1 27 84 9 min.
7 2 3 1 36 120 3.5 hours
4 2 3 2 15 34 81 sec.
5 2 3 2 21 56 2.2 hours

Constraints of degree 4.
n d D s obj terms terms time

2 3 4 1 10 14 2 sec.
3 3 4 1 20 34 4 sec.
4 3 4 1 34 70 7 min.
3 3 4 2 20 35 22 sec.
4 3 4 2 35 70 4.8 hours.
2 2 4 1 6 15 1 sec.
3 2 4 1 10 35 2 sec.
4 2 4 1 15 68 83 sec.

Linear objective function.
n d D s obj terms terms time

4 1 3 1 5 34 3 sec.
4 1 4 1 5 69 30 sec.
4 1 5 1 5 126 13 min.
5 1 3 1 6 56 7 sec.
5 1 4 1 6 126 34 min.
5 1 5 1 6 252 87 hours
6 1 3 1 7 84 68 sec.
6 1 4 1 7 207 62 hours
4 1 3 2 5 35 36 sec.
4 1 4 2 5 70 1 hour
4 1 5 2 5 126 33 hours

7.3. Examples coming from applications. We consider examples coming
from applications to compare the execution time of our algorithm with a cylindrical
algebraic decomposition algorithm. These decompositions are computed using QEP-
CAD version B 1.691 These examples are described in Appendix A and available as
a plain text file openable with Maple at http://www-polsys.lip6.fr/~greuet/.

n d D s obj terms terms time QEPCAD

nonreached 3 4 1 1 4 1 2.3 sec. 0.03 sec.
nonreached2 3 10 3 1 5 5 2 sec. ∞

isolated 2 4 3 1 2 2 0.8 sec. 0.04 sec.
reachedasymp 3 14 1 1 3 1 1 sec. 7.3 sec.
GGSZ2012 2 2 3 1 2 2 0.6 sec. 10.5 sec.
Nie2010 3 6 1 1 7 4 1.3 sec. ∞

LaxLax 4 4 1 3 5 2 0.6 sec. ∞

maxcut5-1 5 2 2 5 11 2 0.3 sec. ∞

maxcut5-2 5 2 2 5 11 2 0.3 sec. ∞

Coleman5 8 2 2 4 8 4 5 sec. ∞

Coleman6 10 2 2 5 10 4 33 sec. ∞

Vor1 6 8 n/a 0 63 n/a 2 min. ∞

Appendix A. Description of examples.

1Implementation originally due to H. Hong, and subsequently added on to by C. W. Brown, G.
E. Collins, M. J. Encarnacion, J. R. Johnson, W. Krandick, S. McCallum, S. Steinberg, R. Liska, N.
Robidoux. Latest version is available at http://www.usna.edu/cs/~qepcad/.
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Example 1 (nonreached, nonreached2). Let g (x1, x2, x3) = x2
1−x1x2+x1x2x3+

x2 + 3 and consider the two problems

{
inf
x∈R3

(x1x2 − 1)2 + x2
2 + x2

3 + 42

s.t. x3 = 0.

{
inf
x∈R3

(x1x2 − 1)2 + x2
2 + x2

3g + (x1 + 1) g3 + 42

s.t. g (x1, x2, x3) = 0.

Their infima are not reached. Indeed, they are the limit of sequences that tend to

infinity, for instance of the form
(
x1,

1
x1
, x3

)
, where x1 tends to infinity. Note that

both examples cause instabilities to numerical algorithms.
Example 2 (isolated). It is a toy example: f⋆ is isolated in f (V ∩ Rn).

{
inf
x∈R2

(
x2
1 + x2

2 − 2
) (

x2
1 + x2

2

)

s.t.
(
x2
1 + x2

2 − 1
)
(x1 − 3) = 0.

On V ∩ Rn, either x2
1 + x2

2 = 1 or x1 = 3, so that the objective polynomial is either
equal to −1 or

(
7 + x2

2

) (
9 + x2

2

)
. The second expression is positive over the reals.

Example 3 (reachedasympt). The infimum is both attained and an asymptotic
value. Indeed, f⋆ = 42 is reached at any point (x1, 0, 0), but is also the limit of

sequences of the form
(
x1,

1
x1

, 0
)
when x1 tends to infinity. Some iterative methods

do not return a minimizer close to (x1, 0, 0).

{
inf
x∈R3

(
10000 (x1x2 − 1)

4
+ x6

1

)
x6
2 +

1
124x

2
3 + 42

s.t. x3 = 0.

Example 4 (GGSZ2012). It comes from [30] (Example 4.4). The minimizer does
not satisfy the KKT conditions.

{
inf
x∈R2

(x1 + 1)2 + x2
2

s.t. x3
1 = x2

2.

Example 5 (Nie2011). It comes from [53] (Example 5.2) and has been studied
in [30] because of the numerical instabilities that occurs with numerical algorithms.

{
inf
x∈R3

x6
1 + x6

2 + x6
3 + 3x2

1x
2
2x

2
3 − x2

1(x
4
2 + x4

3)− x2
2(x

4
3 + x4

1)− x2
3(x

4
1 + x4

2)

s.t. x1 + x2 + x3 − 1 = 0.

Example 6 (LaxLax). The objective polynomial appears in [45] and [41]. Its
infimum is 0 and is reached over V (x1, x2 − x3, x3 − x4) ∩ Rn.






inf
(x)∈R4

x1x2x3x4 − x1 (x2 − x1) (x3 − x1) (x4 − x1)

−x2 (x1 − x2) (x3 − x2) (x4 − x2)− x3 (x1 − x3 )(x2 − x3) (x4 − x3)
−x4 (x1 − x4) (x2 − x4) (x3 − x4)

s.t. x1 = x2 − x3 = x3 − x4 = 0.
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Example 7 (maxcut5-1/5-2). A cut of a graph with weighted edges is a partition
of the vertices into two disjoint subsets. Its weight is the sum of the weights of the
edges crossing the cut. The maxcut problem is to find a cut whose weight is greater
than or equal to any other cut. This problem has applications, among other, in
Very-large-scale integration circuit design and statistical physics ([20, 27]). It can be
reformulated has a constrained polynomial optimization problem ([16]). For a graph
of p vertices and weight wij for the edge joining the i-th vertex to the j-th one, it is
equivalent to solve

{
inf
x∈Rp

− 1
2

∑
1≤i<j≤p wij (1− xixj)

s.t. x2
i − 1 = 0, for i ∈ {1, . . . , p} ,

We use the set of weight WG5−1 and WG5−2 in [3], that leads to solve






inf
x∈R5

−98 + 23
2 x1x2 + 8x1x3 + 9x1x4 +

17
2 x1x5 +

25
2 x2x3

+13x2x4 +
23
2 x2x5 + 7x3x4 + 12x3x5 + 5x4x5

s.t. x2
i − 1 = 0, for i ∈ {1, . . . , 5} .

and





inf
x∈R5

−31 + 3x1x2 + 3x1x3 + 4x1x4 + 5x1y5 +
5
2x2x3 +

5
2x2x4 + 3x2x5

+2x3x4 + 3x3x5 + 3x4x5

s.t. x2
i − 1 = 0, for i ∈ {1, . . . , 5} .

Example 8 (coleman5/6). They come from optimal control problems and ap-
pears in [12]. For M ∈ {5, 6}, let x1, . . . , xM−1 and y1, . . . , yM−1 be the indetermi-
nates.

{
inf

(x,y)∈R2M

1
M

∑M−1
i=1 x2

i + y2i

s.t. y1 − 1 = yi+1 − yi − 1
M−1

(
y2i − xi

)
= 0, for i ∈ {1, . . . ,M − 2} .

Example 9 (Vor1). It comes from [23] and have no constraints. It is too large
to be written here but can be found at http://www-polsys.lip6.fr/~greuet/.
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[61] M. Safey El Din and É. Schost, Polar varieties and computation of one point in each
connected component of a smooth algebraic set, in Proceedings of the 2003 International

25



Symposium on Symbolic and Algebraic Computation, New York, 2003, ACM, pp. 224–231
(electronic).

[62] , Properness defects of projections and computation of at least one point in each con-
nected component of a real algebraic set, Discrete Comput. Geom., 32 (2004), pp. 417–430.

[63] M. Safey El Din and L. Zhi, Computing rational points in convex semialgebraic sets and
sum of squares decompositions, SIAM Journal on Optimization, 20 (2010), pp. 2876–2889.

[64] M. Schweighofer, Global optimization of polynomials using gradient tentacles and sums of
squares, SIAM Journal on Optimization, 17 (2006), pp. 920–942 (electronic).

[65] I. Shafarevich, Basic Algebraic Geometry 1, Springer Verlag, 1977.
[66] N. Z. Shor, An approach to obtaining global extrema in polynomial problems of mathematical

programming, Kibernetika (Kiev), (1987), pp. 102–106, 136.

26


