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Abstract. Medical imaging applications produce large sets of similar images.
Thus a compression technique is useful to reduce space storage. Lossless
compression methods are necessary in such critical applications. Volumetric
medical data presents strong similarity between successive frames. In this
paper we investigate predictive techniques for lossless compression of
video sequences applied to volumetric data. We also make a comparative
study with other existing compression techniques dedicated to volumetric data.

1 Introduction

Medical imaging applications produce a huge amount of 3D data. Among these
medical data we can mention CT (Computed Tomography), MR (Magnetic
Resonance), PET (Position Emission Tomography) Ultrasound, X-Ray and
Angiography images. Storing such amount of data need a lot of disk space. That is
why compression is required in that field. In addition, medical images must be stored
without any loss of information since the fidelity of images is critical in diagnosis.
This requires lossless compression techniques. Lossless compression is an error free
compression. The decompressed image is the same as the original image.

Classical image compression techniques (see [1,3,4,6,7,8,10]) concentrate on how
to reduce the redundancies presented in an individual image. This model ignores an
additional type of redundancy that exists in sets of similar images, the temporal
redundancy. Volumetric 3D data compression techniques exploit the correlation that
exists among successive image slices to achieve better compression rates.

Due to the fact that volumetric medical data presents strong similarity between
successive frames, we investigate, in this paper, predictive techniques for lossless
compression of video data. We also make a comparative study with other existing
compression techniques dedicated to volumetric data..

This paper is organized as follows. We define in section 2, the correlation
coefficient that quantify similarity between images. The predictions schemes for 3D
data compression are explained in section 3. We briefly present in section 4, the
coding methods used for the compression. Experimental results on medical samples
datasets are given in section 5. Section 6 gives conclusions.



2 Images similarity

There is a strong similarity between every two successive frames in a volumetric
dataset. This similarity must somehow be mathematically quantified to show the
degree of resemblance. Two images are said to be similar or statistically correlated if
they have similar pixel intensities in the same areas.

The correlation coefficient is used to quantify similarity. For two datasets
X=(X1,X2,-.. Xn) and Y=(y1,y, ... yn) With mean values x,, and y,,, Neter et al. [11]
defined this coefficient as :

ﬁ(xf—xmm—ym)
\/Z(xf—xmeiZlcyf—ym)z

=

0]

i=l1

The correlation coefficient is also called Person's r. To avoid the manipulation of
negative values, r° is often used instead of r. For to datasets X and Y, a value of r*
close to 0, means that no correlation exits between them. A value of r* close to 1,
means that strong correlation exits between the two datasets. X and Y are perfectly
correlated if r’=1. In context of images, a value r° close to 0 means that the two
images are totally dissimilar, a value r* close to 1 indicates "strong" similarity and a
value r’=1 means that the images are identical.

Fig.1.  Two successive MR chest scans

Fig.2.  Two dissimilar images.



We give two examples to quantify the similarity between images. Figure 1 shows
two successive MR chest scans of a same patient. The value r’=0.997 indicates strong
similarity between these two images. Figure 2 depicts two non similar images. The
correlation parameter r’=0.005 indicates that the two images are non correlated.

3 Prediction schemes

A prediction model is used to predict pixel values and replace them by the error in
prediction. The resulting image is called the residual image or error image. The
remaining structure is then captured by a statistical or universal model prior to
encoding. The first step is called decorrelation and the second step is called error
modeling. The images are processed in a in raster scan order and a pixel is predicted
on the basis of pixels which have already treated in the current and previous frames.
In the frame k, we denote the current pixel Py[i,j] and its predicted value by Py [i,j].
The prediction error is then given by : Py[1,j] - Pi[1,j].

3.1 DPCM
The simplest way to extract the temporal redundancy is to subtract adjacent pixels

values in two successive frames. This principle is called DPCM (Differential Pulse
Code Modulation). The predicted pixel value is given by :

Py[i,j] = Pri[1,j] 2

3.2 3D JPEGH4

The lossless JPEG predictors are effective in removing spatial correlations present in
individual frames. The JPEG standard provides eight different predictors from which
the user can select. Table 1 lists the eight predictors used. Figure 3 shows the notation
used for specifying neighboring pixels of the pixel being predicted.

NW | N
W | P[i,j] ®— current pixel

Fig.3.  Notation used for specifying neighboring pixels of current pixel P[i,j].



Table 1. JPEG predictors for lossless coding.

Mode Prediction
0 0 (no prediction)
1 N
2 W
3 NW
4  N+W-NW
5 WHN-NW)2
6  NHW-NW)/2
7 (N+W)/2

For a video sequence or a volumetric data, using these predictors in each frame does
not take into account temporal correlation. Memon et al.[9] used 3-dimensional
versions of the JPEG predictors. The 3D predictors were obtained by simply taking
the average of the 2D predictors in each of the three planes that can pass through a
given pixel in three dimensions. According to Memon et al. [9] The 3D version of the
predictor specified by mode 4 of lossless JPEG gave the best performance among all
the 3D predictors. This predictor, that will be used in our experiments, is given by :

Pulinjl = 2*(Pk[i,j-1]+P§[i-1,j]+Pk.l[i,j]) i Pk—l[i'lsj]+Pk—l[;,j'l]JrPk[i'lsj'l] 3)

3.3 3D JPEG-LS

LOCO-I (LOw COmplexity LOssless COmpression for Images) [13] uses a non-
linear predictor with edge detecting capability. The approach in LOCO-I consists on
performing a test to detect edges. Specifically, the LOCO-I predictor guesses:

min(N,W) if NW > max(N,W)
Predicted pixel < max(N,W)  if NW <min(N,W)
N+ W - NW otherwise

LOCO-I is the algorithm at the core of the standard compression of continuous-
tone images, JPEG-LS ([13]). The predictor used in LOCO-I was renamed during the
standardization process “median edge detector” (MED).

From the MED predictor, we have derived and used in our experiments a 3D
predictor called 3D JPEG-LS. We define it as follows:

= if (min(Py[i-1,j-1], Py [i-1,j], Pieafij-11)>=max(Py[i-1,j], Pu[i,j-11, Pia[i,j])
Pyfi,j] = min(Py[i-1,j], Pyfi,j-11, Pia[ij])

= if(max(Pifi-1,j-1], Picy[i-1,j], Pia[ij-17)<=min(Py[i-1,j], Pili,j-1], Pia[i,j])
Pylij] = max(Pi[i-1,j], Py[i,j-1], Pici[i,j])

= otherwise

Pyij] =

2%( Py[i,j-11+ Pyfi-1,j]s Pea[ig]D)  Pyeg[i-1,j]4Pycy[i,j- 1] Pyfi-1,5-1]
3 3



4 Encoding the residual images

In a predictive lossless image compression technique, there are two distinct steps,
decorrelation and coding. In the decorrelation step, spatial and temporal redundancies
among pixels are reduced, resulting in a image called the residual image.

If the decorrelation step is effective, than the every residual image has
significantly lower zero-order entropy compared to the original image slice in the 3D
dataset. Several coding schemes were tested in the residual image encoding phase.

In our studies, we will restrict ourselves to the three techniques that gave good
results. We will use arithmetic coding, PPMd and LZMA algorithms. PPMd is a PPM
(Prediction by Partial Matching) based algorithm. It is a finite-context statistical
modeling technique. This algorithm is mostly based on Dmitry Shkarin's work [12]
The LZMA algorithm is a derivative of the Lempel-Ziv algorithm. It is an improved
and optimized version of LZ77 algorithm [17].

5 Experimental Results

5.1 Test Images

The evaluation compressions methods is made on sample medical images. We present
experimental results on the same CT and MR volumetric datasets used in [2,15,16] for
easy comparisons. All images were gray-level, and were scaled to 8 bits/pixel. The
volumetric medical data are described in table 2. The first slice of each dataset is
given in figure 4.

Table 2. Description of the datasets used in the experiments.

Type History Age Sex  File name Size

Apert's syndrom 2 M Aperts 256x256x96

CT Internal carotid dissection 41 F Carotid 256x256x64
Tripod fracture 16 M Skull 256x256x192
Healing scaphoid fracture 20 M Wrist 256x256x176
Normal 38 F Liver_tl 256x256x48

MR Normal 38 F Liver t2el  256x256x48
Congenital heart disease 1 M Ped chest  256x256x64
Left exophthalmoses 42 M Sag head 256x256x48

5.2 Compression results

All lossless coding results are based on real compressed file sizes. In the first
experiment, we have compressed the volumetric data by general purpose lossless
compressors : Unix-compress, Win-Zip and Win-Rar. We also compressed the 3D
data by JPEG-LS [13] the ISO/ITU standard for lossless compression of continuous



tone-images and CALIC (Context-based Adaptive Lossless Image Coding) [14].
Lossless compression results in bit per pixel (bpp) using these compressors are given
in table 3.

.
(a) (b)

(2 (h)

Fig.4. Volumetric medical images : First slice of each data set. (a) Aperts (b) Carotid (c) Skull
(d) Wrist (e) Liver_tl (f) Liver t2el (g) Ped chest (h) Sag_head.

Table 3. Lossless compression results in bit per pixel using standard lossless compressors.

N Compress 2P RAR Ls CALIC
Aperts 1.739 1.789 1.494 1.063 1.047
Carotid 2.782 2.825 2.288 1.738 1.654
Liver-tl 5.304 5.294 3.882 3.158 3.047
Liver-t2 3.938 3.738 3.033 2.369 2.243

Ped-Chest 4.333 4.509 3.796 2.928 2.810
Sag-Head 3.595 3.569 3.323 2.556 2.585
Skull 4.135 3.944 3.741 2.846 2.725
Wrist 2.720 2.801 1.901 1.653 1.691

In the second experiment, we have compressed the volumetric data by first
decorrelating these data and then coding them. The decorrelation phase was made by
using the three predictors DPCM, 3D JPEG-3 and 3D JPEG-LS. In the coding phase
we have used several techniques. In our experiments three methods gave good results.
These methods are : arithmetic coding, LZMA algorithm and PPMd algorithm.

Table 4, table 5 and table 6 give lossless compression results in bit per pixel
(bpp) when using for the coding step arithmetic coding, LZMA algorithm and PPMd
algorithm respectively.



Table 4. Arithmetic lossless compression results in bit per pixel.

Name DPCM  3DJPEG4  LS-3D
Arithmetic  Arithmetic  Arithmetic
Aperts 1.192 1.238 1.330
Carotid 1.940 1.965 2.083
Liver-tl 2.941 3.125 3.330
Liver-t2 2.555 2.622 2.675
Ped-Chest 1.839 2.768 3.112
Sag-Head 2.453 2.758 2.898
Skull 2.631 3.112 3.174
Wrist 1.384 1.652 1.818
Table 5. LZMA lossless compression results in bit per pixel.
Name DPCM  3DJPEG4  LS-3D
LZMA LZMA LZMA
Aperts 1.062 1.199 1.236
Carotid 1.733 1.859 1.995
Liver-tl 2.722 3.290 3.483
Liver-t2 1.905 2.478 2.500
Ped-Chest 1.757 2.853 3.053
Sag-Head 2.232 2.752 2.809
Skull 2.182 2.972 3.102
Wrist 1.151 1.555 1.713
Table 6. PPMd lossless compression results in bit per pixel.
Name DPCM  3DJPEG-4  LS-3D
PPMD PPMD PPMD
Aperts 0.867 1.004 1.119
Carotid 1.471 1.625 1.817
Liver-tl 2.390 3.039 3.320
Liver-t2 2.025 2.406 2.509
Ped-Chest 1.689 2.687 3.112
Sag-Head 2.127 2.619 2.747
Skull 2.119 2.716 2.928
Wrist 1.029 1.372 1.569




We have finally compared the results obtained with relatively recent volumetric
data compression that uses wavelets. In table 7, the columns '3D SPIHT' and '3D AT-
SPIHT' refer to the results with lossless variations of 3D SPIHT [5].The columns '3D
ESCOT!' and '3D CB-EZW' refer to the lossless results with 3D ESCOT [15] and 3D
CB-EZW [2]. The column '3-D NL (8=0)' refers to the 3D wavelet based two-stage
lossless coder described in [16]. All these results can be found in [16]. The last
column refers to DPCM-PPMd the best predictive technique in the tests conducted.
Boldface entry in each column indicates the best result for the corresponding dataset.

Table 7. Bits rates for lossless compression, average bitrate in bits per pixel (bpp).

Name 3D 3D AT- 3D 3DCB- 3-DNL DPCM
SPIHT SPIHT ESCOT EZW (5=0) PPMD

Aperts 1.054 1.039 0.9 1.013 0.933 0.867
Carotid 1.497 1.497 14 1.455 1.650 1.471
Liver-tl 2.399 2.369 2.2 2415 2.376 2.390
Liver-t2 1.748 1.744 1.6 1.753 1.856 2.025
Ped-Chest  2.104 2.054 1.9 2.117 1.770 1.689
Sag-Head  2.240 2.202 2.0 2.356 2.136 2.127
Skull 2.113 2.166 2.0 2.204 2.405 2.119
Wrist 1.368 1.355 1.2 1.327 1.144 1.029

5.3 Discussion

From the results shown in previous tables, we see that most of the 3D compressions
methods carry out an improvement compared to individual image standard
compression. From table 7, we see that the DPCM-PPMd method performed the best
for three of eight test sequences. This can be explained by the fact that high similarity
is present in the three sequences (CT_Aperts, MR Ped-Chest and CT_Wrist). The
correlation coefficient for every two successive slices in each of these datasets is
always superior to 0.99. When the correlation coefficient decreases (as this is the case
for MR_Liver-t2 sequence) the DPCM-PPMD will not be effective.

6 Conclusion

One of the best application areas for volumetric compression methods is medical
imaging. Medical image databases usually store huge amount of similar images. This
paper attempts to evaluate the performance of lossless volumetric compression on
sample datasets of grayscale similar images. In this study, only the effect of
compressing sets of grayscale images was evaluated. Further works must consider
compressing sets true color images. Spectral decorrelation must then be taken into



account. 3D compression methods can also be tested on many other application areas.
Satellite image databases, for example, often contain sets of images taken over the
same geographical areas, and under similar weather or lighting conditions. They
necessarily contain inter-image redundancy.
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