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Abstract

We present a comparison of experimentally and theoretically determined osmotic pressures
for various colloidal dispersions. Experimental data is collected from several different silica
and polystyrene dispersions. The theoretical pressure determinations are based on the
Primitive Model combined with the Cell Model and the physical quantities are calculated
exactly using Monte Carlo simulations in the canonical and grand canonical ensemble.
The input to the simulations in terms of colloidal particle size, surface charge density etc
are taken directly from experiments and the approach does not contain any adjustable
parameters. The agreement between theory and experiment is excellent without any
fitting parameters showing that the simplifications behind the primitive model and the
cell model are physically sound.

For one of the silica dispersions we have also investigated how various monovalent coun-
terions influence the swelling properties. Within experimental errors, we are unable to
detect any ion specificity, which is another support for the theoretical models used.

Introduction

Osmotic pressure is the primary property of a colloidal dispersion, in the same way as
ordinary pressure is that of a molecular gas. It measures the drive of a dispersion towards
higher entropy, i.e. a larger volume per colloidal particle, or in other words, the resistance
of the dispersion to the extraction of the liquid that disperses the particles. For stable
colloidal dispersions, the osmotic pressure increases with the volume fraction occupied by
the particles, and this increase is the equation of state of the dispersion[l1, 2, 3, 4, 5, 6, 7, 8].
Changes of state of the dispersion, such as fluid-solid transitions, orientational transitions
and the crossover to a state where the colloidal particles aggregate are usually associated
with changes in the slope of the equation of state[7, 9, 10].



It is important to be able to understand and predict these changes of state, since they are
the key to the practical use of colloidal dispersions. For example, many industrial processes
start with a dispersion in a fluid state at moderate volume fraction, and extract some or
all of the liquid phase to produce a solid material. This is the case for coatings, where the
fluid dispersion is evaporated to yield a solid layer that protects or modifies the surface.
It is also the case for ceramics, where a concentrated dispersion of ceramic particles is
compressed to yield a wet paste, called a green body, that has sufficient cohesion to retain
a set shape, and a sufficient volume fraction to allow sintering. Moreover, there are a
number of solid-liquid separation processes such as filtration and centrifugation, in which
an external pressure is applied to overcome the osmotic pressure of the dispersion and
achieve the desired change of state.

These processes are most often described using some representation of interparticle forces,
e.g. for charged particles through the DLVO theory[11, 12]. However, the determination
of interparticle forces is possible only with model particles and model surfaces, and the
calculation of dispersion properties from the pair interactions involves assumptions that
are not easily validated. The connection of dispersion properties to osmotic pressure
is, in most cases, more direct, and it can also provide a determination of the average
interparticle forces in the "real” system. Moreover, the measurement of osmotic pressures
can reveal the presence of small species (polymers, or small colloidal particles) that are
not seen by other techniques, but which may have dramatic effects on the properties of
the dispersion|7, 13].

There are now a number of reliable measurements of the equation of state of colloidal
dispersions [1, 2, 3, 4, 5, 6, 7, 8,9, 10, 13, 14, 15]. For ionic dispersions, these equations of
state span huge ranges of pressures, from 10! to 10° Pa or more. Making a model of the
dispersion and calculating its equation of state is an excellent and critical way of finding
out whether the model is a good representation of the physical system. If the model is
validated in this way, it can presumably be trusted to predict accurately other properties
of the dispersion, such as the thresholds for the changes of state.

For ionic dispersions, the major contribution to the osmotic pressure originates from the
counterions of the ionized colloidal particles, since they are by far the most numerous
species and give the largest contribution to the entropy of the system. This contribution
is reduced by the electrical potential that tends to accumulate the counterions near the
particle surfaces, and by other (”chemical”) interactions that bind the counterions to
surface sites. A consequence of the attraction of the counterions by the surfaces is that
the particles tend to be localized at regular distances, in a configuration that minimizes the
repulsion generated by their counterions. Consequently the dispersion can be accurately
described by the Cell Model, which assumes that each colloidal particle sits in the middle
of a spherical cell, surrounded by its counterions.

Classically, the counterion distribution within the cell is calculated through the Primitive
Model, which describes water as a homogeneous medium only characterized by its dielec-



tric constant, and the Poisson-Boltzmann equation, which is a mean field solution to the
counterion distribution. The early work of Belloni and co-workers yields predictions of
the osmotic pressure that are in good agreement with experiments|7, 8]. However, the
mean field theory may not represent accurately the true counterion distribution, espe-
cially when the particles have a high surface charge density or when divalent counterions
are present[16]. Also, we do not know to what extent the primitive model of aqueous
solutions is valid in the vicinity of particle surfaces.

There is an even more simple description of the distribution of the counterions within
the cell, where it is assumed that most of the Z counterions of a particle, are condensed
on its surfaces, and only Z.;s are dispersed in the solution. Z.¢; is refered to as the
"effective” charge of the colloidal particle. In this "two state model” [17, 18], the osmotic
pressure is then calculated by assuming that the distribution of the Z.;; "free” counterions
is uniform within the cell. Some criteria have been proposed to predict the value of
Z.rr[19, 20], but most often, Z.sy is treated as an adjustable parameter. In many cases
this simple model reproduces the variation of osmotic pressure with the volume fraction
of the dispersion[18]. However, treating Z.;; as an adjustable parameter obscures the
comparison between model predictions and experiments, which could reveal microscopic
phenomena that take place in the system.

In this work, we present the equations of state obtained for aqueous dispersions of nano-
metric particles, mostly made of silica. The motivation for using silica colloids is twofold.
Firstly, aqueous silica dispersions can be concentrated reversibly to high volume fractions,
where the surface-surface distances of neighboring particles are on the order of 2 nm. At
such short distances, the interstitial solution may not behave as a homogeneous medium,
and specific interactions between ions in solution and the charged surfaces may become
important. Such details at the molecular level are ignored in the models listed above. Sec-
ondly, it is relatively easy to exchange the original Na* counterions with other monovalent
counterions in the series H*, Lit, K, Cs* and N(CH3);. This exchange may reveal ion
specific effects. Indeed, ion specificity is a recurring theme in both surface and colloid
chemistry and biochemistry dating back to the famous Hofmeister series [21, 22, 23]. Both
cations and anions have been ascribed specific interactions. It is generally agreed that an-
ions show larger specificity usually attributed to their higher polarisability [24], although
recent atomistic simulations have indicated that the polarisability might not be the most
important mechanism for ion specificity [25]. Thus, osmotic pressures of silica dispersions
with different ions were measured at high silica volume fractions, with the aim to reveal
any ion specific effects.

We use Monte Carlo (MC) simulations in the canonical and grand canonical ensemble to
determine the distribution of co- and counterions in a spherical cell of uniform dielectric
constant around a colloidal particle. The number of counterions is determined by the
ionization of the particle surface, which is known experimentally from titration experi-
ments. By changing the cell radius we vary the colloid volume fraction in the dispersion,
and hence obtain the equation of state of the dispersion. Since water is described as a



dielectric medium and the counterions as charged spheres with a hard core radius, the
predicted osmotic pressures are the same regardless of the nature of the counterion. Next,
we compare this theoretical equation of state with the osmotic pressures measured on dif-
ferent silica and polystyrene dispersions with monovalent counterions. The question we
want to answer is if the experimental equations of state can be rationalized within the
primitive model without any adjustable parameters or is a more sophisticated atomistic
approach needed?

Monte Carlo Simulations in the Cell Model

cell

Figure 1: A central charged colloidal particle with radius a and a net charge Z is placed in a cell
with radius R.c;;. The cell is electroneutral and contains besides the counterions also salt pairs whose
concentration is determined by an equilibrium with the surrounding bulk solution.

We model the dispersions as a set of hard spheres with a radius, a, and a surface charge
density, . The colloidal particles are neutralized by small spherical ions mimicking
sodium, potassium etc. and in addition the system also contains positive and nega-
tive monovalent salt ions. All co- and counterions are given a radius of 0.2 nm. The
electrostatic interactions in the system are described in the primitive model, where the
solvent (water) is treated as a structureless dielectric continuum with a dielectric constant,
€, = 78.7. No other interactions are included in the simulations. The primitive model
means a dramatic decrease of number of molecules compared to an atomistic model. Still
it is hardly possible to simulate a charged dispersion including many colloidal particles,
their counterions and added salt. In order to make the simulations feasible, we have in-
troduced the so-called cell model[26, 27, 16]. This means that we consider the colloidal
dispersion as consisting of independent cells each containing one colloidal particle and
neutralizing counterions and salt. The size of the cell, which is assumed to be spherical
with the radius, R, then determines the colloidal volume fraction, ¢. A schematic
picture of the system can be found in Figure 1.



Formally we can write the ion-colloid and ion-ion interactions in the system as,

Zco Z’L 2
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where Z.,; = 4ma’c is the charge of the colloidal particle, Z; the charge of ion i and r;

its coordinate. This is augmented with the condition that the interaction is infinite if any
two ions overlap and also if r; > Reey.

The simulations were performed in the canonical and grand canonical ensembles following
standard procedures[28, 29]. Typically 10?-10 moves/particle were generated for equili-
bration and about ten times more for production. The osmotic pressures were calculated
from the ion concentrations at the cell boundary according to the contact theorem[30, 16],

= RTS_ ¢i(Reen) (3)
The experimentally relevant quantity is the net osmotic pressure,
Hnet =11 - Hbulk <4)

where the bulk osmotic pressure, Iy, is evaluated in a separate simulation of an isotropic
salt solution of a given concentration. For the bulk simulations we use the canonical en-
semble combined with an extended Widom technique for calculations of the salt chemical
potentials[31, 32]. Equation (4) gives the net pressure as a difference between two simu-
lated numbers, hence at low osmotic pressures a high accuracy is needed for both II and
[Ty%- This means that the simulations can be quite demanding at high salt concentrations
and /or low colloid volume fractions.

We have also compared our simulations results to the predictions of the Poisson-Boltzmann
(PB) equation [33]. For systems with monovalent counterions and not too highly charged
dispersions, the PB approximation is an excellent approximation. It also works as a com-
plement to simulations as it allows investigations of larger particles, that is with many
thousands of counterions, as well as systems with large amounts of added salt and low
volume fraction.

Experimental Section

Silica dispersions

We used mainly colloidal silica dispersions that were synthesized in the laboratory through
neutralization of sodium silicates by nitric acid[34, 8, 18]. They had mean radii in the



vicinity of 10 nm (the exact value is specified for each dispersion) and a narrow distribution
of diameters (relative width = 13 %). All these dispersions were washed with water at
pH 9 until the ionic strength was 1072 M or below.

Some dispersions were obtained from commercial products (Ludox HS40, Sigma-Aldrich)
through the same washing procedure. According to SAXS spectra of concentrated dis-
persions, the number average radius of these particles was 7.5 to 8 nm.

The surface charge of the sodium silica dispersions has been measured by Foissy and
Persello[35, 36]. At basic pH values it is negative and its magnitude increases rapidly with
pH. A typical value of the surface charge density at pH=9 is ¢ = 0.5 — 0.6 ¢/nm?[35]. At
pH 3 the surface charge is low but still negative.

In order to obtain silica particles with different counterions, we equilibrated a dispersion
synthesized as above with an H loaded cation exchange resin; : in a first stage, Amber-
lite IRC86 weakly acidic, H+ form, and then for final pH adjustment, Amberlite IR120
strongly acidic, H+ form. Then we washed the dispersion with pure water and brought
the pH back to 9 with a base of the desired cation. In this way we obtained silica dis-
persions with identical particle size distributions, and Lit, Na™, K, Cs* or N(CH3); as
counterions.

Aqueous dispersion of polystyrene particles

We reproduce osmotic pressure data from from Bonnet-Gonnet et al. [7]. For these
experiments, a dispersion of polystyrene particles was obtained from Interfacial Dynamics
Corporation (Eugene, Oregon, USA). The particle cores are made of pure polystyrene,
with glass transition temperature 110 °C. The particles are monodisperse with a radius
of 30.5 nm. The major part of the surface is largely hydrophobic, but it also contains
a few charged groups: sulfate groups which are the ends of the polystyrene chains, and
sulfonate groups from styrene sulfonate monomers which are copolymerized with the
styrene monomers. The total surface density of charged groups has been measured through
potentiometric titration and found to be o = 0.14 e/nm?. The aqueous phase of these
dispersions contained 3.5 107> M of passive salt.

Osmotic stress method

The osmotic stress technique is based on water exchange between the sample (i.e. a
colloidal dispersion) and a reservoir of known osmotic pressure. A complete description
of this method can be found elsewhere[2, 3, 7]. Briefly, the sample is placed in a dialysis
bag which, in turn, is immersed in a reservoir that contains a solute (generally a polymer)
for which the relation between osmotic pressure and concentration is known. The cutoff



of the dialysis bag is chosen so that it only retains the polymer and the colloidal particles
of the sample. Conversely the solvent, i.e. water, ions and small organic molecules can
exchange between both compartments. At equilibrium, the chemical potentials of water
and salt on either side of the membrane are equal, and therefore the osmotic pressure of
the sample equals that of the polymer in the reservoir. This technique makes it possible
to play with interactions in a colloidal system over a wide range of pressure.

A poly(ethylene glycol) (PEG, also called poly ethylene oxide or PEO) with a molar mass
of 35 kDa (Fluka, Switzerland) was used as the ”stressing” polymer. We have determined
the osmotic pressure of this polymer in water using a membrane osmometer (Knauer,
Germany) for concentrations up to 20% (w/w) at 20°C. The same pressures were found
at pH ranging from 2 to 11 and at sodium concentrations up to 0.3 M. Moreover, it is
known that cations do not change significantly the lower critical solution temperature of
PEG, and therefore have no effect on its osmotic pressure [37]. The osmotic pressure (in
Pa) was fitted to the following expression as a function of weight fraction of PEG, ¢ (%).

log'’(P) = A+ B¢“ (5)
with A=0.49, B=2.5 and C=0.24 [15].

Solutions of PEG at osmotic pressures from 0.3-200 kPa were prepared by dissolving the
polymer in aqueous solutions at concentrations ranging from 0.4 to 15 % (w/w). The
pH was adjusted to match that of the aggregated dispersions introduced in the dialysis
bags. Standard regenerated cellulose Visking 8/32 dialysis bags with a molecular weight
cutoff of 12-14 kDa were used (Medicell International Ltd, UK). These bags were chosen
so as to allow exchange of ions and water but not silica particles nor PEG. Prior to the
experiments, the bags were washed in deionized water. Then, the silica dispersions were
placed in the bags and immersed in the polymer solutions kept at 20°C. The content
of the bags was adjusted (and readjusted) so that the bags were neither too full nor
too flat, because in either case there would be a contribution to the actual pressure
from the elasticity of the bag. After equilibrium was reached (30 days), a sample of the
concentrated dispersion was taken from each bag and dried at 120°C in order to determine
the concentration.

In the experiments made with polystyrene dispersions and in the case of silica dispersions
with exchanged cations, the pressures were measured through dialysis equilibrium against
solutions of dextran T110, as described in reference [7].
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Figure 2: Osmotic pressures as a function of colloidal volume fraction. a) The experimental data at
1 mM salt from Chang et al. [8] and Persello et al. [38] are shown as filled spheres and open squares,
respectively. Simulated pressure is shown as black solid line. The curve was obtained with a particle
radius of 10 nm and a surface charge density of 0.5 e/nm?. The same system has also been investigated
with the PB equation and the resulting pressure is shown as a red dashed curve. b) Experimental and
simulated pressure at 10 mM salt. The experimental data from Chang et al. [8]. The addition of salt
is likely to cause a titration of the silanol groups with a slight change of the charge density. This will,
however, not change the pressure to any measurable extent - see below.

Experimental Results

Equation of state for Na™ counterions

The compression curves of two different silica dispersions are presented in Figure 2. The
dispersions were made of silica particles of the same mean radius of 10 nm, but they were
synthesized in separate experiments[8, 38]. Also, the compression curves were obtained
by different researchers, both using the osmotic stress technique. The good agreement of
both sets of data implies that the measured compression curve is uniquely determined by
the characteristics of the particles. It is also remarkable that these compression curves
cover a range of two decades in silica volume fractions and five decades in pressures.
Finally, some experiments have been performed in the reverse direction, reswelling the
concentrated silica dispersions. It was found that the dispersions that were compressed
up to a volume fraction ¢ = 0.5 could be reswelled in a reversible way. Consequently, the



part of the compression that extends from the lowest volume fractions (¢ = 0.02) up to
¢ = 0.5 is an equation of state of the silica dispersions.
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Figure 3: Osmotic pressures as a function of volume fraction for Ludox HS40. The experimental data

points at 5 mM salt are shown as symbols while the simulated pressure curve is drawn as a solid line. The
PB pressure is shown as a red dashed curve. Particle radius and charge were 8 nm and 402e, respectively.

The compression curves of commercial silica dispersions (Ludox HS40), washed through
dialysis at pH =9, are shown in Figure 3. In this case the mean particle radius was 8 nm.

Equation of state for other counterions
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Figure 4: Osmotic pressures as a function of volume fraction for silica particles with a=10 nm and
various counterions. Solid black line = Cs*, dotted red line = K, short dashed green line = Na® and
long dashed blue line = Lit. The dot-dashed violet line = N(CH3); and the dashed black line = H™,
respectively. The simulated pressures are shown as filled squares. The bulk salt concentration is 0.5 mM.

In the previous sections we have shown the experimental osmotic pressure for Na™ silicate
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dispersions. Figure 4 shows that the counterion type does not play any role for the
swelling characteristics. Dispersions with different alkali counterions, from Lit to Cs™,
follow the same equation of state up to the highest compression. Even with a bulky and
slightly hydrophobic counterion like N(CH3)f, the same net osmotic pressure is found.
Using H™ as counterion changes the pressure, but in this case the particles become partly
neutralized. The pressure is, however, far from that of a neutral dispersion, indicating
that although the pH has been lowered due to the H' ions, the particles still maintain a
small (less than 10 %) but significant surface charge density.

Equation of state for polystyrene dispersions
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Figure 5: Osmotic pressures of polystyrene dispersions (a = 30.5 nm, o = 0.14 e/nm?) in water at pH
7 and salt concentration 3 - 10~° M. Experiments = symbols, MC simulation = solid black line and PB
= dashed red line. The arrow indicates where the transition to a soft solid takes place.

Dispersions of polystyrene particles were compressed by osmotic stress at pH 7 and ionic
strength 3 - 1075 M. The original dispersion, at a volume fraction ¢ = 0.06, was fluid
and white. As the pressure was raised, it became iridescent and viscous; at a pressure of
1800 Pa the volume fraction reached 0.214 and the dispersion turned to a soft solid. At
this volume fraction the mean surface to surface separation is approximately 30 nm and
comparable to the Debye screening length (k= = 55 nm). Previous work on polystyrene
dispersions indicates that in such conditions the dispersions order as colloidal crystals[1].
Thus, the iridescent colors are the result of Bragg diffraction on reticular planes of particles
within the crystallites.

The experimental pressure vs. volume fraction curve is shown in Figure 5. Over a large
range of volume fractions (¢ = 0.1 — 0.5) the pressure is between 1-10 kPa. The pressure
is rather high even at low volume fractions. This is due to the low ionic strength and
weak electrostatic screening.
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Comparison between simulations and experiments
Variation of pressures with particle volume fraction

As the volume fraction of particles in the dispersion rises, the experimental pressures
increase by a factor of 10% to 10*. Over this range, the MC simulations in the cell
model, made at the same ionic strength, reproduce the variation of the experimental
pressures. This agreement, obtained without any adjustment of the model parameters,
implies that the theoretical model does a good job of capturing the physics of swelling in
ionic dispersions - see Figures 2-5.

In some cases the magnitude of the predicted pressure is systematically too high by
about 50%. For experiments that were performed through dialysis of colloidal silica
dispersions against a solution of PEG (Figures 2 and 3), this discrepancy can originate
from an inadequate equation of state for PEG 35000. We note that experiments on similar
particles, dialyzed against solutions of Dextran, give results that are in perfect agreement
with simulation results (Figures 4 and 5). On the other hand, the cell model neglects the
interactions between neighboring cells, and one can anticipate that this should lead to a
too repulsive pressure [39].

At the highest volume fractions, close to ¢=0.6, some of the experimental data show an
upturn to a much steeper repulsion (see Figure 5). This could be due to aggregation of
the particles, which is not accounted for in the present model, but can be described by
incorporating surface-surface bonds in the model [40]. It could also reflect that the system
is approaching the limit of densely packed spherical particles, ¢ ~?77. It is, however, quite
remarkable that the present approach reproduces the osmotic pressures of dispersions
up to ¢ = 0.55, corresponding to surface-surface distances of about 2 nm - see Figure
2. This agreement indicates that the primitive model used here to describe water as a
continuous dielectric medium works well down to distances of a few molecular diameters.
The same (surprising?) conclusion has been reached in surfactant systems where the
osmotic pressure has been measured through centrifugation equilibrium [41].

The largest difference between experimental and theoretical pressures in this study is
seen for the polystyrene dispersion, where the dispersion forms a solid at volume fractions
larger than approximately 0.2.

Effects of ion charge, radius and hydration

For the colloidal dispersions with monovalent counterions reported here, mean field the-
ory (PB approximation) yields results that are practically identical with those from MC
simulations. This was indeed expected, since it is well-known that ion-ion correlations,
not included in the mean field theory, remain negligible in the case of monovalent ions
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Figure 6: Simulated counterion ion concentration profiles in the cell. The central charged sphere has a
charge of -628e and a radius of 10 nm. The cell radius is 27.1 nm corresponding to a volume fraction of
5.0 %. The counterion radius has been varied as: black solid line = 1, dashed red line = 0.6, thin blue
line = 0.4 and green symbols = 0.2 nm.

and moderate surface charge densities. However, MC simulations show an effect of ion-
ion correlations, both on the counterion concentration profile in the cell as well as on the
interaction between cells, when the surface charge density becomes high, exceeding 1-2
e/nm? or when divalent or higher valency counterions are present [42].

With the monovalent counterions in the series Lit, Nat, KT Cs™ and N(CHj3)j we ex-
pected to see ion-specific effects, since their adsorption on silica surfaces and the colloidal
stability of the dispersions should change according to ion type [43, 44, 45]. Yet the os-
motic pressures with different counterions are identical - see Figure 4 (H™ is an exception,
since it titrates the silanol groups creating a weakly charged surface). This apparent
conflict is well explained, already by the mean field theory and further supported by MC
simulations. Indeed, the behavior of ions in the immediate vicinity of a charged surface
may change according to their radii and hydration. However, such changes are screened
by the accumulation of ions near the surface, and the ionic concentration at the cell
boundary remains the same regardless of ion radius or hydration - see Figure 6. It is only
with an unphysical ionic radius of 1 nm one finds a significant change in the counterion
profile. This is in good agreement with a recent determination of the composition of the
adsorbed cation layer [46]. This lack of ion specificity for the alkali cations is in agreement
with second virial coefficient measurements for lysozyme solutions [47] as well as swelling
properties of montmorillonite [48]. In the latter case it is found that Ca®T and Mg?* clays
show the same swelling behaviour despite the fact that in this case the aqueous layer is
only about 1 nm thick.
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Figure 7: Scaled osmotic pressure as a function of surface charge density for three different systems
with varying particle radius, a, and volume fraction ¢. The actual pressure is scaled with the pressure
at 0 = 0.5 e¢/nm? for each case. From MC simulations with no added salt.

Effects of surface charge

The same "decoupling” of ionic concentrations at the cell boundary from interactions
near the charged surface appears when the surface charge density is changed. Indeed,
the osmotic pressure increases with surface charge density, but for a given system with
a fixed particle and cell size it approaches an asymptotic value. The approach towards
this value, in particularly for dilute system, is fast. This means that for a colloidal silica
dispersion with a particle radius of 10 nm and a volume fraction in the range 4-30 %,
half the maximal osmotic pressure is reached at a rather modest surface charge density of
0.05-0.10 e/nm?. For larger particles the asymptotic value is reached at even lower o see
Figure 7. On the other hand, at very low surface charge densities, the counterions behave
as an ideal gas and the osmotic pressure becomes proportional to 0. However, such low
surface charge densities are only reached at low pH when the colloidal silica particles have
been neutralized by acid (cf. H" counterions in Figure 4), and then the colloidal stability
is marginal. Thus, the common situation is that of high surface charge densities, where
the osmotic pressure becomes independent of anything that happens near the charged
surface.

Distribution of counterions within the cell

The message from the cell model is that the osmotic pressure is determined by the distri-
bution of ions at the cell boundary in equilibrium with the bulk ionic solution. Indeed, the
behavior described above, i.e. the law for the variation of pressure with volume fraction,
and the fact that the pressure is to a large extent independent of what happens near the
particle surfaces, are consequences of these conditions. The actual distributions of ions
within the cell are not accessible to experiments, but they can be calculated theoretically.
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Figure 8: The counterion concentration for a cell of radius R.;; =27.1 nm and a particle of radius a =
10 nm, with a surface charge density of 0.5 e/nm?. Full black line: the cell is in equilibrium with pure
water, dashed red line: the bulk solution contains 10 mM monovalent salt and red line with symbols:
same distribution but with the bulk concentration subtracted off. The green dot-dashed curve shows the
counterion concentration in a planar cell with the same thickness of the aqueous layer (17.1 nm) and the
charged surface place at » = 10 nm.

Figure 8 shows the distributions calculated for a typical silica dispersion. All these distri-
butions show the same accumulation of counterions near the particles surface: since the
local concentration of counterions is quite high, it is rather insensitive to the addition of
10 mM passive salt. At large distances, the salt-free case has an algebraic decay, while
the salted one with the bulk concentration subtracted off, shows the expected exponential
decay of counterion concentration, due to screening by passive salt. The characteristic
length of this decay is 2.3 nm, while the Debye-Hiickel screening length is 2.5 nm based
on all charged species. (the screening length corresponding to the salt concentration in
the reservoir is 3 nm). Hence the Debye-Hiickel description is a fair approximation to the
distribution of counterions away from the particle surface.

Geometrical features
Particle size

A reliable theoretical model allows us to make predictions for situations that cannot be
produced experimentally. For instance, it is possible to investigate the effect of particle
size, keeping all other parameters constant, i.e. same surface charge density and same
volume fraction of particles(a/R..; =const.) For a cell in equilibrium with the bulk ionic
solution, the concentrations of counterions and coions at the cell boundary tend toward
their bulk concentrations as the cell size becomes large compared to the screening length.
iFigure 9 shows that the resulting net osmotic pressure seems to decay ex-
ponentially with the particle size. Note that the cell size is varied in the
same proportion, since the volume fraction is kept constant. The good agree-
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Figure 9: Particle size effect on the osmotic pressure from PB calculations. The surface charge density
is 0 = 0.5 e/nm? and volume fraction and salt concentration is varied. Lines and symbols represent the
net osmotic pressure in spherical and planar symmetry, respectively. The calculations in planar geometry
is done with one charged and one neutral surface and the aqueous layer thickness is equal to R.¢;; — a in
the corresponding spherical system.

ment between the pressures evaluated in spherical and planar symmetry is
reassuring, since it indicates that any irregularities in particle shape have no
significant effect on the pressure. Figure 9 also tells us that dispersions of large
particles approaching micron size are only weakly stabilized by electrostatic
interactions unless the salt concentration is very low.

Comparison with planar geometry

250 —— Ty ‘
==== 10mM
200 @ 0mM plane |

Figure 10: The net osmotic pressure as a function of available counterion volume, i.e. a virial expansion.
The particle size in the spherical cell is @ = 10 nm and the surface charge density is 0.5 e/nm?. The
pressure curves for salt concentrations of 0 and 1 mM are virtually identical. Symbols show the osmotic
pressure in the corresponding planar system with the same thickness of the aqueous layer.

The behavior presented above are consequences of the accumulation of counterions at the
particle surfaces and equilibrium of co- and counterions with similar ions in the bulk solu-
tion. These two effects are also present in the case of particles that have a platelet shape,
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such as clay particles [49]. Figure 8 presents a comparison of counterion concentration
profiles in a spherical cell (¢ = 10 nm, R.; = 27.1 nm) and in a planar cell with no added
salt. These profiles are surprisingly similar; conversely, it is not surprising that most of
the properties of spherical charged colloids described above are similar to the classical be-
havior of interacting charged planar surfaces. One can always find quantitative differences
due to the geometry, but the overall picture is one of genuine similarity.

For dispersions equilibrated with a bulk solution that has a low ionic strength, MC simu-
lations and PB theory indicate that the variation of pressure with volume fraction follows
an algebraic law. This is reminiscent of the virial expansion of the osmotic pressure of
the solutes (the ions) in the available volume (the cell volume minus the particle volume).
Indeed, the first term in this expansion is proportional to the concentration of ions in
the available volume, and therefore to 1/(1 — ¢), while the second term is proprtional
to 1/(1 — ¢)?. Figure 10 shows that become dominant at higher volume fractions with
the result that IT oc 1/(1 — ¢)%. This variation is a bit surprising, but an explanation is
provided by the comparison with planar geometry, which shows the exact same variation,
once the half cell thickness h has been converted into (1 — ¢). In planar geometry, the
pressure varies asymptotically as 1/h* at no or low salt conditions [50, 51].

Conclusion

The experimental osmotic pressures of colloidal dispersions of spherical particles are quite
well reproduced by simulations in the primitive model combined with the cell model, and,
in the case of monovalent counterions, by calculations made with the Poisson-Boltzmann
equation. The simulations allow predictions for situations that are not easily accessed
experimentally, such as a systematic study of how particle size affects the pressure. More-
over, they provide some very instructive comparisons with the pressure expected in other
geometries, particularly planar geometry usually applied to platelet shaped particles. In
particular, at low salt concentration and moderate to high volume fractions, the spherical
cell model yields almost exactly the same pressures as the half cell in planar geometry
with the same distance between the charged surface and the neutral surface. The other
limit, at high salt concentrations and low volume fractions, is well described by the hard
sphere model. Intermediate cases, with low salt and low volume fractions, or high salt and
high volume fractions, are more complex, and in those cases simulations are indispensable.
The osmotic pressures can be predicted with a high accuracy in the simulations, which
means that these simulated pressures can be used to understand the behavior of colloidal
dispersions in practical situations such as filtration, centrifugation, evaporation and flow.
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