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On the resurgent approach

to Ecalle-Voronin’s invariants

Artem Dudko, David Sauzin

Abstract

Given a holomorphic germ at the origin of C with a simple parabolic fixed point, the
Fatou coordinates have a common asymptotic expansion whose formal Borel transform is
resurgent. We show how to use Ecalle’s alien operators to study the singularities in the
Borel plane and relate them to the horn maps, providing each of Ecalle-Voronin’s invariants
in the form of a convergent numerical series. The proofs are original and self-contained, with
ordinary Borel summability as the only prerequisite.

Keywords: Complex dynamics, Ecalle-Voronin invariants, Resurgent functions.

1 Alien operators for simple 27iZ-resurgent series

We first present an extension of the classical Borel-Laplace summation theory [Ram93], [Mal95],
[Saul4db], to be applied to the formal Fatou coordinate of a simple parabolic germ in next section.
We denote by Cj,, the Riemann surface of the logarithm viewed as the universal cover of C*

with base-point at 1. For 81,82 € C with Re 1,Re 8 > —1 and b1 € ¢hrc{¢y, = ¢P2C{¢y,
we extend the usual convolution and define ¢ * ¢y € (A1 HP2H1C{¢} by

1
b1 * @2(0 = /0 ngbl((l - t)()gzgg(tg)gdt for ¢ € Cjog with |(| small enough.

For g € C with Re 8 > —1, we extend the classical formal Borel transform by defining
~ _n—p _ nt B
B: =Y cuz tez Pz = 6= ) catprar € ¢PCIIC)

n>0 n>0

Observe that if Bé = ¢; € (P1C{¢} and By = o € (P2C{C} then B(d1ds) = b1 * do.
Definition 1.

— Given 8 € C with Re8 > —1, if ¢ € ¢PC{¢} converges for any ¢ on (Clog with [¢] < 27
and extends analytically along any path of C\ 27iZ issuing from 1, then $and ¢ = B 1o
are said to be 2wiZ-resurgent.

— Given w € 27iZ and a path I' in C\ 27iZ going from 1 to w+1, if ¢ is 2miZ-resurgent and
if its analytic continuation along I', which is a holomorphic germ contr ¢ at w + 1, takes

the form
c log C

2miC
where ¢ € C and ¥, R € C{¢}, then ¢ and ¢ = %*1(5 are said to be (w,I")-simple.

contr ¢p(w + ¢) = X5+ R(¢) for ¢ >0, (1)

— In the above situation, we set 42/ F(ﬁ = Y, which is the monodromy of { — contp &(w + <)
around 0, and /" ¢ .= ¢ + B~ € C[[z~"]]. The operator /! thus defined on the space
of all (w,T")-simple formal series is called the alien operator associated with (w,T").



(Observe that safzf  is itself 27miZ-resurgent because contr q@(w + () extends analytically along
any path of C\ 27iZ.)

Definition 2. Let (ﬁ be 2wiZ-resurgent. We say that (i is of finite exponential type in non-
vertical directions if, for any path ~ of C\ 27iZ going from 1 to ¢, € iR and any dy € (0,7/2),
there exist Cy, Ry > 0 such that

cont. QAS(C* + tew)‘ < Cpel®t forall t > 0 and 6 € [—8p, 6] U [r — o, 7 + o). (2)

We omit the proof of the following technical statement.
Lemma 1. Let ¢y € 2 'C[[z~ ]] be 2riZ-resurgent with ¢0 ‘= By of finite exponential type
in non-vertical directions. Let ¢ = 2z~ %@y € 2z P~1C[[z""]], where a, 3 € C and Ref > —1.

Then ¢ = B € ¢BC{¢Y. Moreover, for any simple curve v: (0,4+00) — C\ 27iZ of the form
Y(t) = tug for t < to and y(t) = c+ tuy fort > t1, with |ug| = |u1| =1, w1 # i, c € C and
0 < to < t1, and for any lift 7 of v in Cig, the germ ¢ admits analytic continuation along 7
and

[ea0ac == [ =n(c)ac 3)
gl v
for all z € Cog with argz € (—0 — 3, —0 + Z) and Re(ze'?) large enough, where 6 € R is the
argument of uy which determines the asymptotzc direction of .
~ i0 A ~

In particular, L9¢(z) = foe * e H(¢) dC is well defined and coincides with z~*L%po(z) for
z € Ciog as above.
Lemma 2. Let § € (—%,2) U (5,28) and denote by Hy a O-rotated Hankel contour, i.e. a
contour in Cog which goes along a ray from el(0—27) 0—2m) ¢ (with 0 < & < 7), circles
counterclockwise 0 and then follows the ray from e to €oo. Suppose that ngb is (w,I)-simple

and ¢ — contp qg(w + () has at most exponential growth along Hy, then

0o to ell

/ e~ contr ¢p(w 4 ¢)d¢ = ¢ + L% (2),
Ho

where Y B L) =c+ By, argz € (—0 — Z,—0+ Z) and Re(zel?) >> 0.

i0
Proof. The term contributes ¢, the remainder contributes [5, ™ e %(¢) d(+O(e[lne|). O

2m C

Lemma 3. If by € C{z7'} and b is 2miZ- resurgent, then the formal series boo and Ciq +b0q§
do(id+by) are 2miZ-resurgent. If moreover ¢ is (w,T)-simple, then they are also (w,T)-simple,
with

Ay (009) =bo Ay &, Ay Ciasnd = " Ciasny s .
Idea of the proof. Start with by € =z “1C{z71}, hence by(¢) is entire; 91 = bop and )y =
Cia +b0gz5 & have Borel images

= /0 Kj(6,0)d(€)de  for ¢ € Cog with [¢] <27,  j=1,2, (4)

where Ki(£,¢) = BO(C —¢) and Ky(£,¢) = Zk>1 , b*k(C ¢) are holomorphic in C x C

(¢f. the proof of Lemma 2 in [DS13]). The analytic continuation of 9 or 1 along a path
v: [0,1] — C\27iZ is thus given by the same integral as (4), but integrating on the concatenation
[0,7(0)] + 7 + [y(1),¢]. It is then possible to analyze the singularities of ¢; and s at w. We
omit the details. O



The above is inspired by Ecalle’s resurgence theory [Eca81]. In fact, 2miZ-resurgent series
are stable under multiplication (see [Eca81], [Saul3] or [Saul4al), and so are the (w,I')-simple
ones, but we shall not require these facts in this article, nor the far-reaching extension of the
framework which allows to define alien operators or alien derivations in much more general
situations.

2 The singular structure of the formal Borel transform of the
formal Fatou coordinate

We use the same notations as in [DS13]: f = (id+b) o (id+1) = 2+ 1 — pz L + O(27?) is a
simple parabolic germ at co; under the change of unknown v(z) = z+ plog z+ ¢(z) the equation
vo f=wv+ 1 is transformed into

z71b(2 — —
Cid 19 = Ciq +pp + b, bi(z) = b(z) + plog Mz ) ¢y 2c{z1} (5)

1—2-1

which has a unique solution ¢ € z~'C[[z!]], shown to be 27iZ-resurgent and Borel summable.
Setting ¢ = %@, one gets two normalized Fatou coordinates v (z) = z+plog z+LFH(2), where
LTp(z) and L~ p(z) are Laplace transforms along R™ and R, holomorphic for arg z € (—, )
and arg z € (0,27), and a pair of normalized lifted horn maps puP/low vf o (7)1 (or Ecalle-
Voronin modulus—see [Eca81], [Vor81], [DS13]):

WP(Z)=Z+ Y Ape®™?  for ImZ >> 0,
m>1

WOY(Z) =7 = 2mip+ Y Ame 7 for Im Z << 0.

m>1

We are interested in the Ecalle-Voronin invariants Ap, m e Z*.

Let w € 27iZ* and I' be a path in C \ 27iZ going from 1 to w + 1. In general ¢ is not
(w,T')-simple, but we shall directly prove that, up to a linear combination of monomials, 2@
is (w,I')-simple. More precisely, we shall prove the (w,I')-simplicity of ® := z#*{p}x, with the
notation

p=[elv+{2tv,  [BlweSpan(="1 272 27), {ghy e 27 VTIC[ T,
where N > max{0, —2Re a} is integer, with o := —pw. Observe that ® € 2 A-1C[[z~1]] with
B :=a+ N and Ref > 0. We shall also compute 7! ® and relate it to the lifted horn maps
o fWe first introduce an auxiliary sequence of formal series, using the same operator
E: 272C[[z7Y] — 27 C[[z7Y)
inverse of Cijq_1 — Id as in [DS13], but replacing B with
B¥: i e P Cig b — b = e P Byp + (7% — 1))
Proposition. The formal series U, = (EB¥)*1 € 27 *C[[z7Y] vield a formally convergent

series » ). and Zkzo U, = e “P. Foreach k > 1, Uy, is 2miZ-resurgent and, for any e, L > 0,
there exist Co, M > 0 such that

k

~ M
|cont, BY}| < COF’ forallk>1 and v € % 1,



where . 1, is the set of all paths of length < L issuing from 1 and staying at distance > € from
2miZ.

Proof. Let ¢ := e “" — 1. The estimates are obtained by adapting the proof of Lemma 2 of
[DS13], with a new kernel function K“ (¢, () = é¥(¢ &) +Zk>1 b*k(C §)+Zk>1 k' (éw*
b*F)(¢ — €). The formal series ¥ = > k>0 0}, is the unique solutlon with constant term 1 of

Cia1¥ = e 9P Ciq,W—s0 is e “%, as can be seen by exponentiating (5). O

Since Re 8 > 0, the operator Ciq_; —Id maps 2~ #~1C[[z71]] to 2~ #~2C[[z~1]] bijectively; we
denote by Ejg the inverse, whose Borel counterpart is the multiplication operator

By: 3(0) € T = = (0) € PellC])
We introduce an operator

Bt $ € =P IC=7] = caCia o — 6 € =P2C[=7 1],

with ¢, = (H220)* e 14 271C{z71).
Theorem 1. Let b, = Zﬁa(l — 271)7abN, with by == by — Cidfl[(ﬁ]N + Cider[(ﬁ]N
~ The formal series ®y(2) = (EgBa)FEgby € 27 #~1C[[z7Y]], k > 0, are (w,T)-simple, and

so is 2z “{PInN.
— For any e,L > 0, there exist Co,A > 0 with A < 1 such that, for each v € %,

|cont, B®y,| < CoA*. Moreover ® == 3", ., By, coincides with the formal Borel transform
of 2 *{@}n- )

— There exist complexr numbers S K k >0, which are O(A¥) for some A < 1 and satisfy

AL By, = Z S};kllif;@ for each k >0, (6)
ki1+ko=k
Ay (27 {@In) = S, e 7% where SL = SL. (7)
k>0

Theorem 2. For m € Z*, let I',, denote the line segment going from 1 to 2wim + 1. Then the
FEcalle-Voronin invariants of f are given by

Ay =SEm o™ mo yr S0 A, =—Sm  ifm < 0.

2mim © 2mim

Remark 1. When a # 0, the series of formal series 3. @} is not convergent for the topology
of the formal convergence (but it converges for the product topology z #~1C[[z7!]] ~ CV) and,
unless —a € N or SL =0, the singularity at w of contr Z¢ is not simple it is rather of the
form contr B(w-+() = prapSL T (1+0(C))+O() if a ¢ Z or S SEC (1+0([¢])
if « € N,

Remark 2. Theorem 2 can be extracted from [Eca81], which gives detailed proofs only for
the case p = 0, and also the case I' = Ty, of (7) with the equivalent formulation Af ¢ =
Az~ Peme=wm? (“Bridge equation”), where w,, = 27im. The name “resurgence” evokes the
fact that the singular behaviour near w,, of the analytic continuation of a germ at 0 like d can
be explicitly expressed in terms of d itself.



The representation of ® = 2(z~*{@} ) as the convergent series 3 &y = 3 B((EsBa)*Esbs)
and the computation of the action of the alien operator Y in (6)—(7) are new. The point is
that &/ @, = SL, + O(z71), so Equation (6) says that

~ Srk A~ 10 A~ ~
conty O (w+() = 27:—1C+42%£ @k(C)zim—i—regular germ, & = Z Sg,qu’kg e C{¢}.

k1+ko=k, ka>1
The numbers S£ . appear as generalized residua, for which we can give quite explicit formulas:

Addendum to Theorem 1. Let ¢, := B(cq — 1), which is an entire function, and

— A o (_S)kA*k o (_g)k o 7xk -
Ka(€.Q) =& =€) + )~ b (= + Y =@+ 0™ -9, (8)

k>1 k>1

which is holomorphic in C x C. Let T denote a parametrization of the path obtained by concate-
nating the line segment (0, 1], the path I and the line segment [w + 1,w]. Then

SUI;O = 27iconty. b (W),

Ko(&1,8) - Ka(§p—1, &) Ko (§ryw)
(ef1 —1)--- (egk—l —1)(efx — 1)

Sok = 27Ti/ cont;. b (&1) déi A - AdEy, k>1,

T,k
with the notation Aj, = { (f’(sl), e ,f‘(sk)) | s1 < -+ < s } for each positive integer k.

., and in particular each Ecalle-Voronin
invariant, can be obtained as the convergent series of these “residua” SUI: e
b

Observe that, according to (7), each coefficient SL

Proof of Addendum to Theorem 1. The normal convergence of the series (8) follows easily from
the estimates available for the convolution of entire functions (see inequality (9) in [DS13]), and
the Borel counterpart of B, is the integral transform with kernel function K, hence

conts Bud (3(9) = [ Kal1(0).2(5)) cont, 3(1(0)) /) do o)

for any 2riZ-resurgent ¢ and any path ~: (0,4] = Cyjog (with any ¢ > 0) whose projection
onto C avoids 27iZ and which starts as y(s) = sug for s > 0 small enough (with fixed ug € C*).
Writing @5, = Eg(BaEB)kba, by repeated use of (9), we obtain an explicit formula for the
analytic continuation of its Borel transform: for any ¢ close enough to the endpoint of a path ~
as above,

A~

A 1
cont, ®o(¢) = <1 cont ba(€),

A~ 1 - Ka 3 T Ka -1 Ka )
cont, @1 (¢) = <1 /A7 k conty ba (€1) (e(gl _521)) e (e&g? _1 f)k()eﬁk Efli)o déy A A dég, k

with the notation A, = { (v(s1),...,7(sk)) | 51 <+ < s }. The conclusion follows. O

WV



Figure 1: Deformation of the contour.

Theorem 1 implies Theorem 2. For all m > 1 we set wy, == 2rim and ®(™) = ;= {31y with
Q= —pwy, and Ny, = max{0, —2Re a,;,}. By [DS13] we know that ¢ is of finite exponential
type in non-vertical directions; we fix 67 € (0,%), 6~ € (§,7) and Qv = {z€Cig | argz €
(=0 —5,—0~ + %), Re(z ¢?") > R, Re(ze?) > R}, with R large enough. Identifying
z € Qlﬁw with its projection in C, we have Im z < 0 and the branches of log used in v} and v,
differ by —2i; for mgy > 1, deforming the contour of integration (see Figure 1), we get

uf (2) = 5 (=) = —2mip + (£ — £7)(2)

mo mo
= —2rip + ( Z / +[ ) e—ZC@(C) dC = —27ip + Z I, + O(e(2ﬂmo+7r)lmz)’
m=1""7Tm TYmq m=1

with I, = fﬁ{ ~*Ccontr,, p(¢)d¢ = f,y ~*Ccontr, {B(¢)}n,, d¢. Since each 7, can be ex-
pressed as the difference of two paths to which Lemma 1 applies, we have

I, =z%m / e~ contp,, ™ (¢) d¢.
Ym
Denoting by H™ a #~-rotated Hankel contour, we get I,,, = z%m e~“m? fg{, e~* contr,, P(m) (Wm~+
¢)d¢ = SEm eamlogzwmz=wml™¢ by Lemma 2 and (7) (Borel-Laplace summation commutes
with exponentiation—see e.g. [Saulda]). Thus

(h}kow —id)ow, = — = —2rip + Z SFm —wm (—2miptvi ) + O(e(2ﬂmo+7r) Im z) on Qlow

whence A_,, = SE:S e?™pwm for m > 0. The case m < 0 is similar, except that, on the domain

Qy defined analogously with —m < = < —Z < 67 < 0, the two branches of log used in v
match and the orientation of the paths differs. O

Proof of Theorem 1. First observe that b, € 2~ #72C{271} because b, and [@¢]y € C{z7'} hence
by € C{z7'}, and

by = Cia—1{¢}n — Ciap{@}n € 2V 2C[[z7]].
Thus the formal series ® are well defined in z=#~1C[[z~']]; they are 2miZ-resurgent because

this property is preserved by Eg and B, (Lemma 3) and we start with Bd, = Egi)a = ZZ—(fl)



meromorphic on Clog. Their (w,I')-simplicity and the existence of contants SI, such that (6)
holds result by induction on k (using the fact that B¥¥y, € 2~2C[[z~1]] for all k) from

Lemma 4. If ¢ is (w,T')-simple, then so is Bao, with ar Bad = B¥ ar é. If moreover dgg} €
z72C[[z7Y] (ie. ¢=x(0) =0 in (1)), then also Eg¢ is (w,T)-simple and % Egp — E oL ¢ is
a constant.

wb —wb

Proof of Lemma 4. The first identity results from Lemma 3 and e™“’¢c, = e*"+. For the second

one, in view of (1), the analytic continuation of %Eg(ﬁ is contr Eg(i(w +¢) = ég(—f)l% + ﬁ(—_ol,
hence /! Egp = EB'x + 2miR(0). O

We finish the proof of Theorem 1 by estimating ®;, := Z2®;, by means of the recursive formula
dy, = EﬁB Py

Lemma 5. For0 <e <1, L > 1, let @QL denote the set of all naturally parametrised paths
v: (0,4(7)] = Ciog, where l(vy) < L 1is the length of 7y, for which there exists 0 € [—m, 3]
such that v(s) = se'’ for s < ¢ and dlst( (s), 27‘(’1Z) > ¢ for s > e. For any integer £ > 0,

let V; 1.0 denote the space of all gb € (PHC{¢) admitting analytic continuation along the paths
of #..1, and such that H¢HEL£ = sup { s~ ReF~*|cont, qﬁ( ()|, for v e R and s € (0,(v)] }

is finite. Then the operator EgBa leaves invariant the spaces V; 1.¢ and, for each € and L, there
exists M (e, L) > 0 such that

HEBBa¢HeLz = %IMHE L Jfor all ¢ € Very and £>0.

Proof of Lemma 5. One can find x = x(e, L) > 0 such that, for each v € Z. 1, and s € (0,£(7)],
eCL—l" for |C] <
L, dist (¢,27miZ*) > e}. From (9), we get ||Badl|l, 1.0y < %Hé”si;é with Np, =

supjg ¢« d 1K (€, 01}, and | EsBadll. 1 < mmegrirn 191l i O

[7(s)| > ks (because arg y(s) is uniformly bounded). Let My = Mo (e, L) := sup {

_M

We have ‘ﬁ‘ < 1 because Rear >

M(e,L) —
mepn < A = max {

o=[0],+{0},  [8],€ & =Span(¢? "t ... P, {4}, e (PHIC{¢).

Now ¢ € (PHIC{¢} = Bad = alxd+0(¢P42) = EgBad = $1x9+0(¢PHH) e ¢Fric{(},
thus

Let us choose an integer d > 0 so that

For any ¢ € ¢(PC{(}, we use the notation

aTNT ‘ }

[(i)k]d - A[(i)k—l]d’ {(i)k}d - {EBBa [‘i)k—l]d}d + Eﬁéa{ék—l}d’
where A € End &y is defined by A(ﬁ = [EgBaé] , and has a triangular matrix in the basis
(€7, ¢PTh, L¢P, with ACPHE = N CPH(1+ O(Q)), Mo = g3%57, £ =10,...,d — 1. By the
choice of 3, the eigenvalues have modulus |\s| < A, hence || [@k] JA= O(AF) for any norm on &.
Since ¢ € & — {Eﬁéaéﬁ}d GA Ve 1.4 1s linear, we can ﬁnAd C{, such that ||{EBBQ [(i)k—ljd}due,L;d <
CLAF for all k > 1, hence {®x}ylle poa < CéAk—i—AH{‘qu}dHE,L;d. We thus get [[{®r )]l 1.4 <
(I {Ci)o}d|]€7L;d+C(’]k) AF for all k > 0 and, increasing slightly A, the desired bounds for ‘contv o ‘



By uniform convergence, we can now define a function ® = > k>0 d, e ¢PC{¢}, whose
inverse formal Borel transform ® € »~#~1C[[2~]] satisfies ® = Egb, + EsB,®, whence

Cia 1P = caCig 13® + by,

Multiplying both sides by z%(1 — z=1), we find that ¥ = 2°® € z~N-IC[[z7!]] satisfies
g’id,lzﬁ = Ciqa 45 + by, an equation of which {5} N is the unique solution in z~1C[[z7!]], hence
® =2"{p}nN. ) o

The estimates for the ®;’s imply similar estimates for the monodromies X = /' ®;, and
hence for the residues S& i of the functions cont., Bp(w +¢) — X(¢)%S. Equation (7) follows by

27i
uniform convergence. ]
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