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The long-term clinical success of dental implants is related to their early osseointegration. This paper reviews the different steps
of the interactions between biological fluids, cells, tissues, and surfaces of implants. Immediately following implantation, implants
are in contact with proteins and platelets from blood. The differentiation of mesenchymal stem cells will then condition the
peri-implant tissue healing. Direct bone-to-implant contact is desired for a biomechanical anchoring of implants to bone rather
than fibrous tissue encapsulation. Surfaces properties such as chemistry and roughness play a determinant role in these biological
interactions. Physicochemical features in the nanometer range may ultimately control the adsorption of proteins as well as the
adhesion and differentiation of cells. Nanotechnologies are increasingly used for surface modifications of dental implants. Another
approach to enhance osseointegration is the application of thin calcium phosphate (CaP) coatings. Bioactive CaP nanocrystals
deposited on titanium implants are resorbable and stimulate bone apposition and healing. Future nanometer-controlled surfaces
may ultimately direct the nature of peri-implant tissues and improve their clinical success rate.

1. Introduction

Implants are commonly used in dental surgery for restoring
teeth. One of the challenges in implantology is to achieve and
maintain the osseointegration as well as the epithelial junc-
tion of the gingival with implants. An intimate junction of
the gingival tissue with the neck of dental implants may pre-
vent bacteria colonisations leading to peri-implantitis while
direct bone bonding may ensure a biomechanical anchoring
of the artificial dental root (Figure 1).

The first step of the osseointegration of implants is called
primary stability and is related to the mechanical anchorage,
design of implants, and bone structure [1]. This primary
interlock decreases with time at the benefit of the secondary
anchorage, which is characterized by a biological bonding
at the interface between bone tissues and implant surface.
Between the primary mechanical and secondary biological
anchorage, a decrease of implant stability could be observed.
Many studies have attempted to enhance the osseointegra-
tion of implants by various surface modifications. The aim is

to provide metal implants with surface biological properties
for the adsorption of proteins, the adhesion and differ-
entiation of cells, and tissue integration. These biological
properties are related to chemical composition, wettability,
and roughness of metal implants surfaces. However, the
control of these surface properties at the protein and cell
levels, thus in the nanometre range, remains a challenge for
researchers and dental implants manufacturers.

Nanotechnologies may produce surfaces with controlled
topography and chemistry that would help understanding
biological interactions and developing novel implant surfaces
with predictable tissue-integrative properties [2, 3]. Various
processing methods derived from the electronic industry
such as lithography, ionic implantation, anodization, and
radio frequency plasma treatments may be applied to the
surfaces of dental implants to produce controlled features at
the nanometer scale. These surfaces may then be screened by
using high throughput biological assays in vitro. For instance,
specific protein adsorption, cell adhesion, and differentiation
of stem cells should be studied in relation to the surface
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properties. This approach may define the ideal surface for
a specific biological response. Following in vitro screening,
nanostructured surfaces may then be tested in animal models
to validate hypothesis in a complex in vitro environment.

New coating technologies have also been developed for
applying hydroxyapatite and related calcium phosphates
(CaP), the mineral of bone, onto the surface of implants
(Figure 2). Many studies have demonstrated that these CaP
coatings provided titanium implants with an osteoconduc-
tive surface [4, 5]. Following implantation, the dissolution
of CaP coatings in the peri-implant region increased ionic
strength and saturation of blood leading to the precipita-
tion of biological apatite nanocrystals onto the surface of
implants. This biological apatite layer incorporates proteins
and promotes the adhesion of osteoprogenitor cells that
would produce the extracellular matrix of bone tissue.
Furthermore, it has been also shown that osteoclasts, the
bone resorbing cells, are able to degrade the CaP coatings
through enzymatic ways and created resorption pits on the
coated surface [5]. Finally, the presence of CaP coatings on
metals promotes an early osseointegration of implants with a
direct bone bonding as compared to noncoated surfaces. The
challenge is to produce CaP coatings that would dissolve at
a similar rate than bone apposition in order to get a direct
bone contact on implant surfaces.

This paper reviews the different steps of the interac-
tions between biological fluids, cells, tissues, and surfaces
of implants. Recent nanoscale surface modifications and
calcium phosphate coating technologies of dental implants
are discussed. The sequence of biological events in relation
to surface properties is related. Mechanisms of interaction
with blood, platelets, hematopoietic, and mesenchymal stem
cells on the surface of implants are described. These early
events have shown to condition the adhesion, proliferation,
and differentiation of cells as well as the osseointegration of
implants. Future implant surfaces may improve the tissue-
integrative properties and long-term clinical success for the
benefits of patients.

2. Nanoscale Surface Modifications

Surfaces properties play a determinant role in biological
interactions. In particular, the nanometer-sized roughness
and the chemistry have a key role in the interactions of
surfaces with proteins and cells. These early interactions will
in turn condition the late tissue integration. In this prospect,
different methods have been reported for enhancing bone
healing around metal implant [2, 6].

Modifying surface roughness has been shown to enhance
the bone-to-implant contact and improve their clinical
performance [2, 7]. Grit blasting, anodisation, acid etching,
chemical grafting, and ionic implantation were the most
commonly used methods for modifying surface roughness
of metal implants. Combinations of these techniques could
be used such as acid etching after grit-blasting in order to
eliminate the contamination by blasting residues on implant
surfaces. This grit blasting residue may interfere with the
osteointegration of the titanium dental implants [8–10].

It has been shown that grit-blasting with biphasic calcium
phosphate (BCP) ceramic particles gave a high average
surface roughness and particle-free surfaces after acid etching
of titanium implants. Studies conducted both in vitro and
in vivo have shown that BCP grit-blasted surfaces promoted
an early osteoblast differentiation and bone apposition
as compared to mirror-polished or alumina grit-blasted
titanium [11, 12]. Anodization is a method commonly used
to obtain nanoscale oxides on metals including titanium [13,
14]. By adjusting the anodization condition such as voltage,
time, and shaking, nanoscale properties could be controlled.
Shankar et al. [15] have reported that the diameters of
the nanotubes could be modified to a range from 20 to
150 nm in modifying voltage conditions. On the other hand,
Kang et al. [16] found that TiO2 nanotube arrays were
more uniform on electro-polished than machined titanium.
Moreover, TiO2 nanotubes on Ti improved the production of
alkaline phosphatase (ALP) activity by osteoblastic cells. In
particular, nanotubes with a diameter of 100 nm upregulated
level of ALP activity as compared to 30–70 nm diameter
nanotube surfaces [17]. Since ALP is a marker of osteogenic
differentiation, these surfaces may demonstrate enhanced
bone tissue integrative properties.

Another approach for improving osseointegration of
dental implants is to apply a CaP coating having osteo-
conductive properties [18–20]. Different methods have been
developed to coat metal implants with CaP layers such as
plasma spraying, biomimetic and electrophoretic deposition.
Nevertheless, plasma-sprayed HA-coated dental implants
have been related to clinical failures due to coating delimita-
tion and heterogeneous dissolution rate of deposited phases.
An electrochemical process which consists of depositing cal-
cium phosphate crystals from supersaturated solutions has
been proposed for coating titanium implants with calcium
phosphate layers [21, 22]. Upon implantation, these CaP
coatings dissolve and release Ca2+ and HPO4

2− increasing
saturation of blood in the peri implant region. This dissolu-
tion led to the precipitation of biological apatite nanocrystals
with the incorporation of various proteins. This biological
apatite layer will promote cell adhesion, differentiation into
osteoblast, and the synthesis of mineralized collagen, the
extracellular matrix of bone tissue. In addition to dissolution,
osteoclast cells are also able to resorb the CaP coatings and
activate osteoblast cells to produce bone tissue. As a result,
these CaP coatings promote a direct bone-implant contact
without an intervening connective tissue layer leading to a
proper biomechanical fixation of dental implants.

3. Interactions of Surface Dental Implants
with Blood

During surgery, blood vessels are injured and, thus,
dental implant surfaces interact with blood components
(Figure 3). Various plasma proteins get adsorbed on the
material surface within a minute. Platelets from blood
interact also with the implant surface. Plasma proteins
modified the surface while activated platelets are responsible
of thrombus formation and blood clotting. Subsequently,
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Figure 1: Tissue integration of dental implant. Note the intimate contact with gingival tissue in the upper part and the desired contact
osteogenesis in the tapered lower part rather than distance osteogenesis.

the migrations of various cell types interact with the surface
through membrane integrin receptors. These early events
occur prior to peri implant tissue healing.

Plasma contains dissolved substances such as glucose,
amino acids, cholesterols, hormones, urea, and various ions
(Figure 4). Most of these components are needed for the
viability of cells and tissues. All of these blood substances
could interact with implant surface thus modifying their
chemical properties like charge or hydrophobicity.

Blood interactions with implants lead to protein adsorp-
tion, which is dependent on the surface properties of the
material and occurs through a complex series of adsorption
and displacement steps known as the Vroman effect [23].
A hydrophilic surface is better for blood coagulation than a
hydrophobic surface. Consequently, dental implants manu-
facturers have developed high hydrophilic and rough implant
surfaces which in turn exhibited better osteointegration

than conventional ones [24]. Adsorption of proteins such as
fibronectin, vitronectin on surface of dental implants could
promote cell adhesion by cell-binding RGD domain (arg-gly-
asp). This RGD sequence interacts with integrin present on
the cell membrane [25]. Interactions between cell membrane
integrins and proteins coated onto implant surface play a
key role in adhesion of many cells types. After proteins
absorption, the osteointegration is characterized by platelets
adhesion and fibrin clots formation at the injured blood
vessels site. It has been shown that implants in contact with
platelet-rich plasma (PRP) with a platelet concentration of
approximately 1,000,000 protein/μL have a positive effect
on osteointegration. At lower concentrations of PRP, the
effect was not optimal, while higher concentrations resulted
in a paradoxically inhibitory effect of bone regeneration.
Other studies were not in agreement with this PRP beneficial
effect on the osseointegration of dental implants [26].
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Figure 2: Scanning electron micrographs and energy dispersive analysis for X-ray of (a) nanostructured titanium surface obtained by
anodization and (b) nanosized thin calcium phosphate (CaP) coating on titanium produced by electrochemical deposition. Note the regular
array of TiO2 nanopores of approximately 100 nm in diameter and the nanosized CaP crystals on titanium surfaces.
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Figure 3: Interactions of surface of dental implants with blood.
Note the numerous proteins, red blood cells, and activated platelets
that lead to blood clotting on implants.

The assessment of bioactivity of surface-treated dental
implants should be tested in vitro using biological fluids
containing blood components [2].

4. Interactions between Surfaces and
Mesenchymal Stem Cells

Following blood clotting around dental implants, several
cells interact with surfaces for tissue healing. Mesenchymal
stem cells (MSCs) attracted to the injured site by chemotactic
factors have a determinant role in peri implant tissue healing.

4.1. Origin of Mesenchymal Stem Cells. Mesenchymal stem
cells (MSCs) are stem cells derived from somatic tissue which
can be differentiated into mesenchymal lineages such as
bone, cartilage, fat, and skin. In addition, MSCs are present
in many conjunctive tissues and blood at low concentrations
serving as a sort of internal repair system. Mesenchymal stem
cells are distinguished from other cell types by two important
characteristics. First, they are unspecialized cells able to
renew themselves through cell division, sometimes after long
periods of inactivity. Second, under certain physiologic or
experimental conditions, they can be induced to become
tissue- or organ-specific cells with special functions. MSCs
have high proliferative and multipotent capacity leading
to differentiated cells under the guidance of various cues
or niches. MSCs are conventionally defined as adherent,
nonhematopoietic cells expressing markers such as CD13,
CD29, CD44, CD54, CD73, CD90, CD105, and CD166, and
being negative for CD14, CD34, and CD45 [27, 28]. While
originally identified in the bone marrow [29], MSCs have
been extracted from numerous tissues including adipose
[30, 31], heart [32], dental pulp [33], peripheral blood
[34], and cord blood [35]. One of the major properties of
MSCs is their ability to differentiate into various cells like
adipocytes [36], chondrocytes [30], osteoblasts [37], neurons
[38, 39], muscles [39, 40], and hepatocytes [41] in vitro after
treatment with induction agents.

4.2. Migration, Adhesion, and Proliferation. The integra-
tion of implant with neighboring bone and gingival tis-
sue depends on successful crosstalk between old tissue and
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Figure 4: Scheme showing blood composition and components that primary interact with surface of dental implants.
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Figure 5: Scheme of the adhesion, proliferation, and differentiation
of mesenchymal stem cells on nanostructured surfaces. The adhe-
sion of stem cells is characterized by the expression of cell surface
markers (VCAM, ITG, and THY1) while phenotypic markers
(Runx2, ALP, OCN, and OPN) are specific to their osteoblastic
differentiation (OCN: osteocalcin; OPN: osteopontin).

implant surface. The challenge in dental implant research is
the capability of the surface to guide cells colonization and
differentiation. Cell migration, adhesion, and proliferation
on implant surfaces are a prerequisite to initiate the tissue
regeneration (Figure 5). Authors have shown that some fac-
tors present in tissues and secreted during the inflammatory
phase are able to attract MSCs to the injured site [42, 43].
MSCs migration and proliferation were stimulated in vitro by
many growth factors including PDGF [44, 45], EGF [45, 46],
VEGF [47], TGF-β [44, 48], and BMP-2 and BMP-4 [44, 47].
These factors are certainly released in the injured sites by cells
involved in tissue healing. Furthermore, plasma clot serves as
storage to fibrin molecules and releases system for a variety
of bioactive factors including growth factors that attract and
differentiate MSCs into specific lineages [49–51]. The platelet
factors are well known to stimulate the proliferation of MSCs
[52]. The formation of a clot matrix with a potent chemoat-
tractive factor like PDGF, EGF, or fibrin may further enhance
MSCs numbers and peri implant tissue healing surface.
Moreover, the plasma clot in contact with implant surface
represents a three-dimensional microporous structure that
allows diffusion of regulatory factors [53, 54] and is involved

in the migration, proliferation, and differentiation of MSCs.
After MSC recruitment in the injured site, cells adhere on the
local extracellular matrix as well as on the implant surface
beginning an extensive proliferation in order to build up
new tissue. Again, surface modifications of implants in the
nanometer range condition the biological responses.

4.3. Differentiation. In the microenvironment, MSCs are
stimulated by some specific factors to differentiate into the
adequate cell line. Under the influence of these factors, MSCs
switch to osteoblastic cells in contact to bone tissue while
they differentiate into fibroblastic lineage in the gingival
tissue region. These two differentiation pathways are in con-
currence around dental implants. In some cases, implants are
encapsulated by fibrous tissue due to the proliferation and
differentiation of MSCs into fibroblastic cells. In response
to cytokine, fibroblasts migrate and generate a capsule of
collagen, the first step in generation of gingival tissue or
rejection on contact to bone. This fibrous capsule prevents
bonding between implant surface and juxtaposed bone and
causes a failure of the implant [55]. On the other hand,
both the differentiation of MSCs into fibroblastic lineage
and the fibroblastic adhesion are desired in the gingival
upper part of dental implants. Fibroblasts adhesion has
been shown to be lower on nanoscale surface compared
to conventional surfaces [56]. Moreover, nanometer size
features have been shown to decrease fibroblast adhesion
and proliferation [57, 58]. The micro- and nanoscale surface
properties of metal implant, including chemistry, roughness,
and wettability, could affect bone formation [59]. Numerous
treatments such as machining, grit-blasting, Ti/HA plasma
spray, chemical etching, and anodization are available to
modify the implant surface. Research has specifically demon-
strated that nanorough Ti [60] and nanostructured Ti can
enhance osteoblast adhesion and differentiation compared
to their nanosmooth control [61]. Furthermore, surfaces
with micro- and nanopores have shown to enhance greatly
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Figure 6: Micrographs showing the osteointegration of bare titanium- (Ti-) and calcium phosphate- (CaP-) coated implants after
implantation in femoral condyles of rabbits for 4 weeks. Note the direct bone apposition on CaP-coated implants (arrows) on both histology
(basic fuchsin, toluidine blue staining) and back-scattered electron microscopy (BSEM) images.

osseointegration [62, 63]. Surface properties may control the
steps of adhesion, proliferation, and differentiation of MSCs
and, thus, condition tissue integration.

5. Tissue Integration

Brånemark et al. [64] described the osseointegration as
a direct structural and functional bone to implant contact
under load. As previously discussed, the biological events oc-
curring at the tissue-implant interface are influenced by the
chemistry, topography, and wettability of dental implant
surfaces. The challenge in developing new implant surface
consists in increasing the clinical success rate as well as
decreasing the tissue healing time for immediate loading of
implants, particularly in aesthetic situations [65–67]. One
of the objectives is to develop implant surface having pre-
dictable, controlled, and guided tissue healing. For instance,
surfaces that promote contact osteogenesis rather than
distance osteogenesis would be desired in bony site while
intimate fibrous tissue healing in gingival tissue (Figure 1).
In order to enhance this intimate contact between tissues

and implant, surface treatments at the nanometer scale have
been performed on metal implants and tested in various
animal models. Implant surface with various roughnesses
have been used to increase the total area available for osteo-
apposition. Kubo et al. [65] observed a substantial increase
by 3.1 times in bone-titanium interfacial strength by Ti
nanotube (300 nm) at 2 weeks of implantation in femur rats.
These results suggest the establishment of nanostructured
surfaces for improved osteoconductivity. Moreover, Ogawa
et al. [68] have prepared Ti nanostructure by physical vapour
deposition and tested their osseointegration in femur of rats.
They found an increased surface area by up to 40 % and a
greater strength of osseointegration for the nanostructured
compared to an acid-etched surface. Some authors have
correlated the initial events in bone formation adjacent to
surface with the long-term tissue response to these materials
in humans [69, 70].

By mimicking the chemical composition of natural bone,
hydroxyapatite and CaP coatings on Ti greatly enhance
osteointegration. As shown in Figure 6, a greater direct bone
apposition was observed on CaP-coated than on bare Ti-
coated implants. During the bone healing process, calcium
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and phosphate ions are released from the CaP coating in the
peri-implant region and saturate body fluids to precipitate a
biological apatite, which serves as a substrate for osteoblastic
cells producing bone tissue. Several authors have shown the
benefit of using CaP-coated titanium implants for improving
the osteointegration [71, 72]. In particular, Le Guehennec et
al. [20] have studied the osteointegration of four implant
surfaces in the femoral epiphyses of rabbits after 2 and 8
weeks of healing. In this study, the bone-implant contact
and bone growth inside the chambers were compared for
four different implant surfaces and shown that biomimetic
coating method may enhance the bone apposition onto tita-
nium. In order to prevent coating delamination and implant
loosening, the CaP coating should dissolve or degrade under
osteoclastic activity at a similar rate than bone apposition.
The final result should be a direct bone-implant coating
without the presence of fibrous tissue. Another advantage
of these CaP coatings is related to their preparation by
biomimetic methods at physiological temperature and pH
from simulated body fluids. CaP crystals have characteristics
that resemble bone mineral in terms of size and composition.
Furthermore, it is possible to incorporate biologically active
drugs such as antibiotics or growth factors during the
precipitation of CaP coatings on Ti implants [73]. These
molecules could be locally and gradually released in the peri
implant reguion for either preventing bacterial infections or
stimulating bone growth.

6. Conclusion

Many reports have shown that nanometer-controlled sur-
faces have a great effect on early events such as the adsorption
of proteins, blood clot formation, and cell behaviours
occurring upon implantation of dental implants. These early
events have an effective impact on the migration, adhesion,
and differentiation of MSCs. Nanostructured surfaces may
control the differentiation pathways into specific lineages and
ultimately direct the nature of peri-implant tissues. Despite
an active research in dental implants, the ideal surface for
predictive tissue integration remains a challenge.
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