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Estimation of vehicle sideslip, tire force and wheel cornering stiffness
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This paper presents a process for the estimation of tire-road forces, vehicle sideslip angle and wheel cornering stiffness. The method uses measurements (yaw rate, longitudinal/lateral accelerations, steering angle and angular wheel velocities) only from sensors which can be integrated or have already been integrated in modern cars. The estimation process is based on two blocks in series: the first block contains a sliding-mode observer whose principal role is to calculate tire-road forces, while in the second block an extended Kalman filter estimates sideslip angle and cornering stiffness. More specifically, this study proposes an adaptive tire-force model that takes variations in road friction into account. The paper also presents a study of convergence for the sliding-mode observer. The estimation process was applied and compared to real experimental data, in particular wheel force measurements. Experimental results show the accuracy and potential of the estimation process.

Introduction

Knowledge of vehicle variables such as tire forces and sideslip angle is essential for improving car safety, handling characteristics and comfort. Active safety systems such as anti-lock braking systems and electronic stability programs can significantly reduce the number of road accidents, and these safety systems may be improved if the variables of a car are well known. For instance, information about road friction means a better definition of potential trajectories, and therefore a better management of vehicle controls. However for both technical and economical reasons some fundamental data (such as tire forces, sideslip angle, road friction) are not measurable in a standard car. As a consequence, tire forces and sideslip angle must be observed or estimated. Fig. 1 illustrates wheel dynamic variables. The wheel sideslip angle represents the angular direction of the linear wheel velocity relative to the longitudinal wheel axis. Vehicle-dynamic estimation has been widely discussed in the literature, e.g. [START_REF] Arndt | Estimation of tire-road contact for integrated control applications in current vehicles[END_REF][START_REF] Stephant | Evaluation of a sliding mode observer for vehicle sideslip angle[END_REF][START_REF] Hsu | A feel for the road: a method to estimate tire parameters using steering torque[END_REF][START_REF] Gustafsson | Slip-based Tire-Road Friction Estimation[END_REF][START_REF] Kim | Identification of lateral tyre force dynamics using an extended Kalman filter from experimental road test data[END_REF][START_REF] Lakehal-Ayat | Disturbance Observer for Lateral Velocity Estimation[END_REF][START_REF] Ono | Estimation of automotive tire force characteristics using wheel velocity[END_REF][START_REF] Tanelli | Non-local Extremum seeking control for active braking control systems[END_REF]Wesemeier, 2008). The modeling of vehicle-road systems is complex because the vehicle trajectory depends on a wide variety of parameters, including tire, car and road properties. In the literature, the vehicle-road system is usually modeled by combining a vehicle model with a tire-force model (Baffet, Charara & Lechner, 2007;[START_REF] Lechner | Analyse du comportement dynamique des vehicules routiers legers: developpement d'une methodologie appliquee a la securite primaire[END_REF][START_REF] Ungoren | A study on lateral speed estimation methods[END_REF]. In this study, the estimation process is separated into two blocks (Fig. 2), where block 1 corresponds to the car body dynamic and block 2 corresponds to the tire-road interface dynamic. The first block contains a sliding mode observer (denoted as SMO) which estimates tire forces and yaw rate. This observer is constructed with a single-track model [START_REF] Segel | Theorical prediction and experimental substantiation of the response of the automobile to steering control[END_REF], in which forces are modeled without tire-road parameters ( Ḟx = 0, Ḟy = 0). One advantage of this formulation is that the estimates will not be influenced by tire-road parameters. In the second block an Extended Kalman Filter (denoted as EKF) supplies estimations of sideslip angle and wheel cornering stiffnesses. This observer is developed from a sideslip angle model and a linear adaptive tire-force model. The linear adaptive force model is proposed with an eye to correcting errors resulting from road friction changes. By separating the estimation process in two blocks, the force estimates, in the first block, are not functions of road friction parameters. Consequently the first observer is particularly robust with respect to road friction changes. Moreover, the process is separated in two blocks for practical and analysis reasons. In fact, the gains of the two observers are easier to adjust, than the gains of one bigger observer combining the two observers. 
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. The rest of the paper is organized as follows. Section 2 describes the modeling of the first block, presents the sliding mode observer SMO and shows experimental results for the estimates of tire forces. Section 3 describes the modeling of tire-road forces, proposes the Extended Kalman Filter EKF, and presents experimental results performed within the second block. The two observers are evaluated with respect to sideslip angle and tire-force measurements. Section 4 describes the sensitivity to vehicle mass of the method. Section 5 presents the conclusion. Appendix A analyzes the convergence properties of the sliding mode observer SMO and Appendix B lists the different notations.

2 Tire-road force observer, SMO

Modeling of the sliding mode observer SMO

The observer SMO is based on the single-track model [START_REF] Segel | Theorical prediction and experimental substantiation of the response of the automobile to steering control[END_REF], which is currently used to describe vehicle-dynamic behavior [START_REF] Kiencke | Observation of lateral vehicle dynamics[END_REF]. ecution is sufficiently short for real time applications. However, this model ignores vehicle roll which has a large impact on the lateral acceleration, especially at high lateral accelerations.

In order to develop an observable system (notably in the case of null steering angle) [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF], rear longitudinal tire force F xw2 is neglected relative to the front longitudinal force F x1 (assuming a front-wheel drive car in braking situation). The simplified equation for yaw acceleration can be formulated as the following dynamic relationship (single-track model):

ψ = 1 Iz [L 1 F y1 -L 2 F yw2 ], (1) 
where I z is the yaw moment of inertia. The force evolutions and the measurements are modeled as: Ḟy1 = 0, Ḟyw2 = 0, Ḟx1 = 0,

γ y = F y1 + F y2 m , γ x = F x1 m , ( 2 
)
where m is the vehicle mass. Consider the following state X∈R 4 and measurement Y∈R 3 :

X = [x 1 , x 2 , x 3 , x 4 ] = [ ψ, F y1 , F yw2 , F x1 ], Y = [y 1 , y 2 , y 3 ] = [ ψ, γ y , γ x ].
(3)

Vectors x = [ x 1 , x 2 , x 3 , x 4
] and Y = [ y 1 , y 2 , y 3 ] represent the state estimates and the measurement estimates. The measurement model is:

y 1 = x 1 , y 2 = x 2 + x 3 m , y 3 = x 4 m . (4) 
The estimation errors for states and measurements are denoted respectively as:

X = [X -x] = [ x 1 , x 2 , x 3 , x 4 ], Y = [Y -y] = [ y 1 , y 2 , y 3 ]. ( 5 
)
The observer SMO uses a sliding mode structure based principally on the works of [START_REF] Drakunov | Sliding mode observers[END_REF] and [START_REF] Slotine | On sliding observer for nonlinear systems[END_REF].

The state estimates evolve according to the single-track model (1), the force model (2) and the sign of the measurement estimation errors:

˙ x 1 = 1 Iz [L 1 x 2 -L 2 x 3 ] + Ω 1 sign( y 1 ) + Ω 2 sign( y 2 ) + Ω 3 sign( y 3 ), ˙
x 2 = Ω 4 sign( y 1 ) + Ω 5 sign( y 2 ) + Ω 6 sign( y 3 ), ˙ x 3 = Ω 7 sign( y 1 ) + Ω 8 sign( y 2 ) + Ω 9 sign( y 3 ), ˙ x 4 = Ω 10 sign( y 1 ) + Ω 11 sign( y 2 ) + Ω 12 sign( y 3 ), (6) where Ω 1 , ..., Ω 12 are the observer gains. The convergence analysis of SMO is described in appendix A. Choosing the observer gains such that:

{Ω 2 , Ω 3 , Ω 6 , Ω 9 , Ω 10 , Ω 11 } = 0, {Ω 1 , Ω 4 , Ω 5 , Ω 8 , Ω 12 } > 0, Ω 7 < 0, Ω 4 = -Ω 7 , Ω 5 = L 2 L 1 Ω 8 , (7) 
implies the convergence of the estimation vector x toward the system state X.

In the experimental tests the gains were set as:

• Ω 1 = 10, Ω 4 = 40000, Ω 5 = 52000, Ω 7 = -40000, Ω 8 = 40000, Ω 12 = 50000.

These gain values are chosen empirically, according to ( 7), numerous experimental tests and in order that the estimates converge quickly to the states. The sampling frequency is 100 Hz, and the chattering is avoided by using a linear function [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]).
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The INRETS MA vehicle (see Fig. 4) is a Peugeot 307 equipped with a number of sensors including centimetric GPS, accelerometers, odometers, gyrometers, steering angle, three Correvits and four dynamometric hubs. The three Correvits (non-contact optical sensor) gives measurements of the sideslip angles and velocities of the vehicle rear, the front-right wheel and the rear-right wheel. The dynamometric hubs are placed at the four wheels and provide measurements of tire forces and wheel torques. This study included two experimental tests: a slalom and a roundabout. These tests are representative of both longitudinal and lateral dynamic behaviors. The vehicle trajectories and the acceleration diagrams are shown in Figs. 5 and 6. These experimental tests were performed in dry asphalt. During the first test (slalom), the vehicle first accelerated up to γ x = 0.3 g (situation 1), then negotiated a slalom (-0.6 g < γ y < 0.6 g, situation 2), before finally decelerating to γ x ≈ -0.5 g (situation 3). In the second test the vehicle negotiated a roundabout at maximum steering angle of 11 o . The two diagrams show that the vehicle is subject to lateral accelerations lower than 0.7 g.

The estimation results are presented in two formats: as numerical estimation results compared with measurements, and as tables of normalized errors. The normalized error ε z for an estimation z is defined as:

ε z (i) = 100 • |z(i) -z meas (i)| max |z meas (i)| . ( 8 
)
This quantity is calculated for each sample. The vehicle parameters are

I z = 3000 kg.m -2 , L 1 = 1.12 m, L 2 = 1.46 m, m = 1447 kg.
The estimates of the tire forces along the wheel axis are obtained by applying the following equations:

F xw1 = F x1 cos(δ) + F y1 sin(δ), F yw1 = F y1 cos(δ) -F x1 sin(δ). (9) 
Fig. 7, Fig. 8, Table 1 and Table 2 present SMO observer results for the two tests. These tables show the mean and the standard deviation of the normalized errors. The state estimates were initialized with the maximum measurements during the test (for instance x 2 (t = 0) = 5448N in the slalom test). In spite of these initializations the estimates converge quickly to the measurements, showing the good convergence properties of the observer. Moreover, the SMO observer produces satisfactory estimates close to measurements for the two tests (normalized mean errors and standard deviation less than 6 % in Table 1 andTable 2). These good experimental results con- firm that the observer approach may be appropriate for the estimation of tire forces. 3 Sideslip angle and wheel cornering stiffness observer, EKF

This section introduces tire-force modeling and presents the observer EKF for the estimation of sideslip angle and wheel cornering stiffness. The filter EKF is constructed by combining models characterizing the vehicle sideslip angle and the tire-road contact forces. The sideslip angle evolution is formulated by using the single-track model, [START_REF] Segel | Theorical prediction and experimental substantiation of the response of the automobile to steering control[END_REF]:

β = 1 mVg [F xw1 sin(δ -β) + F yw1 cos(δ -β) + F yw2 cos(β)] -ψ. ( 10 
)
The wheel sideslip angles and the center of gravity sideslip angle are linked with the following relationships:

β 1 = δ -β -L 1 ψ Vg , β 2 = -β + L 2 ψ Vg . (11) 
The tire forces are usually modeled as a function of slips between tire and road, such as the wheel longitudinal slip and the wheel sideslip angle [START_REF] Pacejka | The magic formula tyre model[END_REF][START_REF] Burckhardt | Fahrwerktechnik: Radschlupfregelsysteme[END_REF][START_REF] Canudas-De-Wit | Dynamic friction models for road/tire longitudinal interaction[END_REF]. Fig. 9 illustrates different lateral tire-force models (linear, linear adaptive and Burckhardt for various road surfaces, [START_REF] Kiencke | Automotive control system[END_REF]).

For normal driving situations, lateral tire forces are usually considered linear with respect to sideslip angle (linear model, cumulative lateral tire-force for each axle):

F ywi (β i ) = C i β i , i = 1, 2, ( 12 
)
where C i is the wheel cornering stiffness (a parameter closely related to tireroad friction).

When road friction changes or when the nonlinear tire domain is reached, wheel cornering stiffness varies. Some studies have described observers which take cornering stiffness (or road friction) variations into account [START_REF] Rabhi | Vehicle-road interaction modelling for estimation of contact forces[END_REF][START_REF] Ray | Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments[END_REF]. In [START_REF] Rabhi | Vehicle-road interaction modelling for estimation of contact forces[END_REF] tire-road parameters are identified with a sliding-mode observer, while in [START_REF] Ray | Nonlinear Tire Force Estimation and Road Friction Identification: Simulation and Experiments[END_REF] tire-road forces are modeled with an integrated random walk model ( F = 0). In this study, an adaptive tire-force model is proposed (hereafter termed the "linear adaptive force model"). This model is based on the linear model to which a readjustment variable ∆C ai has been added to correct wheel cornering stiffness errors (Fig. 9):

F ywi (β i ) = (C i + ∆C ai )β i , i = 1, 2. ( 13 
)
The variable ∆C ai is included in the state vector of the EKF observer and its evolution equation is formulated according to the model (∆ Ċai = 0). The EKF observer is constructed with state X ′ ∈R 3 , input U ′ ∈R 4 and measurement Y ′ ∈R 3 as:

X ′ = [x ′ 1 , x ′ 2 , x ′ 3 ] = [β, ∆C a1 , ∆C a2 ], U ′ = [u ′ 1 , u ′ 2 , u ′ 3 , u ′ 4 ] = [δ, ψ, V g , F xw1 ], Y ′ = [y ′ 1 , y ′ 2 , y ′ 3 ] = [F yw1 , F yw2 , γ y ]. (14) 
The measurement model is

y ′ 1 = (C 1 + x ′ 2 )β 1 , y ′ 2 = (C 2 + x ′ 3 )β 2 , y ′ 3 = 1 m [(C 1 + x ′ 2 )β 1 cos(u ′ 1 ) + (C 2 + x ′ 3 )β 2 + u ′ 4 sin(u ′ 1 )]. ( 15 
)
Consider the state estimates denoted as

x ′ = [ x ′ 1 , x ′ 2 , x ′ 3 ]. The state evolution model of EKF is: ˙ x ′ 1 = u ′ 4 sin(u ′ 1 -x ′ 1 ) + F auxi1 cos(u ′ 1 -x ′ 1 ) + F auxi2 cos( x ′ 1 ) mu ′ 3 -u ′ 2 , ˙ x ′ 2 = 0, ˙ x ′ 3 = 0, (16) 
where the auxiliary variables F auxi1 and F auxi2 are calculated as:

F auxi1 = (C 1 + x ′ 2 )(u ′ 1 -x ′ 1 - L 1 u ′ 2 u ′ 3 ), F auxi2 = (C 2 + x ′ 3 )(-x ′ 1 + L 2 u ′ 2 u ′ 3
).
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The extended Kalman filter EKF is based on a study by [START_REF] Kalman | A New Approach to Linear Filtering and Prediction Problems[END_REF] and constructed according to an algorithm proposed in [START_REF] Mohinder | Kalman filtering theory and practice[END_REF]. The EKF algorithm is set according to noise variance-covariance matrices. These matrices, denoted as Q s , Q e and Q m , are associated respectively to the noises of the measurements, the inputs and the models. These noises are assumed to be Gaussian, white and centered. The variance-covariance matrices are set according to the vehicle state. This is explained with the Figs. 10 and 11. Fig. 10 presents the measurements of the front lateral tire forces F y1 as a func- tion of the front wheel sideslip angles β 1 (for a slalom test). Fig. 11 illustrates straight lines representing different potential cornering stiffnesses estimates (C i + ∆C ai = F yi /β i ). Neglecting the force saturation, the estimation of cornering stiffness is not adapted in four zones:

• in zones 1 and 2: when β i * F yi < 0 (not adapted because the cornering stiffness must be positive), • in zones 3 and 4: when the lateral dynamic is low: F yi < λ i (threshold), because some ratios F yij /β ij may have very different values in these zones.

The variance-covariance matrices (Q s , Q m ) are set in order that the cornering stiffness estimation is performed mainly in zones 5 and 6. The variance-covariance matrices are set

• in zone 1,2,3,4:

Q s = diag[1e6,1e6,1e6], Q m = diag[1e-13, 0, 0],
• in zone 5,6: -13, 0.24, 0.24].

Q s = diag[0.1, 0.1, 0.1], Q m = diag[1e
An observability function was calculated using a Lie derivative method, [START_REF] Nijmeijer | Nonlinear Dynamical Control Systems[END_REF]. The rank of the observability function, which was calculated along experimental trajectories, corresponded to the state vector dimension (3), and consequently system EKF was locally observable.

Experimental results -observer EKF

In order to demonstrate the improvement provided by the observer using the linear adaptive force model ( 13), another observer constructed with a linear force model ( 12) was used in comparison (observer denoted ORL). The robustness of the two observers was tested with respect to tire-road friction variations by performing the tests with different cornering stiffness parameters ([C 1 , C 2 ] * 0.5, 1, 1.5 with C 1 = 65000 N.rad -1 and C 2 = 50000 N.rad -1 ). The different observers were evaluated for the two tests presented in section 2.2. Figs. 12-13 show the results for the ORL observer (using the linear force model) when estimating rear sideslip angle. The ORL observer gives good results when cornering stiffnesses are approximately known ([C 1 , C 2 ] * 1). However, this observer is not robust when cornering stiffnesses change ([C 1 , C 2 ] * 0.5, 1.5). When cornering stiffness is reduced ORL overestimates rear sideslip angle (in absolute value) and, conversely, when cornering stiffness is increased rear sideslip angle is overestimated. Fig. 14, Fig. 15, Table 3 and Table 4 present rear sideslip angle estimation results obtained with the adaptive observer EKF for the two tests. The performance robustness of EKF is satisfactory since rear sideslip angle is well estimated and similar irrespective of cornering stiffness settings. This result is confirmed by the EKF normalized errors (Table 3 andTable 4) which are approximately similar. Fig. 16 and Fig. 17 present the front and rear cornering stiffness estimates (C i + ∆C i ). It can be seen that the cornering stiffness estimates remain ap- proximately constant when the lateral dynamic (sideslip angles, lateral tire forces) is low, that is to say during the first 10 s in the case of the slalom, and the first 9 s in the case of the roundabout. Then, at the beginning of the slalom at 10 s or at the beginning of the roundabout at 9 s, the lateral dynamic becomes sufficiently large, and the estimates of the cornering stiffness converge quickly to the same values. The new information obtained from ∆C ai may be used as an indication of the road friction. Indeed, for same values of the wheel sideslip angle, a significative change of ∆C ai variable can indicate a road friction change [START_REF] Baffet | Developpement et validation experimentale d observateurs des forces du contact pneumatique/chaussee d une automobile[END_REF]). ) 
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Sensitivity to vehicle mass

This section presents the sensitivity of the estimation process when the vehicle mass is unknown. Three tests are performed with a different mass (m = 1447 kg, m+300, m-300). Fig. 18 and Table 5 represent the results. Concerning the tire forces, estimates raise when the mass parameter is increased (in absolute value), and conversely, estimates decrease when the mass is reduced. The tire force estimates converge to different values, showing that SMO is sensitive to changes in vehicle mass. As regard rear sideslip angle, the variations induced by mass change are lower than those of the tire force estimates. This is confirmed by the Table 5, where normalized mean errors of F y2 varies from 2.2 % to 10.4 %, whereas normalized mean errors of β 2 changes from 4.4 % to 5.4 %. This can be explained by regarding the sideslip angle model ( 10), where the mass change in the denominator is partially compensated for the force change in the numerator.

Conclusion

This study deals with two vehicle-dynamic observers constructed for use in a two-block estimation process. The block 1 mainly estimates tire-forces (with- out an explicit tire-force model), while the block 2 calculates sideslip angle and corrects cornering stiffnesses (with an adaptive tire-force model).

The first observer SMO (block 1), a sliding mode observer, was constructed by finding the gains with respect to the convergence. The experimental evaluations of SMO are satisfactory, showing estimates close to the measurements and good convergence properties.

The second observer EKF (block 2), an extended Kalman filter combined with an adaptive tire-force model, was evaluated for different cornering stiffness settings and was compared with an observer constructed with a fixed tire-force model (ORL). Results show that ORL is not robust when cornering stiffness parameters change, whereas EKF gives good estimates of the sideslip angle. This result justifies the use of an adaptive tire-force model.

The different results show the potential of the two-block estimation process.

The first block has the advantage of providing satisfactory force estimates without a tire-force model, whereas the second block provides robust sideslip angle estimates with respect to cornering stiffness changes.

A Convergence of the SMO observer

The aim is to set gains Ω 1 , ..., Ω 12 which lead to the state estimation errors X converging toward 0. The evolution equations for the state estimation errors are the following:

˙ X = Ẋ -˙ x, ˙ x 1 = 1 Iz [L 1 x 2 -L 2 x 3 ] -Ω 1 sign( y 1 ) -Ω 2 sign( y 2 ) -Ω 3 sign( y 3 ), ˙ x 2 = -Ω 4 sign( y 1 ) -Ω 5 sign( y 2 ) -Ω 6 sign( y 3 ), ˙ x 3 = -Ω 7 sign( y 1 ) -Ω 8 sign( y 2 ) -Ω 9 sign( y 3 ), ˙ x 4 = -Ω 10 sign( y 1 ) -Ω 11 sign( y 2 ) -Ω 12 sign( y 3 ). (A.1) Proposition 1. Consider the following Lyapunov functions (Φ 1 , Φ 2 , Φ 3 , Φ 4 ): Φ 1 = 1 2 x 2 1 , Φ 2 = 1 2 x 2 4 , Φ 3 = 1 2 ( x 2 + x 3 ) 2 , Φ 4 = 1 2 (L 1 x 2 -L 2 x 3 ) 2 . (A.2)
If the derivatives of the Lyapunov functions are negative, then the estimates x will converge toward the system states X.

Proof 1. The Lyapunov functions Φ 1 , ..., Φ 4 are positive along all state trajectories, and consequently if the derivatives Φ1 , ..., Φ4 are negative, then the Lyapunov functions will converge toward zero. This entails the following convergence:

x

1 -→ 0, x 4 -→ 0, x 2 + x 3 -→ 0, L 1 x 2 -L 2 x 3 -→ 0. (A.3)
and consequently: x 1 -→ x 1 , x 4 -→ x 4 . The convergence x 2 + x 3 -→ 0 implies two possibilities at the switching surface:

• either [ x 2 -→ 0 and x 3 -→ 0], then x 2 -→ x 2 and x 3 -→ x 3 ,

• or [ x 2 -→ -x 3 ], then the convergence A.3 implies x 2 (L 1 + L 2 ) -→ 0, this entails the convergence x 2 -→ x 2 and x 3 -→ x 3 .

Remark 1. The Lyapunov functions A.2 correspond to the estimation errors for: yaw rate ψ (Φ 1 ), lateral acceleration γ y (Φ 2 ), yaw acceleration ψ (Φ 3 ), longitudinal acceleration γ x (Φ 4 ). Gains Ω 1 , ..., Ω 12 are chosen so as to make the Lyapunov function derivatives negative. 
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 1 Fig. 1. Wheel dynamic variables.
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 2 Fig.2. The estimation process is divided into two blocks, where block 1 estimates the tire-road forces and block 2 calculates sideslip angle.
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 33 Fig. 3. The single-track model, also called the bicycle model, is used in the sliding mode observer.
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 4 Fig. 4. INRETS MA Laboratory's experimental vehicle. Dynamometric hubs: wheelforce transducers. Correvit sensors: sideslip angle and velocity transducers.
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 56 Fig. 5. Slalom experimental test, vehicle position, acceleration diagram.
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 7 Fig. 7. Slalom test. SMO observer. Tire force estimates.

  Fig. 8. Roundabout. SMO observer. Tire force estimates.
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 9 Fig. 9. Lateral tire force models: linear, linear adaptive, Burckhardt for various road surfaces.

Fig. 10 .

 10 Fig. 10. Experimental test measurements of the front lateral tire forces as a function of the front wheel sideslip angles.

Fig. 11 .

 11 Fig. 11. Experimental test measurements of the front lateral tire forces as a function of the front wheel sideslip angles. The straight lines represent different cornering stiffnesses (C i + ∆C ai = F yij /β ij ). State zones 1, 2, 3 and 4 are not adapted for the estimation of cornering stiffness. The observer EKF mainly corrects cornering stiffness in zones 5 and 6.
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 1213 Fig. 12. ORL observer (linear tire-force model), rear sideslip angle estimates, with different stiffness settings.

Fig. 14 .

 14 Fig. 14. Slalom test, EKF observer (linear adaptive force model), with different cornering stiffness settings Rear sideslip angle estimates.

Fig. 16 .

 16 Fig. 16. Slalom test, EKF observer (linear adaptive force model), with different cornering stiffness settings [(C 1 , C 2 ) = (65000, 50000) * (0.5, 1, 1.5) N.rad -1 ]. Front and rear cornering stiffness estimates C i + ∆C ai .
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 17 Fig. 17. Roundabout test, EKF observer (linear adaptive force model), with different cornering stiffness settings [(C 1 , C 2 ) = (65000, 50000) * (0.5, 1, 1.5) N.rad -1 ]. Front and rear cornering stiffness estimations C i + ∆C ai .

Fig. 18 .

 18 Fig. 18. Slalom test, with different mass settings: m + 300 kg, m = 1447 kg, m -300 kg.

Proposition 2 .

 2 If the gains are selected such that:Ω 1 ≥ |Ω 2 | + |Ω 3 | + | 1 Iz (L 1 x2 + L 2 x3 )| + ǫ, Ω 12 ≥ |Ω 11 | + |Ω 10 | + ǫ, (A.4)where ǫ > 0 then the estimates of the yaw rate x1 and longitudinal tire force x4 converge toward the states x 1 and x 4 respectively. Proof 2a. The derivative of the Lyapunov function Φ 1 is:Φ1 = x1 ẋ1 , Φ1 = x1 [ 1 Iz (L 1 x2 -L 2 x3 ) -Ω 1 sign(ỹ 1 ) -Ω 2 sign(ỹ 2 ) -Ω 3 sign(ỹ 3 )], Φ1 = -x 1 [Ω 1 sign(x 1 ) + Ω 2 sign(x 2 + x3 ) + Ω 3 sign(x 4 ) -1 Iz (L 1 x2 -L 2 x3 )]. (A.5)Using the triangle inequality and A.4 now gives the following inequality for the Lyapunov function Φ1 ≤ -x 1 ǫ sign(x 1 ) < 0.

Table 1

 1 

	Slalom test, SMO observer, maximum absolute values, normalized mean errors and
	standard deviation (Std)			
	Slalom	max |z meas |	mean(ε z ) std(ε z )
	F y1	6282 N	4.1%	3.8%
	F y2	3663 N	2.2%	1.9%
	F x1	6181 N	3.8%	3.6%
	ψ	33.6 o /s	0.5%	0.3%

Table 3

 3 Slalom test, EKF observer, maximum absolute values, normalized mean errors and standard deviation (Std) of the rear sideslip angle

	Slalom	(C 1 , C 2 ) * 0.5 (C 1 , C 2 ) (C 1 , C 2 ) * 1.5
	max |β 2 |		5.7 o	5.7 o		5.7 o
	mean(ε z )		5.0%	4.4%	5.1%
	std(ε z )		5.9%	5.2%	5.5%
	Roundabout, EKF (adaptive model), rear sideslip angle (°)
	5		measurement	
			(C 1	, C 2	)*1.5	
	0		(C 1 (C 1	, C 2 , C 2	) )*0.5	
	-5					
	0	10	20	30		40	Time (s)
	Fig. 15. Slalom test, EKF observer (linear adaptive force model), with dif-
	ferent cornering stiffness settings. Rear sideslip angle estimates.

  Rear lateral tire force (in wheel axis) (N ) Ω 1 , ..., Ω 20 SMO sliding mode observer gainsI z Yaw moment of inertia (kg.m -2 ) ′ , U ′ , Y ′ EKF, state, input, measurement vectors

	Table B.1 Table B.2	
	Nomenclature (first part). Nomenclature (second part).
	Symbol Symbol	Description Description
	C 1 x, y	Front cornering stiffness (N.rad -1 ) Longitudinal and lateral vehicle positions (m)
	C 2 X, Y	Rear cornering stiffness (N.rad -1 ) SMO, state, measurement vectors
	F x1 x	Front longitudinal tire force (in body car axis) (N ) SMO, state estimation vector
	F y1 X	Front lateral tire force (in body car axis) (N ) SMO, vector of state estimation errors
	F xw1 y	Front longitudinal tire force (in wheel axis) (N ) SMO, vector of measurement estimates
	F xw2 Y	Rear longitudinal tire force (in wheel axis) (N ) SMO, vector of measurement estimation errors
	F yw1 F yw2 X x ′	Front lateral tire force (in wheel axis) (N ) EKF, state estimation vector
	y ′	EKF, vector of measurement estimates
	L 1	Center of gravity to front axle distance (m)
	L 2	Center of gravity to rear axle distance (m)
	m	Vehicle mass (kg)
	Q e	Variance-covariance matrix for input noises
	Q m	Variance-covariance matrix for model noises
	Q s	Variance-covariance matrix for measurement noises
	Φ 1 , ..., Φ 5	Lyapunov functions
	V g	Center of gravity vehicle speed (m.s -1 )
	V g1	Front vehicle speed (m.s -1 )
	V g2	Rear vehicle speed (m.s -1 )
	β	Center of gravity sideslip angle (rad)
	β 1	Front sideslip angle (rad)
	β 2	Rear sideslip angle (rad)
	δ	Front mean steering angle (rad)
	∆C a1	Front adaptive cornering stiffness (N.rad -1 )
	∆C a2	Rear adaptive cornering stiffness (N.rad -1 )
	ψ	Yaw rate (rad.s -1 )
	γ x	Longitudinal accelerations (m.s -2 )
	γ y	Lateral accelerations (m.s -2 )
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This derivative is negative and Φ 1 is positive, and consequently this induces the convergence Φ 1 -→ 0 x1 -→ 0 and therefore x1 -→ x 1 .

Remark 2a. At the switching surface ˙

x 1 = 0 this result implies:

Using the triangle inequality and A.4 now gives the following inequality on the Lyapunov function Φ 2

This derivative is negative and Φ 2 is positive, and consequently this implies the convergence Φ 2 -→ 0, x4 -→ 0 and therefore x4 -→ x 4 .

Proposition 3. Choosing the gains such that:

where ǫ > 0, implies convergence of lateral tire force estimates (x 2 , x3 ) toward the states (x 2 , x 3 ).

Proof 3a. The derivative of the Lyapunov function Φ 3 is:

(A.9)

Using A.8 and the triangle inequality yields the following inequality:

Consequently, with Φ 3 positive this implies convergences Φ 3 -→ 0 and x2 + x3 -→ 0.

Proof 3b. The derivative calculation of Lyapunov function Φ 4 gives:

(A.10)

Applying the result (A.6) and choosing Ω 4 = -Ω 7 , (A.10) becomes: .11) Specifying Ω 5 = Ω 8 L 2 /L 1 and Ω 7 < 0 means that the derivative:

becomes negative, which implies the convergences Φ 4 -→ 0, and therefore L 1 x 2 -L 2 x 3 -→ 0. Moreover, x 2 + x 3 -→ 0, consequently this induces the convergence ( x 2 , x 3 ) -→ (x 2 , x 3 ).

B Nomenclature