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Abstract

Numerical modelling of lung behaviour during the
respiration cycle is o difficult challenge due to its
complex geometry and surrounding environment con-
straints.

This paper presents an approach to simulate a pa-
tient’s lung motion during inhaeling and exhaling based
on a continuous media mechanics model and solved
with a finite element method.

One of the key problems is an adequate lung mesh
generation, which is specifically developed in this

paper.

keywords lung mechanics, finite elements,
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1 Introduction

Currently, new technologies make the radiotherapy
more effective. Among these evolutions, let us quote
Intensity-Modulated Radiation Therapy (or IMRT),
which gives a better treatment conformation to tu-
mour shape. Hadrontherapy permits a great accuracy
and a great efficiency due to the energy deposit of
light ions inside the tumours, delivering high radiation
doses in deep tumours with a higher radiobiological ef-
fect. These new technologies require a more elaborated
ballistics control compelling an increased control of or-
gan motions not only during the treatment planning
but as well while performing the treatment.

Different approaches exist to take into account lung
motion during the treatment: gating and tracking.
Gating could be either a breathing gating, which al-
lows to hold lung into a well determined inflating vol-
ume, thus finally permitting a static treatment; or a
beam gating, which treats only tumours when at a
known position. Tracking is a method based on a
treatment that conforms to the tumours movements
in their environment, allowing the patient to breath
normally. All of these techniques and particularly the
last one, require a good knowledge of the influence of

tumour displacements and deformations on the quality
of the treatment.

In this paper, after a short survey of recent works
on lung motion modelling, we present our approach to
represent a lung and its environment using the con-
tinuum media mechanics formalism. This necessitates
the meshing of treated volumes under consideration.
Using a finite element technique, we can estimate or-
gans deformation and displacement by the application
of the environmental constraints to the mesh. The fol-
lowing sections summarise the finite element technique
and present in detail our mesh generation approach.

2 Recent survey

A recent work studies experimentally the effect of
the thoracic motion on different organs with the use
of a 4D CT scan [11]. In this context, this technol-
ogy becomes useful due to recent improvement of CT
scan technology and acquisition time and to a signifi-
cant reduction of motion artifacts. To obtain tempo-
ral information, data are acquired in axial cine-scan
mode and they are indexed with abdomen motion for
the duration of a set of patient’s respiratory cycles.
Several images per scanner-slice position are used for
reconstruction, each representing a different point in
time within the respiratory cycle. Images from differ-
ent scanner-slice positions are then sorted into several
spatio-temporal coherent CT volumes permitting to
study the motion of lung tumours based on manual
segmentation of 4D CT scan data [10].

In [4], breath holding techniques were used to ac-
quire different CT scans at different breathing stages.
The authors developed non-rigid registration tools to
evaluate the reproducibility of the breath control de-
vice for each patient, and to extract motion informa-
tion for subsequent dosimetric and modelling studies.
Given two images, the method consists in estimating
the displacement vector field allowing to determine for
each point in the first image the corresponding points
in the second one. The results show that, by compar-
ing vector fields between several acquisitions taken at



the same initial and final breath hold level, it is possi-
ble to quantify organs displacement in order to adapt
margins for the treatment planning.

In a previous work [2] we presented our contribu-
tion to the simulation of lung behaviour with 3D dy-
namic deformable models in order to obtain models of
tumour displacement. These models were customised
to the patient’s anatomical and physiological param-
eters. The advantages of such simulation tecnniques
are various. (1) It avoids to introduce an interpolation
proccess for filling the temporal gaps of 3D CT scan
sequences. Each breathing step can be computed by a
simulation based on a curve of respiratory cycle. (2)
Contouring of tumour by medical doctors only has to
be realised once. Indeed the models predict tumour
mouvement and deformation over the respiration cy-
cle. (3) These models moreover provide a convenient
tool to study the behaviour of various kind of tumours.
Therapeutic treatment can be planified with different
positions, forms and sizes of tumour. Safety margin
optimisation or other strategies can be developped and
improved without the necessity of multiplying acqui-
sation on real patients. (4) These methods are com-
plementary to the one exposed in [4]. A comparison
between the two teams is being performed.

Actually, two works are carried out: one based on
a mass-spring system and the other based on finite el-
ements techniques. The latter is only applicable for
perpendicular displacements around the rib cage and
perpendicular to the surface. Indeed the application
of external forces induces unrealistic peaks of displace-
ments. In this paper, we will especially focus on the
finite element method.

3 Link between continuum media me-
chanics and lung mechanics

Let us introduce some notions about continuum me-
dia mechanics. The associated laws are commonly
used to model solids in mechanical design. However,
in this study, our goal is to link these laws to a bio-
material: the lung. Indeed, a detailed modelling of
lung structures at atomic and molecular scale are not
required here. Hence, the assumption of continuum
media can be applied to macroscopic level definition
of organs.

In a global approach and as a first approximation, a
homogeneous constant of elasticity - the Young mod-
ulus - can be used to parameterise the lung inflation.
This is rather easy way to link with patient’s data [2].
In the future, heterogeneity of the Young modulus and
other mechanical properties will be taken into account.
At the first step, we have used a linear elasticity, but
our model can be easily extended to non linear be-
haviour with a Young modulus and a work hardening
rate to simulate material solidification during defor-

mation. Various estimations of Poisson’s ratio of the
lung can be found in [9, 7, 6]. Nevertheless, it has
been shown that the variation of the Poisson’s ratio
does not significantly change the results.

After this ”"rheological” introduction to biomaterial
parametrisation, let us now focus on the type of anal-
ysis to be proceeded. During normal breathing, con-
straints are applied on the pleura steadily and progres-
sively. Lung is wrapped in the pleura and we can con-
sider its motion as a sequence of positions controlled
only by its surface. Finally, we can assume a quasi
static approach, i.e. the effects of inertia are neglected.
Using an elastic model with a static analysis and know-
ing the external displacements, the absolute value of
the Young modulus will no longer be necessary.

Commonly, lung volume can increase by a factor of
two during a respiration cycle. The displacements are
too large to assume that geometry changes will not in-
fluence the mechanical behaviour. Large deformations
have then to be considered. Therefore, we employ the
algorithm presented in [12] to take them into account.
This algorithm uses an Eulerian formulation with a ge-
ometry reactualisation and an incremental resolution.

Let’s consider the Fig.1 to illustrate our approach:

lung at initial position

lung final surface

blocked

negative
pressure

Figure 1. Constraints application scheme

In this figure, lung is presented at its initial and
final states. The goal is to define the surrounding spa-
tial constraints limit conditions. To respect them, a
uniform negative pressure is applied around the lung
at its first state to simulate pleural elastic recoil pres-
sure. The motion stops when lung surface matches
with its final state surface but nevertheless including
possible skin slide (contact condition). We have also
considered that mediastinum is fixed achieving then
the whole necessary boundary conditions.

To solve this contact condition we use [13]. The
algorithm of unilateral contact treatment consists in
adding special equations on moving parts that are po-
tentially in contact with a blocked surface. These
equations are constituted by kinematic conditions of
non penetration. The geometry is updated at each
iteration.

The final strategy will be to monitor the lung infla-

mediastinum



tion by two parameters reproducing the diaphragmatic
and rib-cage actions. We can consider thorax motion
capture, acquired by a chest band or by video sensors.
A diaphragm motion function can be determined by a
dynamic 3D reconstruction with the respiration curve
measured with a spirometer like in [5].

The complex geometry of lung and its anisotropic
behaviour do not allow to develop an analytic solution
for the set of equations introduced by this formalism.
Therefore, we used the finite element method to ap-
proximate the lung displacements and deformations.

4 Lung motion simulation
4.1 Finite Element Method notions

The finite element method [14] is employed in many
scientific fields to solve partial derivative equations. It
consists in approximating the solution by a simpler ex-
pression in order to transform these continuous equa-
tions into a matrix representation.

For this, local partial derivative equations are firstly
transformed into a global variational formulation. The
variational formulation of a problem, starting from
partial derivative equations, can be obtained by multi-
plying the latter by ”test functions”, integrating over
the whole domain and using Green formula to ob-
tain terms that concern only a boundary part of the
domain. The test functions are ”sufficiently” regu-
lar functions, which ponderate the global integral. In
solid mechanics, the variational formulation obtained
is identical to the Principle of Virtual Work.

In our case, we assume a structure 2 with the vol-
ume density p, subject to bulk forces f, with imposed
displacements U” on the boundary T'P and imposed
forces g™ on the boundary I'V. The local equations of
static equilibrium on this structure can be written as:

div(c) +p.f =0 in Q
U=UP in TP (1)
f=4g" in TN

where U is the displacement tensor and o is the stress
tensor. The constitutive equation, which represents
the material properties, has to be taken into account.
It gives a relationship between the deformation € and
o. In the elastic case we have: o0 = K.e, where K
is the elasticity matrix. The variational formulation
gives then the same expression as the one given by the
Principle of Virtual Work.

The displacement field u, satisfying Vv € T'P can be
obtained by:

/Q o () €(0)d2 = /Q pf0dQ + /F e ()

>l

v

Alur) B(v)

Equation 2 takes into account the mass conserva-
tion, which is necessary in the case of large displace-
ments. This equation can be resumed to A(u,v) =
B(v), Yv e TP

To find an approximated solution, we discretise the
displacement field. That is to say, we choose to calcu-
late the displacement field at a set of N discrete points
in the solid (called ‘nodes’ in finite element terminol-
ogy). The structure is then cut out into ”pieces” called
elements. Node coordinates and connectivities consti-
tute a mesh. One element of the mesh is defined by
its geometry: triangle, quadrangle, tetrahedron, ... We
will denote the coordinates of these special points by
X where the superscript a ranges from 1 to N. The
unknown displacement vector at each nodal point will
be denoted by (Ug, Uy ,UZ). The displacement field
at an arbitrary point within the solid will be specified
by interpolating between nodal values in some conve-
nient way U;(X) = Zgzl w*(X)UP. Here, X denotes
the coordinates of an arbitrary point in the solid. The
shape functions w® are depending on position only,
which must have the following property such that

vt ={ 5 des ©

We can obviously interpolate the virtual displace-
ment field in exactly the same way. We can there-
fore re-write the variatonal formulation, substituting
the interpolated fields in equation 2. Then, we obtain
an equation system by merging the contributions com-
ing from each element that contains the corresponding
node. This is a system of N equations for the N nodal
displacements. If A(u,v) is a linear application in wu,
the terms A(u;,v;) give a u; linear system. If A(u,v)
is not linear in u, the resolution is more complex. De-
spite of this, numerical methods could bring it back
into a succession of linear problems.

Due to the continuity of the matter, the convergence
rate directly depends on mesh accuracy. Moreover,
for better accuracy and efficiency reasons, hexahedral
elements are preferred to tetrahedral element [3]. The
shape functions for a hexahedral element with eight
nodes are:

w'=1/8(1—2)(1 —y)(1—2) w®=1/8(1—=z)(1—y)(1+2)
w? =1/8(1 +2)(1 —y)(1 —2) w®=1/8(1+2)(1 —y)(1+2)
w? =1/81+z)(1+y)(1 —2) w’ =1/8(1+2z)(1+y)(1+2)
w*=1/81—z)(1+y)(1 —2) w®=1/8(1—z)(1+y)(1+z)

In the next step, the numerical simulation was car-
ried out with the code-aster [1] finite element software.

4.2 mesh improvement

In [2], we have simply verified whether the numeri-
cal method presented above could converge to plausi-
ble results. We have obtained a hexahedral mesh from
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Figure 2. hexahedral mesh (a.), quadrangle
mesh (b.)

segmented CT scan data, where each hexahedron cor-
responds to a CT scan voxel (Fig.2.a). External sur-
face is then given by a quadrangular mesh (Fig.2.b).

Although our previous method converges while ap-
plying displacements in the direction of the surface
gradient, it generates solutions not consistent with the
reality if we apply a uniform pressure. Figure 3 shows
the results of this simulation. The problem arises from
stress-concentration artifact due to the sharp edges in
cubes.
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Figure 3. geometry after applying a uniform
pressure simulation

This work aims at combining accuracy on the
boundary surface and hexahedral mesh. Accuracy on
the surface comes from a smooth external mesh. Hex-
ahedral bulk mesh is convenient because it directly
comes from CT scan and provides direct information
on electronic density and probably for heterogeneity.
Moreover, as mentioned before, hexahedral elements
are preferred to tetrahedral element for finite element
studies [3].

Motivated by a smoothness idea we used the march-
ing cube (MC) algorithm presented in [8]. The vir-
tual cube vertices are defined by the centres of eight
CT scan voxels. For each of them, the information
about material is obtained directly from the inten-
sity of the 3D segmented images. If a vertex has a
different material information from its neighbouring
vertices, a boundary surface should exist between it
and the others in order to separate different materi-

als. There are 256 different combinations of material
informations that cube vertices could define. These
combinations can be reduced to 15 situations with the
classification of similar cases. The surface generation
process is extremely fast due to the direct triangula-
tion from the look-up-table properties of the marching
cube routine. As shown in Fig.4.a, the surface model
created by the MC algorithm has smoother curvatures
than on the previous Fig.2.b. To fill this surface mesh
with 3D elements, we build a 3D mesh with a tradi-
tional delaunay method (Fig.4.b.)

Figure 4. triangle mesh issue from MC (a.),
3D Delaunay mesh (b.)

Fig.5 shows the results of the contact method pre-
sented in section 3. From the initial state Fig.5.a, we
apply a uniform pressure and a contact condition to
the final state Fig.5.b. Smoothed edges obtained by
the MC algorithm allows to compute contact with a
uniform pressure. The results of the lung inflation sim-
ulation obtained with our method (Fig.5.c) fits well
with lung models issued from CT scan voxel.

Figure 5. lung at initial state (a.), lung at final
state: from CT scan date (b.) and from the
simulation (c.)

A 3D mesh is necessary for our study and the one
obtained with the Delaunay method allows us to check
the validity of our method. However, it does not give
enough information for our final goal : we have to add
the internal hexahedral elements at least for dosime-
try computation. Therefore, cubes extracted from the
CT scan are added to the previous mesh, to have both
internal elements and a smooth surface. Fig.6.a shows
a lung cut where we can see a skin composed of tri-



angles and the internal 3D mesh composed of hexae-
dra. Fig.6.b shows a simulation of a uniform pressure
applied to this geometry. From this numerical exper-
iment, it appears some unexpected peaks, on the sur-
face edges. This problem is due to the lack of elements.

Figure 6. lung cut with 3D cubic mesh and a
triangle surface mesh (a.), Uniform pressure
simulation (b.)

Indeed, when we add a triangular mesh on an initial
mesh composed of hexahedra, it appears some holes
between elements. Fig.7, shows an illustration of this
problem in 2D. The bold line, representing the trian-
gular elements of the mesh, lets some unfilled space.

triangle element

" missing element

N hexahedrdl element

Figure 7. missing elements filling holes

In order to add the missing elements we propose
an extension of the marching cube to provide tetrahe-
dra for each of the 256 possible configurations of the
method. For each list of triangles linked to a config-
uration we associate a list of tetrahedra too. In the
classical marching cube, few configurations are stud-
ied because most of the arrangements are topologically
equivalent. For example, there is no triangle when all
eight nodes lie inside or outside the boundary surface.
The Tab.1 shows examples of triangular patches. For
each case, one can apply the same treatment to both
configurations (where B is the complementary of A).
In the case of internal hexahedra, two configurations
have to be considered for each triangular patch. The
Tab.1 shows three examples of triangular patches giv-
ing two different sets of configurations. The hexahedra
arrangement depends on the direction of the normals

of triangular patches.

configuration A configuration B

case 1

case 2

case 3

Table 1. 6 examples of configurations for the
MC 3D extension

This 3D extension of the marching cube permits to
directly extract triangles defining the external surface
and tetrahedra defining a peripheral mesh. This accu-
rate 3D mesh gathers the whole conditions to model
external motion. Moreover, the bulk mesh is always
constituted of hexahedra directly extracted from the
CT scan. A lung mesh cut with our method is shown
on Fig.8.a. Fig.8.b details the previous figure to focus
on the three kinds of mesh element.

tetrahedron

k—- | E—
~ o
- Théxahedron

Figure 8. tetrahedral, triangle and hexahe-
dral mesh (a.), detail (b.)

Finally, this geometry has been tested with an uni-
form pressure all around. Results are represented in
Fig.9. The displacement field is totally smooth. There
is no convergence problem due to mesh aberration.
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Figure 9. three steps of a uniform inflating

5 Conclusion

In this work, we have solved the convergence prob-
lem that has been pointed out in our previous study,
using a special mesh based on the marching cube al-
gorithm. This special mesh has many advantages: it
gives a accurate contour for the external surface and
a accurate mesh of the external stratum. The inter-
nal meshes are directly extracted from CT scan and
the hexahedra are well suited for non-linear analysis.
Moreover, information for dosimetry (electronic den-
sity) is straightforward.

6 Future Work

Firstly, we will add heterogeneity into the lung me-
chanic properties. A protocol is under elaboration to
perform compression tests (to measure elasticity) on
various samples of the same lung tissue.

Actually, we are working on the reconstruction of
CT scan slices obtained from the sampling of our
model at various level of inflation. Indeed, these sim-
ulated CT scan images are useful quantities for treat-
ment planning.

To test the validity of our model a study will esti-
mate the difference between the simulated CT scans
obtained from our model and the data from real CT
scans.

Finally, we will extract thorax displacements on
body surface and diaphragm motion to have the final
simulation controlled by two parameters. Two teams
are working on these topics.
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