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Introduction

As it is well known, the Dirichlet problem for the minimal hypersurface equation

     M [u] := div grad u 1 + |grad u| 2 = 0 in Ω, u ∈ C 2,α Ω u| ∂Ω = ϕ, (1) 
in a bounded domain Ω ⊂ R n is solvable for an arbitrary continuous boundary data ϕ only if the domain is mean convex (Theorem 1 of [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF]). This result (the existence part) has been extended and generalized to Riemannian manifolds (more generally to constant mean curvature graphs in warped products) in [START_REF] Dajczer | Killing graphs with prescribed mean curvature[END_REF]. In the paper [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF] H. Jenkins and J. Serrin noted that a condition involving osc (ϕ) := sup ϕ -inf ϕ, |Dϕ| and |D 2 ϕ| should be enough to ensure the solvability of (1) in arbitrary bounded domains. In fact, they proved that if osc (ϕ) ≤ B (|Dϕ| , |D 2 ϕ| , Ω) then the (1) is solvable (Theorem 2 of [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF]). The function B has an explicit form (Section 3, p. 179 of [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF] ) and is infinity at the points where the domain is mean convex. Theorem 2 of [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF] then extends Theorem 1 of [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF].

In the present paper we first obtain an extension of Theorem 2 of Jenkins-Serrin [START_REF] Jenkins | The Dirichlet problem for the minimal surface equation in higher dimensions[END_REF] to the minimal hypersurface PDE on a domain Ω in an arbitrary 1 complete Riemannian manifold M. In the next result grad and div are the gradient and divergence operators in M. Then, u is a solution of (1) if and only if the graph of u in M × R is a minimal surface. We prove Theorem 1 Let M n be a complete n-dimensional Riemannian manifold M, n ≥ 2. Given a bounded domain Ω in M -whose boundary ∂Ω has mean curvature H w.r.t. the inward unit normal vector -let ϕ ∈ C 2,α (∂Ω) be such that osc (ϕ) ≤ C (|Dϕ| , |D 2 ϕ| , |A|, Ric M ). Then the Dirichlet problem (1) for the minimal hypersurface equation is solvable. Moreover, C is given explicitly by ( 16) and ( 9) and C = +∞ at the mean convex points of ∂Ω. It follows that if ∂Ω is mean convex (that is, H ≥ 0) then ( 1) is solvable for any continuous boundary data.

Next we apply Theorem 1 to the exterior Dirichlet problem for the minimal hypersurface equation when M is complete and noncompact. This problem consists in proving existence, uniqueness and describing the asymptotic behavior of a solution of [START_REF] Choi | Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds[END_REF] where Ω is an exterior open subset of M, that is, M\Ω is compact.

It seems that the first mathematician to take up with the exterior Dirichlet problem was J. C. C. Nitsche, who proved ( [START_REF] Nitsche | Vorlesungen über Minimalflächen[END_REF], §760) that any solution u of (1), in the case M = R 2 , has at most linear growth and has a well defined Gauss map at infinity. This problem has been investigated further by R. Krust [START_REF] Krust | Remarques sur le problème exterior de Plateau[END_REF], E. Kuwert [START_REF] Kuwert | On solutions of the exterior Dirichlet problem for the minimal surface equation[END_REF], Kutev and Tomi in [START_REF] Kutev | Existence and Nonexistence for the exterior Dirichlet problem for the minimal surface equation in the plane[END_REF] and, more recently in [START_REF] Ripoll | On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends[END_REF].

An investigation of the exterior Dirichlet problem for the minimal surface equation in the Riemannian setting was initiated in [START_REF] Do Espirito-Santo | Some existence results on the exterior Dirichlet problem for the minimal hypersurface equation[END_REF]. There the authors considered only the special case of vanishing boundary data assuming, in the case K M ≥ 0, a condition on the decay of the sectional curvature of M and, in the case that K M ≤ -k 2 , k > 0, that M\Ω is convex and M simply connected.

In this paper we continue the investigation of [START_REF] Do Espirito-Santo | Some existence results on the exterior Dirichlet problem for the minimal hypersurface equation[END_REF] in the case K M ≤ -k 2 , k > 0. First, we allow Ω to be any exterior domain and the boundary data not need be zero. Moreover, the asymptotic behaviour of the solution will be prescribed by any given continuous function defined on the asymptotic boundary ∂ ∞ M of M. For this last part we use the ideas of [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF], as follows.

Recall that if M is a Hadamard manifold (complete, simply connected, K M < 0) the asymptotic boundary ∂ ∞ M and the cone compactifaction M of M are well defined by using the so called cone topology (see [START_REF] Choi | Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds[END_REF]). According to [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF], we say that M satisfies the strict convexity condition (SC condition) andM \ Ω is convex. We prove Theorem 2 Let M be a Hadamard manifold satisfying the SC condition and assume that

if, given x ∈ ∂ ∞ M and a relatively open subset W ⊂ ∂ ∞ M containing x, there exists a C 2 open subset Ω ⊂ M such that x ∈ Int (∂ ∞ Ω) ⊂ W, where Int (∂ ∞ Ω) denotes the interior of ∂ ∞ Ω in ∂ ∞ M,
K M ≤ -k 2 , k > 0. Let Ω be an exterior C 2,α domain. Given ϕ ∈ C 2,α (∂Ω) such that osc (ϕ) ≤ C (|Dϕ| , |D 2 ϕ| , |A|, Ric M ) and ψ ∈ C 0 (∂ ∞ M) there is an unique solution u ∈ C 2,α Ω of M [u] = 0 in Ω such that u| ∂Ω = ϕ. Moreover, u extends continuously to ∂ ∞ M and u| ∂∞M = ψ.
We mention that under the hypothesis K M ≤ -k 2 < 0, any 2-dimensional Hadamard manifold satisfies the SC convexity condition, since any two distinct points of ∂ ∞ M can be connected by a minimizing geodesic. It is also proved in [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF] that this condition is also satisfied if the metric of M is rotationally symmetric or if the sectional curvature of M has at most exponential decay, precisely, if inf B R K M ≥ -Ce (k-ε)R for R ≥ R 0 and for some ε > 0. In [START_REF] Holopainen | Nonsolvabily of the asymptotic Dirichlet for some quasilinear elliptic PDE on Hadamard manifolds[END_REF] it is proved that if the SC condition is not required then there are examples of 3-dimensional complete manifolds with K M ≤ -k 2 < 0 in which only the constant functions are bounded solutions of the minimal PDE on M that extends continuously to

∂ ∞ M. In such manifolds, if u ∈ C ∞ (M) ∩ C 0 M
is solution of an exterior Dirichlet problem for the minimal hypersurface equation then u| ∂∞M is constant.

An extension of a Theorem of Jenkins and Serrin

We begin with some preliminary facts.

Normal coordinates for the inner halftube of ∂Ω

Let ϕ ∈ C 2 (∂Ω) be given. Let d be the Riemannian distance in M and set ρ(z) := d(z, ∂Ω), z ∈ Ω. For ρ 0 sufficiently small, the normal exponential map exp

∂Ω : ∂Ω × [0, ρ 0 ) -→ U ρ 0 = {z ∈ Ω; ρ(z) < ρ 0 } ⊂ M, is a diffeomorphism.
Let {T 1 (x), ..., T n-1 (x)} x∈Vr 0 be the orthonormal frame defined on an neighborhood V r 0 ⊂ ∂Ω of a point p ∈ ∂Ω by parallel transport of a given orthonormal frame at p (by construction

∇ T i T j (p) = 0, i, j = 1, • • • , n -1).
For each i ∈ {1, ..., n -1}, extend also T i | ∂Ω by parallel transport along the normal geodesic t → exp ∂Ω tη, where η is the inward unitary normal field to ∂Ω and t ≤ ρ 0 , and denote this extension again by T i . Then, for each (x, t) ∈ V r 0 × [0, ρ 0 ], {T 1 (x, t), ..., T n-1 (x, t)} is a orthonormal frame on the equidistant hypersurface ρ (z) = t. We complete the orthonormal frame on

U ρ 0 by setting T n (x, t) = ∇ρ(x, t) for all (x, t) ∈ V r 0 × [0, ρ 0 ). We extend also ϕ to U ρ 0 by setting ϕ(exp ∂Ω (x, t)) = ϕ(x), (x, t) ∈ ∂Ω × [0, ρ 0 ). By construction ∇ Tn T i (x, t) = 0 where (x, t) ∈ V r 0 × [0, ρ 0 ), i ∈ {1, ..., n -1} and T n (ϕ) = ∇ Tn T n = 0. Define ω(z) = ϕ(z) + ψ(ρ(z)), (2) 
where z ∈ U ρ 0 and ψ ∈ C 2 ([0, ∞)) is to be determined later. Let M denote, as above, the minimal hypersurface equation operator. We have

W 3 M (ω) = - 1 2 ∇ ∇ω (|∇ω)| 2 ) + W 2 div(∇ω) (3) 
with

W 2 := 1 + |∇ω| 2 . Then M (ω) ≤ 0 if only if - n i=1 ∇ T i ∇ω, ∇ω T i (ω) + W 2 n i=1 ∇ T i ∇ω, T i ≤ 0. ( 4 
)
Lemma 3 The following equalities hold for ω :

               ∇ Tn ∇ω, ∇ω = n-1 i,k=1 II(T i , T k )T i (ϕ)T k (ϕ) + ψ ′ ψ ′′ ∇ Tn ∇ω, T n = ψ ′′ n-1 i=1 ∇ T i ∇ω, ∇ω T i (ϕ) = n-1 i,j=1 T i (T j (ϕ)) T j (ϕ) T i (ϕ) n-1 i=1 ∇ T i ∇ω, T i = n-1 i=1 T i (T i (ϕ)) + n-1 i=1 T i (ϕ) div Ω(ρ) T i -ψ ′ (n -1)H.
Proof. We will use throughout the proof that ∇ Tn T i = 0, i = 1, • • • , n. To prove equality one and two we need to compute ∇ Tn ∇ω. Since

∇ω = n-1 i=1 T i (ϕ) T i + ψ ′ T n (5) 
then

∇ Tn ∇ω = n-1 i=1 T n (T i (ϕ))T i + T n (ψ ′ )T n . (6) 
We obtain for the first terms of (6)

T n (T i (ϕ)) = [T n , T i ]ϕ = (∇ Tn T i -∇ T i T n )ϕ = -∇ T i T n (ϕ) = - n-1 k=1 ∇ T i T n , T k T k (ϕ) = k II(T i , T k )T k (φ) (7) Moreover T n (ψ ′ (ρ)) T n = ψ ′′ (ρ) T n (ρ) T n = ψ ′′ T n (8) 
Proof of i) and ii): From ( 5), ( 6), ( 7) and ( 8) we obtain

∇ Tn (∇ω), ∇ω = n-1 i=1 T i (ϕ)T n (T i (ϕ))+ψ ′ T n (ψ ′ ) = n-1 i,k=1 II(T i , T k )T i (ϕ)T k (ϕ)+ψ ′ ψ ′′ and ∇ T n ∇ω, T n = ψ ′′ . Proof of iii): Note that ∇ϕ T -the projection of ∇ϕ on hypersurfaces parallel to ∂Ω -is ∇ϕ since ϕ is independent of ρ. Furthermore ∇ T i ψ = 0, i = 1, • • • n -1; hence we have 1 2 (∇ϕ) T (|∇ω| 2 ) = n-1 i=1 T i (ϕ)∇ ∇ϕ T (T i (ϕ)) = n-1 i,j=1 T i (T j (ϕ)) T j (ϕ) T i (ϕ) .
Proof of iv): Using (5) we have 

n-1 i=1 ∇ T i ∇ω, T i = n-1 i=1 T i (T i (ϕ)) -(n -1)ψ ′ H + n-1 i=1 T i (ϕ) div Ω(ρ) (T i ).
i) if H inf < 0, a = b -1 , 0 < ε < min{ 1 2b , ρ 0 } being the constant b given by b/3 = ||Dϕ|| 2 ∂Ω (||D 2 ϕ|| ∂Ω + ||A|| ∂Ω ) +(2 + ||Dϕ|| 2 ∂Ω )(||D 2 ϕ|| ∂Ω + (n -1) 2 ρ 0 ||Dϕ|| ∂Ω R -(n -1)H inf ); (9) ii) if H inf ≥ 0, b > a -1 , 0 < ε < min{a -b -1 , ρ 0 }, being the constant a given by a -1 = ||Dϕ|| 2 ∂Ω (||D 2 ϕ|| ∂Ω + ||A|| ∂Ω ) +(2 + ||Dϕ|| 2 ∂Ω )(||D 2 ϕ|| ∂Ω + (n -1) 2 ρ 0 ||Dϕ|| ∂Ω R).
Proof. Let us introduce the following notations for terms containing only ϕ and its derivatives:

α := n-1 i=1 [T i (ϕ)] 2 , β = n-1 i=1 T i (T i (ϕ)) , µ := n-1 j=1 T j (ϕ) div T j λ := n-1 i,j=1 T i (T j (ϕ)) T j (ϕ) T i (ϕ) , θ := n-1 i,k=1 II(T i , T k )T i (ϕ)T k (ϕ) .
From Lemma 3, we plug in inequality (4) the preceeding terms and obtain a differential inequality for ψ:

-λ+ 1 + α + [ψ ′ ] 2 (σ -ψ ′ (n -1)H) -(θ + ψ ′ ψ ′′ ) ψ ′ + 1 + α + [ψ ′ ] 2 ψ ′′ ≤ 0.
where

σ := β + µ. Set H inf := inf ∂Ω H| ∂Ω (10) 
and define ψ (t) = a ln (1 + bt) , where a > 0 and b > 0 are constant to be determined. Since ψ ′ > 0, we can replace the function H in the inequality (2.1.1) by H inf :

-λ + (1 + α) σ + σ [ψ ′ ] 2 -θψ ′ + (1 + α) ψ ′′ + -(n -1) H inf [ψ ′ ] 3 -(n -1) (1 + α) H inf ψ ′ ≤ 0. Setting δ := -λ+σ (1 + α) , c := (n -1) (1 + α) > 0, then last inequality becomes δ + σ [ψ ′ ] 2 -θψ ′ + (1 + α) ψ ′′ + -(n -1) H inf [ψ ′ ] 3 -cH inf ψ ′ ≤ 0. ( 11 
)
We first suppose H inf < 0. Set ab = 1; then replacing ψ ′ = (1 + bt) -1 and

ψ ′′ = -[ψ ′ ] 2 b, δ (1 + bt) 3 + σ (1 + bt) -θ (1 + bt) 2 -(1 + α) b (1 + bt) -(n -1) H inf -cH inf (1 + bt) 2 ≤ 0.
Taking absolute values, dividing by 1 + bt and expanding w.r.t. t, (2.1.1) is true if

|δ|b 2 t 2 + (2 |δ| + |θ| -cH inf ) bt + |δ| + |θ| + |σ| -b (α + 1) + -(c + n -1)H inf ≤ 0 ( 12 
)
It is clear that a sufficient condition for inequality [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF] is that :

     t ≤ 1 √ 3|δ|b t ≤ 1 3[2|δ|+|θ|-cH inf ] b/3 ≥ |δ| + |σ| + |θ| -(c + n -1) H inf . ( 13 
)
Notice that these inequalities are a fortiori satisfied if we replace in these expressions the functions α, |β|, |µ|, |λ| and |θ| by their supremum on ∂Ω. We obtain

α := ||Dϕ|| 2 , β = ||D 2 ϕ||, λ := ||D 2 ϕ||||Dϕ|| 2 , θ := ||A||||Dϕ|| 2 .
To estimate µ we need to bound div(T j ). We derivate the equation ∇ Tn T j = 0 with respect to

T i , i = 1, • • • , n-1.
We obtain an evolution equation for div T j along the normal geodesic : ∇ Tn div(T j ) = (n-1) Ric(T n , T j ), with the initial condition div(T j (p) = 0. This yields

µ := (n -1) 2 ||Dϕ||ρ 0 sup y∈Vr 0 ×[0,ρ 0 ] Ric(y).
Let us fix b such that third inequality in ( 13) is an equality. We then obtain expression of b in Lemma 4. Replacing b by its expression (9) the first two inequalities of ( 13) hold if

t ≤ t 0 := min 1 2b , ρ 0 .
This conclude the proof of i). Now, suppose H inf ≥ 0. In this case, inequality [START_REF] Ripoll | On solutions to the exterior Dirichlet problem for the minimal surface equation with catenoidal ends[END_REF] 

is satisfied if δ + σ (ψ ′ ) 2 -θψ ′ + (1 + α) ψ ′′ ≤ 0 which, after replacing ψ ′ = ab (1 + bt) -1 and ψ ′′ = -[ψ ′ ] 2 a -1 , become δ (1 + bt) 2 + σa 2 b 2 -θab (1 + bt) -(1 + α) ab 2 ≤ 0. ( 14 
)
Since α ≥ 0, ( 14) is satisfied if

|δ| (1 + bt) 2 + |σ| a 2 b 2 + |θ| ab (1 + bt) ≤ ab 2 . (15) 
Notice that for 1 + bt ≤ ab, equation ( 15) is true if we replace 1 + bt by ab, obtaining a

(|δ| + |σ| + |θ|) ≤ 1.
Fix a = 1/ (|δ| + |σ| + |θ|) where we already assume for |δ| , |σ| and |θ| their supremum on ∂Ω. Then, for all b > 1/a and t ≤ min {a -1/b, ρ 0 } we have (15) satisfied and this conclude the proof of ii).

2.2 Proof of Theorem 1.

Let C = 1 b ln(1 + bε), (16) 
where b and ε are defined in i) of Lemma 4, if H inf < 0 (C = +∞ if H inf ≥ 0 -according with ii) of Lemma 4). For the first part where ϕ ∈ C 2,α (∂Ω) one uses the continuity method by setting By Section 5 of [START_REF] Dajczer | Killing graphs with prescribed mean curvature[END_REF] there is C > 0 such that max Ω |grad u n | ≤ C so that |u n | 1 ≤ D < ∞ with D not depending on n. Hölder estimates and PDE linear elliptic theory ( [START_REF] Gilbarg | Elliptic partial differential equations of second Order[END_REF]) guarantees that u n is equicontinous in the C 2,β norm for some β > 0 and hence contains a subsequence converging uniformly on the C 2 norm to a solution u ∈ C 2 Ω . Regularity theory of linear elliptic PDE ( [START_REF] Gilbarg | Elliptic partial differential equations of second Order[END_REF]) implies that u ∈ C 2,α Ω . This proves the first part of the theorem.

V = t ∈ [0, 1] | ∃u t ∈ C 2,α Ω such that M [u t ] = 0, u t | ∂Ω = tϕ . Clearly V = ∅ since t = 0 ∈ V. Moreover, V
Assume now that Ω is mean convex and let ϕ ∈ C 0 (∂Ω) be given. Let ϕ ± n ∈ C 2,α (∂Ω) be a monotonic sequence of functions converging from above and from below to ϕ in the C 0 norm. It follows by what we have proved above the existence of solutions u

± n ∈ C 2,α Ω of M = 0 in Ω such that u ± n | ∂Ω = ψ ± n . The sequence u ±
n is uniformly bounded in the C 0 norm by the maximum principle. Therefore, by Theorem 1.1 of [START_REF] Spruck | Interior gradient estimates and existence theorems for constant mean curvature graphs in M n ×R[END_REF] and linear elliptic PDE theory the sequence u ± n contains a subsequence v n ∈ C 2,α Ω converging uniformly on the C 2 norm on compacts subsets of Ω to a solution u ∈

C 2 (Ω) of M = 0. Since ϕ - n ≤ u - n ≤ u + n ≤ ϕ + n
and ϕ ± n converges to ϕ it follows by the maximum principle that u extends continously to Ω and u| ∂Ω = ϕ. This concludes the proof of Theorem 1.

3 The exterior Dirichlet problem for the minimal hypersurface PDE with prescribed asymptotic boundary

For the proof of Theorem 2 we shall make use of the following definition given in [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF]. We first recall that a function Σ (ii)Σ ≥ 0 and lim p∈M, p→x Σ(p) = 0, w.r.t. the cone topology and according to [START_REF] Choi | Asymptotic Dirichlet problems for harmonic functions on Riemannian manifolds[END_REF];

∈ C 0 (M) is a supersolution for M if, given a bounded domain U ⊂ M and if u ∈ C 0 U is a solution of M = 0 in U, then u| ∂U ≤ Σ| ∂U implies that u ≤ Σ| U . Given x ∈ ∂ ∞ M
(iii) Σ M \Ω ≥ C.
Similarly, we define subsolutions and lower barriers.

We say that M is regular at infinity with respect to M if, given C > 0, By the maximum principle u n is uniformly bounded. It follows from Theorem 1.1 of [START_REF] Spruck | Interior gradient estimates and existence theorems for constant mean curvature graphs in M n ×R[END_REF] and the diagonal method that u n contains a subsequence converging uniformly on the C 2 norm on compact subsets of Ω to a solution u ∈ C ∞ (Ω) of M = 0. By Lemma ?? and regularity theory u ∈ C 2,α Ω and u| ∂Ω = ϕ.

Since M satisfies the SC condition-given in the Introduction-it follows from Theorem 10 of [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF] that M is regular at infinity with respect to the minimal hypersurface PDE. From Theorem 4 of [START_REF] Ripoll | Regularity at infinity of Hadamard manifolds with respect to some elliptic operators and applications to asymptotic Dirichlet problems[END_REF] it follows that u extends continuously to ∂ ∞ M and satisfies the boundary condition u| ∂∞M = ψ. This concludes the proof of Theorem 2.

2. 1 . 1 Lemma 4

 114 Barriers for the Dirichlet problem on Ω for the minimal surface equation Let H and A respectively the mean curvature and the shape operator of ∂Ω w.r.t. to the inner orientation and set H inf := inf ∂Ω H. Let R be an upperbound of the Ricci curvature of M. The function ω (z) := ϕ (z) + a ln (1 + bt) is superharmonic w.r.t. M on U ε , where:

  and an open subset Ω ⊂ M such that x ∈ ∂ ∞ Ω, an upper barrier for M relative to x and Ω with height C is a function Σ ∈ C 0 (M) such that (i) Σ is a supersolution for M;

  x ∈ ∂ ∞ M and an open subset W ⊂ ∂ ∞ M with x ∈ W , there exist an open set Ω ⊂ M such that x ∈ Int ∂ ∞ Ω ⊂ W and upper and lower barriers Σ, σ : M → R relatives to x and Ω, with height C.

3. 1

 1 Proof of Theorem 2Consider a continuous extension Ψ ofψ ∈ C 0 (∂ ∞ M) which is C ∞ in M. That is, Ψ ∈ C ∞ (M) ∩ C 0 M , M := M ∪ ∂ ∞ M and Ψ| ∂∞M = ψ.Let o ∈ M be a fixed point in M and let N > 0 be such that the open geodesic ball B n centered at o with radius n contains the boundary ∂Ω of the exterior domain Ω (n ∈ N and n ≥ N). Set Ω n = Ω ∩ B n . It follows from the Hessian comparison theorem that ∂Ω n \∂Ω is convex, in particular mean convex. From this fact and from the hypothesis on the oscillation of ϕ, it follows from Theorem 1 the existence of a solution u n ∈ C 2,α Ω n of M = 0 in Ω n such that u n | ∂Ω = ϕ and u n | ∂Ωn\∂Ω = Ψ| ∂Ωn\∂Ω .

  is open by the implicit function theorem.Let t n ∈ V be a sequence converging to t ∈ [0, 1] and u n := u tn ∈ C 2,α Ω be the solutions such that u n | ∂Ω = t n ϕ. By the maximum principle the sequence u n has uniformly bounded C 0 norm. Moreover, ϕ -ψ| ∂Ω ≤ u n | ∂Ω ≤ ω| ∂Ω where the functions ϕ and ψ are defined in equation (2) and Lemma 4. It follows that

	max ∂Ω	|grad u n | ≤ max max ∂Ω	|grad σ| , max

∂Ω

|grad ω| < ∞.