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Abstract

The well-known 1-2-3 Conjecture addressed by Karoński,  Luczak
and Thomason asks whether the edges of every undirected graph G
with no isolated edge can be assigned weights from {1, 2, 3} so that the
sum of incident weights at each vertex yields a proper vertex-colouring
of G. In this work, we consider a similar problem for oriented graphs.

We show that the arcs of every oriented graph
−→
G can be assigned

weights from {1, 2, 3} so that every two adjacent vertices of
−→
G receive

distinct sums of outgoing weights. This result is tight in the sense
that some oriented graphs do not admit such an assignment using the
weights from {1, 2} only. We finally prove that deciding whether two
weights are sufficient for a given oriented graph is an NP-complete
problem. These results also hold for product or list versions of this
problem.

Keywords: oriented graph, neighbour-sum-distinguishing arc-weighting,
complexity, 1-2-3 Conjecture

1 Introduction

Let G be an undirected graph with vertex and edge sets V (G) and E(G),
respectively. For every vertex v of G, we denote by N(v) the set of vertices
neighbouring v. A k-edge-weighting w of G is an assignment w : E(G) →
{1, 2, ..., k}. From w, one naturally deduces a vertex-colouring φw of G,
where φw(v) =

∑
u∈N(v)w(vu) for every vertex v. In other words, any

vertex v receives the sum of its incident weights by w as its “colour”. If φw
is proper, i.e. we have φw(u) 6= φw(v) for every two adjacent vertices u and
v of G, then we say that w is neighbour-sum-distinguishing (nsd for short).

The study of neighbour-sum-distinguishing edge-weighting of graphs was
initiated in 2004, with Karoński,  Luczak and Thomason posing the following
conjecture.
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1-2-3 Conjecture [8]. Every graph with no isolated edge admits a nsd
3-edge-weighting.

Despite many efforts to tackle it, the 1-2-3 Conjecture is still an open
question. The best result towards the 1-2-3 Conjecture at the moment is
due to Kalkowski, Karoński and Pfender, who proved that every graph with
no isolated edge admits a nsd 5-edge-weighting [7].

Many edge-weighting problems inspired by the 1-2-3 Conjecture have
been introduced in the literature. As examples, let us mention the notions
of detectable colouring [1] or locally irregular edge-colouring [3] of graphs.
We refer the interested reader to [11], where numerous more variants of
the original problem are surveyed. Most of these works are devoted to
undirected graphs, but one could wonder about an oriented version of the
1-2-3 Conjecture.

We first introduce some terminology related to oriented graphs. Let
−→
G be

an oriented graph, i.e. a loopless directed graph whose every two vertices are

joined by at most one arc in either direction, with vertex and arc sets V (
−→
G)

and A(
−→
G), respectively. Given a vertex v of

−→
G , we denote by N−(v) (resp.

N+(v)) the set {u ∈ V (
−→
G) : −→uv ∈ A(

−→
G)} (resp. {u ∈ V (

−→
G) : −→vu ∈ A(

−→
G)}).

The indegree (resp. outdegree) of v, denoted d−(v) (resp. d+(v)), is |N−(v)|
(resp. |N+(v)|).

To our knowledge, the only link between the 1-2-3 Conjecture and ori-

ented graphs is the following problem. Let w be a k-arc-weighting of
−→
G ,

and let q−w (v) and q+w (v) be
∑

u∈N−(v)w(−→uv) and
∑

u∈N+(v)w(−→vu), respec-

tively, for every vertex v. The functions q−w and q+w naturally yield a vertex-

colouring qw of
−→
G , where qw(v) = q+w (v) − q−w (v) for every vertex v of

−→
G .

It was proved in [4] that every oriented graph admits a 2-arc-weighting w
which yields a proper vertex-colouring qw. A list version of the same result
was also proved independently in [2] and [9] using different methods.

We here investigate another problem. As for the undirected case, a k-

arc-weighting w of
−→
G yields a vertex-colouring φw of

−→
G where φw(v) =∑

u∈N(v)+ w(−→vu) for every v ∈ V (
−→
G). This time, the “colour” of v by φw,

sometimes called its weighted outdegree (with respect to w), is the sum of
its outgoing weights (one could similarly consider the sum of its ingoing
weights). Again, if φw has the property to be proper, then we say that w is
neighbour-sum-distinguishing (nsd for short).

A quick investigation on small oriented graphs suggests that all oriented
graphs should admit a nsd 3-arc-weighting. Besides, there exist oriented
graphs, such as the circuit on 3 vertices, which do not admit a nsd 2-arc-
weighting. We hence investigate the following question.
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Question 1. Does every oriented graph admit a nsd 3-arc-weighting?

Although Question 1 and the 1-2-3 Conjecture are quite similar in essence,
the two underlying problems do not seem to share any systematic relation-
ship. The fact that weighting some arc −→uv only affects the weighted outde-
gree of u makes Question 1 easier to handle. We hence answer this question
in the affirmative in Section 2. We then turn our concern on conditions
for some specific classes of oriented graphs to admit a nsd 2-arc-weighting
in Section 3. We next prove, in Section 4, that an “easy” characterization
of oriented graphs which admit a nsd 2-arc-weighting cannot exist unless
P=NP. For this purpose, we show that the problem of deciding whether an
oriented graph admits a nsd 2-arc-weighting is NP-complete. Concluding
remarks can be found in Section 5. In particular, we point out that our
results directly apply to product or list versions of the problem.

2 All oriented graphs admit a nsd 3-arc-weighting

Our first result states that every oriented graph admits a nsd 3-arc-weighting.
This relies on the fact that every oriented graph has a “convenient” vertex,
i.e. a vertex which admits a large number of potential weighted outdegrees
compared to its number of neighbours. The existence of such a vertex allows
the use of an inductive proof scheme. Our proof also yields a polynomial-
time algorithm for finding a nsd 3-arc-weighting of every oriented graph.

Theorem 1. Every oriented graph
−→
G admits a nsd 3-arc-weighting.

Proof. The claim is proved by induction on the size of
−→
G , i.e. its number of

arcs. As a base case, the claim is clearly true when
−→
G has size 0 or 1. Suppose

now that the claim is true for every oriented graph with at most m− 1 arcs,

and assume
−→
G has size m ≥ 2.

Note that
−→
G necessarily has a vertex v such that d+(v) > 0 and d+(v) ≥

d−(v) since otherwise we would have
∑

v∈V (
−→
G)
d−(v) 6= ∑

v∈V (
−→
G)
d+(v). A

nsd 3-arc-weighting of
−→
G is then obtained as follows. Start by removing

the arcs outgoing from v. According to the induction hypothesis, the re-
maining oriented graph admits a nsd 3-arc-weighting w. Now put back

the arcs outgoing from v to
−→
G , and extend w to these arcs in such a

way that the weighted outdegree of v is different from the weighted out-
degrees of the d−(v) + d+(v) vertices neighbouring v. This is possible since
there are 2d+(v) + 1 potential weighted outdegrees for v, namely those from
{d+(v), d+(v) + 1, ..., 3d+(v)}, while the number of forbidden weighted out-
degrees is at most d−(v) + d+(v) < 2d+(v) + 1 by our assumption on d−(v)
and d+(v). Because assigning a weight to the arcs outgoing from v does

3



not affect the weighted outdegree by w of any vertex neighbouring v, the

extension of w to
−→
G remains neighbour-sum-distinguishing.

3 Conditions for some families of oriented graphs
to admit a nsd 2-arc-weighting

By Theorem 1, we know that every oriented graph admits a nsd 3-arc-
weighting. Throughout this section, we focus on some common families of
oriented graphs and exhibit conditions for their members to admit a nsd
2-arc-weighting.

3.1 Acyclic oriented graphs

An oriented graph is acyclic if it does not admit a circuit as an induced
subgraph. We show that every such oriented graph admits a nsd 2-arc-
weighting.

Theorem 2. Every acyclic oriented graph admits a nsd 2-arc-weighting.

Proof. We prove the claim by induction on the order, i.e. the number of
vertices, of acyclic oriented graphs. As a starting point, note that an oriented
graph with only one vertex admits a nsd 2-arc-weighting. Suppose now that
the claim is true for every acyclic oriented graph with order at most n − 1

for some n ≥ 2, and let
−→
G be an acyclic oriented graph on n vertices.

Since
−→
G is acyclic, there are vertices of

−→
G with indegree 0. Let v be

such a vertex, and consider the graph
−→
G′ obtained by removing v from

−→
G .

Clearly
−→
G′ is acyclic and admits a nsd 2-arc-weighting w according to the

induction hypothesis. We now extend w to
−→
G , i.e. we weight the arcs out-

going from v in such a way that w remains neighbour-sum-distinguishing.
There are d+(v) + 1 possible weighted outdegrees for v, namely those from
{d+(v), d+(v)+1, ..., 2d+(v)}, while there are at most d+(v) forbidden weighted
outdegrees for v, namely the weighted outdegrees by w of the vertices in
N+(v). Since weighting the arcs outgoing from v does not alter the weighted
outdegree of any vertex neighbouring v, we can choose an available weighted
outdegree for v and weight the arcs outgoing from v consequently. This com-
pletes the proof.

3.2 Oriented graphs whose underlying graphs are k-colourable

Given an undirected graph G, a proper k-vertex-colouring of G is a partition
of V (G) into k parts V1, ..., Vk such that Vi is an independent set for every
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i ∈ {1, 2, ..., k}. The least number of parts of a proper vertex-colouring of

G is referred to as the chromatic number of G, denoted χ(G). Assuming
−→
G

is any orientation of G, i.e.
−→
G is obtained by orienting every edge of G in

either direction, we denote by und(
−→
G) the underlying undirected graph of−→

G , that is G.

As pointed out in some references of the literature (see e.g. [1] or [8]),
first partitioning a graph into several independent sets before weighting its
edges can be a good method for finding a specific edge-weighting. This is also
the case regarding neighbour-sum-distinguishing arc-weighting, as shown in
the following result.

Theorem 3. Every oriented graph
−→
G admits a nsd χ(und(

−→
G))-arc-weighting.

Proof. Let k = χ(und(
−→
G)), and V0, ..., Vk−1 be a proper k-vertex-colouring

of und(
−→
G). Process the vertices of

−→
G in arbitrary order. If the vertex v

belongs to the part Vi, then weight the arcs outgoing from v with weights
from {1, 2, ..., k} in such a way that the weighted outdegree of v is congruent
to i modulo k, e.g. by assigning i to one arc outgoing to v (or k if i = 0),
and k to all of its other outgoing arcs. This is possible unless d+(v) = 0
since, in such a situation, the only possible weighted outdegree for v is 0.
Once the process is achieved, two adjacent vertices u and v cannot have
the same weighted outdegrees since otherwise either u and v would both
belong to some part Vi, which is impossible since Vi is an independent set,
or we would have d+(u) = d+(v) = 0, which is impossible since u and v are
adjacent.

As a corollary of Theorem 3, we get in particular the following result.

Corollary 4. Every oriented graph
−→
G whose underlying graph is bipartite

admits a nsd 2-arc-weighting.

3.3 Tournaments

Our strategy for weighting the arcs of any tournament
−→
T is based on the fol-

lowing lemma, which could be also deduced from result of Landau regarding
so-called score sequences (see [10], Theorem 29).

Lemma 5. For every k ∈ {1, 2, ..., |V (
−→
T )|}, let nk ≥ 0 denote the number of

vertices with outdegree at most k of any tournament
−→
T . Then nk ≤ 2k+ 1.

Proof. Let k be fixed, with 1 ≤ k ≤ |V (
−→
T )|. Denote by X ⊆ V (

−→
T ) the

set of the nk vertices of
−→
T whose outdegree is at most k, and by s the sum

of outdegrees of the vertices in X. Naturally, we have s ≤ nkk. We also
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have s ≥ nk(nk−1)
2 since X induces a tournament, and there may be arcs of

−→
T whose tails lie in X, and whose heads do not lie in X. We hence get
nk(nk−1)

2 ≤ nkk, which implies that nk ≤ 2k + 1.

We now give a characterization of tournaments which admit a nsd 2-arc-
weighting.

Theorem 6. For every k ∈ {1, 2, ..., |V (
−→
T )|}, let nk ≥ 0 denote the number

of vertices with outdegree at most k of any tournament
−→
T . Then

−→
T admits a

nsd 2-arc-weighting if and only if nk ≤ k+1 for every k ∈ {1, 2, ..., |V (
−→
T )|}.

Proof. The proof is based on the following simple weighting scheme for
−→
T .

Process the vertices of
−→
T in increasing order of their outdegrees. For each

vertex v, weight the arcs outgoing from v in such a way that the weighted
outdegree of v gets the smallest possible value which does not appear among
the weighted outdegrees of the vertices considered in earlier steps of the
process. Assume k = d+(v). Since the weighted outdegree of v can take
any value from {k, k + 1, ..., 2k} and at most nk − 1 < k + 1 vertices have
been considered in earlier steps of the process, there is necessarily one non-
conflicting value which can be chosen as the weighted outdegree of v. We
then just have to weight the arcs outgoing from v consequently.

The “only if” condition of the statement follows from the fact that if we
have nk ∈ {k+2, k+3, ..., 2k+1} for some value of k (the upper bound on nk
follows from Lemma 5), then we need to increase the range of possible values
as the weighted outdegree of v, i.e. to allow the use of a third weight.

3.4 Cartesian products of oriented graphs

Let
−→
G and

−→
H be two oriented graphs. The Cartesian product of

−→
G and

−→
H ,

denoted
−→
G �

−→
H , is the oriented graph with vertex set V (

−→
G) × V (

−→
H ), and

whose two vertices (u1, v1) and (u2, v2) are joined by an arc from (u1, v1)

towards (u2, v2) if and only if u1 = u2 and −−→v1v2 ∈ E(
−→
H ), or −−→u1u2 ∈ E(

−→
G)

and v1 = v2.

The Cartesian product of graphs is a classical graph operation which
has been studied a lot since its introduction [6]. The reason for focusing on

the Cartesian product of oriented graphs is that if
−→
G and

−→
H both admit a

nsd k-arc-weighting for some value of k, one could expect
−→
G �

−→
H to need

k′ weights to obtain a nsd arc-weighting, where k′ depends on k. In the

next result, we show that the existence of nsd k-arc-weightings of
−→
G and

−→
H

implies the existence of a nsd k-arc-weighting of
−→
G �

−→
H .

Theorem 7. Assume
−→
G and

−→
H admit a nsd k- and `-arc-weighting, respec-

tively. Then
−→
G �

−→
H admits a nsd max{k, `}-arc-weighting.

6



Proof. Let w−→
G

and w−→
H

be nsd k- and `-arc-weighting of
−→
G and

−→
H , respec-

tively. Let w be a max{k, `}-arc-weighting of
−→
G �

−→
H defined as follows:

w(
−−−−−−−−−−→
(u1, v1)(u2, v2)) =

{
w−→

H
(−−→v1v2) if u1 = u2,

w−→
G

(−−→u1u2) otherwise.

Assume
−−−−−−−−−−→
(u1, v1)(u2, v2) is an arc of

−→
G �

−→
H . Then we have φw((u1, v1)) =

φw−→
G

(u1) + φw−→
H

(v1) and φw((u2, v2)) = φw−→
G

(u2) + φw−→
H

(v2). Since (u1, v1)
and (u2, v2) are adjacent, we have either u1 = u2 or v1 = v2 by construction.
Assume u1 = u2 without loss of generality. Then φw−→

G
(u1) = φw−→

G
(u2). Now,

because w−→
H

is neighbour-sum-distinguishing, we have φw−→
H

(v1) 6= φw−→
H

(v2).
It then follows that φw((u1, v1)) 6= φw((u2, v2)).

An immediate corollary of Theorem 7 is the following result.

Corollary 8. Assume
−→
G and

−→
H both admit a nsd 2-arc-weighting. Then−→

G �
−→
H admits a nsd 2-arc-weighting.

4 Algorithmic complexity

In this section, we focus on the complexity of the following decision problem.

neighbour-sum-distinguishing k-arc-weighting - k-nsdaw
Instance: An oriented graph

−→
G .

Question: Does
−→
G admit a nsd k-arc-weighting?

An oriented graph
−→
G admits a nsd 1-arc-weighting if and only if every

two adjacent vertices of
−→
G have distinct outdegrees. Since this property can

be checked in polynomial time, the problem 1-nsdaw is in P. Besides, every
problem k-nsdaw with k ≥ 3 is also in P since the answer to every of its
instances is yes, according to Theorem 1.

We deal with the complexity of the remaining problem, i.e. 2-nsdaw.
We show this problem to be NP-complete in Theorem 11 below, by reduction
from 3-sat. For this purpose, we first introduce several gadgets to “force”
the propagation of a nsd 2-arc-weighting along an oriented graph.

We first introduce two kinds of forbidding gadgets. A forbidding gad-

get
−→
F is composed of one root vertex with outdegree 0 adjacent to forcing

vertices. The weighting property of
−→
F is that each of its forcing vertices

has always the same weighted outdegree by every nsd 2-arc-weighting of
−→
F .

Assume x1, x2, ..., xk denote the respective outdegrees of the forcing vertices.

Then, after having identified the root of
−→
F with a vertex v of some graph
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u1

u2

u4

u5
u6

u7 v1

u3
u′1

u′2

u′4

u′5u′6

u′3

u′7

v3

v2

Figure 1: The forbidding gadget
−−→
F3,4.

−→
G , the vertex v cannot have weighted outdegree x1, x2, ..., xk by any nsd

2-arc-weighting of
−→
G because of the forcing vertices of

−→
F neighbouring v.

First, we define a (2k − 1, 2k)-forbidding gadget, denoted
−−−−−→
F2k−1,2k, for

every integer k ≥ 2. These gadgets are defined inductively. The gadget−−→
F3,4 is the one depicted in Figure 1. The root of

−−→
F3,4 is v3, while its forcing

vertices are v1 and v2. Now, for any value of k ≥ 3 such that the oriented

graphs
−−−−−−→
F2k′−1,2k′ have been defined for every k′ < k, the oriented graph−−−−−→

F2k−1,2k is constructed as follows. Let vk1 , vk2 and vk3 be three distinct vertices

joined by
−−→
vk1v

k
2 ,
−−→
vk1v

k
3 and

−−→
vk2v

k
3 . Now, for every k′ ∈ {2, 3, ..., k− 1}, identify

vk1 and the root of a copy of
−−−−−−→
F2k′−1,2k′ . Repeat the same procedure but with

vk2 instead of vk1 and new copies of the forbidding gadgets. Finally add an
arc from vk1 towards k− 2 new vertices with outdegree 0, and similarly from

vk2 towards k − 1 new vertices with outdegree 0. The root of
−−−−−→
F2k−1,2k is vk3 ,

while its forcing vertices are vk1 and vk2 .

Lemma 9. Let k ≥ 2 be fixed. In every nsd 2-arc-weighting of
−−−−−→
F2k−1,2k, one

of the forcing vertices has weighted outdegree 2k− 1, while the other forcing
vertex has weighted outdegree 2k.

Proof. We prove the claim by induction on k. At each step, let w be a nsd 2-

arc-weighting of the considered forbidding gadget. Start with
−−→
F3,4. Since u1

and u2 are adjacent and both have outdegree 1, we have {φw(u1), φw(u2)} =
{1, 2}. By the same argument, we have {φw(u4), φw(u5)} = {1, 2}. Since u3
and u6 are adjacent, both adjacent to vertices with weighted outdegree 2, and
have outdegree 2, we necessarily have {φw(u3), φw(u6)} = {3, 4}. Because u7
is adjacent to u3 and u6 and has outdegree 2, we necessarily get φw(u7) = 2.

Repeating the same arguments to the oriented subgraph of
−−→
F3,4 induced by

the u′i’s, we also obtain φw(u′7) = 2. Finally, since v1 and v2 are adjacent,
both adjacent to a vertex with weighted outdegree 2, and have outdegree 2,
we have {φw(v1), φw(v2)} = {3, 4} as claimed.

Assume the claim is true for every k up to i− 1, and consider
−−−−−→
F2k−1,2k.
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−→
F5,6

−→
F7,8

v41

v42
(a) The gadget

−→
F4.

−→
F4

−→
F5,6

v31

v32
(b) The gadget

−→
F3.

Figure 2: Two examples of forbidding gadgets. A triangle represents a
forbidding gadget.

Because vk1 and vk2 have outdegree k by construction, their weighted out-
degree by w can only take value from {k, k + 1, ..., 2k}. However, since
these two vertices are both identified with the roots of forbidding gadgets−−→
F3,4,

−−→
F5,6, ...,

−−−−−−−→
F2k−3,2k−2, their weighted outdegree cannot take value from

{3, 4, ..., 2k − 3, 2k − 2} according to the induction hypothesis. Therefore,
we have {φw(vk1 ), φw(vk2 )} = {2k − 1, 2k} since vk1 and vk2 are adjacent.

We now define a k-forbidding gadget, denoted
−→
Fk, for every integer k ≥ 3.

The oriented graph
−→
Fk originally consists in an arc

−−→
vk1v

k
2 . We call vk2 and

vk1 the root and the forcing vertex of
−→
Fk, respectively. Next add an arc

from vk1 towards k − 1 new vertices with outdegree 0. The end of the con-
struction depends on the parity of k. If k is even, then identify vk1 and

the root of each of the forbidding gadgets
−−−−−→
Fk+1,k+2,

−−−−−→
Fk+3,k+4, ...,

−−−−−→
F2k−1,2k.

Otherwise, i.e. if k is odd, then identify vk1 and the roots of
−−→
Fk+1, and−−−−−→

Fk+2,k+3,
−−−−−→
Fk+4,k+5, ...,

−−−−−→
F2k−1,2k. The gadgets

−→
F3 and

−→
F4 are depicted in Fig-

ure 2.

Lemma 10. Let k ≥ 3 be fixed. In every nsd 2-arc-weighting of
−→
Fk, the

forcing vertex has weighted outdegree k.

Proof. Let w be a nsd 2-arc-weighting of
−→
Fk. Assume k is even. Since

vk1 has outdegree k, its weighted outdegree by w can only take value from

{k, k+1, ..., 2k}. But, because vk1 is the root of forbidding gadgets
−−−−−→
Fk+1,k+2,−−−−−→

Fk+3,k+4, ...,
−−−−−→
F2k−1,2k, it is adjacent to vertices with weighted outdegrees

k+1, k+2, ..., 2k according to Lemma 9. Hence, the only remaining weighted
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outdegree for vk1 by w is k. The claim follows similarly when k is odd, the
value k + 1 being forbidden as the weighted outdegree of vk1 because it was

identified with the root of a forbidding gadget
−−→
Fk+1 with k+1 being even.

Thanks to the two kinds of forbidding gadgets introduced above, we can
now “force” a vertex of some oriented graph to have a specific weighted
outdegree by any nsd 2-arc-weighting. Let v be a vertex of some oriented

graph
−→
G , and k ≥ d+(v) be some integer. Assume we are given a set

D ⊆ {k, k + 1, ..., 2k} of “allowed” weighted outdegrees for v by any nsd

2-arc-weighting of
−→
G . Then, by “turning v into a D-vertex”, we refer to the

following operations:

• first add arcs from v towards k− d+(v) new vertices with outdegree 0
so that v has outdegree k,

• then identify v and the respective root of each of the forbidding gadgets−→
Fi with i ∈ {k, k + 1, ..., 2k} −D.

Clearly, because of the forcing vertices neighbouring v, the weighted

outdegree of v by any nsd 2-arc-colouring of
−→
G necessarily takes value among

D.

We are now ready to introduce our hardness reduction.

Theorem 11. The problem 2-nsdaw is NP-complete.

Proof. Given a 2-arc-weighting w of
−→
G , one can first compute the vertex-

colouring φw of
−→
G from w, and then check whether it is proper. Since this

procedure can be achieved in polynomial time, 2-nsdaw is in NP.

We now prove that 2-nsdaw is NP-hard by reduction from the following
classical NP-complete problem [5].

3-sat
Instance: A 3CNF formula F over clauses C1, ..., Cm and variables x1, ..., xn.
Question: Does F admit a satisfying truth assignment?

Note that we can assume that every possible literal appears in F . Indeed,
if `i does not appear in any clause of F , then the 3CNF formula F∧(`i∨`i∨`i)
is satisfiable if and only if F is satisfiable. By repeating this procedure for all
literals which do not appear in F , we obtain a formula equivalent to F but
involving all possible literals over its variables. This procedure is achieved
in polynomial time.

10



{f(ℓ1), f(ℓ2), f(ℓ3)}

v1 v2

{t(ℓ3), f(ℓ3)}

v3

{t(ℓ2), f(ℓ2)}{t(ℓ1), f(ℓ1)}

zj

uj1 uj2 uj3

Figure 3: Partial resulting clause gadget for a clause Cj = (`1∨`2∨`3). The
integer sets represent the allowed weighted outdegrees at each vertex by a

nsd 2-arc-weighting of
−→
GF .

We introduce some more terminology regarding an instance of 3-sat.
The 2n literals of F over its n variables are denoted by `1, `2, ..., `2n, the or-
dering being arbitrary. By ni ≥ 1, we refer to the number of distinct clauses
of F that contain the literal `i for every i ∈ {1, 2, ..., 2n}. By cj ∈ {1, 2, 3},
we denote the number of distinct literals which appear in the clause Cj for
every j ∈ {1, 2, ...,m}. In the case where cj = 1, i.e. Cj is of the form
(`i ∨ `i ∨ `i), note that `i is set to true by every satisfying truth assignment
of F . In such a situation, we say that `i is forced to true by Cj .

Our hardness reduction is described below. From a 3CNF formula F ,

we construct an oriented graph
−→
GF such that F is satisfiable if and only if−→

GF admits a nsd 2-arc-weighting wF .

Let t and f be two injective mappings from {x1, x2, ..., xn} to {2n, 2n+
1, ..., 3n − 1} and {3n, 3n + 1, ..., 4n}, respectively. Assuming `j = xi and
`j′ = xi, i.e. `j and `j′ are the literals associated with the variable xi, we
set t(`j) = f(`j′) = t(xi) and f(`j) = t(`j′) = f(xi).

First, for every literal `i of F , add a vertex vi in
−→
GF . Now consider every

clause Cj of F . We associate a clause gadget in
−→
GF with Cj , its structure

depending on the value of cj . Denote by `j1 , ..., `jcj the distinct literals of Cj .

Let
−−−→
ujj1vj1 , ...,

−−−−→
ujjcj

vjcj be cj arcs of
−→
GF , where ujj1 , ..., u

j
jcj

are new vertices.

If cj = 1, i.e. `j1 is forced to true by Cj , then turn ujj1 into a {t(`j1)}-vertex.

Otherwise, i.e. cj ∈ {2, 3}, turn each vertex ujji into a {t(`ji), f(`ji)}-vertex,

add a vertex zj to
−→
GF , add arcs from zj towards ujj1 , ..., u

j
jcj

, and turn zj

into a {f(`j1), ..., f(`jcj )}-vertex. This construction is depicted in Figure 3.

Claim 1. Let Cj = (`j1 ∨ `j2 ∨ `j3) be a clause of F . Then at least one of

t(`j1), t(`j2) and t(`j3) belongs to {φwF (ujj1), φwF (ujj2), φwF (ujj3)}.

11



{t(ℓi), f(ℓi)}vi {t(ℓi), f(ℓi)}vi′

Figure 4: Partial subgraph of
−→
GF for two literals `i and `i′ such that `i′ = `i.

The integer sets represent the allowed weighted outdegrees at each vertex

by a nsd 2-arc-weighting of
−→
GF .

Proof. The claim is true when cj = 1 since ujj1 is a {t(`j1)}-vertex. When

cj ∈ {2, 3}, note that we cannot have φwF (ujj1) = f(`j1), ..., φwF (ujjcj
) =

f(`jcj ) since zj is a {f(`j1), ..., f(`jcj )}-vertex. On the contrary, note that if

there is an i ∈ {1, 2, ..., cj} such that φwF (ujji) = t(`ji), then we can weight
the arcs outgoing from zj in such a way that the weighted outdegree of zj
by wF is f(`ji).

Let i ∈ {1, 2, ..., 2n}. Note that, so far, the vertex vi has indegree ni.
Consider i′ ∈ {1, 2, ..., 2n} such that `i′ = `i. To finish the construction of−→
GF , add the arc −−→vi′vi, and turn vi and vi′ into {t(`i), f(`i)}-vertices. This
step of the construction is illustrated in Figure 4.

Claim 2. Let i ∈ {1, 2, ..., 2n}, and i1, i2, ..., ini be the indexes of the distinct

clauses of F that contain `i. Then φwF (ui1i ) = φwF (ui2i ) = ... = φwF (u
ini
i ).

Proof. Recall that the u
ij
i ’s can only have weighted outdegree t(`i) or f(`i)

by wF . Now note that if one of the u
ij
i ’s has weighted outdegree t(`i) by

wF while another such vertex has weighted outdegree f(`i), then wF cannot
be extended to the arcs outgoing from vi since vi is a {t(`i), f(`i)}-vertex.

On the contrary, if all the u
ij
i ’s neighbouring vi have the same weighted

outdegree, say t(`i), then the arcs outgoing from vi can be weighted in such
a way that φwF (vi) = f(`i).

Claim 3. Let i, i′ ∈ {1, 2, ..., 2n} be two integers such that `i′ = `i. Then
φwF (vi) 6= φwF (vi′).

Proof. The claim follows from the fact that vi and vi′ are adjacent.

We now claim that F has a satisfying truth assignment if and only if−→
GF admits its nsd 2-arc-weighting wF . Assume Cj = (`j1 ∨ `j2 ∨ `j3) is

a clause of F , and that having φwF (ujji) = t(`ji) (resp. f(`ji)) simulates
the assignment of `ji to true (resp. false) in Cj by a truth assignment

12



of F . Then, by Claim 1, every clause gadget of
−→
GF must have a vertex ujji

whose weighted outdegree by wF is t(`ji). This simulates the fact that every
clause of F must have one true literal by a satisfying truth assignment of
F . Claim 2 depicts the fact that, by a truth assignment of F , every literal
of F provides the similar truth value to every clause it appears in. Finally,
Claim 3 represents the fact that two opposite literals cannot be assigned the
same truth value by a truth assignment of F . With these arguments, we
can deduce a satisfying truth assignment of F from wF , and vice-versa.

5 Discussion

Recall that the proof of Theorem 1 mainly relies on the fact that the num-
ber of possible weighted outdegrees by an arc-weighting for a vertex with
outdegree d is sufficiently large, i.e. at least 2d+ 1, when the weights from
{1, 2, 3} are allowed for each arc. By showing this property to hold for any
triple {a, b, c} of weights, we can strengthen Theorem 1.

Lemma 12. Let v be a vertex with outdegree d of some oriented graph
−→
G ,

and {a, b, c} be a set of three real numbers. Then there are at least 2d + 1

possible weighted outdegrees for v by any arc-weighting of
−→
G assigning value

among {a, b, c} to the arcs outgoing from v.

Proof. We prove this claim by induction on d. If d = 1, then the arc outgoing

from v can be weighted either a, b, or c by an arc-weighting of
−→
G . Since

a, b and c are distinct, there are exactly three weighted outdegrees for v,
namely a, b and c, respectively.

Assume the claim is true for every value of d up to i − 1, and assume

d = i. Let
−→
G′ be the oriented graph obtained by removing exactly one arc

−→vu outgoing from v. Then there are at least 2(d− 1) + 1 possible weighted

outdegrees for v by any arc-weighting of
−→
G′ taking value among {a, b, c}

according to the induction hypothesis. Let D′ be the set of these possible
weighted outdegrees, and denote inf and sup the minimum and maximum

elements of D′, respectively, and w′inf and w′sup two arc-weighting of
−→
G′ such

that φw′inf
(v) = inf and φw′sup(v) = sup, respectively.

Assume a < b < c. Note that if the result holds for {a, b, c}, then it also
holds for {−a,−b,−c}. Hence, we only have two cases to consider, namely

1. 0 ≤ a < b < c, and

2. a < 0 ≤ b < c.
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In the first case, by extending every arc-weighting of
−→
G′ to

−→
G by weight-

ing the arc −→vu with weight a, we directly obtain that the set D = {x+a : x ∈
D′} is a set of at least 2(d− 1) + 1 possible weighted outdegrees for v. The
two remaining weighted outdegrees for v are obtained by extending w′sup by
weighting b or c the arc −→vu. We then obtain that sup + b and sup + c are
two other possible weighted outdegrees for v since none of these two values
can appear in D because a < b < c. There are thus at least 2d+ 1 possible
weighted outdegrees for v.

In the second case, by extending every arc-weighting of
−→
G′ to

−→
G by

weighting b the arc −→vu, we get that D = {x + b : x ∈ D′} is a set of at
least 2(d − 1) + 1 weighted outdegrees for v. The two remaining weighted

outdegrees for v are obtained by extending w′inf and w′sup to
−→
G by weighting

a and c, respectively, the arc −→vu. From these two extensions, we get that v
can also have weighted outdegree inf + a and sup+ c, which do not appear
in D by our assumptions on a, b and c. This completes the proof.

As a corollary of Lemma 12, we directly get that the proof of Theorem 1
is applicable no matter what are the three weights allowed to weight the
arcs outgoing from any vertex. This implies the following list version of our
main result.

Corollary 13. For every vertex v of some oriented graph
−→
G , let L(v) be an

arbitrary list of three distinct real weights allowed at v. Then
−→
G admits a

nsd arc-weighting such that the arcs outgoing from any vertex v are weighted
with values among L(v).

As for the undirected case, one can also consider a variant of the prob-
lem investigated in this work where the weighted outdegree of a vertex is
the product of its outgoing weights rather than their sum (see e.g. [12]).

Formally, from a k-arc-weighting w of some oriented graph
−→
G one obtains a

vertex-colouring ρw defined as ρw(v) =
∏

u∈N+(v)w(−→vu) for every v ∈ V (
−→
G).

If ρw is proper, then we say that w is neighbour-product-distinguishing (npd
for short).

Regarding npd-arc-weightings, note that the range of possible weighted
outdegrees for a vertex is as wider as in the product version than in the sum
version when the weights from {1, 2, 3} are allowed (this can be proved in
a similar manner as Lemma 12). Hence, our proof of Theorem 1 is also a
proof that every oriented graph admits a npd-3-arc-weighting.

Theorem 14. Every oriented graph
−→
G admits a npd-3-arc-weighting.

Note that there are k+ 1 possible weighted outdegrees for a vertex with
outdegree k by a npd-2-arc-weighting of some oriented graph, namely those
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from {1, 2, 4, ..., 2k}. Since there are as many possible weighted outdegrees
for a vertex by a nsd 2-arc-weighting and a npd-2-arc-weighting, our results
from Section 3 also hold regarding npd-2-arc-weightings.

Finally, we can adapt the reduction scheme from Section 4 to prove that
it is NP-complete to decide whether a given oriented graph admits a npd-
2-arc-weighting. The forbidding gadgets can be obtained, for instance, as
follows. Start from the circuit −−−−−−→u1u2u3u1 on 3 vertices, and add an arc −−→u1u4
where u4 is a new vertex. This resulting oriented graph

−→
F4 is a 4-forbidding

gadget since u1 necessarily gets weighted outdegree 4 by any npd-2-arc-

weighting. The root of
−→
F4 is u4. Now consider another oriented graph

−−→
F1,2

with vertices v1, v2, v3 and v4 such that −−→v1v2, −−→v1v3, −−→v2v3 and −−→v2v4 are arcs,

and v1 and v2 are each identified with the root of one copy of
−→
F4. Clearly,

since v1 and v2 are adjacent vertices with outdegree 2, and they are both

identified with the root of a gadget
−→
F4, their weighted outdegree can only be

1 and 2 without loss of generality, and
−−→
F1,2 is thus a (1, 2)-forbidding gadget

with root v3. Now to obtain a 2k-forbidding gadget
−→
F2k assuming that a 2k

′
-

forbidding gadget has been defined for every k′ < k (with the exception that
there is a (1, 2)-forbidding gadget rather than a 1−forbidding gadget and a 2-
forbidding gadget), start from the arc −−−→w1w2, then add arcs from w1 towards
k−1 new vertices so that w1 has outdegree k, and finally identify w1 and the
roots of all the forbidding gadgets constructed in previous steps. Clearly, w1

can only have weighted outdegree 2k by every npd-2-arc-weighting of
−→
F2k .

Thus,
−→
F2k is a 2k-forbidding gadget with root w2. With these forbidding

gadgets, our reduction scheme can then be directly adapted for the product
version of the problem.

Another direction for extending our problem could be to consider undi-
rected graphs.

Question 2. What is the least k ∈ {1, 2, 3} such that every undirected graph
admits an orientation which admits a nsd k-arc-weighting?

Recall that an oriented graph admits a nsd 1-arc-weighting if and only
if every two of its adjacent vertices have distinct outdegrees. According to a
result from [4], the answer to Question 2 is 1. We give a reformulated proof
of this statement using our terminology.

Lemma 15. Every undirected graph G admits an orientation in which every
two adjacent vertices have distinct outdegrees.

Proof. We prove this result by induction on the order n of G. Since the
result is true for n = 1, we assume the claim is true for every n up to i− 1,
and now consider n = i. Let v be a vertex whose degree is maximum in
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G. According to the induction hypothesis, the graph G′ = G− v admits an

orientation
−→
G′ in which every two adjacent vertices have distinct outdegrees.

Note that in
−→
G′, the outdegree of every vertex in N(v) is at most d(v) − 1

since v has maximum degree in G. Now start from
−→
G′, and let

−→
G be the

orientation of G obtained by orienting all edges incident with v from v

towards its neighbours. Since the outdegree of v in
−→
G is then d(v), and the

outdegrees of all vertices neighbouring v are not altered, the orientation still
satisfies the claim.

Corollary 16. Every undirected graph admits an orientation which admits
a nsd 1-arc-weighting.
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