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STRATIFIED CRITICAL POINTS ON THE REAL MILNOR FIBRE AND INTEGRAL-GEOMETRIC FORMULAS

Let (X, 0) ⊂ (R n , 0) be the germ of a closed subanalytic set and let f and g : (X, 0) → (R, 0) be two subanalytic functions. Under some conditions, we relate the critical points of g on the real Milnor fibre X ∩ f -1 (δ) ∩ Bǫ, 0 < |δ| ≪ ǫ ≪ 1, to the topology of this fibre and other related subanalytic sets. As an application, when g is a generic linear function, we obtain an "asymptotic" Gauss-Bonnet formula for the real Milnor fibre of f . From this Gauss-Bonnet formula, we deduce "infinitesimal" linear kinematic formulas.

Introduction

Let F = (f 1 , . . . , f k ) : (C n , 0) → (C k , 0), 2 ≤ k ≤ n, be a complete intersection with isolated singularity. The Lê-Greuel formula [START_REF] Greuel | Der Gauss-Manin Zusammenhang isolierter Singularitäten von vollständingen Durschnitten[END_REF][START_REF]Calcul du nombre de Milnor d'une singularité isolée d'intersection complète[END_REF] states that

µ(F ′ ) + µ(F ) = dim C O C n ,0 I ,
where F ′ : (C n , 0) → (C k-1 , 0) is the map with components f 1 , . . . , f k-1 , I is the ideal generated by f 1 , . . . , f k-1 and the (k × k)-minors ∂(f 1 ,...,f k ) ∂(x i 1 ,...,x i k )

and µ(F ) (resp. µ(F ′ )) is the Milnor number of F (resp F ′ ). Hence the Lê-Greuel formula gives an algebraic characterization of a topological data, namely the sum of two Milnor numbers. However, since the right-hand side of the above equality is equal to the number of critical points of f k , counted with multiplicity, on the Milnor fibre of F ′ , the Lê-Greuel formula can be also viewed as a topological characterization of this number of critical points. Many works have been devoted to the search of a real version of the Lê-Greuel formula. Let us recall them briefly. We consider an analytic map-germ F = (f 1 , . . . , f k ) : (R n , 0) → (R k , 0), 2 ≤ k ≤ n, and we denote by F ′ the map-germ (f 1 , . . . , f k-1 ) : (R n , 0) → (R k-1 , 0). Some authors investigated the following difference:

D δ,δ ′ = χ F ′-1 (δ) ∩ {f k ≥ δ ′ } ∩ B ǫ -χ F ′-1 (δ) ∩ {f k ≤ δ ′ } ∩ B ǫ ,
where (δ, δ ′ ) is a regular value of F such that 0 ≤ |δ ′ | ≪ |δ| ≪ ǫ.

In [START_REF] Dutertre | On the Milnor fibre of a real map-germ[END_REF], we proved that

D δ,δ ′ ≡ dim R O R n ,0 I mod 2,
where O R n ,0 is the ring of analytic function-germs at the origin and I is the ideal generated by f 1 , . . . , f k-1 and all the k × k minors

∂(f k ,f 1 ,...,f k-1 )
∂(x i 1 ,...,x i k ) . This is only a mod 2 relation and we may ask if it is possible to get a more precise relation.

When k = n and f k = x 2 1 + • • • + x 2 n , according to Aoki et al. ( [START_REF] Aoki | On the number of branches of the zero locus of a map germ (R n , 0) → (R n-1 , 0)[END_REF], [START_REF] Aoki | On the number of branches of a plane curve germ[END_REF]), D δ,0 = χ F ′-1 (δ) ∩ B ε = 2deg 0 H and 2deg 0 H is the number of semibranches of F ′-1 (0), where

H = ( ∂(f n , f 1 , . . . , f n-1 ) ∂(x 1 , . . . , x n ) , f 1 , . . . , f n-1 ).
They proved a similar formula in the case f k = x n in [START_REF] Aoki | An algebraic formula for the topological types of one parameter bifurcation diagrams[END_REF] and Szafraniec generalized all these results to any f k in [START_REF] Szafraniec | On the number of branches of a 1-dimensional semi-analytic set[END_REF].

When k = 2 and f 2 = x 1 , Fukui [START_REF] Fukui | An algebraic formula for a topological invariant of bifurcation of 1-parameter family of function-germs[END_REF] stated that

D δ,0 = -sign(-δ) n deg 0 H,
where H = (f 1 , ∂f 1 ∂x 2 , . . . , ∂f 1 ∂xn ). Several generalizations of Fukui's formula are given in [START_REF] Fukui | Mapping degree formula for 2-parameter bifurcation of functiongerms[END_REF], [START_REF] Dutertre | Degree formulas for a topological invariant of bifurcations of function germs[END_REF], [START_REF] Fukui | Mapping degree and Euler characteristic[END_REF] and [START_REF] Dutertre | On the Euler characteristics of real Milnor fibres of partially parallelizable maps of (R n , 0) → (R 2 , 0)[END_REF].

In all these papers, the general idea is to count algebraically the critical points of a Morse perturbation of f k on F ′-1 (δ) ∩ B ǫ and to express this sum in two ways: as a difference of Euler characteristics and as a topological degree. Using the Eisenbud-Levine formula [START_REF] Eisenbud | An algebraic formula for the degree of a C ∞ map-germ[END_REF], this latter degree can be expressed as a signature of a quadratic form and so, we obtain an algebraic expression for D δ,δ ′ .

In this paper, we give a real and stratified version of the Lê-Greuel formula. We restrict ourselves to the topological aspect and relate a sum of indices of critical points on a real Milnor fibre to some Euler characteristics (this is also the point of view adopted in [START_REF] Cisneros-Molina | On the topology of real analytic maps[END_REF]). More precisely, we consider a germ of a closed subanalytic set (X, 0) ⊂ (R n , 0) and a subanalytic function f : (X, 0) → (R, 0). We assume that X is contained in a open set U of R n and that f is the restriction to X of a C 2 -subanalytic function F : U → R. We denote by X f the set X ∩ f -1 (0) and we equip X with a Thom stratification adapted to X f . If 0 < |δ| ≪ ǫ ≪ 1 then the real Milnor fibre of f is defined by M δ,ǫ f = f -1 (δ) ∩ X ∩ B ǫ . We consider another subanalytic function g : (X, 0) → (R, 0) and we assume that it is the restriction to X of a C 2 -subanalytic function G : U → R. We denote by X g the intersection X ∩ g -1 (0). Under two conditions on g, we study the topological behaviour of g |M δ,ǫ f . We recall that if Z ⊂ R n is a closed subanalytic set, equipped with a Whitney stratification and p ∈ Z is an isolated critical point of a subanalytic function φ : Z → R, restriction to Z of a C 2 -subanalytic function Φ, then the index of φ at p is defined as follows:

ind(φ, Z, p) = 1 -χ Z ∩ {φ = φ(p) -η} ∩ B ǫ (p) ,
where 0 < η ≪ ǫ ≪ 1 and B ǫ (p) is the closed ball of radius ǫ centered at p. Let p δ,ǫ 1 , . . . , p δ,ǫ r be the critical points of g on X ∩ f -1 (δ) ∩ Bǫ , where Bǫ denotes the open ball of radius ǫ. We set

I(δ, ǫ, g) = r i=1 ind(g, X ∩ f -1 (δ), p δ,ǫ i ), I(δ, ǫ, -g) = r i=1 ind(-g, X ∩ f -1 (δ), p δ,ǫ i ).
Our main theorem (Theorem 3.10) is the following:

I(δ, ǫ, g) + I(δ, ǫ, -g) = 2χ(M δ,ǫ f ) -χ(X ∩ f -1 (δ) ∩ S ǫ ) -χ(X g ∩ f -1 (δ) ∩ S ǫ
). As a corollary (Corollary 3.11), when f : (X, 0) → (R, 0) has an isolated stratified critical point at 0, we obtain that

I(δ, ǫ, g) + I(δ, ǫ, -g) = 2χ(M δ,ǫ f ) -χ(Lk(X f )) -χ(Lk(X f ∩ X g )),
where Lk(-) denotes the link at the origin.

Then we apply these results when g is a generic linear form to get an asymptotic Gauss-Bonnet formula for M δ,ǫ f (Theorem 4.5). In the last section, we use this asymptotic Gauss-Bonnet formula to prove infinitesimal linear kinematic formulas for closed subanalytic germs (Theorem 5.5), that generalize the Cauchy-Crofton formula for the density due to Comte [START_REF] Comte | Equisingularité réelle: nombres de Lelong et images polaires[END_REF].

The paper is organized as follows. In Section 2, we prove several lemmas about critical points on the link of a subanalytic set. Section 3 contains real stratified versions of the Lê-Greuel formula. In Section 4, we establish the asymptotic Gauss-Bonnet formula and in Section 5, the infinitesimal linear kinematic formulas.
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Lemmas on critical points on the link of a stratum

In this section, we study the behaviour of the critical points of a C 2subanalytic function on the link of stratum that contains 0 in its closure, for a generic choice of the distance function to the origin.

Let Y ⊂ R n be a C 2 -subanalytic set such that 0 belongs to its closure Y . Let θ : R n → R be a C 2 -subanalytic function such that θ(0) = 0. We will first study the behaviour of the critical points of θ |Y : Y → R in the neighborhood of 0, and then the behaviour of the critical points of the restriction of θ to the link of 0 in Y .

Lemma 2.1. The critical points of θ |Y lie in {θ = 0} in a neighborhood of 0.

Proof. By the Curve Selection Lemma, we can assume that there is a C 1subanalytic curve γ : [0, ν[→ Y such that γ(0) = 0 and γ(t) is a critical point of θ |Y for t ∈]0, ν[. Therefore, we have

(θ • γ) ′ (t) = ∇θ |Y (γ(t)), γ ′ (t) = 0, since γ ′ (t) is tangent to Y at γ(t). This implies that θ • γ(t) = θ • γ(0) = 0.
Let ρ : R n → R be another C 2 -subanalytic function such that ρ -1 (a) intersects Y transversally. Then the set Y ∩ {ρ ≤ a} is a manifold with boundary. Let p be a critical point of θ |Y ∩{ρ≤a} which lies in Y ∩ {ρ = a} and which is not a critical point of θ |Y . This implies that

∇θ |Y (p) = λ(p)∇ρ |Y (p), with λ(p) = 0. Definition 2.2. We say that p ∈ Y ∩ {ρ = a} is an outwards-pointing (resp. inwards-pointing) critical point of θ |Y ∩{ρ≤a} if λ(p) > 0 (resp. λ(p) < 0).
Now let us assume that ρ : R n → R is a distance function to the origin which means that ρ ≥ 0 and ρ -1 (0) = {0} in a neighborhood of 0. By Lemma 2.1, we know that for ǫ > 0 small enough, the level ρ -1 (ǫ) intersects Y transversally. Let p ǫ be a critical point of θ |Y ∩ρ -1 (ǫ) such that θ(p ǫ ) = 0. This means that there exists λ(p ǫ ) such that

∇θ |Y (p ǫ ) = λ(p ǫ )∇ρ |Y (p ǫ ).
Note that λ(p ǫ ) = 0 because ∇θ |Y (p ǫ ) = 0 for θ(p ǫ ) = 0.

Lemma 2.3. The point p ǫ is an outwards-pointing (resp. inwards-pointing) for θ |Y ∩{ρ≤ǫ} if and only if θ(p ǫ ) > 0 (resp. θ(p ǫ ) < 0).

Proof. Let us assume that λ(p ǫ ) > 0. By the Curve Selection Lemma, there exists a C 1 -subanalytic curve γ : [0, ν[→ Y passing through p ǫ such that γ(0) = 0 and for t = 0, γ(t) is a critical point of θ |Y ∩{ρ=ρ(γ(t))} with λ(γ(t)) > 0. Therefore we have

(θ • γ) ′ (t) = ∇θ |Y (γ(t)), γ ′ (t) = λ(γ(t)) ∇ρ |Y (γ(t)), γ ′ (t) .
But (ρ • γ) ′ > 0 for otherwise (ρ • γ) ′ ≤ 0 and ρ • γ would be decreasing. Since ρ(γ(t)) tends to 0 as t tends to 0, this would imply that ρ • γ(t) ≤ 0, which is impossible. We can conclude that (θ • γ) ′ > 0 and that θ • γ is strictly increasing. Since θ • γ(t) tends to 0 as t tends to 0, we see that θ • γ(t) > 0 for t > 0. Similarly if λ(p ǫ ) < 0 then θ(p ǫ ) < 0. Now we will study these critical points for a generic choice of the distance function. We denote by Sym(R n ) the set of symmetric n × n-matrices with real entries, by Sym * (R n ) the open dense subset of such matrices with nonzero determinant and by Sym * ,+ (R n ) the open subset of these invertible matrices that are positive definite or negative definite. Note that these sets are semi-algebraic. For each A ∈ Sym * ,+ (R n ), we denote by ρ A the following quadratic form:

ρ A (x) = Ax, x . We denote by Γ Y θ,A the following subanalytic polar set:

Γ Y θ,A = x ∈ Y | rank ∇θ |Y (x), ∇ρ A|Y (x) < 2 ,
and by Σ Y θ the set of critical points of θ |Y . Note that Σ Y θ ⊂ {θ = 0} by Lemma 2.1.

Lemma 2.4. For almost all

A in Sym +, * (R n ), Γ Y θ,A \ (Σ Y θ ∪ {0}) is a C 1 - subanalytic curve (possible empty) in a neighborhood of 0. Proof. We can assume that dim Y > 1. Let Z = (x, A) ∈ R n × Sym +, * (R n ) | x ∈ Y \ (Σ Y θ ∪ {0})
and rank ∇θ |Y (x), ∇ρ A|Y (x) < 2 .

Let (y, B) be a point in Z. We can suppose that around y, Y is defined by the vanishing of k subanalytic functions f 1 , . . . , f k of class C 2 . Hence in a neighborhood of (y, B), Z is defined be the vanishing of f 1 , . . . , f k and the minors ∂(f 1 , . . . , f k , θ, ρ A ) ∂(x i 1 , . . . , x i k+2 ) .

Furthermore, since y does not belong to Σ Y θ , we can assume that

∂(f 1 , . . . , f k , θ) ∂(x 1 , . . . , x k , x k+1 ) = 0,
in a neighborhood of y. Therefore Z is locally defined by

f 1 = • • • = f k = 0 and ∂(f 1 , . . . , f k , θ, ρ A ) ∂(x 1 , . . . , x k+1 , x k+2 ) = • • • = ∂(f 1 , . . . , f k , θ, ρ A ) ∂(x 1 , . . . , x k+1 , x n ) = 0. Let us write M = ∂(f 1 ,...,f k ,θ) ∂(x 1 ,...,x k ,x k+1 ) and for i ∈ {k+2, . . . , n}, m i = ∂(f 1 ,...,f k ,θ,ρ A ) ∂(x 1 ,...,x k+1 ,x i ) . If A = [a ij ] then ρ A (x) = n i=1 a ii x 2 i + 2 i =j a ij x i x j ,
and so ∂ρ A ∂x i (x) = 2 n j=1 a ij x j . For i ∈ {k + 1, . . . , n} and j ∈ {1, . . . , n}, we have

∂m i ∂a ij = 2x j M.
Since y = 0, one of the x j 's does not vanish in the neighborhood of y and we can conclude that the rank of [∇f 1 (x), . . . , ∇f k (x), ∇m k+2 (x, A), . . . , ∇m n (x, A)]

is n -1 and that Z is a C 1 -subanalytic manifold of dimension n(n+1) 2 + 1. Now let us consider the projection π 2 : Z → Sym +, * (R n ), (x, A) → A. Bertini-Sard's theorem implies that the set D π 2 of critical values of π 2 is a subanalytic set of dimension strictly less than n(n+1)

. Hence, for all

A / ∈ D π 2 , π -1 2 (A) is a C 1 -subanalytic curve (possibly empty). But this set is exactly Γ Y θ,A \ (Σ Y θ ∪ {0}).
Let R ⊂ Y be a subanalytic set of dimension strictly less than dim Y . We will need the following lemma.

Lemma 2.5. For almost all

A in Sym +, * (R n ), Γ Y θ,A \ (Σ Y θ ∪ {0}) ∩ R is a subanalytic set of dimension at most 0 in a neighborhood of 0.
Proof. Let us put l = dim Y . Since R admits a locally finite subanalytic stratification, we can assume that R is a C 2 -subanalytic manifold of dimension d with d < l. Let W be the following subanalytic set:

W = (x, A) ∈ R n × Sym +, * (R n ) | x ∈ R \ (Σ Y θ ∪ {0}) and rank ∇θ |Y (x), ∇ρ A|Y (x) < 2 .
Using the same method as in the previous lemma, we can prove that W is a C 1 -subanalytic manifold of dimension n(n+1)

2

+ 1 + dl and conclude, remarking that dl ≤ -1. Now we introduce a new C 2 -subanalytic function β : R n → R such that β(0) = 0. We denote by Γ Y θ,β,A the following subanalytic polar set:

Γ Y θ,β,A = x ∈ Y | rank ∇θ |Y (x), ∇β |Y (x), ∇ρ A|Y (x) < 3 ,
and by Γ Y θ,β the following subanalytic polar set:

Γ Y θ,β = x ∈ Y | rank ∇θ |Y (x), ∇β |Y (x) < 2 . Lemma 2.6. For almost all A in Sym +, * (R n ), Γ Y θ,β,A \ (Γ Y θ,β ∪ {0}) is a C 1 - subanalytic set of dimension at most 2 (possibly empty) in a neighborhood of 0. Proof. We can assume that dim Y > 2. Let Z = (x, A) ∈ R n × Sym +, * (R n ) | x ∈ Y, rank ∇θ |Y (x), ∇β |Y (x) = 2 and rank ∇θ |Y (x), ∇β |Y (x), ∇ρ A|Y (x) < 3 .
Let (y, B) be a point in Z. We can suppose that around y, Y is defined by the vanishing of k subanalytic functions f 1 , . . . , f k of class C 2 . Hence in a neighborhood of (y, B), Z is defined by the vanishing of f 1 , . . . , f k and the minors

∂(f 1 , . . . , f k , θ, β, ρ A ) ∂(x i 1 , . . . , x i k+3 ) .
Since y does not belong to Γ Y θ,β , we can assume that

∂(f 1 , . . . , f k , θ, β) ∂(x 1 , . . . , x k , x k+1 , x k+2 ) = 0, in a neighborhood of y. Therefore Z is locally defined by f 1 , . . . , f k = 0 and ∂(f 1 , . . . , f k , θ, β, ρ A ) ∂(x 1 , . . . , x k+2 , x k+3 ) = • • • = ∂(f 1 , . . . , f k , θ, β, ρ A ) ∂(x 1 , . . . , x k+2 , x n ) = 0.
It is clear that we can apply the same method as Lemma 2.4 to get the result.

Lê-Greuel type formula

In this section, we prove the Lê-Greuel type formula announced in the introduction.

Let (X, 0) ⊂ (R n , 0) be the germ of a closed subanalytic set and let f : (X, 0) → (R, 0) be a subanalytic function. We assume that X is contained in a open set U of R n and that f is the restriction to X of a C 2 -subanalytic function F : U → R. We denote by X f the set X ∩ f -1 (0) and by [START_REF] Bekka | Regular stratification of subanalytic sets[END_REF], we can equip X with a Thom stratification

V = {V α } α∈A adapted to X f . This means that {V α ∈ V | V α X f } is a Whitney stratification of X \ X f and that for any pair of strata (V α , V β ) with V α X f and V β ⊂ X f , the Thom condition is satisfied.
Let us denote by Σ V f the critical locus of f . It is the union of the critical loci of f restricted to each stratum, i.e.

Σ V f = ∪ α Σ(f |Vα ), where Σ(f |Vα ) is the critical set of f |Vα : V α → R. Since Σ V f ⊂ f -1 (0) (see Lemma 2.1), the fibre f -1 (δ) intersects the strata V α 's, V α X f , transversally if δ is sufficiently small. Hence it is Whitney stratified with the induced stratification {f -1 (δ) ∩ V α | V α X f }.
By Lemma 2.1, we know that if ǫ > 0 is sufficiently small then the sphere S ǫ intersects X f transversally. By the Thom condition, this implies that there exists δ(ǫ) > 0 such that for each δ with 0 < |δ| ≤ δ(ǫ), the sphere S ǫ intersects the fibre f -1 (δ) transversally as well. Hence the set f -1 (δ) ∩ B ǫ is a Whitney stratified set equipped with the following stratification:

{f -1 (δ) ∩ V α ∩ Bǫ , f -1 (δ) ∩ V α ∩ S ǫ | V α X f }. Definition 3.1. We call the set f -1 (δ) ∩ X ∩ B ǫ , where 0 < |δ| ≪ ǫ ≪ 1, a real Milnor fibre of f .
We will use the following notation: M δ,ǫ f = f -1 (δ) ∩ X ∩ B ǫ . Now we consider another subanalytic function g : (X, 0) → (R, 0) and we assume that it is the restriction to X of a C 2 -subanalytic function G : U → R. We denote by X g the intersection X ∩ g -1 (0). Under some restrictions on g, we will study the topological behaviour of g |M δ,ǫ f . First we assume that g satisfies the following Condition (A):

• Condition (A): g : (X, 0) → (R, 0) has an isolated stratified critical point at 0. This means that for each strata V α of V, g : V α \ {0} → R is a submersion in a neighborhood of the origin.

In order to give the second assumption on g, we need to introduce some polar sets. Let V α be a stratum of V not contained in X f . Let Γ Vα f,g be the following set:

Γ Vα f,g = x ∈ V α | rank[∇f |Vα (x), ∇g |Vα (x)] < 2
, and let Γ f,g be the union ∪Γ Vα f,g where V α X f . We call Γ f,g the relative polar set of f and g with respect to the stratification V. We will assume that g satifies the following Condition (B):

• Condition (B): the relative polar set Γ f,g is a 1-dimensional C 1subanalytic set (possibly empty) in a neighborhood of the origin. Note that Condition (B) implies that Γ f,g ∩ X f ⊂ {0} in a neighborhood of the origin because the frontiers of the Γ Vα f,g 's are 0-dimensional. From Condition (A) and Condition (B), we can deduce the following result.

Lemma 3.2. We have Γ f,g ∩ X g ⊂ {0} in a neighborhood of the origin.

Proof. If it is not the case then there is a C 1 -subanalytic curve γ : [0, ν[→ Γ f,g ∩ X g such that γ(0) = 0 and γ(]0, ν[) ⊂ X g \ {0}. We can also assume that γ(]0, ν[) is contained in a stratum V . For t ∈]0, ν[, we have

0 = (g • γ) ′ (t) = ∇g |V (γ(t)), γ ′ (t) .
Since γ(t) belongs to Γ f,g and ∇g |V (γ(t)) does not vanish for g : (X, 0) → (R, 0) has an isolated stratified critical point at 0, we can conclude that ∇f |V (γ(t)), γ ′ (t) = 0 and that (f

• γ) ′ (t) = 0 for all t ∈]0, ν[. Therefore f •γ ≡ 0 because f (0) = 0 and γ([0, ν[) is included in X f . This is impossible by the above remark. Let B 1 , . . . , B l be the connected components of Γ f,g , i.e. Γ f,g = ⊔ l i=1 B i . Each B i is a C 1 -
subanalytic curve along which f is strictly increasing or decreasing and the intersection points of the B i 's with the fibre M δ,ǫ f are exactly the critical points (in the stratified sense) of g on

X ∩ f -1 (δ) ∩ Bǫ . Let us write M δ,ǫ f ∩ ⊔ l i=1 B i = {p δ,ǫ 1 , . . . , p δ,ǫ r }. Note that r ≤ l.
Let us recall now the definition of the index of an isolated stratified critical point. Definition 3.3. Let Z ⊂ R n be a closed subanalytic set, equipped with a Whitney stratification. Let p ∈ Z be an isolated critical point of a subanalytic function φ : Z → R, which is the restriction to Z of a C 2 -subanalytic function Φ. We define the index of φ at p as follows :

ind(φ, Z, p) = 1 -χ Z ∩ {φ = φ(p) -η} ∩ B ǫ (p) ,
where 0 < η ≪ ǫ ≪ 1 and B ǫ (p) is the closed ball of radius ǫ centered at p.

Our aim is to give a topological interpretation to the following sum:

r i=1 ind(g, X ∩ f -1 (δ), p δ,ǫ i ) + ind(-g, X ∩ f -1 (δ), p δ,ǫ i ).
For this, we will apply stratified Morse theory to g |M δ,ǫ f . Note that the points p i 's are not the only critical points of g |M δ,ǫ f and other critical points can occur on the "boundary" M δ,ǫ f ∩ S ǫ . The next step is to study the behaviour of these "boundary" critical points for a generic choice of the distance function to the origin. Let ρ : R n → R be a C 2 -subanalytic function which is a distance function to the origin. We denote by Sǫ the level ρ -1 (ǫ) and by Bǫ the set {ρ ≤ ǫ}. We will focus on the critical points of

g |X f ∩ Sǫ and g |X∩f -1 (δ)∩ Sǫ , with 0 < |δ| ≪ ǫ ≪ 1. For each stratum V of X f , let Γ V g,ρ = x ∈ V | rank[∇g |V (x), ∇ρ |V (x)] < 2 ,
and let Γ X f g,ρ = ∪ V ⊂X f Γ V g,ρ . By Lemma 2.4 and the fact that g : (X f , 0) → (R, 0) has an isolated stratified critical point at 0, we can assume that Γ X f g,ρ is a C 1 -subanalytic curve in a neighborhood of the origin. Lemma 3.4. We have Γ X f g,ρ ∩ X g ⊂ {0} in a neighborhood of the origin.

Proof. Same proof as Lemma 3.2.

Therefore if ǫ > 0 is small enough, g | Sǫ∩X f has a finite number of critical points. They do not lie in the level {g = 0} so by Lemma 2.3, they are outwards-pointing for g |X f ∩ Bǫ if they lie in {g > 0} and inwards-pointing if they lie in {g < 0}.

Let us study now the critical points of g |X∩f -1 (δ)∩ Sǫ . We will need the following lemma. Lemma 3.5. For every ǫ > 0 sufficiently small, there exists δ(ǫ) > 0 such that for 0 < |δ| ≤ δ(ǫ), the points p δ,ǫ i lie in Bǫ/4 . Proof. Let

W = (x, r, y) ∈ U × R × R | ρ(x) = r, y = f (x) and x ∈ Γ f,g .
Then W is a subanalytic set of R n × R × R and since it is a graph over Γ f,g , its dimension is less or equal to 1. Let 

π : R n × R × R → R × R (x,
(W ) \ Y 1 . Since Y 2 is a curve for W is a curve, 0 is isolated in Y 1 ∩ Y 2
. By Lojasiewicz's inequality, there exists a constant C > 0 and an integer N > 0 such that |y| ≥ Cr N for (r, y) in Y 2 sufficiently close to the origin. So if

x ∈ Γ f,g then |f (x)| ≥ Cρ(x) N if ρ(x) is small enough. Let us fix ǫ > 0 small. If 0 < |δ| ≤ 1 C ( ǫ 4 ) N and x ∈ f -1 (δ) ∩ Γ f,g then ρ(x) ≤ ǫ 4 . For each stratum V X f , let Γ V f,g,ρ = x ∈ V | rank[∇f |V (x), ∇g |V (x), ∇ρ |V (x)] < 3 , and let Γ f,g,ρ = ∪ V X f Γ V f,g,ρ . By Lemma 2.6, we can assume that Γ f,g,ρ \Γ f,g is a C 1 -subanalytic manifold of dimension 2. Let us choose ǫ > 0 small enough so that Sǫ intersects Γ f,g,ρ \ Γ f,g transversally. Therefore (Γ f,g,ρ \ Γ f,g ) ∩ Sǫ is subanalytic curve. By Lemma 3.4, we can find δ(ǫ) > 0 such that f -1 [δ(ǫ), -δ(ǫ)] ∩ Sǫ ∩ Γ f,g is empty and so f -1 [-δ(ǫ), δ(ǫ)] ∩ (Γ f,g,ρ \ Γ f,g ) ∩ Sǫ = f -1 [-δ(ǫ), δ(ǫ)] ∩ Γ f,g,ρ ∩ Sǫ .
Let C 1 , . . . , C t be the connected components of f -1 [-δ(ǫ), δ(ǫ)] ∩Γ f,g,ρ ∩ Sǫ whose closure intersects X f ∩ Sǫ . Note that by Thom's (a f )-condition, for each i ∈ {1, . . . , t}, C i ∩ X f is subset of Γ X f g,ρ . Let z i be a point in

C i ∩ X f . Since C i ∩ X f = ∅, there exists 0 < δ ′ i (ǫ) ≤ δ(ǫ) such that the fibre f -1 (δ), 0 < |δ| ≤ δ ′ i (ǫ), intersects C i transversally in a neighborhood of z i . Let us choose δ such that 0 < |δ| ≤ Min{δ ′ i (ǫ) | i = 1, . . . , t}.
Then the fibre f -1 (δ) intersect the C i 's transversally and f -1 (δ) ∩ (∪ i C i ) is exactly the set of critical points of g |f -1 (δ)∩X∩ Sǫ . We have proved:

Lemma 3.6. For 0 < |δ| ≪ ǫ ≪ 1, g |f -1 (δ)∩X∩ Sǫ has a finite number of critical points, which are exactly the points in Γ f,g,ρ ∩ Sǫ ∩ f -1 (δ).
Let {s δ,ǫ 1 , . . . , s δ,ǫ u } be the set of critical points of g |f -1 (δ)∩X∩ Sǫ .

Lemma 3.7. For i ∈ {1, . . . , u}, g(s δ,ǫ i ) = 0 and s δ,ǫ i is outwards-pointing (resp. inwards-pointing) if and only if g(s δ,ǫ i ) > 0 (resp. g(s δ,ǫ i ) < 0).

Proof. Note that s δ,ǫ i is necessarily outwards-pointing or inwards-pointing because s δ,ǫ i / ∈ Γ f,g .

Assume that for each δ > 0 small enough, there exists a point s δ,ǫ i such that g(s δ,ǫ i ) = 0. Then we can construct a sequence of points (σ n ) n∈N such that g(σ n ) = 0 and σ n is a critical point of g |f -1 ( 1 n )∩X∩ Sǫ . We can also assume that the points σ n 's belong to the same stratum S and that they tend to σ ∈ V where V ⊆ X f and V ⊂ ∂S. Therefore we have a decomposition:

∇g |S (σ n ) = λ n ∇f |S (σ n ) + µ n ∇ρ |S (σ n ).
Now by Whitney's condition (a), T σn S tends to a linear space T such that T σ V ⊂ T . So ∇g |S (σ n ) tends to a vector in T whose orthogonal projection on T σ V is exactly ∇g |V (σ). Similarly ∇ρ |S (σ n ) tends to a vector in T whose orthogonal projection on T σ V is exactly ∇ρ |V (σ). By Thom's condition, ∇f |S (σ n ) tends to a vector in T which is orthogonal to T σ V , so we see that ∇g |V (σ) and ∇ρ |V (σ) are colinear which means that σ is a critical point of g |X f ∩ Sǫ . But since g(σ n ) = 0, we find that g(σ) = 0, which is impossible by Lemma 3.4. This proves the first assertion.

To prove the second one, we use the same method. Assume that for each δ > 0 small enough, there exists a point s δ,ǫ i such that g(s δ,ǫ i ) > 0 and s δ,ǫ i is an inwards-pointing critical point for g |X∩f -1 (δ)∩ Sǫ . Then we can construct a sequence of points (τ n ) n∈N such that g(τ n ) > 0 and τ n is an inwards-pointing critical point for g |f -1 ( 1 n )∩X∩ Sǫ . We can also assume that the points τ n 's belong to the same stratum S and that they tend to τ ∈ V where V ⊆ X f and V ⊂ ∂S. Therefore, we have a decomposition:

∇g |S (τ n ) = λ n ∇f |S (τ n ) + µ n ∇ρ |S (τ n ),
with µ n < 0. Using the same arguments as above, we find that ∇g |V (τ ) = µ∇ρ |S (τ ) with µ ≤ 0 and g(τ ) ≥ 0. This contradicts the remark after Lemma 3.4. Of course, this proof works for δ < 0. Let Γ g,ρ be the following polar set:

Γ g,ρ = {x ∈ U | rank[∇g(x), ∇ρ(x)] < 2} .
By Lemma 2.5 and Lemma 2.1, we can assume that Γ g,ρ \ {g = 0} does not intersect X f \ {0} in a neighborhood of 0 and so Γ g,ρ \ {g = 0} does not intersect X f ∩ Sǫ for ǫ > 0 sufficiently small. Since the critical points of g |X f ∩ Sǫ lie outside {g = 0}, they do not belong to Γ g,ρ ∩ Sǫ and so the critical points of g |f -1 (δ)∩X∩ Sǫ do not neither if δ is sufficiently small. Hence at each critical point of g |f -1 (δ)∩X∩ Sǫ , g | Sǫ is a submersion. We are in position to apply Theorem 3.1 and Lemma 2.1 in [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semialgebraic sets[END_REF]. For 0 < |δ| ≪ ǫ ≪ 1, we set

I(δ, ǫ, g) = r i=1 ind(g, X ∩ f -1 (δ), p δ,ǫ i ), I(δ, ǫ, -g) = r i=1 ind(-g, X ∩ f -1 (δ), p δ,ǫ i ).
Theorem 3.8. We have

I(δ, ǫ, g) + I(δ, ǫ, -g) = 2χ X ∩ f -1 (δ) ∩ Bǫ -χ X ∩ f -1 (δ) ∩ Sǫ -χ X g ∩ f -1 (δ) ∩ Sǫ .
Proof. Let us denote by {a + j } α + j=1 (resp. {a - j } α - j=1 ) the outwards-pointing (resp. inwards-pointing) critical points of g : X ∩f -1 (δ)∩ Sǫ → R. Applying Morse theory type theorem ( [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semialgebraic sets[END_REF], Theorem 3.1) and using Lemma 2.1 in [START_REF] Dutertre | On the topology of semi-algebraic functions on closed semialgebraic sets[END_REF], we can write

I(δ, ǫ, g) + α - j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , a - j ) = χ(X ∩ f -1 (δ) ∩ Bǫ ) (1) 
,

I(δ, ǫ, -g) + α + j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , -a + j ) = χ(X ∩ f -1 (δ) ∩ Bǫ ) (2).
Let us evaluate

α - j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , a - j ) + α + j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , a + j ).
Since the outwards-pointing critical points of g |X∩f -1 (δ)∩ Sǫ lie in {g > 0} and the inwards-pointing critical points of g |X∩f -1 (δ)∩ Sǫ lie in {g < 0}, we have

χ(X ∩ f -1 (δ) ∩ Sǫ ∩ {g ≥ 0}) -χ(X ∩ f -1 (δ) ∩ Sǫ ∩ {g = 0}) = α + j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , , a + j ) (3), and 
χ(X ∩ f -1 (δ) ∩ Sǫ ∩ {g ≤ 0}) -χ(X ∩ f -1 (δ) ∩ Sǫ ∩ {g = 0}) = α - j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , a - j ) (4).
Therefore making (3) + (4) and using the Mayer-Vietoris sequence, we find

χ(X ∩ f -1 (δ) ∩ Sǫ ) -χ(X ∩ f -1 (δ) ∩ Sǫ ∩ {g = 0}) = α + j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , a + j ) + α - j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , a - j ) (5).
Moreover we have

χ(X ∩ f -1 (δ) ∩ Sǫ ) = α + j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , a + j ) + α - j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , a - j ) (6), χ(X ∩ f -1 (δ) ∩ Sǫ ) = α + j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , a + j ) + α - j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , a - j ) (7).
The combination -( 5) + ( 6) + ( 7) leads to

χ(X ∩ f -1 (δ) ∩ Sǫ ) + χ(X ∩ f -1 (δ) ∩ Sǫ ∩ {g = 0}) = α + j=1 ind(-g, X ∩ f -1 (δ) ∩ Sǫ , a + j ) + α - j=1 ind(g, X ∩ f -1 (δ) ∩ Sǫ , a - j ).
Let us assume now that (X, 0) is equipped with a Whitney stratification W = ∪ α∈A W α and f : (X, 0) → (R, 0) has an isolated critical point at 0. In this situation, our results apply taking for V the following stratification:

W α \ f -1 (0), W α ∩ f -1 (0) \ {0}, {0} | W α ∈ W .
Corollary 3.9. If f : (X, 0) → (R, 0) has an isolated stratified critical point at 0, then

I(δ, ǫ, g) + I(δ, ǫ, -g) = 2χ X ∩ f -1 (δ) ∩ Bǫ -χ X f ∩ Sǫ -χ X f ∩ X g ∩ Sǫ . Proof. For each stratum W of X, let Γ W f,ρ = x ∈ W | rank[∇f |W (x), ∇ρ |W (x)] < 2 , and let Γ f,ρ = ∪ W Γ W f,ρ
. By Lemma 3.4 applied to X and f instead of X f and g, Γ f,ρ ∩ {f = 0} ⊂ {0} in a neighborhood of the origin and so 0 is a regular value of f : X ∩ Sǫ → R for ǫ sufficiently small. By Thom-Mather's second isotopy lemma, X ∩ f -1 (0) ∩ Sǫ is homeomorphic to X ∩ f -1 (δ) ∩ Sǫ for δ sufficiently small. Now let p be a stratified critical point of f : X g → R. By Lemma 2.1, we know that p belongs to f -1 (0) ∩ X g and so p is also a critical point of g : X f → R. Hence p = 0 by Condition (A), and f : X g → R has an isolated stratified critical point at 0. As above, we conclude that

X f ∩ X g ∩ Sǫ is homeomorphic to X g ∩ f -1 (δ) ∩ Sǫ . Let ω(x) = x 2 1 + • • • + x 2
n be the euclidian distance to the origin. As explained by Durfee in [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF], Lemma 1.8 and Lemma 3.6, there is a neighborhood Ω of 0 in R n such that for every stratum V of X f , ∇ω |V and ∇ρ |V are non-zero and do not point in opposite direction in Ω \ {0}. Applying Durfee's argument ( [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF], Proposition 1.7 and Proposition 3.5), we see that

X f ∩ Sǫ is homeomorphic to X f ∩S ǫ ′ for ǫ, ǫ ′ > 0 sufficiently small. Similarly X f ∩ X g ∩ Sǫ and X f ∩ X g ∩ S ǫ ′ are homemorphic. Now let us compare X ∩ f -1 (δ) ∩ Bǫ and X ∩ f -1 (δ) ∩ B ǫ ′ . Let us choose ǫ ′ and ǫ such that X ∩ f -1 (δ) ∩ B ǫ ′ ⊂ X ∩ f -1 (δ) ∩ Bǫ ⊂ Ω.
If δ is sufficiently small then, for every stratum V X f , ∇ω |V ∩f -1 (δ) and ∇ρ |V ∩f -1 (δ) are non-zero and do not point in opposite direction in Bǫ \ Bǫ ′ . Otherwise, by Thom's (a f )-condition, we would find a point p in X f ∩ ( Bǫ \ Bǫ ′ ) such that either ∇ω |S (p) or ∇ρ |S (p) vanish or ∇ω |S (p) and ∇ρ |S (p) point in opposite direction, where S is the stratum of X f that contains p. This is impossible if we are sufficiently close to the origin. Now, applying the same arguments as Durfee [START_REF] Durfee | Neighborhoods of algebraic sets[END_REF], Proposition 1.7 and Proposition 3.5, we see that

X ∩ f -1 (δ) ∩ Bǫ is homeomorphic to X ∩ f -1 (δ) ∩ B ǫ ′ and that X ∩ f -1 (δ) ∩ Sǫ is homeomorphic to X ∩ f -1 (δ) ∩ S ǫ ′ .
Theorem 3.10. We have

I(δ, ǫ, g) + I(δ, ǫ, -g) = 2χ(M δ,ǫ f ) -χ(X ∩ f -1 (δ) ∩ S ǫ ) -χ(X g ∩ f -1 (δ) ∩ S ǫ ).
Corollary 3.11. If f : (X, 0) → (R, 0) has an isolated stratified critical point at 0, then

I(δ, ǫ, g) + I(δ, ǫ, -g) = 2χ(M δ,ǫ f ) -χ(Lk(X f )) -χ(Lk(X f ∩ X g )).
Let us remark if dim X = 2 then in Theorem 3.10 and in Corollary 3.11, the last term of the right-hand side of the equality vanishes. If dim X = 1 then in Theorem 3.10 and in Corollary 3.11, the last two terms of the righthand side of the equality vanish.

An infinitesimal Gauss-Bonnet formula

In this section, we apply the results of the previous section to the case of linear forms and we establish a Gauss-Bonnet type formula for the real Milnor fibre.

We will first show that generic linear forms satisfy Condition (A) and Condition (B). For v ∈ S n-1 , let us denote by v * the function v * (x) = v, x . Lemma 4.1. There exists a subanalytic set Σ 1 ⊂ S n-1 of positive codimension such that if v / ∈ Σ 1 , {v * = 0} intersects X \ {0} transversally (in the stratified sense) in a neighborhood of the origin.

Proof. It is a particular case of Lemma 3.8 in [START_REF] Dutertre | Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets[END_REF].

Corollary 4.2. If v / ∈ Σ 1 then v * |X : (X, 0) → (R, 0
) has an isolated stratified point at 0. Proof. By Lemma 2.1, we know that the stratified critical points of v * |X lie in {v * = 0}. But since {v * = 0} intersects X \ {0} transversally, the only possible critical point of v * |X : (X, 0) → (R, 0) is the origin.

Lemma 4.3. There exists a subanalytic set

Σ 2 ⊂ S n-1 of positive codi- mension such that if v / ∈ Σ 2 , then Γ f,v * is a C 1 -subanalytic curve (possibly empty) in a neighborhood of 0.
Proof. Let V be stratum of dimension e such that V X f . We can assume that e ≥ 2. Let

M V = (x, y) ∈ V × R n | rank[∇f |V (x), ∇y * |V (x)] < 2 .
It is a subanalytic manifold of class C 1 and of dimension n + 1. To see this, let us pick a point (x, y) in M V . In a neighborhood of x, V is defined by the vanishing of k = ne C 2 -subanalytic functions f 1 , . . . , f k . Since V is not included in X f , f : V → R is a submersion and we can assume that in a neighborhood of x, the following (k + 1) × (k + 1)-minor:

∂(f 1 , . . . , f k , f ) ∂(x 1 , . . . , x k , x k+1 ) ,
does not vanish. Therefore, in a neighborhood of (x, y), M V is defined by the vanishing of the following (k + 2) × (k + 2)-minors:

∂(f 1 , . . . , f k , f, y * ) ∂(x 1 , . . . , x k , x k+1 , x k+2 ) , . . . , ∂(f 1 , . . . , f k , f, y * ) ∂(x 1 , . . . , x k , x k+1 , x n ) .
A simple computation of determinants shows that the gradient vectors of these minors are linearly independent. As in previous lemmas, we show that Σ f,v * is one-dimensional considering the projection

π 2 : M V → R n (x, y) → y. Since Γ f,v * = ∪ V X f Γ V f,v * , we get the result. Let Σ = Σ 1 ∪ Σ 2
, it is a subanalytic subset of S n-1 of positive codimension and if v / ∈ Σ then v * satisfies Conditions (A) and (B). In particular, v * |f -1 (δ)∩X∩Bǫ has a finite number of critical points p δ,ǫ 1 , . . . , p δ,ǫ rv . We recall that

I(δ, ǫ, v * ) = rv i=1 ind(v * , X ∩ f -1 (δ), p δ,ǫ i ), I(δ, ǫ, -v * ) = rv i=1 ind(-v * , X ∩ f -1 (δ), p δ,ǫ i ).
In this situation, Theorem 3.10 and Corollary 3.11 become

Corollary 4.4. If v / ∈ Σ then I(δ, ǫ, v * )+I(δ, ǫ, -v * ) = 2χ(M δ,ǫ f )-χ(X ∩f -1 (δ)∩S ǫ )-χ(X v * ∩f -1 (δ)∩S ǫ ). Furthermore, if f : (X, 0) → (R, 0) has an isolated stratified critical point at 0, then I(δ, ǫ, v * ) + I(δ, ǫ, -v * ) = 2χ(M δ,ǫ f ) -χ(Lk(X f )) -χ(Lk(X f ∩ X v * )).
As an application, we give a Gauss-Bonnet formula for the Milnor fibre

M δ,ǫ f . Let Λ 0 (X ∩ f -1 (δ), -) be the Gauss-Bonnet measure on X ∩ f -1 (δ) defined by Λ 0 (X ∩ f -1 (δ), U ′ ) = 1 s n-1 S n-1 x∈U ′ ind(v * , X ∩ f -1 (δ), x)dx,
where U ′ is a Borel set of X ∩ f -1 (δ) (see [START_REF] Br Öcker | Integral geometry of tame sets[END_REF], page 299) and s n-1 is the volume of the unit sphere S n-1 . Note that if x is not a critical point of

v * |X∩f -1 (δ) then ind(v * , X ∩ f -1 (δ), x) = 0. We are going to evaluate lim ǫ→0 lim δ→0 Λ 0 (X ∩ f -1 (δ), M δ,ǫ f ).
Theorem 4.5. We have

lim ǫ→0 lim δ→0 Λ 0 (X ∩ f -1 (δ), M δ,ǫ f ) = χ(M δ,ǫ f ) - 1 2 χ(X ∩ f -1 (δ) ∩ S ǫ ) - 1 2s n-1 S n-1 χ(X ∩ f -1 (δ) ∩ {v * = 0} ∩ S ǫ )dv.
Furthermore, if f : (X, 0) → (R, 0) has an isolated stratified critical point at 0, then

lim ǫ→0 lim δ→0 Λ 0 (X ∩ f -1 (δ), M δ,ǫ f ) = χ(M δ,ǫ f ) - 1 2 χ(Lk(X f )) - 1 2s n-1 S n-1 χ(Lk(X f ∩ X v * ))dv.
Proof. By definition, we have

Λ 0 (X ∩ f -1 (δ), M δ,ǫ f ) = 1 s n-1 S n-1 x∈M δ,ǫ f ind(v * , X ∩ f -1 (δ), x)dv. It is not difficult to see that Λ 0 (X ∩ f -1 (δ), M δ,ǫ f ) = 1 2s n-1 S n-1 x∈M δ,ǫ f ind(v * , X ∩ f -1 (δ), x) + ind(-v * , X ∩ f -1 (δ), x) dv. Note that if v / ∈ Σ then x∈M δ,ǫ f ind(v * , X ∩ f -1 (δ), x) + ind(-v * , X ∩ f -1 (δ), x)
is equal to I(δ, ǫ, v * ) + I(δ, ǫ, -v * ) and is uniformly bounded by Hardt's theorem. By Lebesgue's theorem, we obtain

lim ǫ→0 lim δ→0 Λ 0 (X ∩ f -1 (δ), M δ,ǫ f ) = 1 2s n-1 S n-1 lim ǫ→0 lim δ→0 [I(δ, ǫ, v * ) + I(δ, ǫ, -v * )]dv.
We just have to apply the previous corollary to conclude.

Infinitesimal linear kinematic formulas

In this section, we apply the results of the previous section to the case of a linear function in order to obtain "infinitesimal" linear kinematic formulas for closed subanalytic germs.

We start recalling known facts on the geometry of subanalytic sets. We need some notations:

• for k ∈ {0, . . . , n}, G k n is the Grassmann manifold of k-dimensional linear subspaces in R n and g k n is its volume, • for k ∈ N, b k is the volume of the k-dimensional unit ball and s k is the volume of the k-dimensional unit sphere. In [START_REF] Fu | Curvature measures of subanalytic sets[END_REF], Fu developed integral geometry for compact subanalytic sets. Using the technology of the normal cycle, he associated with every compact subanalytic set X ⊂ R n a sequence of curvature measures Λ 0 (X, -), . . . , Λ n (X, -), called the Lipschitz-Killing measures. He proved several integral geometry formulas, among them a Gauss-Bonnet formula and a kinematic formula. Later another description of the measures using stratified Morse theory was given by Broecker and Kuppe [START_REF] Br Öcker | Integral geometry of tame sets[END_REF] (see also [START_REF] Bernig | Courbures intrinsèques dans les catégories analytico-géométriques[END_REF]). The reader can refer to [START_REF] Dutertre | Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets[END_REF], Section 2, for a rather complete presentation of these two approaches and for the definition of the Lipschitz-Killing measures.

Let us give some comments on these Lipschitz-Killing curvatures. If dim

X = d then Λ d+1 (X, U ′ ) = • • • = Λ n (X, U ′ ) = 0, for any Borel set U ′ of X and Λ d (X, U ′ ) = L d (U ′ )
, where L d is the ddimensional Lebesgue measure in R n . Furthemore if X is smooth then for any Borel set U ′ of X and for k ∈ {0, . . . , d}, Λ k (X, U ′ ) is related to the classical Lipschitz-Killing-Weil curvature K d-k through the following equality:

Λ k (X, U ′ ) = 1 s n-d-k-1 U ′ K d-k (x)dx.
In [START_REF] Dutertre | Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets[END_REF], Section 5, we studied the asymptotic behaviour of the Lipschitz-Killing measures in the neighborhood of a point of X. Namely we proved the following theorem ([14], Theorem 5.1).

Theorem 5.1. Let X ⊂ R n be a closed subanalytic set such that 0 ∈ X.

We have:

lim ǫ→0 Λ 0 (X, X ∩ B ǫ ) = 1 - 1 2 χ(Lk(X)) - 1 2g n-1 n G n-1 n χ(Lk(X ∩ H))dH.
Furthermore for k ∈ {1, . . . , n -2}, we have:

lim ǫ→0 Λ k (X, X ∩ B ǫ ) b k ǫ k = - 1 2g n-k-1 n G n-k-1 n χ(Lk(X ∩ H))dH + 1 2g n-k+1 n G n-k+1 n χ(Lk(X ∩ L))dL,
and:

lim ǫ→0 Λ n-1 (X, X ∩ B ǫ ) b n-1 ǫ n-1 = 1 2g 2 n G 2 n χ(Lk(X ∩ H))dH, lim ǫ→0 Λ n (X, X ∩ B ǫ ) b n ǫ n = 1 2g 1 n G 1 n χ(Lk(X ∩ H))dH.
In the sequel, we will use these equalities and Theorem 4.5 to establish linear kinematic types formulas for the quantities lim ǫ→0

Λ k (X,X∩Bǫ) b k ǫ k , k = 1, . . . , n.
Let us start with some lemmas. We work with a closed subanalytic set X such that 0 ∈ X, equipped with a Whitney stratification {W α } α∈A . Lemma 5.2. Let f be a C 2 -subanalytic function such that f |X : X → R has an isolated stratified critical point at 0. Then for 0 < δ ≪ ǫ ≪ 1, we have

χ(M δ,ǫ f ) + χ(M -δ,ǫ f ) = χ(Lk(X)) + χ(Lk(X f )).
Proof. With the same technics and arguments as the ones we used in order to establish Corollary 3.11, we can prove that ind(f, X, 0) + ind(-f, X, 0) = 2χ(X ∩ B ǫ )χ(Lk(X))χ(Lk(X f )).

We conclude thanks to the following equalities

ind(f, X, 0) = 1 -χ(M -δ,ǫ f ), ind(-f, X, 0) = 1 -χ(M δ,ǫ f ), and χ(X ∩ B ǫ ) = 1.
Corollary 5.3. There exist a subanalytic set 

Σ 1 ⊂ S n-1 of positive codi- mension such that if v / ∈ Σ then for 0 < δ ≪ ǫ ≪ 1, χ(M δ,ǫ v * ) + χ(M -δ,ǫ v * ) = χ(Lk(X)) + χ(Lk(X ∩ {v * = 0})). Proof.
′ H ⊂ G 1 H ⊥ of positive codimension such that if ν / ∈ Σ ′ H then H ⊕ ν intersects S \ {0} transversally.
Proof. Assume that S has dimension e and that H is given by the equations x 1 = . . . = x k = 0 so that H ⊥ = R k with coordinate system (x 1 , . . . , x k ). Let W be defined by 2 . Let (y, w) be a point in W . We can assume that around y, S is defined by the vanishing of ne C 2 -subanalytic functions f 1 , . . . , f n-e . Hence in a neighborhood of (y, w), W is defined by the equations:

W = (x, v 1 , . . . , v k-1 ) ∈ R n × (R k ) k-1 | x ∈ S \ {0} and x, v 1 = • • • = x, v k-1 = 0 , where v i ∈ R k × {0} ⊂ R n . Let us show that W is a C 2 -subanalytic mani- fold of dimension e + (k -1)
f 1 (x) = . . . = f n-e (x) = 0 and x, v 1 = • • • = x, v k-1 = 0.
Because y = 0, we see that the gradient vectors of this n -e+ k -1 functions are linearly independent at (y, w). This enables us to conclude that W is a C 2 -subanalytic manifold of dimension e + (k -1) 2 . Let π 2 be the following projection:

π 2 : W → (R n ) n-k , (x, v 1 , . . . , v n-k ) → (v 1 , . . . , v n-k ).
Bertini-Sard's theorem implies that the set of critical values of π 2 is a subanalytic set of positive codimension. If (v 1 , . . . , v k-1 ) lies outside this subanalytic set then the (n

-k + 1)-plane {x ∈ R n | x, v 1 = • • • = x, v k-1 = 0} contains H and intersects S \ {0} transversally.
Now we can present our infinitesimal linear kinematic formulas. Let H ∈ G n-k n , k ∈ {1, . . . , n}, and let S k-1 H ⊥ be the unit sphere of the orthogonal complement of H. Let v be an element in S k-1 H ⊥ . For δ > 0, we denote by H v,δ the (nk)-dimensional affine space H + δv and we set

β 0 (H, v) = lim ǫ→0 lim δ→0 Λ 0 (H δ,v ∩ X, H δ,v ∩ X ∩ B ǫ ).
Then we set

β 0 (H) = 1 s k-1 S k-1 H ⊥ β 0 (H, v)dv. Theorem 5.5. For k ∈ {1, . . . , n}, we have lim ǫ→0 Λ k (X, X ∩ B ǫ ) b k ǫ k = 1 g n-k n G n-k n β 0 (H)dH.
Proof. We treat first the case k ∈ {1, . . . , n -2}. By Theorem 5.1 , we know that lim

ǫ→0 Λ k (X, X ∩ B ǫ ) b k ǫ k = - 1 2g n-k-1 n G n-k-1 n χ(Lk(X ∩ H))dH + 1 2g n-k+1 n G n-k+1 n χ(Lk(X ∩ L))dL.
By Lemma 3.8 in [START_REF] Dutertre | Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets[END_REF], we know that generically H intersects X\{0} transversally in a neighborhood of the origin. Let us fix H that satisfies this generic property. For any v ∈ S k-1 H ⊥ , let ν be the line generated by v and let L v be the (nk + 1)-plane defined by L v = H ⊕ ν. By Lemma 5.4, we know that for v generic in S k-1 H ⊥ , L v intersects X \ {0} transversally in a neighborhood of the origin. Therefore, v * |X∩Lv has an isolated singular point at 0 and we can apply Theorem 4.5. We have

lim ǫ→0 lim δ→0 Λ 0 (X ∩ L v ∩ {v * = δ}, X ∩ L v ∩ {v * = δ} ∩ B ǫ ) = χ(X ∩ L v ∩ {v * = δ} ∩ B ǫ ) - 1 2 χ(Lk(X ∩ L v ∩ {v * = 0})) - 1 2s n-k S n-k Lv χ(Lk(X ∩ L v ∩ {v * = 0} ∩ {w * = 0}))dw,
where S n-k Lv is the unit sphere of L v . Let us remark that L v ∩ {v * = δ} is exactly H v,δ and that L v ∩ {v * = 0} is H. We can also apply Lemma 5.2 to v * |X∩Lv to obtain the following relation:

β 0 (H, v) + β 0 (H, -v) = χ(Lk(X ∩ L v )) - 1 s n-k S n-k Lv χ(Lk(X ∩ H ∩ {w * = 0}))dw. Since β(H) is equal to 1 2s k-1 S k-1 H ⊥ [β 0 (H, v) + β 0 (H, -v)] dv, we find that β(H) = 1 2s k-1 S k-1 H ⊥ χ(Lk(X ∩ L v ))dv - 1 2s k-1 s n-k S k-1 H ⊥ S n-k Lv χ(Lk(X ∩ H ∩ {w * = 0}))dwdv.
Replacing spheres with Grassman manifolds in this equality, we obtain

β(H) = 1 2g 1 k G 1 H ⊥ χ(Lk(X ∩ H ⊕ ν))dν - 1 2g 1 k g n-k n-k+1 G 1 H ⊥ G n-k H⊕ν χ(Lk(X ∩ H ∩ K))dKdν.
Therefore, we have 1

g n-k n G n-k n β(H)dH = 1 2g 1 k g n-k n G n-k n G 1 H ⊥ χ(Lk(X ∩ H ⊕ ν))dνdH- 1 2g n-k n g 1 k g n-k n-k+1 G n-k n G 1 H ⊥ G n-k H⊕ν χ(Lk(X ∩ H ∩ K))dKdνdH.
Let us compute First, as we have just done above, we can write

I = 1 2g n-k n g 1 k G n-k n G 1 H ⊥ χ(Lk(X ∩ H ⊕ ν))dνdH.
J = 1 2g n-k n g 1 k g n-k n-k+1 G n-k+1 n G n-k L G n-k L χ(Lk(X ∩ H ∩ K))dKdHdL.
Then we remark (see [START_REF] Dutertre | Euler characteristic and Lipschitz-Killing curvatures of closed semi-algebraic sets[END_REF], Corollary 3.11 for a similar argument) that

1 g n-k n-k+1 G n-k L χ(Lk(X ∩ H ∩ K))dK = 1 g n-k-1 n-k G n-k-1 H χ(Lk(X ∩ J))dJ,
and so

J = 1 2g n-k n g 1 k g n-k-1 n-k G n-k+1 n G n-k L G n-k-1 H χ(Lk(X ∩ J))dJdHdL.
Considering the flag variety of pairs (H, J), H ∈ G n-k L and J ∈ G n-k-1 H , and proceeding as above, we find

G n-k L G n-k-1 H χ(Lk(X ∩ J))dJdH = g 1 2 G n-k-1 L χ(Lk(X ∩ J))dJ, so J = g 1 2 2g n-k n g 1 k g n-k-1 n-k G n-k+1 n G n-k-1 L χ(Lk(X ∩ J))dJ.
To finish the computation, we consider the flag variety of pairs (L, J), L ∈ G n-k+1 n and J ∈ G n-k-1

L

. It is a bundle over G n-k-1 n , each fibre being a G 2 k+1 . Hence we have

J = g 1 2 2g n-k n g 1 k g n-k-1 n-k G n-k-1 n G 2 J ⊥ χ(Lk(X ∩ J))dJdM, J = g 1 2 g 2 k+1 2g n-k n g 1 k g n-k-1 n-k G n-k-1 n χ(Lk(X ∩ J))dJ = 1 2g n-k-1 n G n-k-1 n χ(Lk(X ∩ J))dJ.
This ends the proof for the case k ∈ {1, . . . , n -2}. For k = n -1 or n, the proof is the same. We just have to remark that in these cases

β 0 (H, v) + β 0 (H, -v) = χ(Lk(X ∩ L v )),
and

if k = n -1, dim L v = 2 and if k = n, dim L v = 1.
Let us end with some remarks on the limits lim ǫ→0 to the polar invariants defined by Comte and Merle in [START_REF] Comte | Equisingularité réelle II : invariants locaux et conditions de régularité[END_REF]. They can be defined as follows. Let H ∈ G n-k n , k ∈ {1, . . . , n}, and let v be an element in S k-1 H ⊥ . For δ > 0, we set λ 0 (H, v) = lim It is explained in [START_REF] Comte | Equisingularité réelle II : invariants locaux et conditions de régularité[END_REF] that σ k (X, 0) = 1 if 0 ≤ k ≤ d 0 , so if k < d 0 then lim ǫ→0

Λ k (X,X∩Bǫ) b k ǫ k = 0.

  r, y) → (r, y), be the projection on the last two factors. Then π |W : W → π(W ) is proper and π(W ) is a closed subanalytic set in a neighborhood of the origin. Let us write Y 1 = R × {0} and let Y 2 be the closure of π

Let

  H be the flag variety of pairs (L, H), L ∈ G n-k+1 n and H ∈ G n-k L . This variety is a bundle over G n-k n , each fibre being a G 1 k . Hence we have G (X ∩ H ∩ K))dKdνdH.

Λ

  k (X,X∩Bǫ) b k ǫ k . We already know that if dim X = d then lim ǫ→0 Λ k (X,X∩Bǫ) b k ǫ k = 0 for k ≥ d + 1. This is also the case if l < d 0 , where d 0 is the dimension of the stratum that contains 0. To see this let us first relate the limits lim ǫ→0 Λ k (X,X∩Bǫ) b k ǫ k
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 56 δ,v ∩ X ∩ B ǫ ), and thenσ k (X, 0) = 1 s k-1 S k-1 H ⊥ λ 0 (H, v)dv. Moreover, we put σ 0 (X, 0) = 1. For k ∈ {0, . . . , n -1}, we have lim ǫ→0 Λ k (X, X ∩ B ǫ ) b k ǫ k = σ k (X, 0)σ k+1 (X, 0).Furthermore, we havelim ǫ→0 Λ n (X, X ∩ B ǫ ) b n ǫ n = σ n (X, 0).Proof. It is the same proof as Theorem 5.5. For example if k ∈ {0, . . . , n-1}, we just have to remark that λ 0 (H, v) + λ 0 (H, -v) = χ(Lk(X ∩ L v )) + χ(Lk(X ∩ H)),

  Apply Corollary 4.2 and Lemma 5.2.Lemma 5.4. Let S ⊂ R n be C 2 -subanalytic manifold. Let H ∈ G n-k n , k ∈ {1, . .. , n} and let G 1H ⊥ be the Grassmann manifold of lines in the orthogonal complement H ⊥ of H. There exists a subanalytic set Σ