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STRATIFIED CRITICAL POINTS ON THE REAL MILNOR

FIBRE AND INTEGRAL-GEOMETRIC FORMULAS

NICOLAS DUTERTRE

Dedicated to professor David Trotman on his 60th birthday

Abstract. Let (X, 0) ⊂ (Rn, 0) be the germ of a closed subanalytic set
and let f and g : (X, 0) → (R, 0) be two subanalytic functions. Under
some conditions, we relate the critical points of g on the real Milnor
fibre X ∩ f−1(δ)∩Bǫ, 0 < |δ| ≪ ǫ ≪ 1, to the topology of this fibre and
other related subanalytic sets. As an application, when g is a generic
linear function, we obtain an “asymptotic” Gauss-Bonnet formula for
the real Milnor fibre of f . From this Gauss-Bonnet formula, we deduce
“infinitesimal” linear kinematic formulas.

1. Introduction

Let F = (f1, . . . , fk) : (Cn, 0) → (Ck, 0), 2 ≤ k ≤ n, be a complete
intersection with isolated singularity. The Lê-Greuel formula [21, 22] states
that

µ(F ′) + µ(F ) = dimC
OCn,0

I
,

where F ′ : (Cn, 0) → (Ck−1, 0) is the map with components f1, . . . , fk−1,

I is the ideal generated by f1, . . . , fk−1 and the (k × k)-minors ∂(f1,...,fk)
∂(xi1

,...,xik
)

and µ(F ) (resp. µ(F ′)) is the Milnor number of F (resp F ′). Hence the
Lê-Greuel formula gives an algebraic characterization of a topological data,
namely the sum of two Milnor numbers. However, since the right-hand side
of the above equality is equal to the number of critical points of fk, counted
with multiplicity, on the Milnor fibre of F ′, the Lê-Greuel formula can be
also viewed as a topological characterization of this number of critical points.

Many works have been devoted to the search of a real version of the
Lê-Greuel formula. Let us recall them briefly. We consider an analytic
map-germ F = (f1, . . . , fk) : (Rn, 0) → (Rk, 0), 2 ≤ k ≤ n, and we denote
by F ′ the map-germ (f1, . . . , fk−1) : (Rn, 0) → (Rk−1, 0). Some authors
investigated the following difference:

Dδ,δ′ = χ
(

F ′−1(δ) ∩ {fk ≥ δ′} ∩Bǫ

)

− χ
(

F ′−1(δ) ∩ {fk ≤ δ′} ∩Bǫ

)

,

where (δ, δ′) is a regular value of F such that 0 ≤ |δ′| ≪ |δ| ≪ ǫ.
In [12], we proved that

Dδ,δ′ ≡ dimR
ORn,0

I
mod 2,

1
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where ORn,0 is the ring of analytic function-germs at the origin and I is the

ideal generated by f1, . . . , fk−1 and all the k× k minors
∂(fk,f1,...,fk−1)
∂(xi1

,...,xik
) . This

is only a mod 2 relation and we may ask if it is possible to get a more precise
relation.

When k = n and fk = x21 + · · · + x2n, according to Aoki et al. ([1],
[3]), Dδ,0 = χ

(

F ′−1(δ) ∩Bε

)

= 2deg0H and 2deg0H is the number of semi-

branches of F ′−1(0), where

H = (
∂(fn, f1, . . . , fn−1)

∂(x1, . . . , xn)
, f1, . . . , fn−1).

They proved a similar formula in the case fk = xn in [2] and Szafraniec
generalized all these results to any fk in [23].

When k = 2 and f2 = x1, Fukui [18] stated that

Dδ,0 = −sign(−δ)ndeg0H,

where H = (f1,
∂f1
∂x2

, . . . , ∂f1
∂xn

). Several generalizations of Fukui’s formula are

given in [19], [11], [20] and [13].
In all these papers, the general idea is to count algebraically the critical

points of a Morse perturbation of fk on F ′−1(δ) ∩ Bǫ and to express this
sum in two ways: as a difference of Euler characteristics and as a topological
degree. Using the Eisenbud-Levine formula [16], this latter degree can be
expressed as a signature of a quadratic form and so, we obtain an algebraic
expression for Dδ,δ′ .

In this paper, we give a real and stratified version of the Lê-Greuel for-
mula. We restrict ourselves to the topological aspect and relate a sum of
indices of critical points on a real Milnor fibre to some Euler characteristics
(this is also the point of view adopted in [7]). More precisely, we consider a
germ of a closed subanalytic set (X, 0) ⊂ (Rn, 0) and a subanalytic function
f : (X, 0) → (R, 0). We assume that X is contained in a open set U of Rn

and that f is the restriction to X of a C2-subanalytic function F : U → R.
We denote by Xf the set X ∩ f−1(0) and we equip X with a Thom stratifi-
cation adapted to Xf . If 0 < |δ| ≪ ǫ ≪ 1 then the real Milnor fibre of f is
defined by

M δ,ǫ
f = f−1(δ) ∩X ∩Bǫ.

We consider another subanalytic function g : (X, 0) → (R, 0) and we assume
that it is the restriction to X of a C2-subanalytic function G : U → R. We
denote by Xg the intersection X ∩ g−1(0). Under two conditions on g, we
study the topological behaviour of g

|Mδ,ǫ
f

.

We recall that if Z ⊂ Rn is a closed subanalytic set, equipped with a
Whitney stratification and p ∈ Z is an isolated critical point of a subanalytic
function φ : Z → R, restriction to Z of a C2-subanalytic function Φ, then
the index of φ at p is defined as follows:

ind(φ,Z, p) = 1− χ
(

Z ∩ {φ = φ(p)− η} ∩Bǫ(p)
)

,
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where 0 < η ≪ ǫ ≪ 1 and Bǫ(p) is the closed ball of radius ǫ centered at

p. Let pδ,ǫ1 , . . . , pδ,ǫr be the critical points of g on X ∩ f−1(δ) ∩ B̊ǫ, where B̊ǫ

denotes the open ball of radius ǫ. We set

I(δ, ǫ, g) =
r

∑

i=1

ind(g,X ∩ f−1(δ), pδ,ǫi ),

I(δ, ǫ,−g) =

r
∑

i=1

ind(−g,X ∩ f−1(δ), pδ,ǫi ).

Our main theorem (Theorem 3.10) is the following:

I(δ, ǫ, g)+I(δ, ǫ,−g) = 2χ(M δ,ǫ
f )−χ(X ∩f−1(δ)∩Sǫ)−χ(Xg ∩f−1(δ)∩Sǫ).

As a corollary (Corollary 3.11), when f : (X, 0) → (R, 0) has an isolated
stratified critical point at 0, we obtain that

I(δ, ǫ, g) + I(δ, ǫ,−g) = 2χ(M δ,ǫ
f )− χ(Lk(Xf ))− χ(Lk(Xf ∩Xg)),

where Lk(−) denotes the link at the origin.
Then we apply these results when g is a generic linear form to get an

asymptotic Gauss-Bonnet formula for M δ,ǫ
f (Theorem 4.5). In the last sec-

tion, we use this asymptotic Gauss-Bonnet formula to prove infinitesimal
linear kinematic formulas for closed subanalytic germs (Theorem 5.5), that
generalize the Cauchy-Crofton formula for the density due to Comte [8].

The paper is organized as follows. In Section 2, we prove several lemmas
about critical points on the link of a subanalytic set. Section 3 contains real
stratified versions of the Lê-Greuel formula. In Section 4, we establish the
asymptotic Gauss-Bonnet formula and in Section 5, the infinitesimal linear
kinematic formulas.

The author is grateful to Vincent Grandjean for a very useful discussion
on generic distance functions.

The author is partially supported by the program

“Catédras Lévi-Strauss−USP/French Embassy, no. 2012.1.62.55.7”.

This paper was written while the author was visiting the Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo - Campus de São
Carlos. He thanks this institution, especially Raimundo Araújo dos Santos
and Nivaldo Grulha, for the hospitality.

2. Lemmas on critical points on the link of a stratum

In this section, we study the behaviour of the critical points of a C2-
subanalytic function on the link of stratum that contains 0 in its closure,
for a generic choice of the distance function to the origin.

Let Y ⊂ Rn be a C2-subanalytic set such that 0 belongs to its closure
Y . Let θ : Rn → R be a C2-subanalytic function such that θ(0) = 0.
We will first study the behaviour of the critical points of θ|Y : Y → R in
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the neighborhood of 0, and then the behaviour of the critical points of the
restriction of θ to the link of 0 in Y .

Lemma 2.1. The critical points of θ|Y lie in {θ = 0} in a neighborhood of
0.

Proof. By the Curve Selection Lemma, we can assume that there is a C1-
subanalytic curve γ : [0, ν[→ Y such that γ(0) = 0 and γ(t) is a critical
point of θ|Y for t ∈]0, ν[. Therefore, we have

(θ ◦ γ)′(t) = 〈∇θ|Y (γ(t)), γ
′(t)〉 = 0,

since γ′(t) is tangent to Y at γ(t). This implies that θ ◦ γ(t) = θ ◦ γ(0) =
0. �

Let ρ : Rn → R be another C2-subanalytic function such that ρ−1(a)
intersects Y transversally. Then the set Y ∩ {ρ ≤ a} is a manifold with
boundary. Let p be a critical point of θ|Y ∩{ρ≤a} which lies in Y ∩ {ρ = a}
and which is not a critical point of θ|Y . This implies that

∇θ|Y (p) = λ(p)∇ρ|Y (p),

with λ(p) 6= 0.

Definition 2.2. We say that p ∈ Y ∩{ρ = a} is an outwards-pointing (resp.
inwards-pointing) critical point of θ|Y ∩{ρ≤a} if λ(p) > 0 (resp. λ(p) < 0).

Now let us assume that ρ : Rn → R is a distance function to the origin
which means that ρ ≥ 0 and ρ−1(0) = {0} in a neighborhood of 0. By
Lemma 2.1, we know that for ǫ > 0 small enough, the level ρ−1(ǫ) intersects
Y transversally. Let pǫ be a critical point of θ|Y ∩ρ−1(ǫ) such that θ(pǫ) 6= 0.
This means that there exists λ(pǫ) such that

∇θ|Y (p
ǫ) = λ(pǫ)∇ρ|Y (p

ǫ).

Note that λ(pǫ) 6= 0 because ∇θ|Y (p
ǫ) 6= 0 for θ(pǫ) 6= 0.

Lemma 2.3. The point pǫ is an outwards-pointing (resp. inwards-pointing)
for θ|Y ∩{ρ≤ǫ} if and only if θ(pǫ) > 0 (resp. θ(pǫ) < 0).

Proof. Let us assume that λ(pǫ) > 0. By the Curve Selection Lemma,
there exists a C1-subanalytic curve γ : [0, ν[→ Y passing through pǫ such
that γ(0) = 0 and for t 6= 0, γ(t) is a critical point of θ|Y ∩{ρ=ρ(γ(t))} with
λ(γ(t)) > 0. Therefore we have

(θ ◦ γ)′(t) = 〈∇θ|Y (γ(t)), γ
′(t)〉 = λ(γ(t))〈∇ρ|Y (γ(t)), γ

′(t)〉.

But (ρ ◦ γ)′ > 0 for otherwise (ρ ◦ γ)′ ≤ 0 and ρ ◦ γ would be decreasing.
Since ρ(γ(t)) tends to 0 as t tends to 0, this would imply that ρ ◦ γ(t) ≤ 0,
which is impossible. We can conclude that (θ ◦ γ)′ > 0 and that θ ◦ γ is
strictly increasing. Since θ ◦ γ(t) tends to 0 as t tends to 0, we see that
θ ◦ γ(t) > 0 for t > 0. Similarly if λ(pǫ) < 0 then θ(pǫ) < 0. �
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Now we will study these critical points for a generic choice of the distance
function. We denote by Sym(Rn) the set of symmetric n× n-matrices with
real entries, by Sym∗(Rn) the open dense subset of such matrices with non-
zero determinant and by Sym∗,+(Rn) the open subset of these invertible
matrices that are positive definite or negative definite. Note that these sets
are semi-algebraic. For each A ∈ Sym∗,+(Rn), we denote by ρA the following
quadratic form:

ρA(x) = 〈Ax, x〉.

We denote by ΓY
θ,A the following subanalytic polar set:

ΓY
θ,A =

{

x ∈ Y | rank
[

∇θ|Y (x),∇ρA|Y (x)
]

< 2
}

,

and by ΣY
θ the set of critical points of θ|Y . Note that ΣY

θ ⊂ {θ = 0} by
Lemma 2.1.

Lemma 2.4. For almost all A in Sym+,∗(Rn), ΓY
θ,A \ (ΣY

θ ∪ {0}) is a C1-

subanalytic curve (possible empty) in a neighborhood of 0.

Proof. We can assume that dim Y > 1. Let

Z =
{

(x,A) ∈ Rn × Sym+,∗(Rn) | x ∈ Y \ (ΣY
θ ∪ {0})

and rank
[

∇θ|Y (x),∇ρA|Y (x)
]

< 2
}

.

Let (y,B) be a point in Z. We can suppose that around y, Y is defined by
the vanishing of k subanalytic functions f1, . . . , fk of class C2. Hence in a
neighborhood of (y,B), Z is defined be the vanishing of f1, . . . , fk and the
minors

∂(f1, . . . , fk, θ, ρA)

∂(xi1 , . . . , xik+2
)

.

Furthermore, since y does not belong to ΣY
θ , we can assume that

∂(f1, . . . , fk, θ)

∂(x1, . . . , xk, xk+1)
6= 0,

in a neighborhood of y. Therefore Z is locally defined by f1 = · · · = fk = 0
and

∂(f1, . . . , fk, θ, ρA)

∂(x1, . . . , xk+1, xk+2)
= · · · =

∂(f1, . . . , fk, θ, ρA)

∂(x1, . . . , xk+1, xn)
= 0.

Let us writeM = ∂(f1,...,fk,θ)
∂(x1,...,xk,xk+1)

and for i ∈ {k+2, . . . , n}, mi =
∂(f1,...,fk,θ,ρA)
∂(x1,...,xk+1,xi)

.

If A = [aij ] then

ρA(x) =

n
∑

i=1

aiix
2
i + 2

∑

i 6=j

aijxixj,

and so ∂ρA
∂xi

(x) = 2
∑n

j=1 aijxj. For i ∈ {k +1, . . . , n} and j ∈ {1, . . . , n}, we
have

∂mi

∂aij
= 2xjM.
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Since y 6= 0, one of the xj’s does not vanish in the neighborhood of y and
we can conclude that the rank of

[∇f1(x), . . . ,∇fk(x),∇mk+2(x,A), . . . ,∇mn(x,A)]

is n − 1 and that Z is a C1-subanalytic manifold of dimension n(n+1)
2 + 1.

Now let us consider the projection π2 : Z → Sym+,∗(Rn), (x,A) 7→ A.
Bertini-Sard’s theorem implies that the set Dπ2

of critical values of π2 is a

subanalytic set of dimension strictly less than n(n+1)
2 . Hence, for all A /∈ Dπ2

,

π−1
2 (A) is a C1-subanalytic curve (possibly empty). But this set is exactly

ΓY
θ,A \ (ΣY

θ ∪ {0}). �

Let R ⊂ Y be a subanalytic set of dimension strictly less than dim Y .
We will need the following lemma.

Lemma 2.5. For almost all A in Sym+,∗(Rn), ΓY
θ,A \ (ΣY

θ ∪ {0}) ∩ R is a
subanalytic set of dimension at most 0 in a neighborhood of 0.

Proof. Let us put l = dim Y . Since R admits a locally finite subanalytic
stratification, we can assume that R is a C2-subanalytic manifold of dimen-
sion d with d < l. Let W be the following subanalytic set:

W =
{

(x,A) ∈ Rn × Sym+,∗(Rn) | x ∈ R \ (ΣY
θ ∪ {0})

and rank
[

∇θ|Y (x),∇ρA|Y (x)
]

< 2
}

.

Using the same method as in the previous lemma, we can prove that W is

a C1-subanalytic manifold of dimension n(n+1)
2 + 1 + d − l and conclude,

remarking that d− l ≤ −1. �

Now we introduce a new C2-subanalytic function β : Rn → R such that
β(0) = 0. We denote by ΓY

θ,β,A the following subanalytic polar set:

ΓY
θ,β,A =

{

x ∈ Y | rank
[

∇θ|Y (x),∇β|Y (x),∇ρA|Y (x)
]

< 3
}

,

and by ΓY
θ,β the following subanalytic polar set:

ΓY
θ,β =

{

x ∈ Y | rank
[

∇θ|Y (x),∇β|Y (x)
]

< 2
}

.

Lemma 2.6. For almost all A in Sym+,∗(Rn), ΓY
θ,β,A \ (ΓY

θ,β ∪{0}) is a C1-

subanalytic set of dimension at most 2 (possibly empty) in a neighborhood
of 0.

Proof. We can assume that dim Y > 2. Let

Z =
{

(x,A) ∈ Rn × Sym+,∗(Rn) | x ∈ Y, rank
[

∇θ|Y (x),∇β|Y (x)
]

= 2

and rank
[

∇θ|Y (x),∇β|Y (x),∇ρA|Y (x)
]

< 3
}

.

Let (y,B) be a point in Z. We can suppose that around y, Y is defined by
the vanishing of k subanalytic functions f1, . . . , fk of class C2. Hence in a
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neighborhood of (y,B), Z is defined by the vanishing of f1, . . . , fk and the
minors

∂(f1, . . . , fk, θ, β, ρA)

∂(xi1 , . . . , xik+3
)

.

Since y does not belong to ΓY
θ,β, we can assume that

∂(f1, . . . , fk, θ, β)

∂(x1, . . . , xk, xk+1, xk+2)
6= 0,

in a neighborhood of y. Therefore Z is locally defined by f1, . . . , fk = 0 and

∂(f1, . . . , fk, θ, β, ρA)

∂(x1, . . . , xk+2, xk+3)
= · · · =

∂(f1, . . . , fk, θ, β, ρA)

∂(x1, . . . , xk+2, xn)
= 0.

It is clear that we can apply the same method as Lemma 2.4 to get the
result. �

3. Lê-Greuel type formula

In this section, we prove the Lê-Greuel type formula announced in the
introduction.

Let (X, 0) ⊂ (Rn, 0) be the germ of a closed subanalytic set and let f :
(X, 0) → (R, 0) be a subanalytic function. We assume that X is contained
in a open set U of Rn and that f is the restriction to X of a C2-subanalytic
function F : U → R. We denote by Xf the set X ∩ f−1(0) and by [4], we
can equip X with a Thom stratification V = {Vα}α∈A adapted to Xf . This
means that {Vα ∈ V | Vα * Xf} is a Whitney stratification of X \Xf and

that for any pair of strata (Vα, Vβ) with Vα * Xf and Vβ ⊂ Xf , the Thom
condition is satisfied.

Let us denote by ΣVf the critical locus of f . It is the union of the critical
loci of f restricted to each stratum, i.e. ΣVf = ∪αΣ(f|Vα

), where Σ(f|Vα
)

is the critical set of f|Vα
: Vα → R. Since ΣVf ⊂ f−1(0) (see Lemma

2.1), the fibre f−1(δ) intersects the strata Vα’s, Vα * Xf , transversally
if δ is sufficiently small. Hence it is Whitney stratified with the induced
stratification {f−1(δ) ∩ Vα | Vα * Xf}.

By Lemma 2.1, we know that if ǫ > 0 is sufficiently small then the sphere
Sǫ intersects Xf transversally. By the Thom condition, this implies that
there exists δ(ǫ) > 0 such that for each δ with 0 < |δ| ≤ δ(ǫ), the sphere Sǫ

intersects the fibre f−1(δ) transversally as well. Hence the set f−1(δ) ∩ Bǫ

is a Whitney stratified set equipped with the following stratification:

{f−1(δ) ∩ Vα ∩ B̊ǫ, f
−1(δ) ∩ Vα ∩ Sǫ | Vα * Xf}.

Definition 3.1. We call the set f−1(δ) ∩X ∩ Bǫ, where 0 < |δ| ≪ ǫ ≪ 1,
a real Milnor fibre of f .

We will use the following notation: M δ,ǫ
f = f−1(δ) ∩X ∩Bǫ.

Now we consider another subanalytic function g : (X, 0) → (R, 0) and we
assume that it is the restriction to X of a C2-subanalytic function G : U →
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R. We denote by Xg the intersection X ∩ g−1(0). Under some restrictions
on g, we will study the topological behaviour of g

|Mδ,ǫ
f

.

First we assume that g satisfies the following Condition (A):

• Condition (A): g : (X, 0) → (R, 0) has an isolated stratified critical
point at 0.

This means that for each strata Vα of V, g : Vα \ {0} → R is a submersion
in a neighborhood of the origin.

In order to give the second assumption on g, we need to introduce some
polar sets. Let Vα be a stratum of V not contained in Xf . Let ΓVα

f,g be the
following set:

ΓVα

f,g =
{

x ∈ Vα | rank[∇f|Vα
(x),∇g|Vα

(x)] < 2
}

,

and let Γf,g be the union ∪ΓVα

f,g where Vα * Xf . We call Γf,g the relative

polar set of f and g with respect to the stratification V. We will assume
that g satifies the following Condition (B):

• Condition (B): the relative polar set Γf,g is a 1-dimensional C1-
subanalytic set (possibly empty) in a neighborhood of the origin.

Note that Condition (B) implies that Γf,g ∩Xf ⊂ {0} in a neighborhood of

the origin because the frontiers of the ΓVα

f,g’s are 0-dimensional.

From Condition (A) and Condition (B), we can deduce the following
result.

Lemma 3.2. We have Γf,g ∩Xg ⊂ {0} in a neighborhood of the origin.

Proof. If it is not the case then there is a C1-subanalytic curve γ : [0, ν[→
Γf,g ∩Xg such that γ(0) = 0 and γ(]0, ν[) ⊂ Xg \ {0}. We can also assume
that γ(]0, ν[) is contained in a stratum V . For t ∈]0, ν[, we have

0 = (g ◦ γ)′(t) = 〈∇g|V (γ(t)), γ
′(t)〉.

Since γ(t) belongs to Γf,g and ∇g|V (γ(t)) does not vanish for g : (X, 0) →
(R, 0) has an isolated stratified critical point at 0, we can conclude that
〈∇f|V (γ(t)), γ

′(t)〉 = 0 and that (f ◦ γ)′(t) = 0 for all t ∈]0, ν[. Therefore

f ◦γ ≡ 0 because f(0) = 0 and γ([0, ν[) is included in Xf . This is impossible
by the above remark. �

Let B1, . . . ,Bl be the connected components of Γf,g, i.e. Γf,g = ⊔l
i=1Bi.

Each Bi is a C1-subanalytic curve along which f is strictly increasing or

decreasing and the intersection points of the Bi’s with the fibre M δ,ǫ
f are

exactly the critical points (in the stratified sense) of g on X ∩ f−1(δ) ∩ B̊ǫ.
Let us write

M δ,ǫ
f ∩ ⊔l

i=1Bi = {pδ,ǫ1 , . . . , pδ,ǫr }.

Note that r ≤ l.
Let us recall now the definition of the index of an isolated stratified critical

point.
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Definition 3.3. Let Z ⊂ Rn be a closed subanalytic set, equipped with a
Whitney stratification. Let p ∈ Z be an isolated critical point of a subana-
lytic function φ : Z → R, which is the restriction to Z of a C2-subanalytic
function Φ. We define the index of φ at p as follows :

ind(φ,Z, p) = 1− χ
(

Z ∩ {φ = φ(p)− η} ∩Bǫ(p)
)

,

where 0 < η ≪ ǫ ≪ 1 and Bǫ(p) is the closed ball of radius ǫ centered at p.

Our aim is to give a topological interpretation to the following sum:

r
∑

i=1

ind(g,X ∩ f−1(δ), pδ,ǫi ) + ind(−g,X ∩ f−1(δ), pδ,ǫi ).

For this, we will apply stratified Morse theory to g
|Mδ,ǫ

f

. Note that the points

pi’s are not the only critical points of g
|Mδ,ǫ

f

and other critical points can

occur on the “boundary” M δ,ǫ
f ∩ Sǫ.

The next step is to study the behaviour of these “boundary” critical points
for a generic choice of the distance function to the origin. Let ρ : Rn → R
be a C2-subanalytic function which is a distance function to the origin. We
denote by S̃ǫ the level ρ−1(ǫ) and by B̃ǫ the set {ρ ≤ ǫ}. We will focus on
the critical points of g|Xf∩S̃ǫ

and g|X∩f−1(δ)∩S̃ǫ
, with 0 < |δ| ≪ ǫ ≪ 1.

For each stratum V of Xf , let

ΓV
g,ρ =

{

x ∈ V | rank[∇g|V (x),∇ρ|V (x)] < 2
}

,

and let ΓXf

g,ρ = ∪V⊂XfΓV
g,ρ. By Lemma 2.4 and the fact that g : (Xf , 0) →

(R, 0) has an isolated stratified critical point at 0, we can assume that ΓXf

g,ρ

is a C1-subanalytic curve in a neighborhood of the origin.

Lemma 3.4. We have ΓXf

g,ρ ∩Xg ⊂ {0} in a neighborhood of the origin.

Proof. Same proof as Lemma 3.2. �

Therefore if ǫ > 0 is small enough, g|S̃ǫ∩Xf has a finite number of critical

points. They do not lie in the level {g = 0} so by Lemma 2.3, they are
outwards-pointing for g|Xf∩B̃ǫ

if they lie in {g > 0} and inwards-pointing if

they lie in {g < 0}.
Let us study now the critical points of g|X∩f−1(δ)∩S̃ǫ

. We will need the

following lemma.

Lemma 3.5. For every ǫ > 0 sufficiently small, there exists δ(ǫ) > 0 such

that for 0 < |δ| ≤ δ(ǫ), the points pδ,ǫi lie in B̃ǫ/4.

Proof. Let

W =
{

(x, r, y) ∈ U × R× R | ρ(x) = r, y = f(x) and x ∈ Γf,g

}

.
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Then W is a subanalytic set of Rn×R×R and since it is a graph over Γf,g,
its dimension is less or equal to 1. Let

π : Rn × R× R → R× R
(x, r, y) 7→ (r, y),

be the projection on the last two factors. Then π|W : W → π(W ) is proper
and π(W ) is a closed subanalytic set in a neighborhood of the origin.

Let us write Y1 = R × {0} and let Y2 be the closure of π(W ) \ Y1. Since
Y2 is a curve for W is a curve, 0 is isolated in Y1 ∩ Y2. By Lojasiewicz’s
inequality, there exists a constant C > 0 and an integer N > 0 such that
|y| ≥ CrN for (r, y) in Y2 sufficiently close to the origin. So if x ∈ Γf,g then

|f(x)| ≥ Cρ(x)N if ρ(x) is small enough.
Let us fix ǫ > 0 small. If 0 < |δ| ≤ 1

C (
ǫ
4 )

N and x ∈ f−1(δ) ∩ Γf,g then
ρ(x) ≤ ǫ

4 . �

For each stratum V * Xf , let

ΓV
f,g,ρ =

{

x ∈ V | rank[∇f|V (x),∇g|V (x),∇ρ|V (x)] < 3
}

,

and let Γf,g,ρ = ∪V*XfΓV
f,g,ρ. By Lemma 2.6, we can assume that Γf,g,ρ\Γf,g

is a C1-subanalytic manifold of dimension 2. Let us choose ǫ > 0 small
enough so that S̃ǫ intersects Γf,g,ρ \ Γf,g transversally. Therefore (Γf,g,ρ \

Γf,g) ∩ S̃ǫ is subanalytic curve. By Lemma 3.4, we can find δ(ǫ) > 0 such

that f−1
(

[δ(ǫ),−δ(ǫ)]
)

∩ S̃ǫ ∩ Γf,g is empty and so

f−1
(

[−δ(ǫ), δ(ǫ)]
)

∩ (Γf,g,ρ \ Γf,g) ∩ S̃ǫ = f−1
(

[−δ(ǫ), δ(ǫ)]
)

∩ Γf,g,ρ ∩ S̃ǫ.

Let C1, . . . , Ct be the connected components of f−1
(

[−δ(ǫ), δ(ǫ)]
)

∩Γf,g,ρ∩S̃ǫ

whose closure intersects Xf ∩ S̃ǫ. Note that by Thom’s (af )-condition, for

each i ∈ {1, . . . , t}, Ci ∩Xf is subset of ΓXf

g,ρ . Let zi be a point in Ci ∩Xf .

Since Ci ∩Xf = ∅, there exists 0 < δ′i(ǫ) ≤ δ(ǫ) such that the fibre f−1(δ),
0 < |δ| ≤ δ′i(ǫ), intersects Ci transversally in a neighborhood of zi.

Let us choose δ such that 0 < |δ| ≤ Min{δ′i(ǫ) | i = 1, . . . , t}. Then the
fibre f−1(δ) intersect the Ci’s transversally and f−1(δ) ∩ (∪iCi) is exactly
the set of critical points of g|f−1(δ)∩X∩S̃ǫ

. We have proved:

Lemma 3.6. For 0 < |δ| ≪ ǫ ≪ 1, g|f−1(δ)∩X∩S̃ǫ
has a finite number of

critical points, which are exactly the points in Γf,g,ρ ∩ S̃ǫ ∩ f−1(δ).

�

Let {sδ,ǫ1 , . . . , sδ,ǫu } be the set of critical points of g|f−1(δ)∩X∩S̃ǫ
.

Lemma 3.7. For i ∈ {1, . . . , u}, g(sδ,ǫi ) 6= 0 and sδ,ǫi is outwards-pointing

(resp. inwards-pointing) if and only if g(sδ,ǫi ) > 0 (resp. g(sδ,ǫi ) < 0).

Proof. Note that sδ,ǫi is necessarily outwards-pointing or inwards-pointing

because sδ,ǫi /∈ Γf,g.
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Assume that for each δ > 0 small enough, there exists a point sδ,ǫi such that

g(sδ,ǫi ) = 0. Then we can construct a sequence of points (σn)n∈N such that
g(σn) = 0 and σn is a critical point of g|f−1( 1

n
)∩X∩S̃ǫ

. We can also assume

that the points σn’s belong to the same stratum S and that they tend to
σ ∈ V where V ⊆ Xf and V ⊂ ∂S. Therefore we have a decomposition:

∇g|S(σn) = λn∇f|S(σn) + µn∇ρ|S(σn).

Now by Whitney’s condition (a), TσnS tends to a linear space T such that
TσV ⊂ T . So ∇g|S(σn) tends to a vector in T whose orthogonal projection
on TσV is exactly ∇g|V (σ). Similarly ∇ρ|S(σn) tends to a vector in T whose
orthogonal projection on TσV is exactly ∇ρ|V (σ). By Thom’s condition,
∇f|S(σn) tends to a vector in T which is orthogonal to TσV , so we see that
∇g|V (σ) and ∇ρ|V (σ) are colinear which means that σ is a critical point of
g|Xf∩S̃ǫ

. But since g(σn) = 0, we find that g(σ) = 0, which is impossible by

Lemma 3.4. This proves the first assertion.
To prove the second one, we use the same method. Assume that for

each δ > 0 small enough, there exists a point sδ,ǫi such that g(sδ,ǫi ) > 0

and sδ,ǫi is an inwards-pointing critical point for g|X∩f−1(δ)∩S̃ǫ
. Then we can

construct a sequence of points (τn)n∈N such that g(τn) > 0 and τn is an
inwards-pointing critical point for g|f−1( 1

n
)∩X∩S̃ǫ

. We can also assume that

the points τn’s belong to the same stratum S and that they tend to τ ∈ V
where V ⊆ Xf and V ⊂ ∂S. Therefore, we have a decomposition:

∇g|S(τn) = λn∇f|S(τn) + µn∇ρ|S(τn),

with µn < 0. Using the same arguments as above, we find that ∇g|V (τ) =
µ∇ρ|S(τ) with µ ≤ 0 and g(τ) ≥ 0. This contradicts the remark after
Lemma 3.4. Of course, this proof works for δ < 0. �

Let Γg,ρ be the following polar set:

Γg,ρ = {x ∈ U | rank[∇g(x),∇ρ(x)] < 2} .

By Lemma 2.5 and Lemma 2.1, we can assume that Γg,ρ \ {g = 0} does

not intersect Xf \ {0} in a neighborhood of 0 and so Γg,ρ \ {g = 0} does

not intersect Xf ∩ S̃ǫ for ǫ > 0 sufficiently small. Since the critical points of
g|Xf∩S̃ǫ

lie outside {g = 0}, they do not belong to Γg,ρ∩S̃ǫ and so the critical

points of g|f−1(δ)∩X∩S̃ǫ
do not neither if δ is sufficiently small. Hence at each

critical point of g|f−1(δ)∩X∩S̃ǫ
, g|S̃ǫ

is a submersion. We are in position to

apply Theorem 3.1 and Lemma 2.1 in [15]. For 0 < |δ| ≪ ǫ ≪ 1, we set

I(δ, ǫ, g) =
r

∑

i=1

ind(g,X ∩ f−1(δ), pδ,ǫi ),

I(δ, ǫ,−g) =
r

∑

i=1

ind(−g,X ∩ f−1(δ), pδ,ǫi ).
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Theorem 3.8. We have

I(δ, ǫ, g) + I(δ, ǫ,−g) = 2χ
(

X ∩ f−1(δ) ∩ B̃ǫ

)

−χ
(

X ∩ f−1(δ) ∩ S̃ǫ

)

− χ
(

Xg ∩ f−1(δ) ∩ S̃ǫ

)

.

Proof. Let us denote by {a+j }
α+

j=1 (resp. {a−j }
α−

j=1) the outwards-pointing

(resp. inwards-pointing) critical points of g : X∩f−1(δ)∩ S̃ǫ → R. Applying
Morse theory type theorem ([15], Theorem 3.1) and using Lemma 2.1 in [15],
we can write

I(δ, ǫ, g) +

α−
∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ) = χ(X ∩ f−1(δ) ∩ B̃ǫ) (1),

I(δ, ǫ,−g) +

α+

∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ,−a+j ) = χ(X ∩ f−1(δ) ∩ B̃ǫ) (2).

Let us evaluate

α−
∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ) +

α+

∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ, a
+
j ).

Since the outwards-pointing critical points of g|X∩f−1(δ)∩S̃ǫ
lie in {g > 0}

and the inwards-pointing critical points of g|X∩f−1(δ)∩S̃ǫ
lie in {g < 0}, we

have

χ(X ∩ f−1(δ) ∩ S̃ǫ ∩ {g ≥ 0}) − χ(X ∩ f−1(δ) ∩ S̃ǫ ∩ {g = 0}) =

α+
∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, , a
+
j ) (3),

and

χ(X ∩ f−1(δ) ∩ S̃ǫ ∩ {g ≤ 0}) − χ(X ∩ f−1(δ) ∩ S̃ǫ ∩ {g = 0}) =

α−
∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ) (4).

Therefore making (3) + (4) and using the Mayer-Vietoris sequence, we find

χ(X ∩ f−1(δ) ∩ S̃ǫ)− χ(X ∩ f−1(δ) ∩ S̃ǫ ∩ {g = 0}) =

α+

∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, a
+
j ) +

α−
∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ) (5).

Moreover we have

χ(X ∩ f−1(δ) ∩ S̃ǫ) =

α+
∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, a
+
j )
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+

α−
∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ) (6),

χ(X ∩ f−1(δ) ∩ S̃ǫ) =
α+

∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ, a
+
j )

+

α−
∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ) (7).

The combination −(5) + (6) + (7) leads to

χ(X ∩ f−1(δ) ∩ S̃ǫ) + χ(X ∩ f−1(δ) ∩ S̃ǫ ∩ {g = 0}) =

α+
∑

j=1

ind(−g,X ∩ f−1(δ) ∩ S̃ǫ, a
+
j ) +

α−
∑

j=1

ind(g,X ∩ f−1(δ) ∩ S̃ǫ, a
−
j ).

�

Let us assume now that (X, 0) is equipped with a Whitney stratification
W = ∪α∈AWα and f : (X, 0) → (R, 0) has an isolated critical point at 0. In
this situation, our results apply taking for V the following stratification:

{

Wα \ f−1(0),Wα ∩ f−1(0) \ {0}, {0} | Wα ∈ W
}

.

Corollary 3.9. If f : (X, 0) → (R, 0) has an isolated stratified critical point
at 0, then

I(δ, ǫ, g) + I(δ, ǫ,−g) = 2χ
(

X ∩ f−1(δ) ∩ B̃ǫ

)

−χ
(

Xf ∩ S̃ǫ

)

− χ
(

Xf ∩Xg ∩ S̃ǫ

)

.

Proof. For each stratum W of X, let

ΓW
f,ρ =

{

x ∈ W | rank[∇f|W (x),∇ρ|W (x)] < 2
}

,

and let Γf,ρ = ∪WΓW
f,ρ. By Lemma 3.4 applied to X and f instead of Xf

and g, Γf,ρ ∩ {f = 0} ⊂ {0} in a neighborhood of the origin and so 0 is a

regular value of f : X ∩ S̃ǫ → R for ǫ sufficiently small. By Thom-Mather’s
second isotopy lemma, X ∩ f−1(0)∩ S̃ǫ is homeomorphic to X ∩ f−1(δ)∩ S̃ǫ

for δ sufficiently small.
Now let p be a stratified critical point of f : Xg → R. By Lemma 2.1,

we know that p belongs to f−1(0) ∩Xg and so p is also a critical point of
g : Xf → R. Hence p = 0 by Condition (A), and f : Xg → R has an isolated

stratified critical point at 0. As above, we conclude that Xf ∩ Xg ∩ S̃ǫ is
homeomorphic to Xg ∩ f−1(δ) ∩ S̃ǫ. �

Let ω(x) =
√

x21 + · · · + x2n be the euclidian distance to the origin. As
explained by Durfee in [10], Lemma 1.8 and Lemma 3.6, there is a neigh-
borhood Ω of 0 in Rn such that for every stratum V of Xf , ∇ω|V and ∇ρ|V
are non-zero and do not point in opposite direction in Ω \ {0}. Applying
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Durfee’s argument ([10], Proposition 1.7 and Proposition 3.5), we see that

Xf ∩ S̃ǫ is homeomorphic to Xf ∩Sǫ′ for ǫ, ǫ
′ > 0 sufficiently small. Similarly

Xf ∩ Xg ∩ S̃ǫ and Xf ∩ Xg ∩ Sǫ′ are homemorphic. Now let us compare
X ∩ f−1(δ) ∩ B̃ǫ and X ∩ f−1(δ) ∩Bǫ′ . Let us choose ǫ′ and ǫ such that

X ∩ f−1(δ) ∩Bǫ′ ⊂ X ∩ f−1(δ) ∩ B̃ǫ ⊂ Ω.

If δ is sufficiently small then, for every stratum V * Xf , ∇ω|V ∩f−1(δ) and

∇ρ|V ∩f−1(δ) are non-zero and do not point in opposite direction in B̃ǫ \ B̊ǫ′ .

Otherwise, by Thom’s (af )-condition, we would find a point p in Xf ∩ (B̃ǫ \

B̊ǫ′) such that either ∇ω|S(p) or ∇ρ|S(p) vanish or ∇ω|S(p) and ∇ρ|S(p)

point in opposite direction, where S is the stratum of Xf that contains p.
This is impossible if we are sufficiently close to the origin. Now, applying
the same arguments as Durfee [10], Proposition 1.7 and Proposition 3.5, we

see that X ∩ f−1(δ) ∩ B̃ǫ is homeomorphic to X ∩ f−1(δ) ∩ Bǫ′ and that

X ∩ f−1(δ) ∩ S̃ǫ is homeomorphic to X ∩ f−1(δ) ∩ Sǫ′ .

Theorem 3.10. We have

I(δ, ǫ, g)+I(δ, ǫ,−g) = 2χ(M δ,ǫ
f )−χ(X ∩f−1(δ)∩Sǫ)−χ(Xg ∩f−1(δ)∩Sǫ).

�

Corollary 3.11. If f : (X, 0) → (R, 0) has an isolated stratified critical
point at 0, then

I(δ, ǫ, g) + I(δ, ǫ,−g) = 2χ(M δ,ǫ
f )− χ(Lk(Xf ))− χ(Lk(Xf ∩Xg)).

�

Let us remark if dim X = 2 then in Theorem 3.10 and in Corollary 3.11,
the last term of the right-hand side of the equality vanishes. If dim X = 1
then in Theorem 3.10 and in Corollary 3.11, the last two terms of the right-
hand side of the equality vanish.

4. An infinitesimal Gauss-Bonnet formula

In this section, we apply the results of the previous section to the case
of linear forms and we establish a Gauss-Bonnet type formula for the real
Milnor fibre.

We will first show that generic linear forms satisfy Condition (A) and
Condition (B). For v ∈ Sn−1, let us denote by v∗ the function v∗(x) = 〈v, x〉.

Lemma 4.1. There exists a subanalytic set Σ1 ⊂ Sn−1 of positive codimen-
sion such that if v /∈ Σ1, {v

∗ = 0} intersects X \ {0} transversally (in the
stratified sense) in a neighborhood of the origin.

Proof. It is a particular case of Lemma 3.8 in [14]. �

Corollary 4.2. If v /∈ Σ1 then v∗|X : (X, 0) → (R, 0) has an isolated stratified

point at 0.
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Proof. By Lemma 2.1, we know that the stratified critical points of v∗|X lie

in {v∗ = 0}. But since {v∗ = 0} intersects X \ {0} transversally, the only
possible critical point of v∗|X : (X, 0) → (R, 0) is the origin. �

Lemma 4.3. There exists a subanalytic set Σ2 ⊂ Sn−1 of positive codi-
mension such that if v /∈ Σ2, then Γf,v∗ is a C1-subanalytic curve (possibly
empty) in a neighborhood of 0.

Proof. Let V be stratum of dimension e such that V * Xf . We can assume
that e ≥ 2. Let

MV =
{

(x, y) ∈ V × Rn | rank[∇f|V (x),∇y∗|V (x)] < 2
}

.

It is a subanalytic manifold of class C1 and of dimension n+1. To see this,
let us pick a point (x, y) in MV . In a neighborhood of x, V is defined by
the vanishing of k = n − e C2-subanalytic functions f1, . . . , fk. Since V is
not included in Xf , f : V → R is a submersion and we can assume that in
a neighborhood of x, the following (k + 1)× (k + 1)-minor:

∂(f1, . . . , fk, f)

∂(x1, . . . , xk, xk+1)
,

does not vanish. Therefore, in a neighborhood of (x, y), MV is defined by
the vanishing of the following (k + 2)× (k + 2)-minors:

∂(f1, . . . , fk, f, y
∗)

∂(x1, . . . , xk, xk+1, xk+2)
, . . . ,

∂(f1, . . . , fk, f, y
∗)

∂(x1, . . . , xk, xk+1, xn)
.

A simple computation of determinants shows that the gradient vectors of
these minors are linearly independent. As in previous lemmas, we show that
Σf,v∗ is one-dimensional considering the projection

π2 : MV → Rn

(x, y) 7→ y.

Since Γf,v∗ = ∪V*XfΓV
f,v∗ , we get the result. �

Let Σ = Σ1 ∪ Σ2, it is a subanalytic subset of Sn−1 of positive codimen-
sion and if v /∈ Σ then v∗ satisfies Conditions (A) and (B). In particular,

v∗|f−1(δ)∩X∩Bǫ
has a finite number of critical points pδ,ǫ1 , . . . , pδ,ǫrv . We recall

that

I(δ, ǫ, v∗) =

rv
∑

i=1

ind(v∗,X ∩ f−1(δ), pδ,ǫi ),

I(δ, ǫ,−v∗) =

rv
∑

i=1

ind(−v∗,X ∩ f−1(δ), pδ,ǫi ).

In this situation, Theorem 3.10 and Corollary 3.11 become
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Corollary 4.4. If v /∈ Σ then

I(δ, ǫ, v∗)+I(δ, ǫ,−v∗) = 2χ(M δ,ǫ
f )−χ(X∩f−1(δ)∩Sǫ)−χ(Xv∗∩f−1(δ)∩Sǫ).

Furthermore, if f : (X, 0) → (R, 0) has an isolated stratified critical point at
0, then

I(δ, ǫ, v∗) + I(δ, ǫ,−v∗) = 2χ(M δ,ǫ
f )− χ(Lk(Xf ))− χ(Lk(Xf ∩Xv∗)).

�

As an application, we give a Gauss-Bonnet formula for the Milnor fibre

M δ,ǫ
f . Let Λ0(X ∩ f−1(δ),−) be the Gauss-Bonnet measure on X ∩ f−1(δ)

defined by

Λ0(X ∩ f−1(δ), U ′) =
1

sn−1

∫

Sn−1

∑

x∈U ′

ind(v∗,X ∩ f−1(δ), x)dx,

where U ′ is a Borel set of X ∩ f−1(δ) (see [6], page 299) and sn−1 is the
volume of the unit sphere Sn−1. Note that if x is not a critical point of
v∗|X∩f−1(δ) then ind(v∗,X ∩ f−1(δ), x) = 0. We are going to evaluate

lim
ǫ→0

lim
δ→0

Λ0(X ∩ f−1(δ),M δ,ǫ
f ).

Theorem 4.5. We have

lim
ǫ→0

lim
δ→0

Λ0(X ∩ f−1(δ),M δ,ǫ
f ) = χ(M δ,ǫ

f )−
1

2
χ(X ∩ f−1(δ) ∩ Sǫ)

−
1

2sn−1

∫

Sn−1

χ(X ∩ f−1(δ) ∩ {v∗ = 0} ∩ Sǫ)dv.

Furthermore, if f : (X, 0) → (R, 0) has an isolated stratified critical point at
0, then

lim
ǫ→0

lim
δ→0

Λ0(X ∩ f−1(δ),M δ,ǫ
f ) = χ(M δ,ǫ

f )−
1

2
χ(Lk(Xf ))

−
1

2sn−1

∫

Sn−1

χ(Lk(Xf ∩Xv∗))dv.

Proof. By definition, we have

Λ0(X ∩ f−1(δ),M δ,ǫ
f ) =

1

sn−1

∫

Sn−1

∑

x∈Mδ,ǫ
f

ind(v∗,X ∩ f−1(δ), x)dv.

It is not difficult to see that

Λ0(X ∩ f−1(δ),M δ,ǫ
f ) =

1

2sn−1

∫

Sn−1

[

∑

x∈Mδ,ǫ
f

ind(v∗,X ∩ f−1(δ), x) + ind(−v∗,X ∩ f−1(δ), x)
]

dv.
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Note that if v /∈ Σ then
∑

x∈Mδ,ǫ
f

ind(v∗,X ∩ f−1(δ), x) + ind(−v∗,X ∩ f−1(δ), x)

is equal to I(δ, ǫ, v∗) + I(δ, ǫ,−v∗) and is uniformly bounded by Hardt’s
theorem. By Lebesgue’s theorem, we obtain

lim
ǫ→0

lim
δ→0

Λ0(X ∩ f−1(δ),M δ,ǫ
f ) =

1

2sn−1

∫

Sn−1

lim
ǫ→0

lim
δ→0

[I(δ, ǫ, v∗) + I(δ, ǫ,−v∗)]dv.

We just have to apply the previous corollary to conclude. �

5. Infinitesimal linear kinematic formulas

In this section, we apply the results of the previous section to the case of
a linear function in order to obtain “infinitesimal” linear kinematic formulas
for closed subanalytic germs.

We start recalling known facts on the geometry of subanalytic sets. We
need some notations:

• for k ∈ {0, . . . , n}, Gk
n is the Grassmann manifold of k-dimensional

linear subspaces in Rn and gkn is its volume,
• for k ∈ N, bk is the volume of the k-dimensional unit ball and sk is
the volume of the k-dimensional unit sphere.

In [17], Fu developed integral geometry for compact subanalytic sets. Us-
ing the technology of the normal cycle, he associated with every compact
subanalytic set X ⊂ Rn a sequence of curvature measures

Λ0(X,−), . . . ,Λn(X,−),

called the Lipschitz-Killing measures. He proved several integral geometry
formulas, among them a Gauss-Bonnet formula and a kinematic formula.
Later another description of the measures using stratified Morse theory was
given by Broecker and Kuppe [6] (see also [5]). The reader can refer to [14],
Section 2, for a rather complete presentation of these two approaches and
for the definition of the Lipschitz-Killing measures.

Let us give some comments on these Lipschitz-Killing curvatures. If dim
X = d then

Λd+1(X,U ′) = · · · = Λn(X,U ′) = 0,

for any Borel set U ′ of X and Λd(X,U ′) = Ld(U
′), where Ld is the d-

dimensional Lebesgue measure in Rn. Furthemore if X is smooth then
for any Borel set U ′ of X and for k ∈ {0, . . . , d}, Λk(X,U ′) is related to
the classical Lipschitz-Killing-Weil curvature Kd−k through the following
equality:

Λk(X,U ′) =
1

sn−d−k−1

∫

U ′

Kd−k(x)dx.
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In [14], Section 5, we studied the asymptotic behaviour of the Lipschitz-
Killing measures in the neighborhood of a point of X. Namely we proved
the following theorem ([14], Theorem 5.1).

Theorem 5.1. Let X ⊂ Rn be a closed subanalytic set such that 0 ∈ X.
We have:

lim
ǫ→0

Λ0(X,X ∩Bǫ) = 1−
1

2
χ(Lk(X)) −

1

2gn−1
n

∫

Gn−1
n

χ(Lk(X ∩H))dH.

Furthermore for k ∈ {1, . . . , n− 2}, we have:

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk(X ∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk(X ∩ L))dL,

and:

lim
ǫ→0

Λn−1(X,X ∩Bǫ)

bn−1ǫn−1
=

1

2g2n

∫

G2
n

χ(Lk(X ∩H))dH,

lim
ǫ→0

Λn(X,X ∩Bǫ)

bnǫn
=

1

2g1n

∫

G1
n

χ(Lk(X ∩H))dH.

In the sequel, we will use these equalities and Theorem 4.5 to establish

linear kinematic types formulas for the quantities limǫ→0
Λk(X,X∩Bǫ)

bkǫk
, k =

1, . . . , n. Let us start with some lemmas. We work with a closed subanalytic
set X such that 0 ∈ X, equipped with a Whitney stratification {Wα}α∈A.

Lemma 5.2. Let f be a C2-subanalytic function such that f|X : X → R has
an isolated stratified critical point at 0. Then for 0 < δ ≪ ǫ ≪ 1, we have

χ(M δ,ǫ
f ) + χ(M−δ,ǫ

f ) = χ(Lk(X)) + χ(Lk(Xf )).

Proof. With the same technics and arguments as the ones we used in order
to establish Corollary 3.11, we can prove that

ind(f,X, 0) + ind(−f,X, 0) = 2χ(X ∩Bǫ)− χ(Lk(X))− χ(Lk(Xf )).

We conclude thanks to the following equalities

ind(f,X, 0) = 1− χ(M−δ,ǫ
f ), ind(−f,X, 0) = 1− χ(M δ,ǫ

f ),

and

χ(X ∩Bǫ) = 1.

�

Corollary 5.3. There exist a subanalytic set Σ1 ⊂ Sn−1 of positive codi-
mension such that if v /∈ Σ then for 0 < δ ≪ ǫ ≪ 1,

χ(M δ,ǫ
v∗ ) + χ(M−δ,ǫ

v∗ ) = χ(Lk(X)) + χ(Lk(X ∩ {v∗ = 0})).

Proof. Apply Corollary 4.2 and Lemma 5.2. �
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Lemma 5.4. Let S ⊂ Rn be C2-subanalytic manifold. Let H ∈ Gn−k
n ,

k ∈ {1, . . . , n} and let G1
H⊥ be the Grassmann manifold of lines in the

orthogonal complement H⊥ of H. There exists a subanalytic set Σ′
H ⊂ G1

H⊥

of positive codimension such that if ν /∈ Σ′
H then H ⊕ ν intersects S \ {0}

transversally.

Proof. Assume that S has dimension e and that H is given by the equations
x1 = . . . = xk = 0 so that H⊥ = Rk with coordinate system (x1, . . . , xk).
Let W be defined by

W =
{

(x, v1, . . . , vk−1) ∈ Rn × (Rk)k−1 | x ∈ S \ {0}

and 〈x, v1〉 = · · · = 〈x, vk−1〉 = 0
}

,

where vi ∈ Rk × {0} ⊂ Rn. Let us show that W is a C2-subanalytic mani-
fold of dimension e+ (k − 1)2. Let (y,w) be a point in W . We can assume
that around y, S is defined by the vanishing of n − e C2-subanalytic func-
tions f1, . . . , fn−e. Hence in a neighborhood of (y,w), W is defined by the
equations:

f1(x) = . . . = fn−e(x) = 0 and 〈x, v1〉 = · · · = 〈x, vk−1〉 = 0.

Because y 6= 0, we see that the gradient vectors of this n−e+k−1 functions
are linearly independent at (y,w). This enables us to conclude that W is a
C2-subanalytic manifold of dimension e+ (k − 1)2. Let π2 be the following
projection:

π2 : W → (Rn)n−k, (x, v1, . . . , vn−k) 7→ (v1, . . . , vn−k).

Bertini-Sard’s theorem implies that the set of critical values of π2 is a sub-
analytic set of positive codimension. If (v1, . . . , vk−1) lies outside this suban-
alytic set then the (n− k+1)-plane {x ∈ Rn | 〈x, v1〉 = · · · = 〈x, vk−1〉 = 0}
contains H and intersects S \ {0} transversally. �

Now we can present our infinitesimal linear kinematic formulas. Let H ∈
Gn−k

n , k ∈ {1, . . . , n}, and let Sk−1
H⊥ be the unit sphere of the orthogonal

complement of H. Let v be an element in Sk−1
H⊥ . For δ > 0, we denote by

Hv,δ the (n− k)-dimensional affine space H + δv and we set

β0(H, v) = lim
ǫ→0

lim
δ→0

Λ0(Hδ,v ∩X,Hδ,v ∩X ∩Bǫ).

Then we set

β0(H) =
1

sk−1

∫

Sk−1

H⊥

β0(H, v)dv.

Theorem 5.5. For k ∈ {1, . . . , n}, we have

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
=

1

gn−k
n

∫

Gn−k
n

β0(H)dH.
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Proof. We treat first the case k ∈ {1, . . . , n−2}. By Theorem 5.1 , we know
that

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= −

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk(X ∩H))dH

+
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk(X ∩ L))dL.

By Lemma 3.8 in [14], we know that generically H intersectsX\{0} transver-
sally in a neighborhood of the origin. Let us fix H that satisfies this generic
property. For any v ∈ Sk−1

H⊥ , let ν be the line generated by v and let Lv be

the (n− k+1)-plane defined by Lv = H ⊕ ν. By Lemma 5.4, we know that

for v generic in Sk−1
H⊥ , Lv intersects X \ {0} transversally in a neighborhood

of the origin. Therefore, v∗|X∩Lv
has an isolated singular point at 0 and we

can apply Theorem 4.5. We have

lim
ǫ→0

lim
δ→0

Λ0(X ∩ Lv ∩ {v∗ = δ},X ∩ Lv ∩ {v∗ = δ} ∩Bǫ) =

χ(X ∩ Lv ∩ {v∗ = δ} ∩Bǫ)−
1

2
χ(Lk(X ∩ Lv ∩ {v∗ = 0}))

−
1

2sn−k

∫

Sn−k
Lv

χ(Lk(X ∩ Lv ∩ {v∗ = 0} ∩ {w∗ = 0}))dw,

where Sn−k
Lv

is the unit sphere of Lv. Let us remark that Lv ∩ {v∗ = δ} is
exactly Hv,δ and that Lv ∩ {v∗ = 0} is H. We can also apply Lemma 5.2 to
v∗|X∩Lv

to obtain the following relation:

β0(H, v) + β0(H,−v) = χ(Lk(X ∩ Lv))

−
1

sn−k

∫

Sn−k
Lv

χ(Lk(X ∩H ∩ {w∗ = 0}))dw.

Since β(H) is equal to

1

2sk−1

∫

Sk−1

H⊥

[β0(H, v) + β0(H,−v)] dv,

we find that

β(H) =
1

2sk−1

∫

Sk−1

H⊥

χ(Lk(X ∩ Lv))dv

−
1

2sk−1sn−k

∫

Sk−1

H⊥

∫

Sn−k
Lv

χ(Lk(X ∩H ∩ {w∗ = 0}))dwdv.

Replacing spheres with Grassman manifolds in this equality, we obtain

β(H) =
1

2g1k

∫

G1

H⊥

χ(Lk(X ∩H ⊕ ν))dν

−
1

2g1kg
n−k
n−k+1

∫

G1

H⊥

∫

Gn−k
H⊕ν

χ(Lk(X ∩H ∩K))dKdν.
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Therefore, we have

1

gn−k
n

∫

Gn−k
n

β(H)dH =
1

2g1kg
n−k
n

∫

Gn−k
n

∫

G1

H⊥

χ(Lk(X ∩H ⊕ ν))dνdH−

1

2gn−k
n g1kg

n−k
n−k+1

∫

Gn−k
n

∫

G1

H⊥

∫

Gn−k
H⊕ν

χ(Lk(X ∩H ∩K))dKdνdH.

Let us compute

I =
1

2gn−k
n g1k

∫

Gn−k
n

∫

G1

H⊥

χ(Lk(X ∩H ⊕ ν))dνdH.

Let H be the flag variety of pairs (L,H), L ∈ Gn−k+1
n and H ∈ Gn−k

L . This

variety is a bundle over Gn−k
n , each fibre being a G1

k. Hence we have
∫

Gn−k
n

∫

G1

H⊥

χ(Lk(X∩H⊕ν))dνdH =

∫

Gn−k+1
n

∫

Gn−k
L

χ(Lk(X∩L))dHdL =

gn−k
n−k+1

∫

Gn−k+1
n

χ(Lk(X ∩ L))dL.

Finally, we get that

I =
gn−k
n−k+1

2gn−k
n g1k

∫

Gn−k+1
n

χ(Lk(X ∩ L))dL =

1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk(X ∩ L))dL.

Let us compute now

J =
1

2gn−k
n g1kg

n−k
n−k+1

∫

Gn−k
n

∫

G1

H⊥

∫

Gn−k
H⊕ν

χ(Lk(X ∩H ∩K))dKdνdH.

First, as we have just done above, we can write

J =
1

2gn−k
n g1kg

n−k
n−k+1

∫

Gn−k+1
n

∫

Gn−k
L

∫

Gn−k
L

χ(Lk(X ∩H ∩K))dKdHdL.

Then we remark (see [14], Corollary 3.11 for a similar argument) that

1

gn−k
n−k+1

∫

Gn−k
L

χ(Lk(X ∩H ∩K))dK =
1

gn−k−1
n−k

∫

Gn−k−1

H

χ(Lk(X ∩ J))dJ,

and so

J =
1

2gn−k
n g1kg

n−k−1
n−k

∫

Gn−k+1
n

∫

Gn−k
L

∫

Gn−k−1

H

χ(Lk(X ∩ J))dJdHdL.

Considering the flag variety of pairs (H,J), H ∈ Gn−k
L and J ∈ Gn−k−1

H ,
and proceeding as above, we find

∫

Gn−k
L

∫

Gn−k−1

H

χ(Lk(X ∩ J))dJdH = g12

∫

Gn−k−1

L

χ(Lk(X ∩ J))dJ,
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so

J =
g12

2gn−k
n g1kg

n−k−1
n−k

∫

Gn−k+1
n

∫

Gn−k−1

L

χ(Lk(X ∩ J))dJ.

To finish the computation, we consider the flag variety of pairs (L, J), L ∈
Gn−k+1

n and J ∈ Gn−k−1
L . It is a bundle over Gn−k−1

n , each fibre being a
G2

k+1. Hence we have

J =
g12

2gn−k
n g1kg

n−k−1
n−k

∫

Gn−k−1
n

∫

G2

J⊥

χ(Lk(X ∩ J))dJdM,

J =
g12g

2
k+1

2gn−k
n g1kg

n−k−1
n−k

∫

Gn−k−1
n

χ(Lk(X ∩ J))dJ =

1

2gn−k−1
n

∫

Gn−k−1
n

χ(Lk(X ∩ J))dJ.

This ends the proof for the case k ∈ {1, . . . , n− 2}. For k = n− 1 or n, the
proof is the same. We just have to remark that in these cases

β0(H, v) + β0(H,−v) = χ(Lk(X ∩ Lv)),

and if k = n− 1, dim Lv = 2 and if k = n, dim Lv = 1. �

Let us end with some remarks on the limits limǫ→0
Λk(X,X∩Bǫ)

bkǫk
. We al-

ready know that if dim X = d then limǫ→0
Λk(X,X∩Bǫ)

bkǫk
= 0 for k ≥ d + 1.

This is also the case if l < d0, where d0 is the dimension of the stratum that

contains 0. To see this let us first relate the limits limǫ→0
Λk(X,X∩Bǫ)

bkǫk
to the

polar invariants defined by Comte and Merle in [9]. They can be defined as

follows. Let H ∈ Gn−k
n , k ∈ {1, . . . , n}, and let v be an element in Sk−1

H⊥ .
For δ > 0, we set

λ0(H, v) = lim
ǫ→0

lim
δ→0

χ(Hδ,v ∩X ∩Bǫ),

and then

σk(X, 0) =
1

sk−1

∫

Sk−1

H⊥

λ0(H, v)dv.

Moreover, we put σ0(X, 0) = 1.

Theorem 5.6. For k ∈ {0, . . . , n− 1}, we have

lim
ǫ→0

Λk(X,X ∩Bǫ)

bkǫk
= σk(X, 0) − σk+1(X, 0).

Furthermore, we have

lim
ǫ→0

Λn(X,X ∩Bǫ)

bnǫn
= σn(X, 0).
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Proof. It is the same proof as Theorem 5.5. For example if k ∈ {0, . . . , n−1},
we just have to remark that

λ0(H, v) + λ0(H,−v) = χ(Lk(X ∩ Lv)) + χ(Lk(X ∩H)),

by Lemma 5.2, which implies that

σk(X, 0) =
1

2gn−k+1
n

∫

Gn−k+1
n

χ(Lk(X∩L))dL+
1

2gn−k
n

∫

Gn−k
n

χ(Lk(X∩H))dH.

�

It is explained in [9] that σk(X, 0) = 1 if 0 ≤ k ≤ d0, so if k < d0 then

limǫ→0
Λk(X,X∩Bǫ)

bkǫk
= 0.
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complète, Funct. Anal. Appl. 8 (1974), 45-52.

[23] SZAFRANIEC, Z. : On the number of branches of a 1-dimensional semi-analytic
set, Kodai Math. Journal 11 (1988), 78-85.
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