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All-optical time-domain demultiplexing of a 
170.8 Gb/s signal in a chalcogenide 
GeAsSe microstructured fiber 
 
S. D. Le, M. Gay, L. Bramerie, T. Chartier, M. Thual,  
J.-C. Simon, L. Brilland, D. Méchin, P. Toupin, J. Troles 
 

We report on four-wave-mixing-based all-optical time-domain 
demultiplexing of a 170.8 Gb/s signal down to 42.7 Gb/s in a 
chalcogenide GeAsSe microstructured fiber. The high nonlinearity of 
the fiber allows error-free and low power penalty operation with only  
56 mW of total input average power. 

 
 
Introduction: All-optical signal processing is one of the key 
technologies for future telecommunication networks which require 
high-bit-rate data signals. The limitation of electronic bandwidth makes 
electronic components not suitable for bit rates higher than 100 GHz. 
All-optical signal processing can, not only increase the capacity, but 
also avoid the optical-electrical-optical conversion process. It can thus 
reduce the power consumption of systems. Among several all-optical 
functions, time-domain demultiplexing plays an important role. Several 
schemes have been proposed to perform all-optical time-domain 
demultiplexing. They can be based on nonlinear effects in highly-
nonlinear fibers (HNLF) [1], waveguides [2], silicon nanowires [3], or 
nonlinear optical loop mirrors [4], etc. Devices based on four-wave 
mixing (FWM) [1-3] offer a potential for ultrafast operation owing to 
the femtosecond response time of the Kerr nonlinearity. The key 
parameters of nonlinear devices used for demultiplexing are the 
nonlinear coefficient, the loss and the dispersion. These parameters 
must match the specifications of demultiplexers which are in general 
low power consumption, high bandwidth and compactness. Due to their 
recent growth, chalcogenide microstructured fibers [5] offer now a great 
potential to implement all-optical signal demultiplexing at high bit rate. 

In this letter, we experimentally demonstrate, for the first time to our 
best knowledge, all-optical demultiplexing of a 170.8 Gb/s on-off-
keying signal in a chalcogenide GeAsSe microstructured fiber with a 
total average power of 56 mW and low power penalties. The 
performances of the demultiplexer in terms of power and penalty are 
comparable or better than the state of the art. Fiber characterization is 
firstly described. The demultiplexing experiment is then presented.  
 
Chalcogenide microstructured fiber: The fiber is fabricated by the 
casting method described in Ref. [6]. The composition of the glass is 
Ge10As22Se68. The structure of the fiber is designed with three rings of 
holes around a solid core as seen in Fig. 1. The fiber is fabricated with a 
core diameter as small as possible to enhance the nonlinear coefficient 
γ, while the core diameter of input and output ends is kept larger to 
reduce the coupling loss. The geometrical parameters of the fiber are 
summarized in the table of Fig 1. 
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Fig. 1 Chalcogenide GeAsSe microstructured fiber.  

 
The fiber is drawn with a core diameter of only 1.4 µm on a length LF 

of 30 cm. The external diameter φF is 48 µm. The fiber loss is measured 
to be 0.9 dB/m. Based on self-phase modulation (SPM) as well as FWM 
experiments, the nonlinear coefficient γ and the group-velocity 
dispersion D are evaluated to be 25 000 W−1km−1 and −310 ps/km/nm, 
respectively. These values of length and dispersion allow us to reduce 

the temporal walk-off between two pulses propagating in the fiber at 
different wavelength and experiencing the fiber dispersion. 
 
Experiment and results: Fig. 2(a) illustrates the experimental setup for 
the generation of both the 170.8 Gb/s signal and the 42.7 GHz signal 
and Fig. 2(b) represents the FWM-based demultiplexing setup.  
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Fig. 2 Experimental setup of 170.8-to-42.7 Gb/s demultiplexing:  
(a) generation of the data clock signals and (b) FWM experiment. 
 

Firstly, a 42.7 GHz optical clock signal is generated at a wavelength 
of 1535 nm by a LiNbO3 Mach-Zehnder interferometer (MZI) from a 
continuous wave laser and a 42.7 GHz electrical clock signal. It is then 
injected in the cavity of a quantum-dash mode-locked laser diode (QD-
MLLD) through an optical circulator to generate a 42.7 GHz optical 
clock signal centered at 1553 nm. The spectrum of this clock signal is as 
broad as 13 nm, allowing thus its tunability by using a tunable filter.   
To compensate the chirp induced by the laser, a 20-m-long single-mode 
fiber is used to obtain Fourier-transform-limited pulses. The 42.7 GHz 
optical clock signal is amplified and then divided into two parts by a  
3 dB coupler. One part is filtered by a 3.5 nm Gaussian filter centered at 
1556.2 nm and encoded with a pseudo-random bit sequence (PRBS) of 
27−1 pattern length by a second LiNbO3 MZI. It is then optically time-
division multiplexed to generate the 170.8 Gb/s data signal. The second 
part of the 42.7 GHz signal is passed through a 3 nm filter centered at 
1550.8 nm and an optical delay-line (∆τ).  
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Fig. 3 Spectra at the input (a) and at the output (b) of the GeAsSe fiber, 
and (c) input eye-diagram of both 170.8 Gb/s and 42.7 GHz signals. 
 

As illustrated in Fig. 2(b), both signals are then amplified by erbium-
doped-fiber amplifiers (EDFAs) and aligned in polarization by 
polarization controllers (PCs). A programmable optical filter (POF) is 
used to filter and to compensate for the residual chirp of both signals. It 
is also used as a coupler to combine both signals. To reject the 
amplified spontaneous emission (ASE) noise due to amplifiers, a 
tunable filter with a bandwidth of 8 nm is used. The power launched 
into the fiber is adjusted by an optical variable attenuator (VA) just 
before the fiber. To perform light coupling in the chalcogenide fiber, 
microlensed fibers with a mode field diameter of 3.1 µm are used.  
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By monitoring the optical delay line, the eye diagrams of the  
170.8 Gb/s and the 42.7 GHz signals are synchronised on an optical 
sampling oscilloscope at the input of the chalcogenide fiber (Fig. 2(c)). 
The pulse widths of the 170.8 Gb/s and 42.7 GHz signals are 2.5 ps and 
3.4 ps, respectively. Fig. 3(a) and 3(b) depict the spectra at the input and 
at the output of the GeAsSe fiber, respectively. Due to FWM, an idler 
wave, down-shifted with respect to the clock wavelength and 
corresponding to one tributary channel at 42.7 Gb/s, is generated. A 
maximum FWM idler power at the output of the chalcogenide fiber is 
found when both input signals are well synchronized. By varying the 
optical delay line by step of one bit time (5.9 ps in our case), one can 
choose which 42.7 Gb/s tributary channel is demultiplexed from the 
170.8 Gb/s signal. In the experiment, the total average power is 56 mW 
at the output of the microlensed injection fiber, including a 42.7 GHz 
clock power of 32 mW. 

At the output of the GeAsSe fiber, a 2 nm filter is used to extract the 
idler wave centered at 1545.4 nm. The power of the idler wave is 
measured to be −18.5 dBm. It is then amplified by an EDFA and then 
re-filtered by a 1 nm Gaussian filter to reshape the signal. The pulse 
duration of the demultiplexed signal is measured to be 3.9 ps. Fig. 4 
shows an example of the spectrum of one demultiplexed 42.7 Gb/s 
tributary channel and its corresponding eye diagram.  
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Fig. 4 Spectrum of the 42.7 Gb/s demultiplexing signal. The inset is the 
corresponding eye-diagram. 
 

To assess the performance of our FWM-based all-optical 
demultiplexer, the bit-error-rate (BER) has been measured for the 4 
demultiplexed channels. Fig. 5 represents the BER evolution as a 
function of the received power for the best channel and the worst 
channel. The back-to-back (B2B) cases at 42.7 Gb/s and 170.8 Gb/s are 
also represented. We observe a maximum power penalty of 3.5 dB with 
respect to the 42.7 Gb/s B2B. The power penalty can be attributed to 
dispersion and nonlinear effects. Indeed chromatic dispersion introduces 
a walk-off delay of about 500 fs between the data signal and the clock 
signal after 30 cm of propagation. This can cause noise fluctuations on 
the demultiplexed signal. Spectral broadening of the 42.7 GHz clock 
due to SPM can also cause optical signal-to-noise degradation of the 
demultiplexed signal. 
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Fig. 5 BER evolution of the demultiplexed signal and B2B. 
 
Conclusion: We have presented a chalcogenide GeAsSe 
microstructured fiber with a high nonlinear coefficient and low losses. 
All-optical time-domain demultiplexing of a 170.8 Gb/s signal down to 
42.7 Gb/s has been experimentally demonstrated with a total average 
power of only 56 mW. These results show the capability of 

chalcogenide microstructured fibers to perform all-optical signal 
processing at high bit rate.  
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