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SELF-ADJOINT EXTENSIONS AND STOCHASTIC COMPLETENESS OF THE

LAPLACE-BELTRAMI OPERATOR ON CONIC AND ANTICONIC SURFACES

UGO BOSCAIN† AND DARIO PRANDI†‡

Abstract We study the evolution of the heat and of a free quantum particle (described by the
Schrödinger equation) on two-dimensional manifolds endowed with the degenerate Riemannian met-
ric ds2 = dx2 + |x|−2αdθ2, where x ∈ R, θ ∈ T and the parameter α ∈ R. For α ≤ −1 this metric
describes cone-like manifolds (for α = −1 it is a flat cone). For α = 0 it is a cylinder. For α ≥ 1 it
is a Grushin-like metric. We show that the Laplace-Beltrami operator ∆ is essentially self-adjoint if
and only if α /∈ (−3, 1). In this case the only self-adjoint extension is the Friedrichs extension ∆F ,
that does not allow communication through the singular set {x = 0} both for the heat and for a
quantum particle. For α ∈ (−3,−1] we show that for the Schrödinger equation only the average on
θ of the wave function can cross the singular set, while the solutions of the only Markovian extension
of the heat equation (which indeed is ∆F ) cannot. For α ∈ (−1, 1) we prove that there exists a
canonical self-adjoint extension ∆B , called bridging extension, which is Markovian and allows the
complete communication through the singularity (both of the heat and of a quantum particle). Also,
we study the stochastic completeness (i.e., conservation of the L1 norm for the heat equation) of the
Markovian extensions ∆F and ∆B, proving that ∆F is stochastically complete at the singularity if
and only if α ≤ −1, while ∆B is always stochastically complete at the singularity.

Key words: heat and Schrödinger equation, degenerate Riemannian manifold, Grushin plane,
stochastic completeness.

2010 AMS subject classifications: 53C17, 35R01, 35J70.

1. Introduction

In this paper we consider the Riemannian metric on M =
(
R\{0}

)
×T whose orthonormal basis

has the form:

X1(x, θ) =

(
1
0

)
, X2(x, θ) =

(
0

|x|α
)
, α ∈ R.(1)

Here x ∈ R \ {0}, θ ∈ T and α ∈ R is a parameter. In other words we are interested in the
Riemannian manifold (M,g), where

g = dx2 + |x|−2αdθ2, i.e., in matrix notation g =

(
1 0
0 |x|−2α

)
.(2)

Define

Mcylinder = R× T, Mcone =Mcylinder/ ∼,
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where (x1, θ1) ∼ (x2, θ2) if and only if x1 = x2 = 0. In the following we are going to suitably extend
the metric structure to Mcylinder through (1) when α ≥ 0, and to Mcone through (2) when α < 0.

Recall that, on a general two dimensional Riemannian manifold for which there exists a global
orthonormal frame, the distance between two points can be defined equivalently as

(3) d(q1, q2) = inf

{∫ 1

0

√
u1(t)2 + u2(t)2 dt | γ : [0, 1] →M Lipschitz , γ(0) = q1, γ(1) = q2

and u1, u2 are defined by γ̇(t) = u1(t)X1(γ(t)) + u2(t)X2(γ(t))

}
,

(4) d(q1, q2) = inf

{∫ 1

0

√
gγ(t)(γ̇(t), γ̇(t)) dt | γ : [0, 1] →M Lipschitz , γ(0) = q1, γ(1) = q2

}
,

where {X1,X2} is the global orthonormal frame for (M,g).
Case α ≥ 0. Similarly to what is usually done in sub-Riemannian geometry (see e.g., [1]), when

α ≥ 0, formula (3) can be used to define a distance on Mcylinder where X1 and X2 are given by
formula (1). We have the following, whose proof is contained in Appendix A.1).

Lemma 1.1. For any α ≥ 0, formula (3) endows Mcylinder with a metric space structure, which is
compatible with its original topology.

Case α < 0. In this case X1 and X2 are not well defined in x = 0. However, one can extend the
metric structure via formula (4) considering the metric g given by (2). Since this metric identifies
points on {x = 0}, in the sense that they are at zero distance, formula (4) defines a well-defined
metric space structure not to Mcylinder but to Mcone. Indeed, we have the following, proved in
Appendix A.1.

Lemma 1.2. For α < 0, formula (4) endows Mcone with a metric space structure, which is com-
patible with its original topology.

Remark 1.3 (Notation). In the following we denote by Mα the generalized Riemannian manifold
given as follows,

• α ≥ 0: Mα =Mcylinder and metric structure induced by (1);
• α < 0: Mα =Mcone and metric structure induced by (2).

The corresponding metric space is (Mα, d) and we let Z be the singular set, i.e.,

Z =

{
{0} × T, α ≥ 0,

{0} × T/ ∼ α < 0.

Observe that Z splits Mα in two sides M+ = (0,+∞)× T and M− = (−∞, 0)× T.

Notice that, for α = 1, 2, 3, . . ., Mα is an almost Riemannian structure in the sense of [2, 3, 6, 8, 9],
while for α = −1,−2,−3, . . . it corresponds to a singular Riemannian manifold with a semi-definite
metric.

One of the main features of these metrics is that, except for α = 0, the corresponding Riemannian
volumes have a singularity at Z,

dω =
√
det g dx dθ = |x|−αdx dθ.

Due to this fact, the corresponding Laplace-Beltrami operators contain some diverging first order
terms,

∆ =
1√
det g

2∑

j,k=1

∂j

(√
det g gjk∂k

)
= ∂2x + |x|2α∂2θu− α

x
∂x(5)
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Figure 1. Geometric interpretation of Mα. The figures above the line are isometric
to Mα, while for the ones below the isometry is singular in a neighborhood of Z.

We have the following geometric interpretation of the metric structure of Mα (see Figure 1). For
α = 0 the metric is the one of a cylinder, while for α = −1 it is the one of a flat cone in polar
coordinates. For α < −1, Mα is isometric to a surface of revolution S = {(t, r(t) cos ϑ, r(t) sinϑ) |
t > 0, ϑ ∈ T} ⊂ R

3 with profile r(t) ∼ |t|−α as |t| goes to zero. For α > −1 (α 6= 0) it can be thought
as a surface of revolution having a profile of the type r(t) ∼ |t|−α as t → 0. This interpretation
for α > −1 is only formal, since the embedding in R

3 is deeply singular in a neighborhood of
t = 0. Finally, the case α = 1 corresponds to the Grushin metric on the cylinder. This geometric
interpretation is explained in Appendix A.2.

Remark 1.4. The curvature of Mα is given by Kα(x) = −α(1 + α)x−2. Notice that Mα and Mβ

with β = −(α+1) have the same curvature for any α ∈ R . For instance, the cylinder with Grushin
metric has the same curvature as the cone corresponding to α = −2, but they are not isometric
even locally (see [8]).

1.1. The problem. In this paper we are interested in the global behavior on Mα of the heat and
free quantum particles, as modeled, respectively, by the heat and the Schrödinger equation

∂tψ = ∆ψ,(6)

i∂tψ = −∆ψ,(7)

where ∆ is given by (5). To give a meaning to these equations one needs to specify what ∆ means
on Z, and to define in which function spaces we are working. In particular, it is natural to require
∆ to be a self-adjoint operator on L2(M,dω) (see Theorem 2.1). Thus, we will consider ∆|C∞

c (M)

and characterize all its self-adjoint extensions by prescribing opportune boundary conditions at the
singularity Z.

We will consider the following problems.

(Q1) Do the heat and free quantum particles flow through the singularity? That is, there exists
a self-adjoint extension of ∆|C∞

c (M) such that, given an initial condition supported at time

t = 0 in M−, is it possible that at time t > 0 the corresponding solution has some support
in M+? 1

1Notice that this is a necessary condition to have some positive controllability results by means of controls defined
only on one side of the singularity, in the spirit of [5]. For a discussion of how hidden magnetic fields affect the
self-adjointness of ∆, we refer to [11]. For some results on 3D manifolds see [7].
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(Q2) Given a self-adjoint extension of ∆, does equation (6) conserve the total heat (i.e. the L1

norm of ψ)? This is equivalent to the problem of the stochastic completeness of Mα, i.e.
that the stochastic process defined by the diffusion ∆ almost surely has infinite lifespan. In
particular, we are interested in understanding if the heat is absorbed by the singularity.

For the Schrödinger equation only the question of conservation of total probability (i.e.,
the L2 norm) has a physical meaning. This question has trivial positive answer thanks to
Stone’s theorem.

Remark 1.5. By making the unitary change of coordinates in the Hilbert space U : L2(M,dω) →
L2(M,dxdθ), defined by Uv(x) = |x|−α/2v(x), the Laplace-Beltrami operator is transformed in

∆◦ = U∆U−1 = ∂2x −
α

2

(
1 +

α

2

) 1

x2
+ |x|2α∂2θ .

This transformation was used to study the essential self-adjointness of ∆|C∞
c (M) for α = 1 in [10].

Let us remark that, when acting on functions independent of θ, the operator ∆◦ reduces to the
Laplace operator on R \ {0} in presence of an inverse square potential, usually called Calogero
potential (see, e.g., [19]).

1.2. Self-adjoint extensions. The problem of determining the self-adjoint extensions of ∆|C∞
c (M)

on L2(M,dω) has been widely studied in different fields. A lot of work has been done in the case
α = −1, in the setting of Riemannian manifolds with conical singularities (see e.g., [13, 26]), and
the same methods have been applied in the more general context of metric cusps or horns that
covers the case α < −1 (see e.g., [14, 12, 24]). Concerning α > −1, on the other hand, the literature
regarding ∆ is more thin (see e.g., [27]).

In the following we will consider only the real self-adjoint extensions, i.e., all the function spaces
taken into consideration are composed of real-valued functions. We refer to Appendix B for a
discussion of the complex case.

Any closed symmetric extension A of ∆|C∞
c (M) is such thatDmin(∆|C∞

c (M)) ⊂ D(A) ⊂ Dmax(∆|C∞
c (M)),

where the minimal and maximal domains are defined as

Dmin(∆|C∞
c (M)) = D(∆) = closure of C∞

c (M) with respect to the norm ‖∆ · ‖L2(Mα,dω) + ‖ · ‖L2(Mα,dω),

Dmax(∆|C∞
c (M)) = D(∆∗) = {u ∈ L2 (Mα, dω) : ∆u ∈ L2 (Mα, dω) in the sense of distributions}.

Since it holds that Au = ∆∗u for any u ∈ D(A), determining the self-adjoint extensions of ∆|C∞
c (M)

amounts to classify the so-called domains of self-adjointness. Following [21], we let the Sobolev
spaces on the Riemannian manifold M endowed with measure dω, whose Riemannian gradient is
∇u(x, θ) = (∂xu(x, θ), |x|2α∂θu(x, θ)), to be

H1(M,dω) = {u ∈ L2(M,dω) : |∇u| ∈ L2(M,dω)}, H1
0 (M,dω) = closure of C∞

c (M) in H1(M,dω),

H2(M,dω) = {u ∈ H1(M,dω) : ∆u ∈ L2(M,dω)}, H2
0 (M,dω) = H2(M,dω) ∩H1

0 (M,dω).

We define the Sobolev spaces H1 (Mα, dω) and H2 (Mα, dω) in the same way. We remark that
with these conventions H2

0 (M,dω) is in general bigger than the closure of C∞
c (M) in H2(M,dω).

Moreover, it may happen thatH1(M,dω) = H1
0 (M,dω). Indeed this property will play an important

role in the next section. Proposition 2.10, contains a description of Dmax(∆|C∞
c (M)) in terms of these

Sobolev spaces.
Although in general the structure of the self-adjoint extensions of ∆|C∞

c (M) can be very compli-
cated, the Friedrichs (or Dirichlet) extension ∆F is always well defined and self-adjoint. Namely,

D(∆F ) = H2
0 (M,dω).
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Observe that, since L2(M,dω) = L2(M+, dω) ⊕ L2(M−, dω) and H1
0 (M,dω) = H1

0 (M
+, dω) ⊕

H1
0 (M

−, dω), it follows that

D(∆F ) = {u ∈ H1
0 (M

+, dω) | ∆u ∈ L2(M+, dω)} ⊕ {u ∈ H1
0 (M

−, dω) | ∆u ∈ L2(M−, dω)}.
This implies that ∆F actually defines two separate dynamics on M+ and on M− and, hence, that
there is no hope for an initial datum concentrated in M+ to pass to M−, and vice versa. This
proves that, if ∆|C∞

c (M) is essentially self-adjoint (i.e., the only self-adjoint extension is ∆F ) the
question (Q1) has a negative answer.

1.2.1. Essential self-adjointness of ∆|C∞
c (M). The rotational symmetry of the cones suggests to

proceed by a Fourier decomposition in the θ variable, considering the corresponding orthonormal
basis {ek}k∈Z ⊂ L2(T) and the decomposition L2(M,dω) =

⊕∞
k=−∞Hk, Hk

∼= L2(R\{0}, |x|−αdx).
Then,

(8) ∆ =

+∞⊕

k=−∞

∆̂k, where ∆̂k = ∂2x −
α

x
∂x − |x|2αk2.

As proved in Proposition 2.3, the essential self-adjointness of all the operators ∆̂k on C∞
c (R \ {0})

is a sufficient condition for ∆|C∞
c (M) to satisfy the same property.

The following theorem extends a result in [10] by classifying the essential self-adjointness of
∆|C∞

c (M) and its Fourier components and is proved in Section 2.3. We remark that the same result
holds if ∆|C∞

c (M) acts on complex-valued functions (see Theorem B.2).

Theorem 1.6. Consider Mα for α ∈ R and the corresponding Laplace-Beltrami operator ∆|C∞
c (M)

as an unbounded operator on L2(M,dω). Then,

(i) If α ≤ −3 the operator ∆|C∞
c (M) is essentially self-adjoint;

(ii) if α ∈ (−3,−1], only its first Fourier component ∆̂0 is not essentially self-adjoint;
(iii) if α ∈ (−1, 1), all the Fourier components of ∆|C∞

c (M) are not essentially self-adjoint;
(iv) if α ≥ 1 the operator ∆|C∞

c (M) is essentially self-adjoint.

As a corollary of this theorem, we get the following answer to (Q1).

α ≤ −3 Nothing can flow through Z
−3 < α ≤ −1 Only the average over T of the function can flow through Z
−1 < α < 1 It is possible to have full communication between the two sides

1 ≤ α Nothing can flow through Z
Remark 1.7. When α ∈ (−3, 0), since the singularity reduces to a single point, one would expect
to be able to “transmit” through Z only the average over T of a function. Theorem 1.6 shows that
this is the case for α ∈ (−3,−1], but not for α ∈ (−1, 0). Looking at Mα, α ∈ (−1, 0), as a surface
embedded in R

3 the possibility of transmitting Fourier components other than k = 0, is due to the
deep singularity of the embedding. In this case we say that the contact between M+ and M− is
non-apophantic.

In the following we will describe the self-adjoint extension realising the maximal communication
between the two sides, which we call the bridging extension, in order to have a more precise answer
to (Q1) for α ∈ (−3, 1). In particular, to identify this extension when α ∈ (−3,−1], it will be
sufficent to study only the first Fourier component. Indeed, by Theorem 1.6, for these values of α
it is possible to decompose any self-adjoint extension A of ∆|C∞

c (M) as

(9) A = Â0 ⊕




⊕

k∈Z\{0}

∆̂k


 .
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Here, Â0 is a self-adjoint extension of ∆̂0 and, with abuse of notation, we denoted the only self-

adjoint extension of ∆̂k by ∆̂k as well.

1.2.2. The first Fourier component ∆̂0. In this section we describe the real self-adjoint extensions of

∆̂0|C∞
c (R\{0}) on L2(R\{0}, |x|−αdx) when α ∈ (−3, 1). For a description of its complex self-adjoint

extensions, we refer to Theorem B.3. Observe that, since this operator is regular at the origin in
the sense of Sturm-Liouville problems (see Definition 2.5) if and only if α > −1, for α ≤ −1 the
boundary conditions will be asymptotic, and not punctual.

Let φ+D and φ+N be two smooth functions on R \ {0}, supported in the interval (0, 2), and such
that, for any x ∈ (0, 1] it holds

(10) φ+D(x) = 1, φ+N (x) =

{
(1 + α)−1 x1+α if α 6= −1,

log(x) if α = −1.

Let also φ−D(x) = φ+D(−x) and φ+N (x) = φ−N (−x). Finally, recall that, on R \ {0} endowed with
the Euclidean structure, the Sobolev space H2(R \ {0}, |x|−αdx) is the space of functions u ∈
L2(R \ {0}, |x|−αdx) such that |∂xu|, |∂2xu| ∈ L2(R \ {0}, |x|−αdx). Then, the following holds.

Theorem 1.8. Let Dmin(∆̂0) and Dmax(∆̂0) be the minimal and maximal domains of ∆̂0|C∞
c (R\{0})

on L2(R \ {0}, |x|−αdx), for α ∈ (−3, 1). Then,

Dmin(∆̂0) = closure of C∞
c (R \ {0}) in H2(R \ {0}, |x|−αdx)

Dmax(∆̂0) = {u = u0 + u+Dφ
+
D + u+Nφ

+
N + u−Dφ

−
D + u−Nφ

−
N : u0 ∈ Dmin(∆̂0) and u±D, u

±
N ∈ R},

Moreover, A is a self-adjoint extension of ∆̂0 if and only if Au = (∆̂0)
∗u, for any u ∈ D(A), and

one of the following holds

(i) Disjoint dynamics: there exist c+, c− ∈ (−∞,+∞] such that

D(A) =
{
u ∈ Dmax(∆̂0) : u

+
N = c+u

+
D and u−N = c−u

+
D

}
.

(ii) Mixed dynamics: there exist K ∈ SL2(R) such that

D(A) =
{
u ∈ Dmax(∆̂0) : (u−D, u

−
N )T = K (u+D, u

+
N )T

}
.

Finally, the Friedrichs extension (∆̂0)F is the one corresponding to the disjoint dynamics with
c+ = c− = 0 if α ≤ −1 and with c+ = c− = +∞ if α > −1.

From the above theorem (see Remark 2.9) it follows that u±N = limx→0± |x|−α ∂xu(x) and, if

−1 < α < 1, that u±D = u(0±). Moreover, the last statement implies that

D((∆̂0)F ) =

{
{u ∈ Dmax(∆̂0) : u

+
N = u−N = 0} if α ≤ −1,

{u ∈ Dmax(∆̂0) : u(0
+) = u(0−) = 0} if α > −1.

In particular, if α ≤ −1 the Friedrichs extension does not impose zero boundary conditions.
Clearly, the evolutions associated with the disjoint dynamics extensions yield a negative answer

to (Q1). On the other hand, the mixed dynamics extensions permit information transfer between
the two halves of the space. Since to classify the self-adjoint extensions for α ∈ (−3,−1] it is enough

to study ∆̂0, this analysis completes the classification for this case. On the other hand, since for
α ∈ (−1, 1) all the Fourier components are not essentially self-adjoint, a complete classification
requires more sophisticated techniques. We will, in turn, study some selected extensions.

Remark 1.9. The mixed dynamics extension with K = Id is the bridging extension of the first

Fourier component, which we will denote by (∆̂0)B . If α ∈ (−3,−1], the bridging extension ∆B

6



of ∆|C∞
c (M) is then defined by (9) with A0 = (∆̂0)B . The bridging extension for α ∈ (−1, 1) is

described in the following section.

1.3. Markovian extensions. It is a well known result, that each non-positive self-adjoint operator
A on an Hilbert space H defines a strongly continuous contraction semigroup, denoted by {etA}t≥0,
see Theorem 2.1. If H = L2(M,dω) and it holds 0 ≤ etAu ≤ 1 dω-a.e. whenever u ∈ L2(M,dω),
0 ≤ u ≤ 1 dω-a.e., the semigroup {etA}t≥0 and the operator A are called Markovian. The interest
for Markov operators lies in the fact that, under an additional assumption which is always satisfied
in the cases we consider (see Section 3), Markovian operators are generators of Markov processes
{Xt}t≥0 (roughly speaking, stochastic processes which are independent of the past).

Since essentially bounded functions are approximable from L2(M,dω), the Markovian property
allows to extend the definition of etA from L2(M,dω) to L∞(M,dω). Let 1 be the constant function
1(x, θ) ≡ 1. Then (Q2) is equivalent to the following property.

Definition 1.10. A Markovian operator A is called stochastically complete (or conservative) if
etA1 = 1, for any t > 0. It is called explosive if it is not stochastically complete.

It is well known that this property is equivalent to the fact that the Markov process {Xt}t≥0,
with generator A, if it exists, has almost surely infinite lifespan.

For any u ∈ L2(M,dω) and t > 0, define

Stu =

∫ t

0
etAu ds.

The family {St}t>0 is a well-defined family of symmetric operators on L2(M,dω) which can be
extended to L1(M,dw) and satisfies Stu(q) ≤ St′u(q) for dω-a.e. q ∈M whenever t′ > t. Then, we
let

Gu(q) = lim
n→+∞

Snu(q) ∈ [0,+∞],

and pose the following.

Definition 1.11. A Markovian operator is called recurrent if 0 < Gu(q) < +∞ for dω-a.e. q ∈ M
and u ∈ L1(M,dω) positive.

When A is the generator of a Markov process {Xt}t≥0, the recurrence of A is equivalent to

Pq{there exists a sequence tn → +∞ such that Xtn ∈ Ω} = 1,

for any set Ω of positive measure and any point q ∈ M . Here Pq denotes the measure in the space
of paths emanating from a point q associated to {Xt}t≥0.

Remark 1.12. As it is suggested from the probabilistic interpretation, recurrence of an operator
implies its stochastic completeness. Equivalently, any explosive operator is not recurrent.

We are particularly interested in distinguish how the stochastically completeness and the recur-
rence are influenced by the singularity Z or by the behavior at ∞. Thus we will consider the
manifolds with borders M0 =M ∩ ([−1, 1]×T) and M∞ =M \ [−1, 1]×T, with Neumann bound-
ary conditions. Indeed, with these boundary conditions, when the Markov process {Xt}t≥0 hits
the boundary it is reflected, and hence the eventual lack of recurrence or stochastic completeness
on M0 (resp. on M∞) is due to the singularity Z (resp. to the behavior at ∞). According to
Definition 3.12, if a Markovian operator A on M is recurrent (resp. stochastically complete) when
restricted on M0 we will call it recurrent (resp. stochastically complete) at 0. Similarly, when the
same happens on M∞, we will call it recurrent (resp. stochastically complete) at ∞. As proven in
Proposition 3.13, a Markovian extension of ∆|C∞

c (M) is recurrent (resp. stochastically complete) if
and only if it is recurrent (resp. stochastically complete) both at 0 and at ∞.

7



In this context, it makes sense to give special consideration to three specific self-adjoint exten-
sions, corresponding to different conditions at Z. Namely, we will consider the already mentioned
Friedrichs extension ∆F , that corresponds to an absorbing condition, the Neumann extension ∆N ,
that corresponds to a reflecting condition, and the bridging extension ∆B, that corresponds to a free
flow through Z and is defined only for α ∈ (−1, 1). In particular, the latter two have the following
domains (see Proposition 3.11),

D(∆N ) = {u ∈ H1(M,dω) | (∆u, v) = (∇u,∇v) for any v ∈ H1(M,dω)},
D(∆B) = {H2 (Mα, dω) | u(0+, ·) = u(0−, ·), lim

x→0+
|x|−αu(x, ·) = lim

x→0−
|x|−αu(x, ·) for a.e. θ ∈ T}.

Each one of ∆F , ∆N and ∆B is a self-adjoint Markovian extension. However, it may happen that
∆F = ∆N . In this case ∆F is the only Markovian extension, and the operator ∆|C∞

c (M) is called
Markov unique. This is the case, for example, when ∆|C∞

c (M) is essentially self-adjoint.
The following result, proved in Section 3.3, will answer to (Q2).

Theorem 1.13. Consider M endowed with the Riemannian metric defined in (2), for α ∈ R,
and ∆|C∞

c (M) be the corresponding Laplace-Beltrami operator, defined as an unbounded operator on

L2(M,dω). Then the following holds.

(i) If α < −1 then ∆|C∞
c (M) is Markov unique, and ∆F is stochastically complete at 0 and

recurrent at ∞;
(ii) if α = −1 then ∆|C∞

c (M) is Markov unique, and ∆F is recurrent both at 0 and at ∞;
(iii) if α ∈ (−1, 1), then ∆|C∞

c (M) is not Markov unique and, moreover,
(a) any Markovian extension of ∆|C∞

c (M) is recurrent at ∞,
(b) ∆F is explosive at 0, while both ∆B and ∆N are recurrent at 0,

(iv) if α ≥ 1 then ∆|C∞
c (M) is Markov unique, and ∆F is explosive at 0 and recurrent at ∞;

In particular, Theorem 1.13 implies that for α ∈ (−3,−1] no mixing behavior defines a Markov
process. On the other hand, for α ∈ (−1, 1) we can have a plethora of such processes.

Remark 1.14. Since the singularity Z is at finite distance from any point of M , one can interpret
a Markov process that is explosive at 0 as if Z were absorbing the heat.

As a corollary of 1.13, we get the following answer to (Q2).

α ≤ −1 The heat is not absorbed by Z
−1 < α < 1 The Friedrichs extension is absorbed by Z,

while the Neumann and the bridging extensions are not.
1 ≤ α The heat is absorbed by Z

1.4. Structure of the paper. The structure of the paper is the following. In Section 2, after
some preliminaries regarding self-adjointness, we analyze in detail the Fourier components of the
Laplace-Beltrami operator on Mα, proving Theorems 1.6 and 1.8. We conclude this section with a
description of the maximal domain of the Laplace-Beltrami operator in terms of the Sobolev spaces
on Mα, contained in Proposition 2.10.

Then, in Section 3, we introduce and discuss the concepts of Markovianity, stochastic complete-
ness and recurrence through the potential theory of Dirichlet forms. After this, we study the Markov
uniqueness of ∆|C∞

c (M) and characterize the domains of the Friedrichs, Neumann and bridging ex-
tensions (Propositions 3.10 and 3.11). Then, we define stochastic completeness and recurrence at
0 and at ∞, and, in Proposition 3.14, we discuss how these concepts behave if the k = 0 Fourier
component of the self-adjoint extension is itself self-adjoint. In particular, we show that the Marko-

vianity of such an operator A implies the Markovianity of its first Fourier component Â0, and

that the stochastic completeness (resp. recurrence) at 0 (resp. at ∞) of A and Â0 are equivalent.
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Then, in Proposition 3.13 we prove that stochastic completeness or recurrence are equivalent to
stochastically completeness or recurrence both at 0 and at ∞. Finally, we prove Theorem 1.13.

The proofs of Lemmata 1.1 and 1.2 are contained in Appendix A.1, while in Appendix A.2 we
justify the geometric interpretation of Figure 1. Appendix B contains the description of the complex

self-adjoint extension of ∆̂0.

2. Self-adjoint extensions

2.1. Preliminaries. Let H be an Hilbert space with scalar product (·, ·)H and norm ‖ · ‖H =√
(·, ·)H. Given an operator A on H we will denote its domain by D(A) and its adjoint by A∗.

Namely, if A is densely defined, D(A∗) is the set of ϕ ∈ H such that there exists η ∈ H with
(Aψ,ϕ)H = (ψ, η)H, for all ψ ∈ D(A). For each such ϕ, we define A∗ϕ = η.

Given two operators A,B, we say that B is an extension of A (and we will write A ⊂ B) if
D(A) ⊂ D(B) and Aψ = Bψ for any ψ ∈ D(A). A densely defined operator A is symmetric if
A ⊂ A∗, i.e., if

(Aψ,ϕ)H = (ψ,Aϕ)H, for all ψ ∈ D(A).

A densely defined operator A is self-adjoint if A = A∗, that is if it is symmetric and D(A) = D(A∗),
and is non-positive if (Aψ,ψ) ≤ 0 for any ψ ∈ D(A).

Given a strongly continuous group {Tt}t∈R (resp. semigroup {Tt}t≥0), its generator A is defined
as

Au = lim
t→0

Ttu− u

t
, D(A) = {u ∈ H | Au exists as a strong limit}.

When a group (resp. semigroup) has generator A, we will write it as {etA}t∈R (resp. {etA}t≥0).
Then, by definition, u(t) = etAu0 is the solution of the functional equation

{
∂tu(t) = Au(t)
u(0) = u0 ∈ H.

Recall the following classical result.

Theorem 2.1. Let H be an Hilbert space, then

(1) (Stone’s theorem)The map A 7→ {eitA}t∈R induces a one-to-one correspondence

A self-adjoint operator ⇐⇒ {eitA}t∈R strongly continuous unitary group;

(2) The map A 7→ {etA}t≥0 induces a one-to-one correspondence

A non-positive self-adjoint operator ⇐⇒ {etA}t≥0 strongly continuous contraction

semigroup of self-adjoint operators;

For any Riemannian manifold M with Riemannian volume dV , Green’s identity implies that
∆|C∞

c (M) is symmetric. However, from the same formula, follows that

D(∆|C∞
c (M)

∗) = {u ∈ L2(M, dV ) | ∆u ∈ L2(M, dV )} ' C∞
c (M),

where ∆u is intended in the sense of distributions. Hence, ∆ is not self-adjoint on C∞
c (M).

Since, by Theorem 2.1, in order to have a well defined solution of the Schrödinger equation the
Laplace-Beltrami operator has to be self-adjoint, we have to extend its domain in order to satisfy
this property. For the heat equation, on the other hand, we will need also to worry about the fact
that it stays non-positive while doing so. We will tackle this problem in the next section, where we
will require the stronger property of being Markovian (i.e., that the evolution preserves both the
non-negativity and the boundedness).

The simplest extension one can build for a symmetric operator A is the closure Ā. Namely, D(Ā)
is the closure ofD(A) with respect to the graph norm ‖·‖A = ‖A·‖H+‖·‖H, and Āψ = limn→+∞Aψn
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where {ψn}n∈N ⊂ D(A) is such that ψn → ψ and {Aψn}n is a Cauchy sequence in H. Observe
that A ⊂ Ā ⊂ A∗, and hence any self-adjoint extension B of A will be such that Ā ⊂ B ⊂ A∗. For
this reason, we let Dmin(A) = D(Ā) and Dmax(A) = D(A∗). Moreover, from this fact follows that
any self-adjoint extension B will be defined as Bψ = A∗ψ for ψ ∈ D(B), so we are only concerned
in specifying the domain of B. The simplest case is the following.

Definition 2.2. A symmetric operator is called essentially self-adjoint if its closure is self-adjoint.

It is a well known fact, dating as far back as the series of papers [17, 18], that the Laplace-Beltrami
operator is essentially self-adjoint on any complete Riemannian manifold. On the other hand, it is
clear that if the manifold is incomplete this is no more the case, in general (see [25, 22]). It suffices,
for example, to consider the case of an open set Ω ⊂ R

n, where to have the self-adjointness of
the Laplacian, we have to pose boundary conditions (Dirichlet, Neumann or a mixture of the two).
In our case, Theorem 1.6 will give an answer to the problem of whether ∆|C∞

c (M) is essentially
self-adjoint or not.

2.2. Fourier decomposition and self-adjoint extensions of Sturm-Liouville operators.

There exist various theories allowing to classify the self-adjoint extensions of symmetric operators.
We will use some tools from the Neumann theory (see [29]) and, when dealing with one-dimensional
problems, from the Sturm-Liouville theory. Let H be a complex Hilbert space and i be the imaginary
unit. The deficiency indexes of A are then defined as

n+(A) = dimker(A+ i), n−(A) = dimker(A− i).

Then A admits self-adjoint extensions if and only if n+(A) = n−(A), and they are in one to one
correspondence with the set of partial isometries between ker(A − i) and ker(A + i). Obviously, A
is essentially self-adjoint if and only if n+(A) = n−(A) = 0.

Following [30], we say that a self-adjoint extension B of A in H is a real self-adjoint extension if
u ∈ D(B) implies that u ∈ D(B) and B(u) = Bu. When H = L2(M,dω), i.e. the real Hilbert space
of square-integrable real-valued functions on M , the self-adjoint extensions of A in L2(M,dω) are
the restrictions to this space of the real self-adjoint extensions of A in L2

C(M,dω), i.e. the complex
Hilbert space of square-integrable complex-valued functions. This proves that A is essentially self-
adjoint in L2(M,dω) if and only if it is essentially self-adjoint in L2

C(M,dω). Hence, when speaking
of the deficiency indexes of an operator acting on L2(M,dω), we will implicitly compute them on
L2
C(M,dω).
We start by proving the following general proposition that will allow us to study only the Fourier

components of ∆|C∞
c (M), in order to understand its essential self-adjointness.

Proposition 2.3. Let Ak be symmetric on D(Ak) ⊂ Hk, for any k ∈ Z and let D(A) be the set
of vectors in H =

⊕
k∈ZHk of the form ψ = (ψ1, ψ2, . . .), where ψk ∈ D(Ak) and all but finitely

many of them are zero. Then A =
∑

k∈ZAk is symmetric on D(A), n+(A) =
∑

k∈Z n+(Ak) and
n−(A) =

∑
k∈Z n−(Ak).

Proof. Let ψ = (ψ1, ψ2, . . .) ∈ D(A). Then, by symmetry of the Ak’s and the fact that only finitely
many ψk are nonzero, it holds

(Au, v)H =
∑

k∈Z

(Akuk, vk)Hk
=

∑

k∈Z

(uk, Akvk)Hk
= (u,Av)H.

This proves the symmetry of A.
Observe now that ψ = (ψ1, ψ2, . . .) ∈ ker(A±i) if and only if 0 = Aψ±i = (A1ψ1±i, A2ψ2±i, . . .).

This clearly implies that dimker(A± i) =
∑

k∈Z dimker(Ak ± i), completing the proof. �

Since the Fourier components ∆̂k defined in (8) are second order differential operators of one
variable, they can be studied via Sturm-Liouville theory. Let J = (a1, b1)∪(a2, b2), −∞ ≤ a1 < b1 ≤
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a2 < b2 ≤ +∞, and for 1/p, q, w ∈ L1
loc(J) consider the Sturm-Liouville operator on L2(J,w(x)dx)

defined by

(11) Au =
1

w

(
− ∂x(p ∂xu) + qu

)
.

Letting J = R \ {0}, w(x) = |x|−α, p(x) = −|x|−α, and q(x) = −k2|x|α, we recover ∆̂k. In the
following we will heavily rely on [30, Chapter 13], where self-adjointess of Sturm-Liouville operators
defined on a disjoint union of two connected intervals is studied.

For a Sturm-Liouville operator the maximal domain can be explicitly characterized as
(12)
Dmax(A) = {u : J → R | u, p ∂xu are absolutely continuous on J, and u, Au ∈ L2(J,w(x)dx)}.

In (14), at the end of the section, we will give a precise characterization of the minimal domain.

Definition 2.4. The endpoint (finite or infinite) a1, is limit-circle if all solutions of the equation
Au = 0 are in L2((a1, d), w(x)dx) for some (and hence any) d ∈ (a1, b1). Otherwise a1 is limit-point.

Analogous definitions can be given for b1, a2 and b2.

Let us define the Lagrange parenthesis of u, v : J → R associated to (11) as the bilinear anti-
symmetric form

[u, v] = u p ∂xv − v p ∂xu.

By [30, (10.4.41)] or [15, Lemma 3.2], we have that [u, v](d) exists and is finite for any u, v ∈
Dmax(∆̂k) and any endpoint d of J .

Definition 2.5. The Sturm-Liouville operator (11) is regular at the endpoint a1 if for some (and
hence any) d ∈ (a1, b1), it holds

1

p
, q, w ∈ L1((a1, d)).

A similar definition holds for b1, a2, b2.

In particular, for any k ∈ Z, the operator ∆̂k is never regular at the endpoints +∞ and −∞, and
is regular at 0+ and 0− if and only if α ∈ (−1, 1).

We will need the following theorem, that we state only for real extensions and in the cases we
will use.

Theorem 2.6 (Theorem 13.3.1 in [30]). Let A be the Sturm-Liouville operator on L2(J,w(x)dx)
defined in (11). Then

n+(A) = n−(A) = #{limit-circle endpoints of J}.
Assume now that n+(A) = n−(A) = 2, and let a and b be the two limit-circle endpoints of

J . Moreover, let φ1, φ2 ∈ Dmax(A) be linearly independent modulo Dmin(A) and normalized by
[φ1, φ2](a) = [φ1, φ2](b) = 1. Then, B is a self-adjoint extension of A over L2(J,w(x)dx) if and only
if Bu = A∗u, for any u ∈ D(B), and one of the following holds

(1) Disjoint dynamics: there exists c+, c− ∈ (−∞,+∞] such that u ∈ D(B) if and only if

[u, φ1](0
+) = c+[u, φ2](a) and [u, φ1](0

−) = d+[u, φ2](b).

(2) Mixed dynamics: there exist K ∈ SL2(R) such that u ∈ D(B) if and only if

U(bu) = K U(a), for U(x) =

(
[u, φ1](x)
[u, φ2](x)

)
.
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Remark 2.7. Let φa1 and φa2 be, respectively, the functions φ1 and φ2 of the above theorem,
multiplied by a cutoff function η : J → [0, 1] supported in a (right or left) neighborhood of a in J
and such that η(a) = 1 and η′(a) = 0. Let φb1 and φb2 be defined analogously. Then, from (14),
follows that we can write

(13) Dmax(A) = Dmin(A) + span{φa1, φb1, φa2, φb2}.

The following lemma classifies the end-points of R \ {0} with respect to the Fourier components
of ∆|C∞

c (M).

Lemma 2.8. Consider the Sturm-Liouville operator ∆̂k on R \ {0}. Then, for any k ∈ Z the
endpoints +∞ and −∞ are limit-point. On the other hand, regarding 0+ and 0− the following
holds.

(1) If α ≤ −3 or if α ≥ 1, then they are limit-point for any k ∈ Z;
(2) if −3 < α ≤ −1, then they are limit-circle if k = 0 and limit-point otherwise;
(3) if −1 < α < 1, then they are limit-circle for any k ∈ Z.

Before the proof, we observe that, since [u, v](d) = 0 for any limit-point end-point d, by the
Patching Lemma [30, Lemma 10.4.1] and [30, Lemma 13.3.1], Lemma 2.8 gives the following char-

acterization of the minimal domain of ∆̂k,

(14) Dmin(∆̂k) =
{
u ∈ Dmax(∆̂k) | [u, v](0+) = [u, v](0−) = 0 for all v ∈ Dmax(∆̂k)

}
.

Proof of Lemma 2.8. By symmetry with respect to the origin of ∆̂k, it suffices to check only 0+ and
+∞.

Let k = 0, then for α 6= −1 the equation ∆̂0u = u′′ − (α/x)u′ = 0 has solutions u1(x) = 1 and
u2(x) = x1+α. Clearly, u1 and u2 are both in L2((0, 1), |x|−αdx), i.e., 0+ is limit-circle, if and only
if α ∈ (−3, 1). On the other hand, u1 and u2 are never in L2((1,+∞), |x|−αdx) simultaneously, and
hence +∞ is always limit-point. If α = −1, the statement follows by the same argument applied to
the solutions u1(x) = 1 and u2(x) = log(x).

Let now k 6= 0 and α 6= −1. Then ∆̂ku = u′′ − (α/x)u′ − x2αk2u = 0, x > 0, has solutions

u1(x) = exp
(
kx1+α

1+α

)
and u2(x) = exp

(
−kx1+α

1+α

)
. If α > −1, both u1 and u2 are bounded and

nonzero near x = 0, and either u1 or u2 has exponential growth as x → +∞. Hence, in this case,
u1, u2 ∈ L2((0, 1), |x|−α) if and only if α < 1, while +∞ is always limit-point. On the other hand,
if α < −1, u1 and u2 are bounded away from zero as x → +∞ and one of them has exponential
growth at x = 0. Since the measure |x|−αdx blows up at infinity, this implies that both 0+ and
+∞ are limit-point. Finally, the same holds for α = −1, considering the solutions u1(x) = xk and
u2(x) = x−k. �

2.3. Proofs of Theorem 1.6 and 1.8. We are now able to classify the essential self-adjointness
of the operator ∆|C∞

c (M).

Proof of Theorem 1.6. Let D ⊂ C∞
c (M) be the set of C∞

c (M) functions which are finite linear
combinations of products u(x)v(θ). Since L2(M,dω) = L2(R \ {0}, |x|−αdx) ⊗ L2(T, dθ), the set
D is dense in L2(M,dω) and hence, by Proposition 2.3 the operator ∆|D is essentially self adjoint

if and only if so are all ∆̂k|D∩Hk
. Since n±(∆|D) = n±(∆|C∞

c (M)), this is equivalent to ∆|C∞
c (M)

being essentially self-adjoint.

To conclude, recall that by Theorem 2.6 the operator ∆̂k is not essentially self-adjoint on
L2(R \ {0}, |x|−αdx) if and only if it is in the limit-circle case at at least one of the four end-
points −∞, 0−, 0+ and +∞. Hence applying Lemma 2.8 is enough to complete the proof. �
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Now we proceed to study the self-adjoint extensions of the first Fourier component, proving
Theorem 1.8 through Theorem 2.6 and Remark 2.7.

Proof of Theorem 1.8. We start by proving the statement on Dmin(∆̂0). The operator ∆̂0 is trans-

formed by the unitary map U0 : L
2(R \ {0}, |x|−αdx) → L2(R \ {0}), U0v(x) = |x|−α/2v(x), in

∆◦ 0 = ∂2x −
α

2

(α
2
+ 1

) 1

x2
.

By [4] and [30, Lemma 13.3.1], it holds that Dmin( ∆◦ 0) is the closure of C∞
c (R \ {0}) in the norm

of H2(R \ {0}, dx), i.e.,

‖u‖H2(R\{0},dx) = ‖u‖L2(R\{0},dx) + ‖∂xu‖L2(R\{0},dx) + ‖∂2xu‖L2(R\{0},dx).

From this follows that Dmin(∆̂0) = U−1
0 Dmin( ∆◦ 0) is given by the closure of C∞

c (R \ {0}) in

W = U−1
0 H2(R \ {0}, dx), w.r.t. the induced norm

‖v‖W = ‖U0v‖H2(R\{0},dx)

= ‖v‖L2(R\{0},|x|−αdx) +
∥∥|x|α/2∂x(|x|−α/2v)

∥∥
L2(R\{0},|x|−αdx)

+ ‖|x|α/2∂2x(|x|−
α/2v)‖L2(R\{0},|x|−αdx)

(15)

To prove the statement, it suffices to show that on C∞
c (R\{0}) the induced norm (15) is equivalent

to the norm of H2(R \ {0}, |x|−αdx), which is

(16) ‖v‖H2(R\{0},|x|−αdx) = ‖v‖L2(R\{0},|x|−αdx) +
∥∥∂x v

∥∥
L2(R\{0},|x|−αdx)

+ ‖∆̂0v‖L2(R\{0},|x|−αdx).

To this aim, observe that

(17) ∂xv(x) = |x|α/2∂x(|x|−α/2v) +
α

2

v

x
, ∆̂0v = |x|α/2∂2x

(
|x|−α/2v

)
+
α

2

(α
2
+ 1

) v

x2
.

Moreover, by a cutoff argument, it is clear that we can prove the bound separately for v supported
near the origin and away from it.

Let v ∈ C∞
c (R \ {0}) be supported in (−1, 0) ∪ (0, 1). By (17) and the fact that if |x| ≤ 1 then

|x|−1, |x|−2 ≥ 1, it follows immediately that ‖v‖H2(R\{0},|x|−αdx) ≤ ‖v‖W . In order to prove the

opposite inequality, observe that x−2 ≥ x−1 and v ∈ H2
0 ((0, 1), dx) ⊕H2

0 ((−1, 0), dx). Thus, by [4,
(3.5)] we obtain

(18)
∥∥vx−1

∥∥
L2(R\{0},|x|−αdx)

+
∥∥vx−2

∥∥
L2(R\{0},|x|−αdx)

≤ 2‖vx−2‖L2(R\{0},|x|−αdx)

= 2‖vx−2−α/2‖L2((0,1)) ≤ 2C‖∂x(vx−α/2)‖H2((0,1)) = 2C‖v‖W .
Finally, let v ∈ C∞

c (R \ {0}) be supported in (1,+∞) (the same argument will work also between
(−∞,−1)). In this case, x−2 < x−1 < 1. Thus, by (17), (15), (16) and the triangular inequality,
we get that for any v ∈ C∞

c (R \ {0}) it holds
∣∣‖v‖W − ‖v‖H2(R\{0},|x|−αdx)

∣∣

≤ C

(∥∥vx−1
∥∥
L2(R\{0},|x|−αdx)

+
∥∥vx−2

∥∥
L2(R\{0},|x|−αdx)

)
≤ 2C‖v‖L2(R\{0},|x|−αdx),

for some constant C > 0. Since ‖v‖W and ‖v‖H2(R\{0},|x|−αdx) ≥ ‖v‖L2(R\{0},|x|−αdx), this completes
the proof of the first part of the theorem.

We now proceed to the classification of the self-adjoint extensions of ∆̂0. For this purpose, recall
the definition of φ±D and φ±N given in (10) and let

φN (x) = φ+N (x) + φ−N (x), φD(x) = φ+D(x) + φ−D(x).
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Observe that φD ∈ L2(R \ {0}, |x|−αdx) and that ∆̂0φD(x) = 0 for any x /∈ (−2,−1)∪ (1, 2). Since

the function is smooth, this implies that φD ∈ Dmax(∆̂0). The same holds for φN . Moreover, a
simple computation shows that [φ+D, φ

+
N ](0+) = [φ+D, φ

+
N ](0−) = 1, and hence φN and φD satisfy the

hypotheses of Theorem 2.6. In particular, by Remark 2.7, this implies that

Dmax(∆̂0) = Dmin(∆̂0) + span{φ+D, φ+N , φ−D, φ−N}.
We claim that for any u = u0 + u+Dφ

+
D + u+Nφ

+
N + u−Dφ

−
D + u−Nφ

−
N ∈ Dmax it holds

(19) [u, φN ](0+) = u+D, [u, φD](0
+) = u+N , [u, φN ](0−) = u−D, [u, φN ](0−) = u−N .

This, by Theorem 2.6 will complete the classification of the self-adjoint extensions. Observe that,
(14) and the bilinearity of the Lagrange parentheses imply that [u0, φN ](0±) = [u0, φD](0

±) = 0.
The claim then follows from the fact that

[φ+D, φN ](0+) = [φ+N , φD](0
+) = [φ−D, φN ](0−) = [φ−N , φD](0

−) = 1,

[φ−D, φN ](0+) = [φ−N , φD](0
+) = [φ+D, φN ](0−) = [φ+N , φD](0

−) = 0.

To complete the proof, it remains only to identify the Friedrichs extension (∆̂0)F . Recall that
such extension is always defined, and has domain

D((∆̂0)F ) = {u ∈ H1
0 (R \ {0}, |x|−αdx) | ∆̂0u ∈ L2(R \ {0}, |x|−αdx)}.

Since if α ≤ −1, φN /∈ H1(R \ {0}, |x|−αdx), it is clear that the Friedrichs extension corresponds
to the case where u+N = u−N = 0, i.e., to c+ = c− = 0. On the other hand, if α > −1, since all the
end-points are regular, by [15, Corollary 10.20] holds that the Friedrichs extension corresponds to
the case where u(0±) = u±D = 0, i.e., to c+ = c− = +∞. �

Remark 2.9. If u ∈ Dmax(∆̂0), it holds

u+D = [u, φN ](0+) = lim
x↓0

(
u(x)− x ∂xu(x)

)
and u+N = [u, φD](0

+) = lim
x↓0

x−α ∂xu(x).

This implies, in particular, that if α > −1 then u+D = u(0+). Indeed this holds if and only if the
end-point 0+ is regular in the sense of Sturm-Liouville operators, see Definition 2.5. Clearly the
same computations hold at 0−.

We conclude this section with a description of the maximal domain.

Proposition 2.10. For any α ∈ R, it holds that

Dmax(∆|C∞
c (M)) =





H2(M,dω) = H2
0 (M,dω) if α ≤ −3 or α ≥ 1,

H2(M,dω) ⊕ span{φ+N , φ−N} if − 3 < α ≤ −1,

H2(M,dω) % H2
0 (M,dω) if − 1 < α < 1.

Here we let, with abuse of notation, φ±N (x, y) = φ±N (x).

Proof. Recall that, by definition, H2(M,dω) ⊂ Dmax(∆|C∞
c (M)). Moreover, if α ≤ −3 or if α ≥ 1,

by Theorem 1.6 it holds Dmax(∆|C∞
c (M)) = D(∆F ) = H2

0 (M,dω) ⊂ H2(M,dω). This proves the
first statement.

On the other hand, by Remark 2.7, if α ∈ (−3,−1], since ∆̂k is essentially self-adjoint for any
k 6= 0 we can decompose the maximal domain as

Dmax(∆|C∞
c (M)) = Dmax(∆̂0)⊕




⊕

k∈Z\{0}

D(∆̂k)



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Moreover, letting π0 be the projection on the k = 0 Fourier component and defining (π−1
0 u0)(x, θ) =

u0(x) for any u0 ∈ L2(R\{0}, |x|−αdx), the previous decomposition and the fact thatDmin(∆|C∞
c (M)) ⊂

H2(M,dω) ⊂ Dmax(∆|C∞
c (M)) implies that

Dmax(∆|C∞
c (M)) =

{
u = u0 + π−1

0 ũ | u0 ∈ Dmin(∆|C∞
c (M)), ũ ∈ span{φ+D, φ+N , φ−D, φ−N}

}

= H2(M,dω) + span{φ+D, φ+N , φ−D, φ−N}.
Here, in the last equality, we let φD(x, y) = φD(x) and φN (x, y) = φN (x). A simple computation

shows that φD ∈ H1(R \ {0}, |x|−αdx) and φN /∈ H1(R \ {0}, |x|−αdx). Since ∆̂0φD = 0, it follows
that φD ∈ H2(M,dω), while φN /∈ H2(M,dω). This implies the statement.

To complete the proof it suffices to prove that if α ∈ (−1, 1) it holds Dmax(∆|C∞
c (M)) ⊂

H2(M,dω). In fact, the inequality H2(M,dω) 6= H2
0 (M,dω) will then follow from the fact that ∆F is

not the only self-adjoint extension of ∆|C∞
c (M). By Parseval identity, φ,∆φ ∈ L2(M,dω) if and only

φk, ∆̂kφk ∈ L2(R\{0}, |x|−αdx) for any k ∈ Z and thus the statement is equivalent to Dmax(∆̂k) ⊂
H2(R \ {0}, |x|−αdx) for any k ∈ Z. Let u ∈ Dmax(∆̂k). Since limx→0± x

−α∂xu(x) = [u, φD](0
±),

this limit exists and is finite. Moreover, since ±∞ are limit-point, it holds limx→±∞ x−α∂xu(x) =
[u, φD](±∞) = 0. Hence, x−α∂xu is square integrable near 0 and at infinity, and from the charac-

terization (12) follows that ∆̂ku ∈ L2(R \ {0}, |x|−αdx). This proves that u ∈ H2(R \ {0}, |x|−αdx)
and thus the proposition. �

3. Bilinear forms

3.1. Preliminaries. This introductory section is based on [16]. Let H be an Hilbert space with
scalar product (·, ·)H. A non-negative symmetric bilinear form densely defined on H, henceforth
called only a symmetric form on H, is a map E : D(E) ×D(E) → R such that D(E) is dense in H
and E is bilinear, symmetric, and non-negative (i.e., E(u, u) ≥ 0 for any u ∈ D(E)). A symmetric
form is closed if D(E) is a complete Hilbert space with respect to the scalar product

(20) (u, v)E = (u, v)H + E(u, v), u, v ∈ D(E).
To any densely defined non-positive definite self-adjoint operator A it is possible to associate a
symmetric form EA such that

EA(u, v) = (−Au, v)
D(A) = {u ∈ D(EA) : ∃v ∈ H s.t. E(u, φ) = (v, φ) for all φ ∈ D(EA)}.

Indeed, we have the following.

Theorem 3.1 ([23, 16]). Let H be an Hilbert space, then the map A 7→ EA induces a one to one
correspondence

A non-positive definite self-adjoint operator ⇐⇒ EA closed symmetric form.

In particular, the inverse correspondence can be characterized by D(A) ⊂ D(EA) and EA(u, v) =
(−Au, v) for all u ∈ D(A), v ∈ D(EA).

Consider now a second countable locally compact Hausdorff space X with its Borel sigma algebra
F , and m a Radon measure on F with full support.

Definition 3.2. A symmetric form E on L2(X,m) is Markovian if for any ε > 0 there exists
ψε : R → R such that −ε ≤ ψε ≤ 1 + ε, ψε(t) = t if t ∈ [0, 1], 0 ≤ ψε(t)− ψε(s) ≤ t− s whenever
s < t and

u ∈ D(E) =⇒ ψε(u) ∈ D(E) and E(ψε(u), ψε(u)) ≤ E(u, u).
A closed Markovian symmetric form is a Dirichlet form.
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A semigroup {Tt}t≥0 on L2(X,m) is Markovian if

u ∈ L2(X,m) s.t. 0 ≤ u ≤ 1 m− a.e. =⇒ 0 ≤ Ttu ≤ 1 m− a.e. for any t > 0.

A non-positive self-adjoint operator is Markovian if it generates a Markovian semigroup.

When the form is closed, the Markov property can be simplified, as per the following Theorem.
For any u : X → R let u♯ = min{1,max{u, 0}}.
Theorem 3.3 (Theorem 1.4.1 of [16]). The closed symmetric form E is Markovian if and only if

u ∈ D(E) =⇒ u♯ ∈ D(E) and E(u♯, u♯) ≤ E(u, u).
Since any function of L∞(X,m) is approximable by functions in L2(X,m), the Markov property

allows to extend the definition of {Tt}t≥0 to L∞(X,m), and moreover implies that it is a contraction
semigroup on this space. When {Tt}t≥0 is the evolution semigroup of the heat equation, the Markov
property can be seen as a physical admissibility condition. Namely, it assures that when starting
from an initial datum u representing a temperature distribution (i.e., a positive and bounded func-
tion) the solution Ttu remains a temperature distribution at each time, and, moreover, that the
heat does not concentrate.

The following theorem extends the one-to-one correspondence given in Theorems 2.1 and 3.1 to
the Markovian setting.

Theorem 3.4 ([16]). Let A be a non-positive self-adjoint operator on L2(X,m). The following are
equivalents

(1) A is a Markovian operator;
(2) EA is a Dirichlet form;
(3) {etA}t≥0 is a Markovian semigroup.

Given a non-positive symmetric operator A we can always define the closable symmetric form

E(u, v) = (−Au, v), D(E) = D(A).

The Friedrichs extension AF of A is then defined as the self-adjoint operator associated via Theo-
rem 3.1 to the closure E0 of this form. Namely, D(E0) is the closure of D(A) with respect to the
scalar product (20), and E0(u, v) = limn→+∞ E(un, vn) for un → u and vn → v w.r.t. (·, ·)E . It is
a well-known fact that the Friedrichs extension of a Markovian operator is always a Dirichlet form
(see, e.g., [16, Theorem 3.1.1]).

A Dirichlet form E is said to be regular on X if D(E) ∩ Cc(X) is both dense in D(E) w.r.t. the
scalar product (20) and dense in Cc(X) w.r.t. the L∞(X) norm. To any regular Dirichlet form EA
it is possible to associate a Markov process {Xt}t≥0 which is generated by A (indeed they are in
one-to-one correspondence to a particular class of Markov processes, the so-called Hunt processes,
see [16] for the details).

If its associated Dirichlet form is regular, by Definitions 1.10 and 1.11, a Markovian operator
is said stochastically complete if its associated Markov process has almost surely infinite lifespan,
and recurrent if it intersects any subset of X with positive measure an infinite number of times.
If it is not stochastically complete, an operator is called explosive. Observe that recurrence is a
stronger property than stochastic completeness, but the two notions coincide when m(X) < +∞,
[28, Section 2.11].

We will need the following characterizations.

Theorem 3.5 (Theorem 1.6.6 in [16]). A Dirichlet form E is stochastically complete if and only if
there exists a sequence {un} ⊂ D(E) satisfying

0 ≤ un ≤ 1, lim
n→+∞

un = 1 m− a.e.,
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such that

E(un, v) → 0 for any v ∈ D(E) ∩ L1(X,m).

We let the extended domain D(E)e of a Dirichlet form E to be the family of functions u ∈
L∞(X,m) such that there exists {un}n∈N ⊂ D(E), Cauchy sequence w.r.t. the scalar product (20),
such that un −→ u m-a.e. . The Dirichlet form E can be extended to D(E)e as a non-negative
definite symmetric bilinear form, by E(u, u) = limn→+∞ E(un, un).
Theorem 3.6 (Theorems 1.6.3 and 1.6.5 in [16]). Let E be a Dirichlet form. The following are
equivalent.

(1) E is recurrent;
(2) there exists a sequence {un} ⊂ D(E) satisfying

0 ≤ un ≤ 1, lim
n→+∞

un = 1 m− a.e.,

such that

E(un, v) → 0 for any v ∈ D(E)e.
(3) 1 ∈ D(E)e and E(1, 1) = 0, i.e., there exists a sequence {un} ⊂ D(E) such that limn→+∞ un =

1 m− a.e. and E(un, un) → 0.

We conclude this preliminary part, by introducing a notion of restriction of closed forms associated
to self-adjoint extensions of ∆|C∞

c (M).

Definition 3.7. Given a self-adjoint extension A of ∆|C∞
c (M) and an open set U ⊂ M , we let the

Neumann restriction EA|U of EA to be the form associated with the self-adjoint operator A|U on
L2(U, dω), obtained by putting Neumann boundary conditions on ∂U .

In particular, by Theorem 3.1 and an integration by parts, it follows that D(EA|U ) = {u|U | u ∈
D(EA)}.

3.2. Markovian extensions of ∆|C∞
c (M). The bilinear form associated with ∆|C∞

c (M) is

E(u, v) =
∫

Mα

g(∇u,∇v) dω =

∫

Mα

(
∂xu∂xv + |x|2α∂θu∂θv

)
dω, D(E) = C∞

c (M).

By [16, Example 1.2.1], E is a Markovian form. The Friederichs extension is then associated with
the form

EF (u, v) =
∫

M

(
∂xu∂xv + |x|2α∂θu∂θv

)
dω, D(EF ) = H1

0 (M,dω),

where the derivatives are taken in the sense of Schwartz distributions. By its very definition, and
the fact that D(EF ) ∩ C∞

c (M) = C∞
c (M), follows that EF is always a regular Dirichlet form on M

(equivalently, on M+ or on M−). Its associated Markov process is absorbed by the singularity.
The following Lemma will be crucial to study the properties of the Friederichs extension. Let

M0 = (−1, 1) × T, M∞ = (1,+∞) × T and recall the notion of Neumann restriction given in
Definition 3.7.

Lemma 3.8. If α ≤ −1, it holds that 1 ∈ D(EF |M0
). Moreover, 1 /∈ D(EF |M0

)e if α > −1 and
1 ∈ D(EF |M∞)e if and only if α ≥ −1.

Proof. To ease the notation, we let Êk to be the Dirichlet form associated to the Friederichs extension

of ∆̂k. In particular, for k = 0,

Ê0(u, v) =
∫

R\{0}
∂xu∂xv |x|−αdx, D(Ê0) = H1

0 (R \ {0}, |x|−αdx).
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Let πk : L2(M,dω) → Hk = L2(R \ {0}, |x|−αdx) be the projection on the k-th Fourier component.
Then, from the rotational invariance of D(EF ) follows that

D(EF ) =
⊕

k∈Z

D(Êk), EF (u, v) =
∑

k∈Z

Êk(πku, πkv).

In particular, since π01 = 1 and πk1 = 0 for k 6= 0, follows that 1 ∈ D(EF |M0
) (resp. 1 ∈ D(EF |M∞)e)

if and only if 1 ∈ D(Ê0|(0,1)) (resp. 1 ∈ D(Ê0|(1,+∞))e). Here, with abuse of notation, we denoted
as 1 both the functions 1 : M → {1} and 1 : R → {1}. Thus, to complete the proof of the

lemma, it suffices to prove that 1 ∈ D(Ê0|(0,1)) if α ≤ −1, that 1 /∈ D(Ê0|(0,1))e if α ≥ −1 and that

1 ∈ D(Ê0|(1,+∞))e if and only if α ≥ −1.
For any 0 < r < R < +∞, let fαr,R be the only solution to the Cauchy problem

{
∆̂0f = 0,

f(r) = 1, f(R) = 0.

Namely,

fαr,R(x) =





R1+α − x1+α

R1+α − r1+α
if α 6= −1,

log
(
R
x

)

log
(
R
r

) if α = −1.

Then, the 0-equilibrium potential (see [16] and Remark 3.9) of [0, r] in [0, R], is given by

(21) ur,R(x) =





1 if 0 ≤ x ≤ r,

fαr,R(x) if r < x ≤ R,

0 if x > R.

It is a well-known fact that ur,R is the minimizer for the capacity of [0, r] in [0, R). Namely, for any
locally Lipschitz function v with compact support contained in [0, R] and such that v(x) = 1 for
any 0 < x < r, it holds

(22)

∫ +∞

0
|∂xur,R|2x−α dx ≤

∫ +∞

0
|∂xv|2x−α dx

Since it is compactly supported on [0,+∞) and locally Lipschitz, it follows that ur,R ∈ D(Ê0|(1,+∞))

and 1− ur,R ∈ D(Ê0|(0,1)) for any 0 < r < R < +∞.

Consider now α ≥ −1, and let us prove that 1 ∈ D(Ê0|(1,+∞))e. To this aim, it suffices to show

that there exists a sequence {un}n∈N ⊂ D(Ê0|(1,+∞)) = {u|(1,+∞) | u ∈ H1((0,+∞), x−αdx)} such

that un −→ 1 a.e. and Ê0|(1,+∞). Let

un =

{
un,2n if α 6= −1,

un,n2 if α = −1.

It is clear that un −→ 1 a.e., moreover, a simple computation shows that

Ê0|(1,+∞)(un, un) =

∫ +∞

1
|∂xun|2 x−α dx =

{
1+α

21+α−1
n−(1+α) if α 6= −1,

1
log(n) if α = −1.

Hence Ê0|(1,+∞) −→ 0 if α ≥ −1, proving that 1 ∈ D(Ê0|(1,+∞))e.
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We now prove that 1 ∈ D(Ê0|(0,1)) if α ≤ −1. Consider the following sequence inH1((0, 1), x−αdx),

un =

{
u1/2n,1/n if α 6= −1,

u1/n2,1/n if α = −1.

A direct computation of
∫ 1
0 |∂xun|2x−αdx, the fact that suppun ⊂ [0, 1/n] and 0 ≤ un ≤ 1, prove

that un −→ 0 in H1((0, 1), x−αdx). Since 1 − un ∈ D(Ê0|(0,1)), which is closed, this proves that

1− un −→ 1 in D(Ê0|(0,1)), and hence the claim.

To complete the proof, it remains to show that 1 /∈ D(Ê0|(1,+∞))e if α < −1. The same

argument can be then used to prove that 1 /∈ D(Ê0|(0,1))e if α > −1. We proceed by con-

tradiction, assuming that there exists a sequence {vn}n∈N ⊂ D(Ê0|(1,+∞)) such that vn −→ 1

a.e. and Ê0|(1,+∞)(vn, vn) −→ 0. Since the form Ê0|(1,+∞) is regular on [1,+∞), we can take
vn ∈ C∞

c ([1,+∞)). Moreover, we can assume that vn(1) = 1 for any n ∈ N. In fact, if this
is not the case, it suffices to consider the sequence ṽn(x) = vn(x)/vn(1). Let Rn > 0 be such

that
⋃

m≤n supp vm ⊂ [1, Rn]. Moreover, extend vn to 1 on (0, 1), so that Ê0|(1,+∞)(vn, vn) =∫ +∞
0 |∂xvn|2x−αdx. Since the same holds for u1,Rn

, by (22), the fact that Rn −→ +∞ and α < −1,
we get

lim
n→+∞

Ê0|(1,+∞)(vn, vn) ≥ lim
n→+∞

Ê0|(1,+∞)(u1,Rn
, u1,Rn

) = lim
n→+∞

1 + α

R1+α
n − 1

= −(1 + α) > 0.

This contradicts the fact that Ê0|(1,+∞)(vn, vn) −→ 0, completing the proof. �

Remark 3.9. The 0-equilibrium potential defined in (21) admits a probabilistic interpretation,

[20]. Namely, it is the probability that the Markov process associated with ∆̂0 and starting from x,
exits the first time from the interval {r < x < R} through the inner boundary {x = r}.

It is possible to define a semi-order on the set of the Markovian extensions of ∆|C∞
c (M) as follows.

Given two Markovian extensions A and B, we say that A ⊂ B if D(EA) ⊂ D(EB) and EA(u, u) ≥
EB(u, u) for any u ∈ D(EA). With respect to this semi-order, the Friederichs extension is the minimal
Markovian extension. Let ∆N be the maximal Markovian extension (see [16]). This extension is
associated with the Dirichlet form E+ defined by

E+(u, v) =

∫

M

(
∂xu∂xv + |x|2α∂θu∂θv

)
dω,

D(E+) = {u ∈ L2(M,dω) | E+(u, u) < +∞} = H1(M,dω),

where the derivatives are taken in the sense of Schwartz distributions. We remark that E+ is a
regular Dirichlet form on M+ = Mα \M− and M− = Mα \M+ (see, e.g., [16, Lemma 3.3.3]). Its
associated Markov process is reflected by the singularity.

When ∆|C∞
c (M) has only one Markovian extension, i.e., whenever ∆F = ∆N , we say that it

is Markov unique. Clearly, if ∆|C∞
c (M) is essentially self-adjoint, it is also Markov unique. The

next proposition shows that essential self-adjointness is a strictly stronger property than Markov
uniqueness.

Proposition 3.10. The operator ∆|C∞
c (M) is Markov unique if and only if α /∈ (−1, 1).

Proof. As observed above, the statement is an immediate consequence of Theorem 1.6 for α ≤ −3

and α ≥ 1. If α ∈ (−3,−1], since by Theorem 1.6 all ∆̂k for k 6= 0 are essentially self-adjoint, it

holds that ∆N = Â0⊕ (
⊕

k∈N ∆̂k) for some self-adjoint extension Â0 of ∆̂0. Recall the definition of

φ±D and φ±N given in (10) and with abuse of notation let φ±D(x, θ) = φ±D(x) and φ±N (x, θ) = φ±N (x).
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Since E+(φ±N , φ
±
N ) = +∞ if and only if α ≤ −1, we get that φ+N , φ

−
N /∈ D(E+) ⊃ D(∆N ) if α ≤ −1.

Hence, by Theorem 1.8, it holds that Â0 = (∆̂0)F and hence that ∆N = ∆F .
On the other hand, if α ∈ (−1, 1), the result follows from Lemma 3.8. In fact, it implies that

φD /∈ H1
0 (M,dω) = D(EF ) but, since E+(φD, φD) < +∞, we have that φD ∈ D(E+). This proves

that ∆F $ ∆N . �

By the previous result, when α ∈ (−1, 1) it makes sense to consider the bridging extension,
associated to the operator ∆B and the form EB , defined by

EB(u, v) =
∫

Mα

(
∂xu∂xv + |x|2α∂θu∂θv

)
dω,

D(EB) = {u ∈ H1(M,dω) | u(0+, θ) = u(0−, θ) for a.e. θ ∈ T}.

From Theorem 3.3 and the fact that EB = E+|D(EB) follows immediately that EB is a Dirichlet

form, and hence ∆F ⊂ ∆B ⊂ ∆N . Moreover, due to the regularity of E+ and the symmetry of the
boundary conditions appearing in D(EB), follows that EB is regular on the whole Mα. Its associated
Markov process can cross, with continuous trajectories, the singularity.

We conclude this section by specifying the domains of the Markovian self-adjoint extensions
associated with EF , E+ and, when it is defined, EB .

Proposition 3.11. It holds that D(∆F ) = H2
0 (M,dω), while

D(∆N ) = {u ∈ H1(M,dω) | (∆u, v) = (∇u,∇v) for any v ∈ H1(M,dω)}.
Moreover, if α ∈ (−1, 1), the domain of ∆B is

D(∆B) = {H2 (Mα, dω) | u(0+, ·) = u(0−, ·), lim
x→0+

|x|−α∂xu(x, ·) = lim
x→0−

|x|−α∂xu(x, ·) for a.e. θ ∈ T}.

Proof. In view of Theorem 3.1, to prove that A is the operator associated with EA it suffices to
prove that D(A) ⊂ D(EA) and that EA(u, v) = (−Au, v) for any u ∈ D(A) and v ∈ D(EA). The
requirement on the domain is satisfied by definition in all three cases. We proceed to prove the
second fact.

Friedrichs extension. By integration by parts it follows that EF (u, v) = (−∆Fu, v) for any u, v ∈
C∞
c (M), and this equality can be extended to u ∈ H2

0 (M,dω) = D(∆F ) and v ∈ H1
0 (M,dω) =

D(EF ).
Neumann extension. The property that E+(u, v) = (−∆Nu, v) for any u ∈ D(∆N ) and v ∈ D(E+)

is contained in the definition.
Bridging extension. By an integration by parts, it follows that

∫

Mα

(
∂xu∂xv + x2α∂θu∂θv

)
dω = (−∆Bu, v)−

∫

T
v|x|−α∂xu

∣∣0+
x=0−

dθ = (−∆Bu, v).

�

3.3. Stochastic completeness and recurrence on Mα. We are interested in localizing the prop-
erties of stochastic completeness and recurrence of a Markovian self-adjoint extension A of ∆|C∞

c (M).
Due to the already mentioned repulsing properties of Neumann boundary conditions, the natural
way to operate is to consider the Neumann restriction introduced in Definition 3.7.

Observe that, if U ⊂ M is an open set such that Ū ∩ ({−∞, 0,+∞} × T) = ∅, then the
Neumann restriction EA|U is always recurrent on U . In fact, in this case, there exist two constants
0 < C1 < C2 such that C1dx dθ ≤ dω ≤ C2dx dθ on U and clearly 1 ∈ D(EA|U ) = H1(U, dx dθ), that
by Theorem 3.6 implies the recurrence. For this reason, we will concentrate only on the properties
“at 0” or “at ∞”.
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Definition 3.12. Given a Markovian extension A of ∆|C∞
c (M), we say that it is stochastically

complete at 0 (resp. recurrent at 0) if its Neumann restriction to M0 = (−1, 1)×T, is stochastically
complete (resp. recurrent). We say that A is exploding at 0 if it is not stochastically complete at
0. Considering M∞ = (1,∞) × T, we define stochastic completeness, recurrence and explosiveness
at ∞ in the same way.

In order to justify this approach, we will need the following.

Proposition 3.13. A Markovian extension A of ∆|C∞
c (M) is stochastically complete (resp. recur-

rent) if and only if it is stochastically complete (resp. recurrent) both at 0 and at ∞.

Proof. Let {un}n∈N ⊂ D(EA) such that un → 1 a.e. and EA(un, un) → 0. Since D(EA|M0
) = {u|M0

|
u ∈ D(EA)} and D(EA|M∞) = {u|M∞ | u ∈ D(EA)} follows that {un|M0

}n∈N ⊂ D(EA|M0
) and

{un|M∞}n∈N ⊂ D(EA|M∞). Moreover, it is clear that un|M0
, un|M∞ → 1 a.e. and EA|M0

(un|M0
, un|M0

),
EA|M∞(un|M∞ , un|M∞) → 0. By Theorem 3.6, this proves that if EA is recurrent it is recurrent also
at 0 and ∞.

On the other hand, if A|M0
and A|M∞ are recurrent, we can always choose the sequences

{un}n∈N ⊂ D(EA|M0
) and {vn}n∈N ⊂ D(EA|M∞) approximating 1 such that they equal 1 in a

neighborhood N of ∂M0
= ∂M∞ = ({1}×T)∪ ({−1}×T). In fact the constant function satisfies the

Neumann boundary conditions we posed on ∂M0 = ∂M∞ for the operators associated with EA|M0

and EA|M∞ . Hence, by gluing un and vn we get a sequence of functions in D(EA) approximating
1. The same argument gives also the equivalence of the stochastic completeness, exploiting the
characterization given in Theorem 3.5. �

Before proceeding with the classification of the stochastic completeness and recurrence of ∆F ,
∆N and ∆B, we need the following result. For an operator acting on L2(R \ {0}, |x|−αdx), the
definition of stochastic completeness and recurrence at 0 or at ∞ is given substituting M0 and M∞

in Definition 3.12 with (−1, 1) and (1,+∞).

Proposition 3.14. Let A be a Markovian self-adjoint extension of ∆|C∞
c (M) and assume it decom-

poses as A = Â0 ⊕ Ã, where Â0 is a self-adjoint operator on H0 and Ã is a self-adjoint operator

on
⊕

k 6=0Hk. Then, Â0 is a Markovian self-adjoint extension of ∆̂0. Moreover, A is stochastically

complete (resp. recurrent) at 0 or at ∞ if and only if so is Â0.

Proof. Let πk : L2(M,dω) → Hk = L2(R \ {0}, |x|−αdx) be the projection on the k-th Fourier

component. In particular, recall that π0u = (2π)−1
∫ 2π
0 u(x, θ) dθ. Let u ∈ D(Â0) ⊂ L2(R, |x|−αdx)

be such that 0 ≤ u ≤ 1. Hence, posing ũ(x, θ) = u(x), due to the splitting of A follows that
ũ ∈ D(A) and by the markovianity follows that 0 ≤ Aũ ≤ 1. The first part of the statement is then

proved by observing that, since π0ũ = u and πkũ = 0 for k 6= 0, we have Aũ(x, θ) = Â0u(x) for any
(x, θ) ∈M .

We prove the second part of the statement only at 0, since the arguments to treat the at ∞
case are analogous. First of all, we show that the stochastic completeness of A and Â0 at 0 are
equivalent. If 1 :M0 → R is the constant function, it holds that π01 = 1 : (−1, 1) → R. Moreover,

due to the splitting of A, we have that etA = etÂ0 ⊕ etÃ Hence, it follows that etA1 = etÂ01. This,
by Definition 1.10, proves the claim.

To prove the equivalence of the recurrences at 0, we start by observing that D(EA) = D(EÂ0
)⊕

D(EÃ) and that

(23) EA(u, v) = EÂ0
(π0u, π0v) + EÃ(⊕k 6=0πku,⊕k 6=0πkv), for any u, v ∈ D(EA)

In particular, since π01 = 1 this implies that EA|M0
(1, 1) = EÂ0

|(−1,1)(1, 1). By Theorem 3.6, this

proves that if Â0 is recurrent at 0, so is A. Assume now that A|M0
is recurrent. By Theorem 3.6
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there exists {un}n∈N ⊂ D(EA|M0
) such that 0 ≤ un ≤ 1 a.e., un −→ 1 a.e. and EA|M0

(un, v) → 0
for any v in the extended domain D(EA|M0

)e. By dominated convergence, it follows that π0un =

(2π)−1
∫ 2π
0 un(·, θ) dθ → 1 for a.e. x ∈ (−1, 1). For any v ∈ D(E

Â0
|(−1,1))e, let ṽ(x, θ) = v(x). It is

easy to see that ṽ ∈ D(EA|M0
)e Then, by applying (23) we get

E
Â0

|(−1,1)(π0un, v) = EA|M0
(un, ṽ) −→ 0, for any v ∈ D(E

Â0
|(−1,1))e.

Since 0 ≤ π0un ≤ 1, this proves that Â0|(−1,1) is recurrent �

The following proposition answers the problem of stochastic completeness or recurrence of the
Friedrichs extension.

Proposition 3.15. Let ∆F be the Friedrichs extension of ∆|C∞
c (M). Then, the following holds

at 0 at ∞
α < −1 recurrent stochastically complete
α = −1 recurrent recurrent
α > −1 explosive recurrent

In particular, ∆F is stochastically complete for α < −1, recurrent for α = −1 and explosive for
α > −1.

Proof. The part regarding the recurrence is a consequence of Lemma 3.8 and Theorem 3.6, while
the last statement is a consequence of Proposition 3.13. Thus, to complete the proof it suffices to
prove that ∆F is stochastically complete at +∞ if α < −1 and not stochastically complete at 0 if
α > −1.

By Proposition 3.14 and the fact that ∆F = ⊕k∈Z(∆̂k)F , we actually need to prove this fact only

for (∆̂0)F . Moreover, since the Friederichs extension decouples the dynamics on the two sides of

the singularity, we can work only on (0,+∞) instead that on R \ {0}. As in Lemma 3.8, we let Ê0
to be the Dirichlet form associated to the Friederichs extension of ∆̂0.

We start by proving the explosion for α > −1 on (0, 1). Let us proceed by contradiction and as-

sume that (∆̂0)F is stochastically complete on (0, 1). By Theorem 3.5, there exists un ∈ D(Ê0|(0,1)),
0 ≤ un ≤ 1, un −→ 1 a.e. and such that Ê0|(0,1)(un, v) −→ 0 for any v ∈ D(Ê0|(0,1)) ∩
L1((0, 1), x−αdx). Since Ê0|(0,1) is regular on (0, 1], we can choose the sequence such that un ∈
C∞
c ((0, 1]). In particular un(0) = limx↓0 un(x) = 0 for any n. Let us define, for any 0 < R ≤ 1,

vR(x) = lim
r↓0

(
1− ur,R(x)

)
=

{
x1+α/R1+α if 0 ≤ x < R,

1 if 0 ≤ x ≥ R,

where ur,R is defined in (21). Observe that, by the probabilistic interpretation of ur,R given in

Remark 3.9, follows that vR(x) is the probability that the Markov process associated with (∆̂0)F
and starting from x exits the interval (0, R) before being absorbed by the singularity at 0. A simple

computation shows that vR ∈ D(Ê0|(0,1))∩L1((0, 1), x−αdx). Thus, by definition of {un}n∈N and a
direct computation we get

0 = lim
n→+∞

Ê0|(0,1)(un, vR) =
1 + α

R1+α
lim

n→+∞

∫ R

0
∂xun dx =

1 + α

R1+α
lim

n→+∞
un(R).

Hence, un(R) −→ 0 for any 0 < R < 1, contradicting the fact that un −→ 1 a.e..

To complete the proof, we need to show that if α < −1, (∆̂0)F is stochastically complete on
(1,+∞). Since on (1,+∞) the metric is regular, we can complete it to a C∞ Riemannian metric on
the whole interval (0,+∞). Then, the result follows by applying the characterization of stochastic
completeness on model manifolds contained in [21] and Theorem 3.13.

�
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We are now in a position to prove Theorem 1.13.

Proof of Theorem 1.13. By Propositions 3.10 and 3.15, we are left only to prove statement (iii)-
(a) and the second part of (iii)-(b), i.e., the stochastic completeness of ∆N and ∆B at 0 when
α ∈ (−1, 1).

Statement (iii)-(a) follows from [16, Theorem 1.6.4], since for α ∈ (−1, 1) the Friederichs ex-
tension (which is the minimal extension of ∆|C∞

c (M)) is recurrent at ∞. To complete the proof it

suffices to observe that, for these values of α, it holds that 1 ∈ H1(M0, dω) = D(E+|M0
) and clearly

E+|M0
(1, 1) = 0. By Theorem 3.6, this implies the recurrence of E+ at 0. The recurrence of EB at 0

follows analogously, observing that 1 is also continuous on Z and hence it belongs to D(EB |M0
) �

Appendix A. Geometric interpretation

In this appendix we prove Lemmata 1.1 and 1.2, and justify the geometric interpretation of
Figure 1.

A.1. Topology of Mα.

Proof of Lemma 1.1. By (3), it is clear that d : Mcylinder × Mcylinder → [0,+∞) is symmetric,
satisfies the triangular inequality and d(q, q) = 0 for any q ∈ Mcylinder. Observe that the topology
on Mcylinder is induced by the distance dcylinder((x1, θ1), (x2, θ2)) = |x1 − x2| + |θ1 − θ2|. Here and
henceforth, for any θ1, θ2 ∈ T when writing θ1 − θ2 we mean the non-negative number θ1 − θ2
mod 2π. In order to complete the proof it suffices to show that for any {qn}n∈N ⊂ Mcylinder and
q̄ ∈Mcylinder it holds

(24) d(qn, q̄) −→ 0 if and only if dcylinder(qn, q̄) −→ 0.

In fact, this clearly implies that if d(q1, q2) = 0 then q1 = q2, proving that d is a distance, and
moreover proves that d and dcylinder induce the same topology.

Assume that d(qn, q̄) → 0 for some {qn}n∈N ⊂ Mcylinder and q̄ = (x̄, θ̄) ∈ Mcylinder. In this case,
for any n ∈ N there exists a control un : [0, 1] → R

2 such that ‖un‖L1([0,1],R2) → 0 and that the
associated trajectory γn(·) = (xn(·), θn(·)) satisfies γn(0) = qn and γn(1) = q̄. This implies that, for
any t ∈ [0, 1]

|xn(t)− x̄| ≤
∫ t

0
|u1(t)| dt ≤ ‖un‖L1([0,1],R2) −→ 0.

Hence, xn(t) −→ x̄. In particular, this implies that |xn(t)| ≤ ‖un‖L1([0,1],R2) + |x̄| for any t ∈ [0, 1],
and hence

|θn(0)− θ̄| ≤
∫ 1

0
|u2(t)||xn(t)|α dt ≤

(
‖un‖L1([0,1],R2) + |x̄|

)α
∫ 1

0
|u2(t)| dt

≤ ‖un‖L1([0,1],R2)(‖un‖L1([0,1],R2) + |x̄|)α −→ 0.

Here, when taking the limit, we exploited the fact that α ≥ 0. Thus also θn(0) −→ θ̄, and hence
qn = (xn(0), θn(0)) −→ (x̄, θ̄) = q̄ w.r.t. dcylinder.

In order to complete the proof of (24), we now assume that for some qn = (xn, θn) and q̄ = (x̄, θ̄)
it holds dcylinder(qn, q̄) −→ 0 and claim that d(qn, q̄) −→ 0. We start by considering the case q̄ /∈ Z,
and w.l.o.g. we assume q̄ ∈ M+. Since M+ is open with respect to dcylinder, we may assume that
qn ∈M+. Consider now the controls

un(t) =

{
2 (x̄− xn) (1, 0) if 0 ≤ t ≤ 1

2 ,

2 (θ̄ − θn)|x̄|−α (0, 1) if 1
2 < t ≤ 1,
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A simple computation shows that each un steers the system from qn to q̄. The claim then follows
from

d(qn, q̄) ≤ ‖un‖L1([0,1],R2) ≤ |x̄− xn|+ |θ̄ − θn||x̄|−α ≤ (1 + |x̄|−α) dcylinder(qn, q̄) −→ 0.

Let now q̄ ∈ Z and observe that w.l.o.g. we can assume qn /∈ Z for any n ∈ N. In fact, if this is not
the case it suffices to consider q̃n = (xn + 1/n, θn) /∈ Z, observe that d(qn, q̃n) → 0 and apply the
triangular inequality. Then, we consider the following controls, steering the system from qn to q̄,

vn(t) =





3
(
(θ̄ − θn)

1/2α − xn
)
(1, 0) if 0 ≤ t ≤ 1

3 ,

3 (θ̄ − θn)
1/2 (0, 1) if 1

3 < t ≤ 2
3 ,

−3 (θ̄ − θn)
1/2α (1, 0) if 2

3 < t ≤ 1.

Since x̄ = 0 and α ≥ 0, we have

d(qn, q̄) ≤ ‖vn‖L1([0,1],R2) ≤ |(θn − θ̄)
1/2α − xn|+ |θ̄ − θn|1/2 + |θn − θ̄|1/2α −→ 0.

This proves (24) and hence the lemma. �

Proof of Lemma 1.2. By (4), it is clear that d :Mcone ×Mcone → [0,+∞) is symmetric, satisfies the
triangular inequality and d(q, q) = 0 for any q ∈Mcone.

Observe that the topology on Mcone is induced by the following metric

dcone((x1, θ1), (x2, θ2)) =





|x1 − x2|+ |θ1 − θ2| if x1x2 > 0,

|x1 − x2| if x1 = 0 or x2 = 0,

|x1 − x2|+ |θ1|+ |θ2| if x1x2 < 0.

By symmetry, to show the equivalence of the topologies induced by d and by dcone, it is enough
to show that the two distances are equivalent on [0,+∞) × T. Moreover, since by definition of g
it is clear that d(q1, q2) = 0 for any q1, q2 ∈ Z and that d is equivalent to the Euclidean metric
on (0,+∞) × T, we only have to show that for any {qn} ⊂ (0,+∞) × T, qn = (xn, θn), and
q̄ = (0, θ̄) ∈ Z, it holds that

(25) d(qn, q̄) −→ 0 if and only if dcone(qn, q̄) −→ 0.

We start by assuming that d(qn, q̄) −→ 0. Then, there exists γn : [0, 1] →M such that γn(0) = qn
and γn(1) = q̄ and

∫ 1
0

√
g(γn(t), γn(t)) dt −→ 0. This implies that

|xn| ≤
∫ 1

0

√
g(γn(t), γn(t)) dt −→ 0,

and thus that xn −→ 0. This suffices to prove that dcone(qn, q̄) −→ 0.
On the other hand, if dcone(qn, q̄) −→ 0, it suffices to consider the curves

γn(t) =

{(
(1− 2t)xn, θn

)
if 0 ≤ t < 1

2 ,(
0, θn + (2t− 1)(θ̄ − θn)

)
if 1

2 ≤ t ≤ 1.

Clearly γn is Lipschitz and γn(0) = qn and γn(1) = q̄. Finally, since g|Z = 0, the proof is completed
by

d(qn, q̄) ≤
∫ 1

0

√
gγn(t)(γ̇n(t), γ̇n(t)) dt =

∫ 1

2

0

√
gγn(t)((−2xn, 0), (−2xn, 0)) dt = xn −→ 0.

�
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t

r(t)

Figure 2. The surface of revolution of Proposition A.1 with α = −2, i.e. r(t) = t2.

A.2. Surfaces of revolution. Given two manifolds M and N , endowed with two (possibly semi-
definite) metrics gM and gN , we say that M is C1-isometric to N if and only if there exists a
C1-diffeomorphism Φ : M → N such that Φ∗gN = gM . Here Φ∗ is the pullback of Φ. Recall that,
in matrix notation, for any q ∈M it holds

(26) (Φ∗gN )q(ξ, η) = (JΦ)
T gMΦ(q)JΦ(ξ, η).

Here JΦ is the Jacobian matrix of Φ.
We have the following.

Proposition A.1. If α < −1 the manifold Mα is C1-isometric to a surface of revolution S =
{(t, r(t) cos ϑ, r(t) sinϑ) | t ∈ R, ϑ ∈ T} ⊂ R

3 with profile r(t) = |t|−α +O(t−2(α+1)) as |t| ↓ 0 (see
figure 2), endowed with the metric induced by the embedding in R

3.
If α = −1, Mα is globally C1-isometric to the surface of revolution with profile r(t) = t, endowed

with the metric induced by the embedding in R
3.

Proof. For any r ∈ C1(R), consider the surface of revolution S = {(t, r(t) cos ϑ, r(t) sinϑ) | t >
0, ϑ ∈ T} ⊂ R

3. By standard formulae of calculus, we can calculate the corresponding (continuous)
semi-definite Riemannian metric on S in coordinates (t, ϑ) ∈ R× T to be

gS(t, ϑ) =

(
1 + r′(t)2 0

0 r2(t)

)
.

Let now α < −1 and consider the C1 diffeomorphism Φ : (x, θ) ∈ R × T 7→ (t(x), ϑ(θ)) ∈ S
defined as the inverse of

(27) Φ−1(t, ϑ) =

(
x(t)
θ(ϑ)

)
=

( ∫ t
0

√
1 + r′(s)2ds
ϑ

)
.

Observe that Φ is well defined due to the fact that r′ is bounded near 0. Since ∂t(Φ
−1) = ∂tx(t) =√

1 + r′(t)2, by (26) the metric is transformed in

Φ∗gS(x, θ) =
(
J−1
Φ

)T
gS(Φ(x, θ))J

−1
Φ =

(
1 0

0 r
(
Φ(x, θ)

)2
)
.

We now claim that there exists a function r ∈ C1(R) such that r(t(x)) = |x|−α near {x = 0}.
Moreover, this function has expression

(28) r(t) =

{
t−α +O(t−2(α+1)), if t ≥ 0,

−(−t)−α +O(t−2(α+1)) if t < 0.

Notice that, this function generates the same surface of revolution as r(t) = |t|−α + O(t−2(α+1)),
but is of class C1 in 0 while the latter is not.
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The fact that r(t(x)) = |x|−α is equivalent to r(t) = |x(t)|−α, i.e.,

(29) r(t) =

(∫ t

0

√
1 + r′(s)2 ds

)−α

.

This integral equation has a unique solution. Indeed, after algebraic manipulation and a differenti-
ation, it is equivalent to the Cauchy problem

(30)




r′(t) =

√
1

α−2r(t)−2(1+1/α) − 1
,

r(0) = 0.

It is easy to check that, thanks to the assumption α < −1, the r.h.s. of the ODE is Hölder continuous
of parameter 1 + 1/α at 0 (but not Lipschitz). This guarantees the existence of a solution, but not
its unicity. Indeed, this equation admits two kinds of solutions, either r1(t) ≡ 0 or r2(t) 6≡ 0, where
the transition between r1(t) and r2(t− t0) can happen at any t0 ≥ 0. However, the only admissible
solution of (29) is r2, as can be directly checked.

We now prove the representation (28). Assume w.l.o.g. that t, and hence x(t), be positive. Due

to the Hölder continuity of the r.h.s. of the ODE in (30), we get that |r′(t)| ≤ Ct1+1/α. Hence,

|x′(t)− x′(0)| = |
√

1 + r′(t)2 − 1| ≤ |r′(t)| ≤ Ct1+1/α.

Here, we used the 1/2-Hölder property of the square root. Finally, a simple computation shows that

|x(t)− tx′(0)| = O(t2+1/α), which yields

r(t) = (x(t))−α =
(
t+O(t2+1/α)

)−α
= t−α +O(t−(2+1/α)(α+1)) = t−α +O(t−2(α+1)).

Here, in the last step we used the fact that −(2 + 1/α)(α + 1) < −2(α+ 1). This proves the claim
and thus the first part of the statement.

Let now α = −1. In this case, by letting r(t) = t, the metric on the surface of revolution is

gS(t, ϑ) =

(
2 0
0 t2

)
.

Consider the diffeomorphism Ψ : (x, θ) ∈ R× T 7→ (t, ϑ) ∈ S defined as

(31) Ψ(x, θ) =
√
2

(
x
θ

)
.

Then the statement follows from the following computation,

Φ∗gS(x, θ) =
(
J−1
Ψ

)T
gS(Ψ(x, θ))J−1

Ψ =

(
1 0

0 r
(
Ψ(x, θ)

)2
/2

)
=

(
1 0
0 x2

)
.

�

Remark A.2. If α > −1 we cannot have a result like the above, since the change of variables (27)
is no more regular. In fact, the function r(t) = t−α has an unbounded first derivative near 0.

Appendix B. Complex self-adjoint extensions

The natural functional setting for the Schrödinger equation onMα is the space of square integrable
complex-valued function L2

C(M,dω). Recall that a self-adjoint extension B of an operator A over
L2
C(M,dω) is a real self-adjoint extensions if and only if u ∈ D(B) implies u ∈ D(B) and B(u) =

(Bu). The self-adjoint extension of A over L2(M,dω) are exactly the restrictions to this space of
the real self-adjoint extension of A over L2

C(M,dω).
All the theory of Section 2 extends to the complex case, in particular, we have the following

generalization of Theorem 2.6.
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Theorem B.1 (Theorem 13.3.1 in [30]). Let A be the Sturm-Liouville operator on L2
C(J,w(x)dx)

defined in (11). Then

n+(A) = n−(A) = #{limit-circle endpoints of J}.
Assume now that n+(A) = n−(A) = 2, and let a and b be the two limit-circle endpoints of

J . Moreover, let φ1, φ2 ∈ Dmax(A) be linearly independent modulo Dmin(A) and normalized by
[φ1, φ2](a) = [φ1, φ2](b) = 1. Then, B is a self-adjoint extension of A over L2

C(J,w(x)dx) if and
only if Bu = A∗u, for any u ∈ D(B), and one of the following holds

(1) Disjoint dynamics: there exists c+, c− ∈ (−∞,+∞] such that u ∈ D(B) if and only if

[u, φ1](0
+) = c+[u, φ2](0

+) and [u, φ1](0
−) = d+[u, φ2](0

−).

(2) Mixed dynamics: there exist K ∈ SL2(R) and γ ∈ (−π, π] such that u ∈ D(B) if and only
if

U(0−) = eiγK U(0+), for U(x) =

(
[u, φ1](x)
[u, φ2](x)

)
.

Finally, B is a real self-adjoint extension if and only if it satisfies (1) the disjoint dynamic or (2)
the mixed dynamic with γ = 0.

As a consequence of Theorem B.1, we get a complete description of the essential self-adjointness
of ∆|C∞

c (M) over L2
C(M,dω), extending Theorem 1.6, and of the complex self-adjoint extensions of

∆̂0, extending Theorem 1.8.

Theorem B.2. Consider Mα for α ∈ R and the corresponding Laplace-Beltrami operator ∆|C∞
c (M)

as an unbounded operator on L2
C(M,dω). Then it holds the following.

(i) If α ≤ −3 then ∆|C∞
c (M) is essentially self-adjoint;

(ii) if α ∈ (−3,−1], only the first Fourier component ∆̂0 is not essentially self-adjoint;
(iii) if α ∈ (−1, 1), all the Fourier components of ∆|C∞

c (M) are not essentially self-adjoint;
(iv) if α ≥ 1 then ∆|C∞

c (M) is essentially self-adjoint.

Theorem B.3. Let Dmin(∆̂0) and Dmax(∆̂0) be the minimal and maximal domains of ∆̂0|C∞
c (R\{0})

on L2
C(R \ {0}, |x|−α), for α ∈ (−3, 1). Then,

Dmin(∆̂0) = closure of C∞
c (R \ {0}) in H2

C(R \ {0}, |x|−αdx)

Dmax(∆̂0) = {u = u0 + u+Dφ
+
D + u+Nφ

+
N + u−Dφ

−
D + u−Nφ

−
N : u0 ∈ Dmin(∆̂0) and u±D, u

±
N ∈ C},

Moreover, A is a self-adjoint extension of ∆̂0 if and only if Au = (∆̂0)
∗u, for any u ∈ D(A), and

one of the following holds

(i) Disjoint dynamics: there exist c+, c− ∈ (−∞,+∞] such that

D(A) =
{
u ∈ Dmax(∆̂0) : u

+
N = c+u

+
D and u−N = c−u

+
D

}
.

(ii) Mixed dynamics: there exist K ∈ SL2(R) and γ ∈ (−π, π] such that

D(A) =
{
u ∈ Dmax(∆̂0) : (u−D, u

−
N ) = eiγK (u+D, u

+
N )T

}
.

Finally, the Friedrichs extension (∆̂0)F is the one corresponding to the disjoint dynamics with
c+ = c− = 0 if α ≤ −1 and with c+ = c− = +∞ if α > −1.
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