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By construction digital image correlation is an ill-posed problem.

To circumvent this diculty, the regularization is often performed implicitly through the kinematic basis chosen to express the sought displacement elds. Conversely, a priori information on the mechanical behavior of the studied material is often available. It is proposed to evaluate the gain to be expected from such a mechanical assistance, namely, the measured displacement not only satises as best as possible the gray level conservation, but also mechanical admissibility.

Introduction

One of the limitations of Digital Image Correlation (DIC) comes from its ill-posedness. The limited available information, generally two gray-level images to be registered, impedes the measurement of very rapid uctuations of the displacement eld, and hence constitutes a potential barrier to very small scale displacement resolutions (i.e., the `smallest change in a quantity being measured that causes a perceptible change in the corresponding indication' [START_REF]International Vocabulary of Metrology -Basic and General Concepts and Associated Terms, VIM . International Organization for Standardization[END_REF]). Consequently, a compromise has to be found between the standard measurement uncertainty and the spatial resolution [START_REF] Bergonnier | Digital image correlation used for mechanical tests on crimped glass wool samples[END_REF][START_REF] Bornert | Assessment of Digital Image Correlation measurement errors: Methodology and results[END_REF].

Dierent strategies have been designed to overcome this limitation. The most classical one is to work with a coarse description of the displacement eld based on a discretization scale that is much larger than the pixel scale. This corresponds to the choice made in local (or subset-based) DIC approaches [START_REF] Lucas | An Iterative Image Registration Technique with an Application to Stereo Vision[END_REF][START_REF] Burt | Local correlation measures for motion analysis: a comparative study[END_REF][START_REF] Sutton | Determination of Displacements Using an Improved Digital Correlation Method[END_REF] where the size of the Zone Of Interest (ZOI) can be seen as a natural regularization. Apart from this coarse description, no additional assumption is made on the displacement eld, which nally has to be interpolated between ZOI centers. In practice, this choice limits the ZOI size to typically 10 pixels or more [START_REF] Sutton | Advances in Two-Dimensional and Three-Dimensional Computer Vision[END_REF][START_REF] Sutton | Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications[END_REF].

To achieve smaller resolutions or spatial resolutions, some additional information has to be provided. One example is to assume that the displacement eld be continuous. The latter can be decomposed over a convenient basis of functions that fulll this constraint. For instance, a nite element basis can be chosen [START_REF] Broggiato | Adaptive image correlation technique for full-eld strain measurement[END_REF][START_REF] Sun | Finite-element formulation for a digital image correlation method[END_REF][START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF]. The problem to solve no longer consists in a collection of independent correlation computation for each ZOI as was the case for local DIC [START_REF] Sutton | Image correlation for shape, motion and deformation measurements: Basic Concepts, Theory and Applications[END_REF]. The problem is formulated as a whole and all degrees of freedom determined simultaneously through the solution of a coupled problem, it is referred to as `global DIC.' This coupling involves an over-cost in terms of computation time. This extra cost is however rewarding in terms of result quality [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]. Further, the post-processing step of data interpolation and smoothing becomes essentially useless, and hence a good control of the displacement determination is preserved. In favorable cases, element sizes as small as 4 × 4 pixels can be used [START_REF] Rupil | Probabilistic modeling of mesocrack initiations in 304L stainless steel[END_REF].

The spatial resolution can be further decreased (i.e., down to pixel [START_REF] Passieux | Digital image correlation using proper generalized decomposition: PGD-DIC[END_REF] or voxel scales [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF][START_REF] Leclerc | Digital Volume Correlation: What are the limits to the spatial resolution?[END_REF]) by adding other terms in the minimization of the gray level conservation [START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis fractured samples[END_REF]. A natural choice stems from the general propositions associated with the regularization of ill-posed problems [START_REF] Tikhonov | Solutions of ill-posed problems[END_REF]. It consists in minimizing the uctuations associated with the Laplacian of the displacement eld [START_REF] Passieux | Digital image correlation using proper generalized decomposition: PGD-DIC[END_REF]. This type of lter does work, but it may discard uctuations that are mechanically admissible.

Another route consists in considering a mechanical lter, namely, the regularization term allows the mechanical admissibility to be enforced in a weak sense. Among the various propositions [START_REF] Bonnet | Inverse problems in elasticity[END_REF], the equilibrium gap is chosen [START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF][START_REF] Réthoré | An extended and integrated digital image correlation technique applied to the analysis fractured samples[END_REF] in the sequel. The advantage of such a regularization will be shown when assessing the resolution, and with very dicult textures that are not tractable with classical DIC codes. Further, boundary regularization has not received a lot attention. When comparing experimental and simulated displacement elds for identication or validation purposes, the raw measured boundary conditions are considered [START_REF] Fedele | Identication of adhesive properties in GLARE assemblies by Digital Image Correlation[END_REF] or ltered [START_REF] Wei | Modeling of mixed-mode crack growth in ductile thin sheets under combined in-plane and out-of-plane loading[END_REF]. They can also be parts of the unknowns in an integrated approach to DIC [START_REF] Leclerc | Integrated digital image correlation for the identication of mechanical properties[END_REF]. A new mechanics-based regularization is proposed herein. It acts as a lter in the same spirit as for bulk degrees of freedom. In the following studies, 3-noded elements will be considered. They are the simplest in terms of displacement interpolations, even though they are seldom used, if ever, in the framework of global DIC. The other novelty of the developed procedure is that the resolution / spatial resolution (or regularization length) limit can be broken through an appropriate driving of the DIC algorithm.

The paper is organized as follows. First, the main features associated with global DIC and its regularization are introduced in Section 2. Section 3 is devoted to the analysis of two articial cases. The rst one deals with a sinusoidal displacement eld, and the second one with a mechanically admissible eld. True experimental data are nally studied in Section 4. Natural and articial textures are compared. The registration of two gray level pictures in the reference, f , and deformed, g, congurations is based upon the conservation of the gray levels

f (x) = g(x + u(x)) (1) 
where u is the unknown displacement eld to be measured, and x the pixel location. The sought displacement eld minimizes the sum of squared dier-ences Φ 2 c over the Region Of Interest (ROI)

Φ 2 c = ROI ϕ 2 c (x)dx (2) 
where ϕ c (x) denes the eld of correlation residuals

ϕ c (x) = |g(x + u(x)) -f (x)| (3) 
The minimization of Φ 2 c is a nonlinear and ill-posed problem. If no additional information is available, it is impossible to determine the displacement for each pixel independently since there are two unknowns for a given (scalar) gray level dierence. This explains the reason for choosing a weak formulation in which the displacement eld is expressed in a (chosen) basis as

u(x) = n u n ψ n (x) (4) 
where ψ n are (chosen) vector elds, and u n the associated degrees of freedom.

The measurement problem then consists in minimizing Φ 2 c with respect to the unknowns u n . A Newton iterative procedure is followed to circumvent the nonlinear aspect of the minimization problem [START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF]. The following linear systems are solved iteratively

[M]{δu} = {b} (5)
where [M] is a matrix formed from the dyadic product of elds ∇f • ψ n [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF], {b} a vector that vanishes when a perfect registration is obtained for each pixel (i.e., Equation ( 1)) is satised), and {δu} collects the corrections to the measured degrees of freedom u n .

To enforce mechanical admissibility in an FE sense, the equilibrium gap is rst introduced [START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF]. If linear elasticity applies, the equilibrium equations read

[K]{u} = {f } (6)
where [K] is the stiness matrix, and {f } the vector of nodal forces. When the displacement vector {u} is prescribed and if the (unknown) stiness matrix is not the true one, force residuals {f r } will arise

{f r } = [K]{u} -{f } (7)
Similarly, if the displacement eld does not satisfy equilibrium it will induce an equilibrium gap. In the absence of body forces, interior nodes are free from any external load. Consequently, the equilibrium gap method consists in minimizing

Φ 2 m = {u} t [K] t [K]{u} (8) 
where t is the transposition operator, and Φ 2 m corresponds to the sum of the squared norm of all equilibrium gaps at interior nodes only. Any displacement eld prescribed on the boundary gives rise to a displacement eld for which Φ m = 0. This observation requires an additional regularization for boundary nodes.

It is proposed to introduce a penalization of short wavelength displacement uctuations along the edges of the region of interest. The third objective function to be considered has to vanish for any rigid body motion

Φ 2 b = {u} t [L] t [L]{u} (9) 
where [L] is an operator acting on the ROI boundary [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF]. Appendix A details the construction of the new operator proposed herein, which has a simple mechanical interpretation.

The minimization of correlation residuals (Φ 2 c ), equilibrium gap (Φ 2 m ), and boundary uctuations (Φ 2 b ), requires the introduction of a total functional Φ t

(1 + w m + w b )Φ 2 t = Φ 2 c + w m Φ 2 m + w b Φ 2 b ( 10 
)
where w m and w b are weights that dene length scales associated with Φ 2 m and Φ 2 b , and Φ denote normalized residuals. To normalize the residuals, let us consider a displacement eld in the form of a plane wave v

(x) = v 0 exp(ik • x),
where v 0 is the amplitude and k the wave vector. The normalized residuals then become

Φ 2 c = Φ 2 c {v} t [M]{v} , Φ 2 m = Φ 2 m {v} t [K] t [K]{v} , Φ 2 b = Φ 2 b {v} t [L] t [L]{v} (11) 
where {v} collects all the nodal displacements associated with displacement eld v. The wavelength dependence of

{v} t [K] t [K]{v} and {v} t [L] t [L]{v}
is of fourth order whereas {v} t [M]{v} is wavelength-independent [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF], see 

w m = (2π|k|ℓ m ) 4 , w b = (2π|k|ℓ b ) 4 (12) 
where ℓ m and ℓ b denote the regularization lengths for Φ 2 m and Φ 2 b , respectively. With this choice,

Φ c (v) = Φ m (v) = Φ b (v) = 1 and Φ t (v) = 1 if ℓ m = ℓ b = Figure 1 about here
It is to be emphasized that other forms of regularization kernels could have been chosen. The specic form of the equilibrium gap comes from the strong penalization of high frequency oscillations (fourth power of the wavenumber), and thus also very weak inuence on long wavelength modes.

The higher ℓ m , the more weight is put on the equilibrium gap functional Φ 2 m , therefore the equilibrium residuals have to reach lower levels. Similarly, the edge regularization term is designed to have the same scaling properties as the bulk term. The higher ℓ b , the more weight is put on the boundary functional Φ 2 b , therefore the corresponding displacement uctuations will decrease.

When the material parameters are known, the minimization of Φ 2 t with respect to the unknown degrees of freedom can be performed [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF]. The above mechanical regularization procedure can be used for an arbitrary supporting mesh, even down to the pixel [START_REF] Passieux | Digital image correlation using proper generalized decomposition: PGD-DIC[END_REF] or voxel [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF][START_REF] Leclerc | Digital Volume Correlation: What are the limits to the spatial resolution?[END_REF] scales. In the following, the elements will be considered to be 3-noded triangles (T3) with a linear displacement interpolation.

Implementation

A Newton iterative procedure is followed to circumvent the nonlinear aspect of the minimization problem (i.e., Φ 2 c is a nonlinear function of the degrees of freedom). Let u j denote the displacement eld at iteration j, and {u} j the vector collecting all the unknown degrees of freedom. By assuming small increments du = u j+1u j of the solution, ∂Φ 2 t /∂{u} j = {0} is recast in a matrix-vector product as

([M] + [N]){du} = {b} j -[N]{u} j (13) 
with

[N] = w m {v} t [M]{v} {v} t [K] t [K]{v} [K] t [K] + w b {v} t [M]{v} {v} t [L] t [L]{v} [L] t [L] (14) 
where {b} j is updated as the picture in the deformed conguration g is corrected by using the current estimate of the displacement eld u j . In the present case a cubic gray level interpolation is considered. Conversely, matrices [M] and [N] are computed once for all. The iterations stop when the displacement corrections {du} reach a small level that is chosen by the user.

In the absence of regularization, the presence of noise leads to secondary minima trapping when small elements are chosen. This is responsible for a degradation of the uncertainty for ne meshes. This secondary minima trapping leads to a multiplicity of stationary solutions of the displacement eld. Dierent solutions are obtained depending on the initial displacement eld. Regularization is introduced to mend this problem, at the expense of a priori assumptions on the elastic properties of the considered body.

Thus, in the analysis of resolution, a specic pathway consists in rst solving the problem with large regularization lengths, and progressively decreasing the regularization length scales ℓ m and ℓ b . Although ending with very low weights given to the regularization, the sought displacement eld is driven to a solution where initialization is an educated guess based on an elastic interpolation. The nal solution will live in an energy landscape where many local minima exist, but the selection of the actual minimum results from a convergence history that is expected to be benecial.

In the following, series of calculations are generally run with dierent regularization lengths ℓ m when ℓ b = ℓ m /2. Dierent initial values of ℓ m are considered and each time a rst calculation is run with an initial value of u 0 = 0. The next calculation is carried out with the regularization length divided by two. It takes as initial guess u 0 the displacement eld at convergence of the previous calculation, and so on. This procedure will be referred to as relaxation. Last, the unstructured mesh is composed of triangles whose typical edge is 10-pixel long.

Articial Test Cases

In these rst two test cases, a true texture is considered (Figure 2). The picture denition is 531×531 pixels with an 8-bit digitization. It corresponds to the central part of a cross-shaped sample analyzed in Ref. [START_REF] Claire | A nite element formulation to identify damage elds: The equilibrium gap method[END_REF]. To create the deformed conguration, two dierent displacement elds are considered, namely, a rst one that is a sine wave, and a second one that is mechanically admissible. In both cases, a linear interpolation of the gray levels is used to generate picture g in the deformed conguration. No noise is included. The same mesh is used in both cases and is made of 2313 inner nodes and 197 edge nodes. The sine wave is an interesting case since it corresponds to one of the standard baseline analyses for optical systems (in particular in the context of DIC [START_REF] Bornert | Assessment of Digital Image Correlation measurement errors: Methodology and results[END_REF]).

The choice of the spatial resolution has to be compared with the wave length of the prescribed displacement. The two components of the latter read

u x (x, y) = 2 sin(2πx/n x ) , u y (x, y) = 2 sin(2πy/n y ) (15) 
where n x × n y is the number of pixels in the ROI.

It is worth noting that the normalized correlation residual Φ 2 c was introduced to evaluate the change in the correlation functional for a perturbation in the displacement eld, and to compare it to a similar perturbation in the regularization functional. The value of the absolute minimum of Φ c is irrelevant. Thus only the parabolic expansion of the functional Φ 2 c was considered. However, to judge the quality of the image registration itself, it is more relevant to evaluate the norm of ϕ c -eld. The latter, however can be aected by a mean change of gray levels between the pictures in the deformed and reference congurations. To cancel out this eect (simply contributing as an oset in gray levels), it is convenient to resort to the standard deviation of ϕ. A dimensionless estimator consists in comparing this standard deviation to the dynamic range ∆f = max(f ) -min(f ) of the reference picture. Thus 2 , where • denotes an average of the ROI. Φc will be used in the sequel for estimating the quality of image registration. is of comparable quality. The only dierence is given by the weight put on the mechanical and edge regularizations. This choice is left to the user and its understanding of the underlying behavior of the studied material. The same can be said for the edge regularization, which is related to the boundary conditions of the mechanical analysis when DIC is assisted by mechanics. The standard displacement error is virtually identical for the two displacement components (except for very large initial regularization lengths), even though an unstructured mesh is used. No bias is noted due to the fact that the mesh is not regular. Dierent trends are observed. First for very large initial regularization lengths (i.e., ℓ m > n x , n y ), the standard error is very high. This is caused by interpolation errors as very large regularization lengths prevent from assessing small displacement uctuations. When they are relaxed, a smaller but still signicant error is observed. Conversely, for small regularization lengths, the standard error remains small but the relaxation increases slightly the error. When an initial value ℓ m = 128 pixels is chosen, the smallest errors are observed. For initial lengths less than ℓ m = 128 pixels, error levels of the order of or less than 10 -2 pixel are achieved. with what is observed in Figure 5. For large initial regularization lengths, the mean correlation residuals reach high levels (i.e., almost an order of magnitude higher). This is the consequence of the interpolation error discussed before, as the sought displacement eld does not belong to the kernel of the regularization operator. The next choice is then to seek more or less mechanical content in the measured displacement eld. This is characterized by the equilibrium gap whose mean normalized value is shown in Figure 6(b).

Φ2 c = [ ϕ 2 -ϕ 2 ]/(∆f )
For larger regularization lengths, the measured eld displays less equilibrium gap as its weight in the total functional (10) is increased. There is a whole range of initial values (128 < ℓ m < 512 pixels) for which the equilibrium gap is independent of the initial value of ℓ m . This zone is the most favorable in the present case.

Figure 6 about here In all the following analyses, the ratio ℓ b /ℓ m is set to 1/2. It follows that there is more weight put to the mechanical regularization than the edge regularization. The former will be mainly studied in the remainder of the paper.

Mechanics-Based Displacement

An elastic calculation (with Poisson's ratio ν = 0.3) is performed on a plate whose size is exactly the same as the reference picture shown in Figure 2.

The boundary of the top part only moves in the horizontal direction, and the boundary of the bottom part has a prescribed displacement that is again a sine wave of unitary amplitude and wave length equal to the length of the lower edge. A mesh consisting of 50 × 50 Q4 elements is considered.

The corresponding displacement is subsequently interpolated at the pixel level by using bilinear shape functions of Q4 elements. Figure 7 shows the displacement components that are used to deform the reference picture of The same trends are observed when compared to Figure 5 for the same reasons. For initial regularization lengths ℓ m ranging from 64 to 512 pixels the error level is less than 10 -2 pixel at the end of the relaxation process.

It is worth remembering that this error includes the approximations of the reference solution (on a regular Q4 mesh), those of the T3 mesh used in the DIC analysis, and the inevitable gray level interpolation. The image pair considered in this section corresponds to two consecutive pictures shot when the sample was already mounted in the testing machine with F = 0. This analysis is performed to evaluate the resolution of the measurement technique [START_REF]International Vocabulary of Metrology -Basic and General Concepts and Associated Terms, VIM . International Organization for Standardization[END_REF]. Figure 11 shows the standard displacement resolution for the two displacement components of displacement. The larger the regularization length, the smaller the displacement resolution. It is worth noting that any value less than one centipixel is very seldom encountered. This is even more noteworthy that the texture of the pictures is very dicult to analyze. To get all the results reported in Figure 11 (requiring 51 simulations), less than one hour of CPU time was needed on an Intel Xeon X5660

processor. The mesh consisted of 8,749 nodes, and therefore involved 17,498 kinematic unknowns.

To compare the present results with more standard approaches, a local and global Q4-DIC analysis is run. It is based on 4-noded ZOIs for the local approach, and 4-noded elements in a global approach. In both cases a bilinear displacement is considered. The implementation details of both approaches follow very closely those used herein [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF] AN?AFJ that no regularization length is used. The right envelope of the regularized results virtually coincides with those of the global Q4-DIC analysis. The global analysis, as expected when the same ZOI and element size is considered, out-performs the local analysis [START_REF] Hild | Comparison of local and global approaches to digital image correlation[END_REF]. With this dicult texture, there is a clear gain to consider global vs. local approaches. The regularization proposed herein induces a very signicant additional gain as all the non-mechanical uctuations are ltered out. Last, the relaxation process of the regularization length leads to very signicant reductions of the displacement uctuations. Figure 12 about here If an estimate of the displacement eld is sought with a very light mechanical regularization, the procedure to follow is to run a rst correlation with a very large regularization length, say ℓ m = 1024 pixels. At convergence, a second calculation could be run ℓ m = 512 pixels by using an initial guess that is the displacement eld at convergence with ℓ m = 1024 pixels. If this path is followed, it can be stopped when ℓ m = 1 pixel. The result given in Figure 11 shows that the displacement resolution is very small and the equilibrium residual remains very small (Figure 12(b)).

The next issue is related to the choice of the variation of the regularization length between two consecutive computations. Figure 13 shows the standard displacement resolution for the two components of displacement when dierent ratios are applied to the regularization lengths. If a very small regularization is considered and initialized with the result obtained for ℓ m = 1024 pixels, the displacement resolution remains less than when the previous relaxation process is followed. With this route, the displacement resolution becomes even smaller and virtually independent of the nal regularization length.

Figure 13 about here Figure 14(a) shows that the dimensionless correlation residuals are constant for all the computations with this procedure. The equilibrium residuals (Figure 14(b)) vary but not strongly when the regularization length is reduced. This result shows that there is no need to run numerous calculations to relax the regularization. Only a rst computation is needed with a large regularization length, say ℓ m = 1024 pixels, followed by a second one for a small length (i.e., values as low as ℓ m = 1 pixel can be considered). Figure 16 about here For small initial regularization lengths, the equilibrium residuals are less than those observed in the previous case. This result allows us to fully relax the regularization length (i.e., ℓ m = 1 pixel) and even start with a modest one (e.g., ℓ m = 64 or 32 pixels). This is made possible thanks to the texture quality that is better than that of the previous approach.

Figure 17 shows the displacement components that are measured when ℓ m = 1 pixel with an initial value of 32, 128 and 1024 pixels. The range of vertical displacement is equal to 0.9 pixel, and that of the horizontal displacements is about 1 pixel. There is a clear strain concentration in the central part of the sample, where the transverse thickness is reduced (Figure 10(a)).

Note that this eect is not taken into account in the regularization kernel where plane elasticity is assumed to hold. As the initial regularization length increases, the displacement uctuations of the nal results decrease because the relaxation process does not lead to the same solution. were considered in the computations. The latter are less demanding than with a pixel-scale DIC approach. However, it is believed that the results presented herein are generic and should apply to pixel-scale DIC procedures.

The fact that a regularization could reduce the uncertainty in the same way as coarsening a spatial discretization has been reported in the past [START_REF] Leclerc | Voxel-scale digital volume correlation[END_REF].

The novelty of the procedure proposed herein is that the resolution / regularization length limit can be broken through an appropriate driving of the regularized DIC algorithm. The mechanical kernel introduced in the global functional may not provide a genuine picture of the actual displacement eld (see the sine wave displacement eld as an articial case study, or the last example of a specimen with a varying thickness). Thus rather than prescribing a large regularization length scale, the latter can be considered in a transient stage of the algorithm to help dealing with large displacements, and / or poor textures (see the picture of SG cast iron at the mesoscale).

This regularization provides only an educated guess for the displacement eld, where the actual freedom of DIC is very much constrained. However, at convergence, relaxing the regularization length scale to very small val-ues (and hence playing only a negligible role) allows the DIC procedure to inherit from a displacement eld that is much closer to the actual displacement eld. Hence, spurious pinning of the estimated displacement eld in local secondary minima is drastically reduced. However, this reduction is not complete, and if the initial regularization length scale is too small, some amount of random pinning is still present at the initial stage, and cannot be relaxed upon further relaxation steps. Figure 17 is an illustration of this property. The existence of history-dependent solutions (i.e., not controlled exclusively by the value of the element size ℓ) is a clear sign of multiple minima, calling for adapted strategies to avoid (or limit) spurious trapping.

The philosophy of this procedure can be compared with the pyramidal multiscale approach proposed in [START_REF] Besnard | Finite-element displacement elds analysis from digital images: Application to Portevin-Le Chatelier bands[END_REF]. There again, kinematic degrees of freedom are reduced and local minima avoided in transient stages of the algorithm. At each scale, the converged eld is used as an initialization for the ner scale and hence this multiscale driving provided both robustness and lower uncertainties. However, such a multiscale procedure is not easily implemented with an unstructured mesh decomposition, unless the mesh is endowed with a hierarchical structure. In contrast, the mechanical regularization easily complies with an arbitrary discretization.

namely,

a 1 = ζ -1 • v -1 ζ -1 2 a 2 = ζ 1 • v 1 ζ 1 2 (17) 
where the normalization has been introduced here for reasons that will become clearer later. The third scalar reads

a 3 = τ 1 • v 1 τ 1 2 - τ -1 • v -1 τ -1 2 (18) 
Thus the most general form for the sought functional is expressed as

T b = 1 2 n α n a 2 n ( 19 
)
where α n are arbitrary factors. The physical interpretation of those terms is straightforward. The rst two correspond to a linear spring connecting nodes

(M n-1 , M n ) and (M n , M n+1
), respectively. Parameters α 1 and α 2 are the stiness of these springs. The last invariant, a 3 , corresponds to the resulting moment of forces at node M n , and hence the last term in the functional would correspond to an angular spring. In the absence of additional information, it is natural to choose all stinesses as constant, say equal to unity, and the total magnitude of the functional being set with respect to the other functionals as discussed in the main text.

To make the expression of this functional more explicit, the `rigidity' matrix [L] introduced in the main text is obtained by assembling (with respect to all boundary nodes i) the local contributions

T b = 1 2 (v 1 v -1 )•     ζ 1 ⊗ ζ 1 ζ 1 4 + τ 1 ⊗ τ 1 τ 1 4 - τ 1 ⊗ τ -1 τ 1 2 τ -1 2 - τ -1 ⊗ τ 1 τ 1 2 τ -1 2 ζ -1 ⊗ ζ -1 ζ -1 4 + τ -1 ⊗ τ -1 τ -1 4     •    v 1 v -1    (20) 
Noting that τ n = ζ n , and

ζ n ⊗ ζ n + τ n ⊗ τ n = ζ n 2 I
, the particular choice of `elastic' constants, α n , leads to the simplied expression

T b = 1 2 ζ 1 2 ζ -1 2 (v 1 v -1 ) •    ζ -1 2 I -τ 1 ⊗ τ -1 -τ -1 ⊗ τ 1 ζ 1 2 I    •    v 1 v -1    (21) 
To conclude the nal expression of the edge regularization matrix, the expression of v as a function of the nodal displacement is to be used to convert the above quadratic form into

T b = (u i+1 u i u i-1 ) • [L]       u i+1 u i u i-1       (22) 
with The displacements are expressed in pixels.

[L] = 1 2 ζ 1 2 ζ -1 2 [ℓ] ℓ 11 = ζ -1 2 I ℓ 12 = -ζ -1 2 I + τ 1 ⊗ τ -1 ℓ 13 = -τ 1 ⊗ τ -1 ℓ 21 = -ζ -1 2 I + τ -1 ⊗ τ 1 ℓ 22 = ( ζ -1 2 + ζ 1 2 )I -τ 1 ⊗ τ -1 -τ -1 ⊗ τ 1 ℓ 23 = -ζ 1 2 I + τ 1 ⊗ τ -1 ℓ 31 = -τ -1 ⊗ τ 1 ℓ 32 = ζ 1 2 I + τ -1 ⊗ τ 1 ℓ 33 = ζ 1 2 I (23) 
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 567 Figure 5: Change of the standard displacement error for dierent regularization lengths and dierent initialization lengths ℓ m (in pixels) indicated in the legend.
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 91011 Figure 9: Change of the dimensionless correlation residuals (a) and equilibrium residuals (b) for dierent regularization lengths and dierent initialization lengths ℓ m (in pixels) indicated in the legend.
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In this appendix, the edge regularization is presented. To be consistent with the bulk regularization, a local quadratic form is sought on the nodal displacement that has to be invariant under a rigid body motion. The consequence of this requirement is that such a quadratic form will have a simple mechanical interpretation. Local in the context of a discretized medium means that the edge regularization will only be based on nearest neighbors. Thus, focusing on specic node, M n , only the three consecutive nodes located at points (M n-1 , M n , M n+1 ) will be considered (irrespective of their alignment or not).

Because of translational invariance, one may choose M n as the origin, so that the geometry is captured through the two vectors ζ -1 = M n M n-1 and

and ζ 1 rotated by π/2, resp. τ -1 and τ 1 .

The displacement vector at those nodes is denoted by (u n-1 , u n , u n+1 ). Invariance under translation imposes that the regularization functional should be a quadratic form of

Invariance under rotation imposes that the functional should be invariant under the following change in the displacement eld, where ω and ω denotes respectively a rotation vector, and its magnitude.

Three scalars a n (n = 1, 2, 3) can be formed, which are invariant under such a rotation. The rst two depend on a pair of neighboring node displacement,