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Abstract

By construction digital image correlation is an ill-posed problem.

To circumvent this di�culty, the regularization is often performed im-

plicitly through the kinematic basis chosen to express the sought dis-

placement �elds. Conversely, a priori information on the mechanical

behavior of the studied material is often available. It is proposed to

evaluate the gain to be expected from such a mechanical assistance,

namely, the measured displacement not only satis�es as best as possi-

ble the gray level conservation, but also mechanical admissibility.
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tion; Resolution; T3 elements.
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1 Introduction

One of the limitations of Digital Image Correlation (DIC) comes from its

ill-posedness. The limited available information, generally two gray-level im-

ages to be registered, impedes the measurement of very rapid �uctuations

of the displacement �eld, and hence constitutes a potential barrier to very

small scale displacement resolutions (i.e., the `smallest change in a quantity

being measured that causes a perceptible change in the corresponding indica-

tion' [1]). Consequently, a compromise has to be found between the standard

measurement uncertainty and the spatial resolution [2, 3].

Di�erent strategies have been designed to overcome this limitation. The

most classical one is to work with a coarse description of the displacement

�eld based on a discretization scale that is much larger than the pixel scale.

This corresponds to the choice made in local (or subset-based) DIC ap-

proaches [4, 5, 6] where the size of the Zone Of Interest (ZOI) can be seen as

a natural regularization. Apart from this coarse description, no additional

assumption is made on the displacement �eld, which �nally has to be inter-

polated between ZOI centers. In practice, this choice limits the ZOI size to

typically 10 pixels or more [7, 8].

To achieve smaller resolutions or spatial resolutions, some additional in-

formation has to be provided. One example is to assume that the displace-

ment �eld be continuous. The latter can be decomposed over a convenient

basis of functions that ful�ll this constraint. For instance, a �nite element

basis can be chosen [9, 10, 11]. The problem to solve no longer consists in

a collection of independent correlation computation for each ZOI as was the
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case for local DIC [8]. The problem is formulated as a whole and all degrees of

freedom determined simultaneously through the solution of a coupled prob-

lem, it is referred to as `global DIC.' This coupling involves an over-cost in

terms of computation time. This extra cost is however rewarding in terms

of result quality [12]. Further, the post-processing step of data interpolation

and smoothing becomes essentially useless, and hence a good control of the

displacement determination is preserved. In favorable cases, element sizes as

small as 4× 4 pixels can be used [13].

The spatial resolution can be further decreased (i.e., down to pixel [14] or

voxel scales [15, 16]) by adding other terms in the minimization of the gray

level conservation [17]. A natural choice stems from the general propositions

associated with the regularization of ill-posed problems [18]. It consists in

minimizing the �uctuations associated with the Laplacian of the displacement

�eld [14]. This type of �lter does work, but it may discard �uctuations that

are mechanically admissible.

Another route consists in considering a mechanical �lter, namely, the

regularization term allows the mechanical admissibility to be enforced in a

weak sense. Among the various propositions [19], the equilibrium gap is cho-

sen [20, 17] in the sequel. The advantage of such a regularization will be

shown when assessing the resolution, and with very di�cult textures that

are not tractable with classical DIC codes. Further, boundary regularization

has not received a lot attention. When comparing experimental and sim-

ulated displacement �elds for identi�cation or validation purposes, the raw

measured boundary conditions are considered [21] or �ltered [22]. They can

also be parts of the unknowns in an integrated approach to DIC [23]. A new
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mechanics-based regularization is proposed herein. It acts as a �lter in the

same spirit as for bulk degrees of freedom. In the following studies, 3-noded

elements will be considered. They are the simplest in terms of displacement

interpolations, even though they are seldom used, if ever, in the framework

of global DIC. The other novelty of the developed procedure is that the res-

olution / spatial resolution (or regularization length) limit can be broken

through an appropriate driving of the DIC algorithm.

The paper is organized as follows. First, the main features associated

with global DIC and its regularization are introduced in Section 2. Section 3

is devoted to the analysis of two arti�cial cases. The �rst one deals with a

sinusoidal displacement �eld, and the second one with a mechanically admis-

sible �eld. True experimental data are �nally studied in Section 4. Natural

and arti�cial textures are compared.

2 Regularized Digital Image Correlation

2.1 Regularization Strategy

The registration of two gray level pictures in the reference, f , and deformed,

g, con�gurations is based upon the conservation of the gray levels

f(x) = g(x+ u(x)) (1)

where u is the unknown displacement �eld to be measured, and x the pixel

location. The sought displacement �eld minimizes the sum of squared di�er-
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ences Φ2
c over the Region Of Interest (ROI)

Φ2
c =

∫

ROI

ϕ2
c(x)dx (2)

where ϕc(x) de�nes the �eld of correlation residuals

ϕc(x) = |g(x+ u(x))− f(x)| (3)

The minimization of Φ2
c is a nonlinear and ill-posed problem. If no additional

information is available, it is impossible to determine the displacement for

each pixel independently since there are two unknowns for a given (scalar)

gray level di�erence. This explains the reason for choosing a weak formulation

in which the displacement �eld is expressed in a (chosen) basis as

u(x) =
∑

n

unψn(x) (4)

where ψn are (chosen) vector �elds, and un the associated degrees of freedom.

The measurement problem then consists in minimizing Φ2
c with respect to

the unknowns un. A Newton iterative procedure is followed to circumvent

the nonlinear aspect of the minimization problem [11]. The following linear

systems are solved iteratively

[M]{δu} = {b} (5)

where [M] is a matrix formed from the dyadic product of �elds ∇f ·ψn [12],

{b} a vector that vanishes when a perfect registration is obtained for each

pixel (i.e., Equation (1)) is satis�ed), and {δu} collects the corrections to

the measured degrees of freedom un.

To enforce mechanical admissibility in an FE sense, the equilibrium gap

is �rst introduced [20]. If linear elasticity applies, the equilibrium equations
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read

[K]{u} = {f} (6)

where [K] is the sti�ness matrix, and {f} the vector of nodal forces. When the

displacement vector {u} is prescribed and if the (unknown) sti�ness matrix

is not the true one, force residuals {fr} will arise

{fr} = [K]{u} − {f} (7)

Similarly, if the displacement �eld does not satisfy equilibrium it will induce

an equilibrium gap. In the absence of body forces, interior nodes are free

from any external load. Consequently, the equilibrium gap method consists

in minimizing

Φ2
m = {u}t[K]t[K]{u} (8)

where t is the transposition operator, and Φ2
m corresponds to the sum of the

squared norm of all equilibrium gaps at interior nodes only. Any displace-

ment �eld prescribed on the boundary gives rise to a displacement �eld for

which Φm = 0.

This observation requires an additional regularization for boundary nodes.

It is proposed to introduce a penalization of short wavelength displacement

�uctuations along the edges of the region of interest. The third objective

function to be considered has to vanish for any rigid body motion

Φ2
b = {u}t[L]t[L]{u} (9)

where [L] is an operator acting on the ROI boundary [15]. Appendix A

details the construction of the new operator proposed herein, which has a

simple mechanical interpretation.
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2.2 Correlation Procedure

The minimization of correlation residuals (Φ2
c), equilibrium gap (Φ2

m), and

boundary �uctuations (Φ2
b), requires the introduction of a total functional Φt

(1 + wm + wb)Φ
2
t = Φ̃2

c + wmΦ̃
2
m + wbΦ̃

2
b (10)

where wm and wb are weights that de�ne length scales associated with Φ̃2
m and

Φ̃2
b , and Φ̃ denote normalized residuals. To normalize the residuals, let us con-

sider a displacement �eld in the form of a plane wave v(x) = v0 exp(ik · x),

where v0 is the amplitude and k the wave vector. The normalized residuals

then become

Φ̃2
c =

Φ2
c

{v}t[M]{v}
, Φ̃2

m =
Φ2

m

{v}t[K]t[K]{v}
, Φ̃2

b =
Φ2

b

{v}t[L]t[L]{v}

(11)

where {v} collects all the nodal displacements associated with displacement

�eld v. The wavelength dependence of {v}t[K]t[K]{v} and {v}t[L]t[L]{v}

is of fourth order whereas {v}t[M]{v} is wavelength-independent [15], see

Figure 1. The equilibrium gap and boundary regularization kernels thus act

as fourth-order low-pass �lters, damping deviations from mechanical admissi-

bility and edge displacement �uctuations below a given wavelength. Weights

wm and wb are chosen as

wm = (2π|k|ℓm)
4 , wb = (2π|k|ℓb)

4 (12)

where ℓm and ℓb denote the regularization lengths for Φ2
m and Φ2

b , respectively.

With this choice, Φ̃c(v) = Φ̃m(v) = Φ̃b(v) = 1 and Φt(v) = 1 if ℓm = ℓb =

1/2π|k|.
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Figure 1 about here

It is to be emphasized that other forms of regularization kernels could

have been chosen. The speci�c form of the equilibrium gap comes from

the strong penalization of high frequency oscillations (fourth power of the

wavenumber), and thus also very weak in�uence on long wavelength modes.

The higher ℓm, the more weight is put on the equilibrium gap functional Φ̃2
m,

therefore the equilibrium residuals have to reach lower levels. Similarly, the

edge regularization term is designed to have the same scaling properties as the

bulk term. The higher ℓb, the more weight is put on the boundary functional

Φ̃2
b , therefore the corresponding displacement �uctuations will decrease.

When the material parameters are known, the minimization of Φ2
t with

respect to the unknown degrees of freedom can be performed [15]. The above

mechanical regularization procedure can be used for an arbitrary supporting

mesh, even down to the pixel [14] or voxel [15, 16] scales. In the following,

the elements will be considered to be 3-noded triangles (T3) with a linear

displacement interpolation.

2.3 Implementation

A Newton iterative procedure is followed to circumvent the nonlinear aspect

of the minimization problem (i.e., Φ2
c is a nonlinear function of the degrees

of freedom). Let u
j denote the displacement �eld at iteration j, and {u}j

the vector collecting all the unknown degrees of freedom. By assuming small

increments du = u
j+1 − u

j of the solution, ∂Φ2
t/∂{u}

j = {0} is recast in a
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matrix-vector product as

([M] + [N]){du} = {b}j − [N]{u}j (13)

with

[N] = wm

{v}t[M]{v}

{v}t[K]t[K]{v}
[K]t[K] + wb

{v}t[M]{v}

{v}t[L]t[L]{v}
[L]t[L] (14)

where {b}j is updated as the picture in the deformed con�guration g is

corrected by using the current estimate of the displacement �eld u
j. In

the present case a cubic gray level interpolation is considered. Conversely,

matrices [M] and [N] are computed once for all. The iterations stop when

the displacement corrections {du} reach a small level that is chosen by the

user.

In the absence of regularization, the presence of noise leads to secondary

minima trapping when small elements are chosen. This is responsible for

a degradation of the uncertainty for �ne meshes. This secondary minima

trapping leads to a multiplicity of stationary solutions of the displacement

�eld. Di�erent solutions are obtained depending on the initial displacement

�eld. Regularization is introduced to mend this problem, at the expense

of a priori assumptions on the elastic properties of the considered body.

Thus, in the analysis of resolution, a speci�c pathway consists in �rst solving

the problem with large regularization lengths, and progressively decreasing

the regularization length scales ℓm and ℓb. Although ending with very low

weights given to the regularization, the sought displacement �eld is driven

to a solution where initialization is an �educated guess� based on an elastic

interpolation. The �nal solution will live in an energy landscape where many
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local minima exist, but the selection of the actual minimum results from a

convergence history that is expected to be bene�cial.

In the following, series of calculations are generally run with di�erent

regularization lengths ℓm when ℓb = ℓm/2. Di�erent initial values of ℓm are

considered and each time a �rst calculation is run with an initial value of u0 =

0. The next calculation is carried out with the regularization length divided

by two. It takes as initial guess u
0 the displacement �eld at convergence

of the previous calculation, and so on. This procedure will be referred to

as relaxation. Last, the unstructured mesh is composed of triangles whose

typical edge is 10-pixel long.

3 Arti�cial Test Cases

In these �rst two test cases, a true texture is considered (Figure 2). The

picture de�nition is 531×531 pixels with an 8-bit digitization. It corresponds

to the central part of a cross-shaped sample analyzed in Ref. [20]. To create

the deformed con�guration, two di�erent displacement �elds are considered,

namely, a �rst one that is a sine wave, and a second one that is mechanically

admissible. In both cases, a linear interpolation of the gray levels is used to

generate picture g in the deformed con�guration. No noise is included. The

same mesh is used in both cases and is made of 2313 inner nodes and 197

edge nodes.

Figure 2 about here
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3.1 Sine Wave

The sine wave is an interesting case since it corresponds to one of the standard

baseline analyses for optical systems (in particular in the context of DIC [3]).

The choice of the spatial resolution has to be compared with the wave length

of the prescribed displacement. The two components of the latter read

ux(x, y) = 2 sin(2πx/nx) , uy(x, y) = 2 sin(2πy/ny) (15)

where nx × ny is the number of pixels in the ROI.

It is worth noting that the normalized correlation residual Φ̃2
c was intro-

duced to evaluate the change in the correlation functional for a perturbation

in the displacement �eld, and to compare it to a similar perturbation in the

regularization functional. The value of the absolute minimum of Φc is irrele-

vant. Thus only the parabolic expansion of the functional Φ2
c was considered.

However, to judge the quality of the image registration itself, it is more rel-

evant to evaluate the norm of ϕc-�eld. The latter, however can be a�ected

by a mean change of gray levels between the pictures in the deformed and

reference con�gurations. To cancel out this e�ect (simply contributing as an

o�set in gray levels), it is convenient to resort to the standard deviation of

ϕ. A dimensionless estimator consists in comparing this standard deviation

to the dynamic range ∆f = max(f)−min(f) of the reference picture. Thus

Φ̂2
c = [〈ϕ2〉 − 〈ϕ〉2]/(∆f)2, where 〈•〉 denotes an average of the ROI. Φ̂c will

be used in the sequel for estimating the quality of image registration.

Figure 3 shows the change of the standard error between the measured

and prescribed displacement �eld for the di�erent regularization lengths ℓm

when ℓb/ℓm is set to di�erent values. The same trends are observed for the
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two components of the displacement �eld. Consequently, only one result is

reported in Figure 3. When the edge regularization is too large (i.e., ℓb/ℓm >

1), the error is high. This corresponds to an interpolation error since the

displacement �uctuations are �ltered out. As the edge regularization length

decreases, the error decreases too. In the present case, ℓb/ℓm ratios less than

1 lead to very good results even if ℓm is relaxed to very small values. This

observation justi�es the choice of selecting a �xed ratio ℓb/ℓm = 1/2 and

decreasing both lengths at the same time.

Figure 3 about here

All these trends are con�rmed when the mean correlation residuals are

analyzed in Figure 4. For a large range of regularization length ratios, the

levels of correlation residuals are virtually identical. The image registration

is of comparable quality. The only di�erence is given by the weight put on

the mechanical and edge regularizations. This choice is left to the user and

its understanding of the underlying behavior of the studied material. The

same can be said for the edge regularization, which is related to the boundary

conditions of the mechanical analysis when DIC is assisted by mechanics.

Figure 4 about here

Figure 5 shows the change of the standard deviation between the mea-

sured and prescribed displacement �elds for the di�erent cases when ℓb/ℓm =

1/2. The standard displacement error is virtually identical for the two dis-

placement components (except for very large initial regularization lengths),

even though an unstructured mesh is used. No bias is noted due to the fact
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that the mesh is not regular. Di�erent trends are observed. First for very

large initial regularization lengths (i.e., ℓm > nx, ny), the standard error is

very high. This is caused by interpolation errors as very large regulariza-

tion lengths prevent from assessing small displacement �uctuations. When

they are relaxed, a smaller but still signi�cant error is observed. Conversely,

for small regularization lengths, the standard error remains small but the

relaxation increases slightly the error. When an initial value ℓm = 128 pix-

els is chosen, the smallest errors are observed. For initial lengths less than

ℓm = 128 pixels, error levels of the order of or less than 10−2 pixel are

achieved.

Figure 5 about here

For the same series of computations, Figure 6(a) shows the change of

the dimensionless correlation residuals Φ̂c. When the initial regularization

lengths are such that ℓm < nx, ny, the correlation residuals reach very similar

values, thereby indicating that the results are trustworthy. For the quality

of image registration, it indicates that initial regularization lengths ℓm less

than 256 pixels, the overall registration quality is very close for any initial or

subsequent regularization length. This conclusion is in very good agreement

with what is observed in Figure 5. For large initial regularization lengths,

the mean correlation residuals reach high levels (i.e., almost an order of mag-

nitude higher). This is the consequence of the interpolation error discussed

before, as the sought displacement �eld does not belong to the kernel of the

regularization operator. The next choice is then to seek more or less me-

chanical content in the measured displacement �eld. This is characterized by
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the equilibrium gap whose mean normalized value is shown in Figure 6(b).

For larger regularization lengths, the measured �eld displays less equilibrium

gap as its weight in the total functional (10) is increased. There is a whole

range of initial values (128 < ℓm < 512 pixels) for which the equilibrium gap

is independent of the initial value of ℓm. This zone is the most favorable in

the present case.

Figure 6 about here

In all the following analyses, the ratio ℓb/ℓm is set to 1/2. It follows

that there is more weight put to the mechanical regularization than the edge

regularization. The former will be mainly studied in the remainder of the

paper.

3.2 Mechanics-Based Displacement

An elastic calculation (with Poisson's ratio ν = 0.3) is performed on a plate

whose size is exactly the same as the reference picture shown in Figure 2.

The boundary of the top part only moves in the horizontal direction, and

the boundary of the bottom part has a prescribed displacement that is again

a sine wave of unitary amplitude and wave length equal to the length of

the lower edge. A mesh consisting of 50 × 50 Q4 elements is considered.

The corresponding displacement is subsequently interpolated at the pixel

level by using bilinear shape functions of Q4 elements. Figure 7 shows the

displacement components that are used to deform the reference picture of

Figure 2. The range of vertical displacement is equal to 2 pixels, and that of

the horizontal displacements is of the order of 1.7 pixel.
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Figure 7 about here

The same type of computation as before is performed in the present case

when ℓb/ℓm = 1/2. Figure 8 shows the change of the standard displacement.

The same trends are observed when compared to Figure 5 for the same

reasons. For initial regularization lengths ℓm ranging from 64 to 512 pixels

the error level is less than 10−2 pixel at the end of the relaxation process.

It is worth remembering that this error includes the approximations of the

reference solution (on a regular Q4 mesh), those of the T3 mesh used in the

DIC analysis, and the inevitable gray level interpolation.

Figure 8 about here

The same conclusions can be drawn when the trends observed in terms

of correlation residuals (Figure 9(a)) and equilibrium residuals (Figure 9(b))

are compared with those of the previous test case.

Figure 9 about here

There are however di�erences to be noted. First, the correlation residuals

do not vary over a large dynamic range when compared to the previous

case. It is concluded that even though large regularization lengths are used,

they still allow for more �uctuations of the displacement �eld. Second, the

minimum levels of the equilibrium residuals are less than those observed

in the previous case. This is to be expected since the present test case

is associated with a mechanically admissible displacement �eld (in an FE

sense).
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From the results of the two test cases discussed in this section, it is

concluded that the implementation of mechanics-aided DIC (or MA-DIC) is

validated. The next section will deal with image pairs obtained during an

experimental test.

4 Analysis of Two Di�erent Textures

In the following analyses, experimental data are considered. A cross-shaped

sample made of nodular graphite cast iron was loaded equibiaxially along two

perpendicular directions (i.e., F1 = F2 = F , where F1 and F2 are the applied

forces along the two directions). One surface of the sample was observed

at the macroscale (picture de�nition: 1024 × 1024 pixels, 12-bit digitiza-

tion, telecentric lens), and the other one at the mesoscale (picture de�nition:

1024 × 1280 pixels, 12-bit digitization, telecentric lens), see Figure 10. The

observation of the former required to spray black and white paint to enable

DIC analyses. The latter is a natural texture, which is very di�cult to an-

alyze with conventional DIC procedures. The physical size of one pixel is

6.7 µm for the mesoscale picture and 48 µm for the macroscale picture.

Figure 10 about here

4.1 Natural Texture

The image pair considered in this section corresponds to two consecutive

pictures shot when the sample was already mounted in the testing machine

with F = 0. This analysis is performed to evaluate the resolution of the

16



measurement technique [1]. Figure 11 shows the standard displacement reso-

lution for the two displacement components of displacement. The larger the

regularization length, the smaller the displacement resolution. It is worth

noting that any value less than one centipixel is very seldom encountered.

This is even more noteworthy that the texture of the pictures is very di�cult

to analyze. To get all the results reported in Figure 11 (requiring 51 simula-

tions), less than one hour of CPU time was needed on an Intel Xeon X5660

processor. The mesh consisted of 8,749 nodes, and therefore involved 17,498

kinematic unknowns.

To compare the present results with more standard approaches, a local

and global Q4-DIC analysis is run. It is based on 4-noded ZOIs for the local

approach, and 4-noded elements in a global approach. In both cases a bilinear

displacement is considered. The implementation details of both approaches

follow very closely those used herein [12] except that no regularization length

is used. The right envelope of the regularized results virtually coincides

with those of the global Q4-DIC analysis. The global analysis, as expected

when the same ZOI and element size is considered, out-performs the local

analysis [12]. With this di�cult texture, there is a clear gain to consider

global vs. local approaches. The regularization proposed herein induces a

very signi�cant additional gain as all the non-mechanical �uctuations are

�ltered out. Last, the relaxation process of the regularization length leads to

very signi�cant reductions of the displacement �uctuations.

Figure 11 about here

Figure 12(a) shows the dimensionless correlation residuals for di�erent
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initial regularization lengths. Their level remains almost constant and very

small for any value of the correlation length. This result indicates that in

the present case, it is impossible to discriminate any displacement from the

analysis of the correlation residuals alone. However, the equilibrium resid-

uals (Figure 12(b)) vary very strongly with the regularization lengths. In

this particular case, the gain provided by the mechanical regularization is

spectacular, namely, all the spurious �uctuations are �ltered out.

Figure 12 about here

If an estimate of the displacement �eld is sought with a very light me-

chanical regularization, the procedure to follow is to run a �rst correlation

with a very large regularization length, say ℓm = 1024 pixels. At conver-

gence, a second calculation could be run ℓm = 512 pixels by using an initial

guess that is the displacement �eld at convergence with ℓm = 1024 pixels. If

this path is followed, it can be stopped when ℓm = 1 pixel. The result given

in Figure 11 shows that the displacement resolution is very small and the

equilibrium residual remains very small (Figure 12(b)).

The next issue is related to the choice of the variation of the regular-

ization length between two consecutive computations. Figure 13 shows the

standard displacement resolution for the two components of displacement

when di�erent ratios are applied to the regularization lengths. If a very

small regularization is considered and initialized with the result obtained

for ℓm = 1024 pixels, the displacement resolution remains less than when

the previous relaxation process is followed. With this route, the displace-

ment resolution becomes even smaller and virtually independent of the �nal
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regularization length.

Figure 13 about here

Figure 14(a) shows that the dimensionless correlation residuals are con-

stant for all the computations with this procedure. The equilibrium residuals

(Figure 14(b)) vary but not strongly when the regularization length is re-

duced. This result shows that there is no need to run numerous calculations

to relax the regularization. Only a �rst computation is needed with a large

regularization length, say ℓm = 1024 pixels, followed by a second one for a

small length (i.e., values as low as ℓm = 1 pixel can be considered).

Figure 14 about here

4.2 Arti�cial Texture

The image pair correlated hereafter corresponds to a reference con�guration

when F = 0, and a deformed con�guration for which F = 25 kN. When this

load level is reached, the entire sample still lies within the elastic domain. In

the present case, the boundary of the ROI is adapted to the geometry of the

sample (Figure 15). No special care was exercised to match the connecting

radii to the straight parts. Consequently, the edge regularization discussed

previously is still used. Had the geometry been fully match with the external

boundary, a traction-free condition could have been used instead.

Figure 15 about here

Figure 16(a) shows the dimensionless correlation residuals for di�erent

initial regularization lengths with the same type of computations as before
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(ℓb/ℓm = 1/2). Their level remains almost constant for any value of the

correlation length and very low. This result indicates that all the evaluations

are close. However, the equilibrium residuals (Figure 16(b)) are the smallest

for large initial regularization lengths.

Figure 16 about here

For small initial regularization lengths, the equilibrium residuals are less

than those observed in the previous case. This result allows us to fully relax

the regularization length (i.e., ℓm = 1 pixel) and even start with a modest

one (e.g., ℓm = 64 or 32 pixels). This is made possible thanks to the texture

quality that is better than that of the previous approach.

Figure 17 shows the displacement components that are measured when

ℓm = 1 pixel with an initial value of 32, 128 and 1024 pixels. The range of

vertical displacement is equal to 0.9 pixel, and that of the horizontal displace-

ments is about 1 pixel. There is a clear strain concentration in the central

part of the sample, where the transverse thickness is reduced (Figure 10(a)).

Note that this e�ect is not taken into account in the regularization kernel

where plane elasticity is assumed to hold. As the initial regularization length

increases, the displacement �uctuations of the �nal results decrease because

the relaxation process does not lead to the same solution.

Figure 17 about here
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5 Summary and Perspectives

Introducing a mechanically-based regularization in a �nite-element formu-

lation of DIC was shown to lead to a signi�cant reduction of uncertainty

levels for arti�cial non-uniform displacement �elds. Application of the same

methodology to a real experimental case showed that even poor image tex-

tures could be dealt with successfully. In the present analyses, discretizations

based upon unstructured meshes made of 3-noded triangles (i.e., T3-DIC)

were considered in the computations. The latter are less demanding than

with a pixel-scale DIC approach. However, it is believed that the results

presented herein are generic and should apply to pixel-scale DIC procedures.

The fact that a regularization could reduce the uncertainty in the same

way as coarsening a spatial discretization has been reported in the past [15].

The novelty of the procedure proposed herein is that the resolution / regu-

larization length limit can be broken through an appropriate driving of the

regularized DIC algorithm. The mechanical kernel introduced in the global

functional may not provide a genuine picture of the actual displacement �eld

(see the sine wave displacement �eld as an arti�cial case study, or the last

example of a specimen with a varying thickness). Thus rather than pre-

scribing a large regularization length scale, the latter can be considered in

a transient stage of the algorithm to help dealing with large displacements,

and / or poor textures (see the picture of SG cast iron at the mesoscale).

This regularization provides only an �educated guess� for the displacement

�eld, where the actual freedom of DIC is very much constrained. However,

at convergence, relaxing the regularization length scale to very small val-
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ues (and hence playing only a negligible role) allows the DIC procedure to

inherit from a displacement �eld that is much closer to the actual displace-

ment �eld. Hence, spurious pinning of the estimated displacement �eld in

local secondary minima is drastically reduced. However, this reduction is

not complete, and if the initial regularization length scale is too small, some

amount of random pinning is still present at the initial stage, and cannot

be relaxed upon further relaxation steps. Figure 17 is an illustration of this

property. The existence of history-dependent solutions (i.e., not controlled

exclusively by the value of the element size ℓ) is a clear sign of multiple

minima, calling for adapted strategies to avoid (or limit) spurious trapping.

The philosophy of this procedure can be compared with the pyramidal

multiscale approach proposed in [11]. There again, kinematic degrees of

freedom are reduced and local minima avoided in transient stages of the al-

gorithm. At each scale, the converged �eld is used as an initialization for

the �ner scale and hence this multiscale driving provided both robustness

and lower uncertainties. However, such a multiscale procedure is not easily

implemented with an unstructured mesh decomposition, unless the mesh is

endowed with a hierarchical structure. In contrast, the mechanical regular-

ization easily complies with an arbitrary discretization.
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Appendix A: Edge regularization

In this appendix, the edge regularization is presented. To be consistent with

the bulk regularization, a local quadratic form is sought on the nodal displace-

ment that has to be invariant under a rigid body motion. The consequence of

this requirement is that such a quadratic form will have a simple mechanical

interpretation. Local in the context of a discretized medium means that the

edge regularization will only be based on nearest neighbors. Thus, focus-

ing on speci�c node, Mn, only the three consecutive nodes located at points

(Mn−1,Mn,Mn+1) will be considered (irrespective of their alignment or not).

Because of translational invariance, one may choose Mn as the origin, so

that the geometry is captured through the two vectors ζ−1 = MnMn−1 and

ζ1 = MnMn+1. It is convenient to introduce the orthogonal vectors of ζ−1

and ζ1 rotated by π/2, resp. τ−1 and τ1.

The displacement vector at those nodes is denoted by (un−1,un,un+1). In-

variance under translation imposes that the regularization functional should

be a quadratic form of (v−1,v1) = (un−1 − un,un+1 − un). Invariance under

rotation imposes that the functional should be invariant under the follow-

ing change in the displacement �eld, where ω and ω denotes respectively a

rotation vector, and its magnitude.

v−1 = ω × ζ−1 = ωτ−1

v1 = ω × ζ1 = ωτ1

(16)

Three scalars an (n = 1, 2, 3) can be formed, which are invariant under such

a rotation. The �rst two depend on a pair of neighboring node displacement,
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namely,

a1 =
ζ−1 · v−1

‖ζ−1‖2

a2 =
ζ1 · v1

‖ζ1‖2

(17)

where the normalization has been introduced here for reasons that will be-

come clearer later. The third scalar reads

a3 =
τ1 · v1

‖τ1‖2
−
τ−1 · v−1

‖τ−1‖2
(18)

Thus the most general form for the sought functional is expressed as

Tb =
1

2

∑

n

αna
2
n (19)

where αn are arbitrary factors. The physical interpretation of those terms is

straightforward. The �rst two correspond to a linear spring connecting nodes

(Mn−1,Mn) and (Mn,Mn+1), respectively. Parameters α1 and α2 are the

sti�ness of these springs. The last invariant, a3, corresponds to the resulting

moment of forces at nodeMn, and hence the last term in the functional would

correspond to an angular spring. In the absence of additional information,

it is natural to choose all sti�nesses as constant, say equal to unity, and

the total magnitude of the functional being set with respect to the other

functionals as discussed in the main text.

To make the expression of this functional more explicit, the `rigidity' ma-

trix [L] introduced in the main text is obtained by assembling (with respect

to all boundary nodes i) the local contributions

Tb =
1

2
(v1 v−1)·




ζ1 ⊗ ζ1
‖ζ1‖4

+
τ1 ⊗ τ1
‖τ1‖4

−
τ1 ⊗ τ−1

‖τ1‖2‖τ−1‖2

−
τ−1 ⊗ τ1

‖τ1‖2‖τ−1‖2
ζ−1 ⊗ ζ−1

‖ζ−1‖4
+
τ−1 ⊗ τ−1

‖τ−1‖4


·




v1

v−1




(20)
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Noting that ‖τn‖ = ‖ζn‖, and ζn ⊗ ζn + τn ⊗ τn = ‖ζn‖
2
I, the particular

choice of `elastic' constants, αn, leads to the simpli�ed expression

Tb =
1

2‖ζ1‖2‖ζ−1‖2
(v1 v−1) ·




‖ζ−1‖
2
I −τ1 ⊗ τ−1

−τ−1 ⊗ τ1 ‖ζ1‖
2
I


 ·




v1

v−1


 (21)

To conclude the �nal expression of the edge regularization matrix, the ex-

pression of v as a function of the nodal displacement is to be used to convert

the above quadratic form into

Tb = (ui+1 ui ui−1) · [L] ·




ui+1

ui

ui−1




(22)

with [L] = 1

2‖ζ1‖2‖ζ−1‖2
[ℓ]

ℓ11 = ‖ζ−1‖
2
I

ℓ12 = −‖ζ−1‖
2
I+ τ1 ⊗ τ−1

ℓ13 = −τ1 ⊗ τ−1

ℓ21 = −‖ζ−1‖
2
I+ τ−1 ⊗ τ1

ℓ22 = (‖ζ−1‖
2 + ‖ζ1‖

2)I− τ1 ⊗ τ−1 − τ−1 ⊗ τ1

ℓ23 = −‖ζ1‖
2
I+ τ1 ⊗ τ−1

ℓ31 = −τ−1 ⊗ τ1

ℓ32 = ‖ζ1‖
2
I+ τ−1 ⊗ τ1

ℓ33 = ‖ζ1‖
2
I

(23)

�
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Appendix B: Main notations

{b} correlation vector

{bj} correlation vector at iteration n

f picture in the reference con�guration

{f} nodal force vector

{fr} residual force vector

F applied load level

g picture in the deformed con�guration

i imaginary unit

j iteration number

k wave vector

[K] sti�ness matrix

ℓm, ℓb regularization lengths

[L] edge regularization matrix

[M] correlation matrix

[N] global matrix

n index

nx, ny number of pixels in the ROI

un degree of freedom

u displacement vector

ux, uy displacement components

u
0 initial displacement vector

du displacement increment vector

{u} vector collecting all kinematic degrees of freedom

{uj} vector collecting all kinematic degrees of freedom at iteration n
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{δu} correction vector of the measured degrees of freedom

v trial displacement vector

v0 amplitude of trial displacement

wm, wb weights

x position vector

x, y position component

Ψn vector �eld

Φ̃ normalized residuals

Φ2
b global edge residual

ϕc correlation residual

Φ2
c sum of squared di�erences

Φ̂c dimensionless global correlation residual

Φ2
m global equilibrium gap residual

Φt total residual

∇ gradient operator

· scalar product

t transposition operator

| | amplitude

〈 〉 average over the ROI
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Figure 2: Reference picture of the �rst two test cases.
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Figure 3: Change of the standard displacement error for di�erent regulariza-
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Figure 5: Change of the standard displacement error for di�erent regulariza-

tion lengths and di�erent initialization lengths ℓm (in pixels) indicated in the

legend.
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Figure 6: Change of the dimensionless correlation residuals (a) and equilib-

rium residuals (b) for di�erent regularization lengths and di�erent initializa-

tion lengths ℓm (in pixels) indicated in the legend.
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Figure 7: Prescribed displacement �eld in the mechanical test case in the

vertical (a) and horizontal (b) directions. The displacements are expressed

in pixels.
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Figure 8: Change of the standard displacement error for di�erent regulariza-

tion lengths and di�erent initialization lengths ℓm (in pixels) indicated in the

legend.
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Figure 9: Change of the dimensionless correlation residuals (a) and equilib-

rium residuals (b) for di�erent regularization lengths and di�erent initializa-

tion lengths ℓm (in pixels) indicated in the legend.
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(a) (b)

Figure 10: Reference pictures at the macroscopic (a) and mesoscopic (b)

scales of a cross-shaped sample made of nodular graphite cast iron.
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Figure 11: Standard displacement resolution in the vertical (a) and horizontal

(b) directions for di�erent regularization lengths ℓm, ZOI (dashed blue line)

or element (solid blue line) sizes ℓ when ℓb/ℓm = 1/2. The legend indicates

the initial length ℓm (in pixels).
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Figure 12: Change of the dimensionless correlation residuals (a) and equilib-

rium residuals (b) for di�erent regularization lengths and di�erent initializa-

tions. Note the narrow range of variation of Φ̂c.
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Figure 13: Standard displacement resolution in the vertical (a) and horizontal

(b) directions for di�erent regularization lengths and di�erent number of

jumps of the regularization length (indicated in the legend).
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Figure 14: Change of the dimensionless correlation residuals (a) and equi-

librium residuals (b) for di�erent regularization lengths and and di�erent

number of jumps (indicated in the legend) to decrease the regularization

length. Note the narrow range of variation of Φ̂c.
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Figure 15: Mesh made of T3 elements used in the MA-DIC analyses at the

macroscopic scale (see Figure 10(a)).
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Figure 16: Change of the dimensionless correlation residuals (a) and equilib-

rium residuals (b) for di�erent regularization lengths and di�erent initializa-

tion lengths ℓm (in pixels) indicated in the legend.
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(a) ℓm = 32 pixels
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(b) ℓm = 128 pixels
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(c) ℓm = 1024 pixels

Figure 17: Measured displacement �eld in the biaxial test in the vertical

(left) and horizontal (right) directions. Three initial regularization lengths

ℓm are considered. The �nal regularization length is identical (ℓm = 1 pixel).

The displacements are expressed in pixels.
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