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Abstract

The paper is devoted to the identification of interlaminar properties by analyzing

three tests with different mode mixities on a unidirectional thermoset composite

material. It is shown that by coupling digital image correlation with finite

element simulations, it is possible to locally extract energy release rates whose

standard uncertainty is at most equal to 50 J/m2. This performance is achieved

with a standard finite element code by optimizing the location of the crack

tip, which is the key information needed to evaluate (linear elastic) fracture

mechanics parameters of these materials. The level of stress intensity factors

and the experimental mode mixity can be identified in all configurations with

an acceptable uncertainty.
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1. Introduction

The general context of this study is related to the intensive use of composite

materials in aerospace structures. Besides the known and interesting mechanical

properties of these materials, it is important to know their cracking properties

with a high confidence to design structures up to failure. The modeling capa-

bilities, for instance at the mesoscale (i.e., at the ply level [1]), are currently

used [2]. These types of models need for each material (and more precisely

for the ply and interface entities to be modeled) to perform an identification

process at the coupon scale. The identification procedure proposed herein is

only devoted to the interface cracking parameters of a unidirectional thermoset

composite material T700/M21 (from pre-preg cured with industrial quality pro-

cess). More precisely, it consists in performing fracture mechanics based tests

in dominant modes with a pre-crack. The geometries chosen in the present case

are the double cantilever beam (DCB) test [3] for the mode I, and the CLS

(i.e., crack lap shear) test [4] for mode II or mixed mode characterization. Such

tests enable the critical energy release rates, which are directly connected to

the intrinsic parameters of interface models [5], to be extracted. The aim of the

present paper is to propose a new extraction method with an acceptable accu-

racy with respect to reference methods, which can give confidence when applied

to more complex delamination tests. Furthermore, it allows to determine quan-

tities that are very difficult to assess experimentally such as the actual mode

mixity, which is directly related to the actual boundary conditions. Last, the

detection of propagation onset is also possible.

When identifying models for adhesive or cohesive layers, point data, e.g.,

displacement, strain and load, usually are the only experimental information

available [6], see an example of force vs. displacement curve for a DCB test in

Figure 1. The expected Gc values of the critical energy release rate are then
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computed from any classical beam assumptions, through the definition of the

energy release rate G [7]. Pictures shot at different scales are also used in a

qualitative way in addition to global data [8, 9, 10, 11], or quantitatively by

evaluating deflections [12, 13], deformed shapes [14], and more detailed dis-

placement fields [15, 16]. In this study, it is proposed to use quantitatively full-

field measurements provided by Digital Image Correlation (DIC) to determine

displacement fields in DCB and CLS experiments for identification purposes.

These two experimental configurations are classical when evaluating interlam-

inar properties of composite materials [17]. The advantage of DIC lies in the

fact that displacement fields are available to analyze an experiment, as opposed

to standard procedures using few data [3, 18, 19, 4]. These displacement fields

typically contain 1,000 to 10,000 degrees of freedom. In particular, it is possi-

ble to know the experimental boundary conditions. Furthermore, the 2D local

displacement field near the crack tip is accessible at the right scale and with

a good accuracy during propagation, so that other intrinsic interface parame-

ters may be identified without taking into account any global displacement and

load values, provided the elastic properties of the plies are known. The mea-

sured displacements can be used to determine interlaminar parameters for each

recorded image during loading, contrary to IGC [18] or AITM [19] methods that

respectively extract one propagation value per cycle of small propagation path

or only a single value for the whole propagation regime of the test (Figure 1).

As mentioned above, the present analysis also includes a quantitative evaluation

of the mode mixity during the experiment, an information that is not provided

by IGC or AITM methods but only from theoretical pre-test assumptions.

Figure 1 about here

DIC has seen many developments during the last decade [20] for several

reasons. First, it is generally simple and easy to apply under natural light.
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Its resolution is now sufficient to analyze experiments performed at various

scales [21, 22, 23, 24]. DIC is usually based upon local registration of interro-

gation windows in a series of pictures. In the present case, a finite-element dis-

cretization of the displacement field [25] will be used to prescribe the loading con-

ditions on the external part of the region of interest. This approach allows us to

couple seamlesslymeasurements and computations to extract fracture mechanics

parameters. There are many studies that have attempted to enrich experimen-

tal databases by resorting to full-field measurements [26, 27, 15, 28, 29, 30].

However, the identification of fracture parameters and cohesive models remains

an experimental challenge because displacements need to be measured at very

fine scales [31, 16]. For instance, Abanto-Bueno and Lambros [31] used a multi-

camera system to determine the traction separation law of a photodegradable

copolymer. In the present work, only a local analysis with a single camera is

performed to evaluate linear elastic fracture mechanics parameters via a cou-

pling with finite element simulations. Among those parameters, the crack tip

location is key information from which all the others are subsequently obtained.

The inverse procedure is applied to the characterization of delamination

properties of a 0 / 0◦ interface configuration of a carbon-epoxy composite in

DCB and CLS tests (Section 2). A series of pictures is analyzed by a finite

element based DIC algorithm [25] during crack opening, and subsequent prop-

agation steps. Energy release rates and stress intensity factors are evaluated

in both cases by using the commercial code Abaqus [32] and user-developed

Matlab scripts. The internal points of the mesh are used to determine the crack

tip location by minimizing the distance between measured and computed dis-

placements (Section 3). In Section 4, all the previous tests are finally analyzed

and discussed. The changes of crack tip location, stress intensity factors, energy

release rates, and mode mixities with the applied load are reported.
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2. Experimental set-up and protocol for the two configurations

In the sequel, three experimental configurations are analyzed. The DCB

experiment allows for the identification of mode I properties as the crack is

mainly loaded under mode I condition [3]. In that case, the zone around the

crack tip can be observed when the crack was opening and subsequently propa-

gating. The two CLS configurations studied herein lead to predominantly mode

II cracking [4]. First, the analysis is performed with no apparent crack propa-

gation, and second, with crack propagation. The experiments are monitored by

a Canon EOS 350D camera with a Sigma lens, focal length: 180 mm.

2.1. DCB configuration

A DCB sample is first analyzed. Its geometry is shown in Figure 2(a). The

corresponding dimensions are b = 20 mm, h1 = 2.15 mm, h2 = 1.85 mm,

L = 250 mm, and t = 20 mm. All the plies are aligned along the 0◦-degree

direction (or y-axis, see Figure 2(a)) perpendicular to the loading direction

(i.e., x-axis), and there is a pre-crack of length a0 at the separation plane. The

sample was loaded under a displacement controlled procedure. In the following,

the end of the loading step will be analyzed.

Figure 2 about here

Figure 2 shows three pictures of the experiment, namely, the reference one

and two of the surface in its deformed configuration. They are used to measure

displacements via Q4-DIC [25] in which the displacement field is based upon

a finite element discretization with 4-noded bilinear (Q4) elements. The com-

mercial code CorreliSTCr was used [33]. In the present case, the size of each

element edge is equal to 16 pixels (or ≈ 200 µm). The corresponding transverse

displacement fields are shown. The presence of the crack is clearly seen on both

pictures and on the displacement fields themselves.

5



2.2. CLS configurations

The modified Cracked Lap Shear (CLS) or mode II test configuration is

shown in Figure 3(a). It consists in a tensile-like specimen made of plies aligned

along the 0◦-direction with respect to the loading direction. The dimensions

are b = 10 mm, h1 = 1.6 mm, h2 = 1.9 mm, L = 350 mm with a pre-crack of

length a0 at the separation plane. In such conditions, a longitudinal displace-

ment applied on one arm in conjunction with a clamped condition at the other

end of the specimen leads to a mixed crack propagation mode. Two lateral

confinements (in the x-direction, see Figure 3(a)) are put into contact with the

external surfaces in order to avoid opening and as a consequence prevent any

mode I contributions (as will be shown hereafter, the loads introduced by the

grips are of second order of magnitude with respect to the longitudinal loads).

Figure 3 about here

This geometry has several advantages. First, it enables for the use of the

same device for static and dynamic tests to ensure that comparisons are made

on the same basis in a quasi pure mode II. Second, the propagation is confined to

a longitudinal domain. The determination of the loading possibly transmitted

to the specimen does not involve any complex analysis. A first order estimate of

the critical value Gc of the energy release rate is determined by using a classical

beam solution for a steady state value [4]

Gc =
F 2
c h2

2E1b2h1(h1 + h2)
(1)

where Fc is the maximum load level, b the width of the sample, and E1 the

Young’s modulus in the longitudinal direction.

A first propagation is sought in a displacement controlled manner. The main

difficulty of this type of experiment is then related to the location of the crack
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tip. This task is performed by resorting to Q4-DIC [25]. The size of each ele-

ment edge is equal to 32 pixels (or ≈ 200 µm) ; it is chosen since it corresponds

to a good compromise between uncertainty level and spatial resolution. As soon

as the first propagation occurs, the sample is unloaded, and then subsequently

loaded up to a level of 5 kN. The crack is maintained open and the camera is

moved until the crack tip is located at about the center of the picture. Fig-

ure 3(b) shows a displacement field in which the presence of a crack is clearly

distinguished. The exact position of the crack tip is still unknown. It will be

determined more precisely in the sequel.

After the crack is detected in the picture, four additional pictures are shot

every 1 kN. For a load level of 9.6 kN, unstable (or undetermined) crack prop-

agation occurred. No additional pictures are taken. The CLS configuration is

theoretically quasi-unstable since the first derivative of G with respect to the

crack length is equal to 0 (see Equation (1)). The analysis of this experiment

consists of the five displacement fields corresponding to load levels ranging from

5 to 9 kN.

In the second experiment, no lateral confinement (i.e., no grips) is applied

and the mode mixity is induced by the experimental configuration itself. The

dimensions of the sample are b = 10 mm, h1 = 1.61 mm, h2 = 1.57 mm, and L =

250 mm. Two different steps are analyzed. First, the initiation of propagation of

the pre-crack close to the groove of the CLS sample is studied. Thirteen loading

steps are analyzed. The subsequent propagation was not monitored, but the

crack did not cross the whole sample. The next task is then to determine a

rough estimate of the crack tip position so that the camera can be moved.

The sample is then reloaded (20 loading steps are available) and the beginning

of the new propagation step is followed (with 11 pictures). One key issue of

this experiment is related to the actual mode mixity and its change during the

various loading steps.
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3. Identification procedure of fracture mechanics parameters

The following analyses are based upon measured displacement fields umeas

by resorting to Q4-DIC (e.g., Figures 2 and 3). This is the only experimental

information that will be used herein. By prescribing the displacements of the

external boundary of the region of interest (ROI, see Figure 4(a)) to a finite

element calculation of the same part (Figure 4(b)), the way the external load is

applied to the crack is accounted for. There is therefore no need to model the

whole experiment, but only the part inside the ROI [16]. The computed dis-

placements ucomp of all inner nodes are used to determine the crack tip position

xc, the first unknown of the fracture mechanics problem. In the present study,

a simple definition of the crack tip location is considered. It corresponds to the

location for which the identification error between the measured and computed

displacement field is the smallest. It can be noted that other approaches might

have been considered (e.g., damage mechanics, cohesive zone model) for which

the existence of a crack tip is not necessarily needed. The identification error

δ2(xc) =
1

nm

nm∑

m=1

‖umeas(xm)− ucomp(xm,xc)‖
2 (2)

is minimized with respect to xc, where nm is the number of measurement nodes

located at xm. Various crack positions are considered along the crack surface di-

rection. Each node of the interface is scanned to define a crack tip (Figure 4(b)),

and the best position corresponds to the minimum value of the displacement

residual δ (Figure 4(c); it corresponds to the 56-th node number in that case).

Figure 4 about here

In the finite element analyses reported hereafter, the behavior of the com-

posite is assumed to be elastic. The elastic properties of the two 0-degree lam-

inates are as follows, E1 = 120 GPa, G12 = 5.3 GPa, E2 = E33 = 8.9 GPa,

ν13 = ν12 = 0.33, ν23 = 0.35, where the longitudinal direction of the ply is 1, the
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transverse direction is 2, and the out-of-plane one 3. These values were deter-

mined in another identification process by performing a series of tensile tests on

[0◦], [± 45◦], [± 67.5◦] configurations with loading and unloading sequences [1].

The mesh used in the simulations is refined in comparison with the measure-

ment discretization to achieve a finer resolution for the detection of the crack

tip. All the points of Q4-DIC are part of the simulation. Consequently, the

differences are still performed on the common nodes of the two meshes so that

the error is evaluated with respect to the same number of nodes, irrespective of

the discretization used. A refinement index ρ is defined such that the number

of numerical elements is equal to ρ2 times that of the measurement elements.

The sensitivity of the identification results to the discretization will be studied

hereafter. It is worth noting that this refinement is possible thanks to the Q4

interpolation so that no interpolation error on the correlation results is added.

The crack tip position being found (Figure 4(d)), the computed displacement

field is post-processed by using fracture mechanics tools available in the finite

element code. In the present case, the energy release rate G and the stress

intensity factors (SIFs) are evaluated in orthotropic media [34] by using contour

integrals [35]. A sensitivity analysis to the size of the integration domain is

performed to check that the results have reached a value that becomes domain-

independent as expected from a J-integral [36] or an interaction integral [37].

Figure 5 shows the change of G with the external radius of the integration

domain. When the radius is greater than 32 pixels the evaluation is virtually

insensitive to the size of the integration domain, namely, a fluctuation less than

0.5 % is observed. This minimum radius is equal to the element size of the DIC

analysis. This result shows that the minimum size of the integration domain is

equal to two elements. In all the analyses that will follow, it was checked that

G-values are in a region where the results are independent of the size of the

integration domain.

9



Figure 5 about here

4. Analysis of the three different tests

The various (linear elastic) fracture mechanics parameters are extracted by

following the previous procedure for the three tests introduced above.

4.1. DCB experiment

The DCB experiment allows for analyses in which propagation is stable

under a displacement controlled test. A series of 28 pictures is considered in

addition to the reference picture. One of the aims of the present analysis is to

determine which pictures correspond to a situation where propagation does not

occur. Further, if propagation occurs, is it under constant G-value? Figure 6

shows a comparison between the measured and computed displacement fields

for one of the highest load levels of the series. The residual map is also shown

to evaluate the quality of the identification. Except in the immediate vicinity

of the crack surface, the residuals are very small (i.e., less than 0.5 pixel or

6 µm). This is to be expected since a Q4-DIC analysis is performed without

any discontinuous kinematic enrichment.

Figure 6 about here

Figure 7 shows the change of the identification error δ as a function of the

applied load for three different discretizations. The identification error is inde-

pendent of the discretization level when ρ ≥ 2. The case ρ = 1 leads to results

different from the reported ones. Two regimes are observed. First, when the

crack does not propagate (and the load level increases), the identification error

is of the order of 0.2 pixel (or 2.4 µm). This value is larger than the standard

displacement uncertainty (of the order of 0.04 pixel or 0.5 µm). It is explained

by the fact that a purely elastic model is only a first order approximation of the
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interfacial and intralaminar behavior. Second, when the crack propagates (and

the load level decreases), there is a gradual increase of the identification error.

The last points are likely to be less well tuned. One reason is that the crack tip

moves closer to the edge of the region of interest and less measurement points

exist in the ligament so that the evaluation of the energy release rate is less

accurate.

Figure 7 about here

The location of the crack tip as a function of the load level is shown in

Figure 8. Three different refinements are used. The root mean square (RMS)

difference between these three results is less than 5 pixels (i.e., 60 µm). A very

small effect of the discretization is observed. When analyzing the first 12 points

(for which the load level increases), it is seen that the standard uncertainty of

the crack tip location is of the order of 14 pixels (or 170 µm). For the last 16

points (for which the load level decreases), there is a clear motion of the crack tip.

When a linear interpolation is used, the level of fluctuations is equal to 10 pixels

(i.e., 120 µm), which is close to the previous value. It is therefore believed that

the local fluctuations are an indication of the identification uncertainty rather

than of physical origin. When compared to classical methods where a visual

inspection of the crack size is performed (i.e., with a ± 500 µm resolution), there

is a clear benefit of using the approach developed herein, which is mechanically-

based.

Figure 8 about here

Figure 9 shows the change of the energy release rate G with the applied load

for the 28 analyzed pictures. The RMS difference between the three refinements

is equal to 15 J/m2. This low value is consistent with the previous results in

terms of crack tip location. In terms of overall result, there are two distinct
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trends when the first 12 points are considered in comparison with the last 16

ones. This difference is related to the fact that propagation has occurred for the

latter ones. In the first part, a parabolic interpolation leads to a RMS error of

about 50 J/m2, as well as with a constant level for the second part (for which

Gc = 410± 50 J/m2).

Figure 9 about here

To analyze further the effect of the crack tip location, the first nine points

for which the load variation is less than 5 N are considered. The evaluation of G

performed before is compared with that obtained with a constant crack tip loca-

tion. Figure 10 shows the correlation obtained when comparing these two ways

of identifying G values. The RMS difference is of the order of 50 J/m2. These

levels of uncertainty are in accordance with those obtained by a classical global

method [3] based on load measurements. This level proves that the fluctuations

observed in G-values are related to the uncertainty of crack tip position. There-

fore it is believed that the fluctuations observed during the propagation stage

are essentially related to measurement and identification uncertainties, and not

to physical phenomena due to, say, local variations in interfacial properties,

which are known to remain small in the present configuration.

Figure 10 about here

Last, the mode mixity is studied during the two steps of cracking. The fact

that the two beam thicknesses are slightly different may induce some mixity. The

ratio GI/GII reaches high values, on average equal to 17. This value is virtually

independent of the refinement index, and therefore assumed to be physical.

The mixity remains of the same order of magnitude prior to and during the

propagation step, with a negligible part of mode II contribution (i.e., 27 J/m2

on average). The DCB test is therefore not only mode I dominant, but purely

mode I in the present configuration.
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4.2. CLS experiments

4.2.1. Modified CLS experiment

In the modified CLS experiment reported herein, propagation is mainly un-

stable and the analysis is restricted to the 5 load levels for which pictures were

shot. An additional information is given by the maximum load Fc that the sam-

ple could sustain after the series of pictures was taken (Fc = 9.6 kN). With that

information, the critical value Gc is determined by using Equation (1). With the

material parameters given above, Gc = 1320 J/m2. This value will be compared

with those obtained by analyzing the 5 load levels with the above-described

procedure.

Figure 11 shows a comparison between the measured and computed dis-

placement fields for the 9 kN load level. The residual map is also shown to

evaluate the quality of the identification. An identification error of 0.3 pixel

(or 1.8 µm) is found. This value is small in terms of physical quantity, how-

ever larger than the measurement uncertainty evaluated to be of the order of

0.05 pixel (or 0.3 µm). When analyzing the residual maps (Figure 11(e,f)), the

maximum values are for the elements cut by the crack in the measured data.

This is to be expected since a Q4-DIC analysis was performed without any dis-

continuous kinematic enrichment. When this zone is left out for the evaluation

of the residuals, the identification error decreases to 0.25 pixel (or 1.5 µm). The

same trend is observed for the four analyzed cases.

Figure 11 about here

In the following analysis, the mesh used in the simulations is again refined

in comparison with the measurement discretization. Figure 12(a) shows the

change of G with the applied load for different values of ρ. The results are

weakly dependent on the discretization when ρ ≥ 2. The results with ρ = 1 are

completely different from those reported in Figure 12(a) and are not shown. An
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overall standard deviation less than 20 J/m2 is observed, which is acceptable

and in line with classical deviations reached with global identification methods.

Figure 12(b) shows the mean values obtained with the five analyzed load levels,

and the one obtained from the knowledge of the maximum load level (hexagram).

If the results of the five load levels were extrapolated to the maximum load, they

would reach a value of the order of 1250-1350 J/m2, in good agreement with

the value found previously (i.e., 1320 J/m2).

Figure 12 about here

In terms of identification residuals, Figure 13 shows the change of the identi-

fication error δ as a function of the applied load. The range of δ varies between

0.15 and 0.25 pixel (or 0.9 − 1.5 µm). There is a clear degradation when the

applied load level increases. The fact that the order of magnitude of the error

remains the same indicates that the overall quality of identification does not

change. These levels show that even though the agreement between measured

and identified fields is good, a purely elastic description of the behavior of the

interface and the plies is only a first order approximation of the true one. Last,

the influence of the discretization is weak on the overall identification quality

when ρ > 1. This trend is to be expected by analyzing the results shown in

Figure 12(a). The case ρ = 1 leads to residuals that are systematically higher

than those observed for ρ ≥ 1. There is therefore a clear benefit in using a more

refined FE mesh. However, a very fine mesh is not needed since the results are

virtually mesh-independent as soon as ρ ≥ 2.

Figure 13 about here

The location of the crack tip as a function of the load level is shown in

Figure 14. It is worth noting that the crack tip location is directly related to

the underlying finite element mesh, namely, each node along the crack path is
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considered (Figure 4). For the first three load levels, there is a ± 20 pixel (or

± 120 µm, which is in all cases more accurate than any visual inspection used

in classical methods) difference in the location of the crack tip when different

meshes are used. Conversely, for the last two load levels, all results are virtually

identical for ρ greater than 3. Larger values of ρ allow for a better spatial

resolution of the crack tip position. The fact that the crack tip moves as the load

level is increased is related to its opening that becomes more easily quantified

and identified.

Figure 14 about here

The mode mixity is finally addressed. The point of using lateral confinement

was to minimize the mode I contribution. The ratio GI/GII will thus be analyzed

for the two CLS configurations studied herein. Figure 15 shows the change of

GI/GII with the applied load for the five different mesh densities. Contrary to

what is observed for G and the crack tip position, the ratio GI/GII fluctuates

more due to small variations in GI (± 20 J/m2) for levels varying between 20

and 60 J/m2. For the highest load level, the mean GI/GII ratio is equal to 0.12

for the five discretizations. Even though there are fluctuations with the applied

load, the mode mixity remains low during the load history. It is in accordance

with a mode II dominant configuration and below the classical value without

confinement, i.e., a mean ratio of about 0.20 is classically reported [38, 39]. The

difficulty to set up the confinement supports and the local extraction (instead

of global one) are explanations to this difference. The main point is that the

present method captures all mode mixity effects whatever the condition and

configuration of the actual test.

Figure 15 about here
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4.2.2. Standard CLS experiment

To compare the mode mixity observed in the previous configuration, a stan-

dard CLS experiment is also performed. In all the analyses to follow, a value of

the refinement index ρ = 2 is chosen. Two different phases are analyzed. The

initiation of the first crack, which is always delicate since it depends on the sam-

ple preparation and in particular on the details of the bonding state close to the

teflon tape. Because propagation may be very quickly unstable, this first step

is critical in CLS experiments as shown above. Figure 16 shows the change of G

with the applied load. The dashed line shows that a quadratic interpolation is

a very good approximation of the G vs. applied load curve. The RMS difference

between the predicted and measured values is less than 70 J/m2. This value is

close to the estimated uncertainty of G values (i.e., 50 J/m2), thereby indicating

that a quadratic interpolation is a good estimate of the dependence of G with

the applied load.

Figure 16 about here

With the same material parameters as above, the application of Equation (1)

leads to Gc = 1260 J/m2 for the maximum applied load (Fc = 9.9 kN). This

value is significantly lower than what is identified with the proposed approach

(i.e., Gc = 2100 J/m2, see Figure 16). It is worth remembering that an initial

crack is not necessarily present and therefore the applicability of Equation (1)

is not guaranteed (i.e., no steady state propagation is observed). The fact that

a very high initiation value is found explains why the observation of subsequent

propagation is very difficult in this type of test. Since a lot of elastic energy

is stored prior to propagation, it may be sufficient to induce a very significant

propagation before the crack stops.

One key information in CLS experiments and for the present identification

method is related to the mode mixity. Figure 17 shows the change of the ratio
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GI/GII with the applied load. The ratio remains less than 0.08 throughout

the whole loading sequence for which no propagation occurs. It is therefore

concluded that the initiation stage is mainly mode II controlled. However, the

initial loading does not proceed with a constant mode mixity. Close to the

maximum load level for which a picture is recorded, the initiation itself is mode

II dominant. The fluctuations of mode mixity may explain part of the difference

observed in terms of dependence of G with the applied load. For orthotropic

media, a complex coupling appears between GI and GII that does not lead to a

linear dependence (classically known for isotropic media) [34].

Figure 17 about here

This is confirmed by analyzing the changes of the two SIFs with the applied

load (Figure 18). The mode II SIF follows a linear dependence with the applied

load whereas the mode I SIF fluctuates during the whole loading history. These

fluctuations, which are very difficult to control experimentally, are responsible

for the small variations around a quadratic response of G. Last, when com-

pared with the previous CLS configuration, it is observed that the GI/GII ratio

becomes even smaller without any lateral confinement.

Figure 18 about here

Even though a very high value of G is observed in the initiation stage (Fig-

ure 16), the crack does not traverse the whole sample. It stops at about the

middle length of the beam. The displacement is then decreased to a very small

value. After roughly locating the crack tip by visually analyzing the displace-

ment maps provided by Q4-DIC, the applied displacement is increased again.

In the present case, it is possible to follow the beginning of propagation until

the crack tip is no longer located in the picture. Figure 19 shows the change

of G with the applied load during the two stages (i.e., no propagation and sub-
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sequent propagation). The first stage leads to a quasi quadratic G vs. applied

load trend as previously observed.

Figure 19 about here

The deviation from the quadratic response is again due to the value of mode

I SIF that varies significantly during the first loading part. It leads to very

high values of mode mixity (Figure 20) especially at the beginning of the load-

ing history. This may be due to loading conditions that are not strictly those

associated with a CLS geometry due to small misalignments. It is worth remem-

bering that this type of analysis is only possible when these various quantities

are extracted with the true experimental conditions (i.e., the displacements on

the boundary of the ROI).

Figure 20 about here

During propagation, there is a clear increase of G as the load level decreases

(see inset of Figure 19). An interpolation by the inverse of the applied load

captures the trend observed experimentally. Contrary to the first part of the

loading history, this second part is characterized by a slight increase of mode

mixity GI/GII from 0.09 to 0.12 (Figure 20). The value at the onset of prop-

agation is below the mean estimate without confinement (i.e., 0.20 [38, 39])

and is below the ratio obtained with confinement. The difficulty to set up the

lateral confinements is again pointed out. In spite of this complex preparation,

the present local extraction gives good tendencies and more accurate estimates

than only from a classical (global) analysis, which does not give access to actual

(and varying) mode mixities.

When compared with the modified CLS configuration, the same level of

GI/GII ratio is observed. The effect of lateral confinement is therefore minimal

at best, and seems useful only at the beginning of loading. There is a clear
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deviation from the value as propagation proceeds. This result proves that prop-

agation is not under a constant mode mixity and that the present method is

able to capture it. The fact Gc increases with the crack length may be due to

an R-curve behavior since an increase of the mode mixity cannot explain the

increase in toughness (since these materials are classically known to have Gc-

values that are significantly higher under mode II propagation compared with

mode I propagation [40]).

Last, with the material parameters given above, Jc = 860 J/m2 for the

maximum applied load (Fc = 8.3 kN). This value is of the same order of mag-

nitude, yet lower than what is identified during the propagation stage (i.e.,

Gc = 670− 730 J/m2, see inset of Figure 19). This trend is identical for all the

cases studied herein.

4.3. Discussion

In the present analyses, the location of the crack tip was shown to be more

accurate (i.e., ± 120 µm) than classical (visual) procedures (of the order of

± 500 µm), which are operator-dependent since it is performed by analyzing

pictures of the edge of the sample. The standard uncertainty in G values was

shown to be at most equal to 50 J/m2, which is significant but acceptable, for

DCB tests for which a critical value of G is of the order of 400 J/m2. Conversely,

for the CLS test values as high as 1300 J/m2 are determined, and even greater

than 2000 J/m2 at initiation. Thanks to the sub-pixel resolution of Q4-DIC,

this new methodology, which is encapsulated in a unique tool, offers a safer and

more robust evaluation compared with global and visual techniques.

The analysis of mode mixity shows that it can sometimes deviate quite sig-

nificantly from the theoretical estimates based upon ideal loading conditions.

The evaluation of the true boundary conditions was crucial to draw this type

of conclusion. In particular, it is shown that passive (i.e., lateral) confinements

19



have to be controlled in a very complex manner to ensure the quasi-pure mode

II configuration for CLS configurations. One of the reasons being the Poisson

contraction associated with the tensile load. For DCB experiments, when the

two heights of the beams are not identical, small mode II contributions are ob-

served. For all geometries and configurations, the mode mixity extracted at the

local scale is more accurate than (former) global extractions since experimen-

tal boundary conditions are continuously accounted for during the propagation

events.

5. Conclusions

In this paper, three tests were analyzed to determine critical propagation

parameters in mode I and II conditions, and also a mixed mode I/II configura-

tion by extension. This is achieved by coupling displacements fields measured

by resorting to digital image correlation and finite element simulations. The

common information is given by the measured displacements on the boundary

of the region of interest that are the boundary conditions of the finite element

simulations. By minimizing the distance between the measured and computed

displacement fields, it is possible to determine the crack tip location. The latter

being determined, energy release rates associated with each mode are evaluated

by post-processing the finite element results. The experimental mode mixity is

also accessible by following the procedure proposed herein for any of the ana-

lyzed geometries and configuration.

These encouraging results show that the identification of more advanced

(cohesive) models of any interface parameters (e.g., the stiffness of the interface)

can be reached without any global sensor measurement, the two layers can be

seen as a “stress gauge,” provided their elastic properties are known and no

intralaminar damage develops during the test. (Nonlinear contributions of the

intralaminar behavior may also be accounted for in the present setting.)
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Local kinematic fields may also be used to identify propagation parameters

under more complex configurations (e.g., interfaces between [± θ] plies) since

the approach developed herein is very generic, and does not rest on closed-form

solutions whose applicability is restricted to very simple cases. It also shows

that it is possible to extract directly intrinsic propagation parameters (e.g.,

GIc and GIIc), but also initiation values and a direct evaluation of the mode

mixity even when it is not constant during the whole test. These emerging

identification methods fully support the virtual testing approach in the way to

reduce numerous classical tests with a poor quality of parameter extraction to

the benefit of new identification methods with added value [41, 42, 43, 44]. They

can also be used as a redundant check of any identification process or for local

counter-expertise of any complex delamination process.
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load versus stroke curve. AITMmethod: one mean value is extracted from all the experimental
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Figure 2: (a): DCB sample and location of the Region of Interest to analyze locally the

displacement field in the vicinity of the crack tip. (b): Reference picture of the experiment.

(c,e): Vertical displacement fields (in pixels) from which the rigid body motions have been

subtracted (1 pixel ↔ 12 µm). 16-pixel Q4 elements are used in the DIC analysis. (d,f):

Corresponding pictures in the deformed configuration
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(a) Deformed mesh determined by Q4-DIC. The measured dis-

placements of nodes in red are prescribed in FE analyses. The

inner nodes (in blue) are used to minimize the identification er-

ror δ

x

y

(b) FE mesh in which the interface nodes that are not

broken are marked in yellow

40 50 60 70 80 90

3.0

3.2

3.4

3.6

Crack tip position (node number)

Id
e

n
ti
fi
c
a

ti
o

n
  
e

rr
o

r 
(µ

m
)

3.1

3.3

3.5

3.7

(c) Change of the identification error δ as

a function of the assumed position for the

crack tip

200 400 600 800 1000 1200 1400 1600

100

200

300

400

500

600

700

(d) Optimal crack tip position marked with white arrow

Figure 4: Different steps for the determination of the crack tip position
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Figure 6: (a,b): Measured, (c,d): computed, and (e,f): residual displacement fields in the

vertical (left) and horizontal (right) directions (1 pixel ↔ 12 µm) for the DCB experiment
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Figure 11: (a,b): Measured, (c,d): computed and (e,f): residual displacement fields in the

horizontal (left) and vertical (right) directions for the 9 kN load level of the modified CLS

experiment (1 pixel ↔ 6 µm)
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Figure 12: -a-Change of G with the refinement index ρ for the five load levels (CLS experiment).

A 16 J/m2 RMS difference is observed when the different results are compared. -b-Average G

as a function of the applied load. The hexagram corresponds to the evaluation of the critical

value by using Equation (1)
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Figure 13: Change of the identification error with the refinement index ρ for the five load

levels of the modified CLS experiment (1 pixel ↔ 6 µm)
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Figure 14: Crack tip position as a function of the applied load level for five refinement indices

ρ for the modified CLS experiment (1 pixel ↔ 6 µm)
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Figure 15: Energy release rate ratio as a function of the applied load level for the modified

CLS experiment
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Figure 16: G as a function of the applied load level for the initiation step of the CLS experi-

ment. The dashed line corresponds to a parabolic interpolation
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Figure 17: GI/GII ratio as a function of the applied load level for the initiation step of the

CLS experiment
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Figure 18: Mode I and II SIFs as functions of the applied load level for the initiation step of

the CLS experiment. The dashed line corresponds to a linear interpolation
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Figure 19: G as a function of the applied load level for the propagation step of the CLS

experiment. The dashed line corresponds to a parabolic interpolation. Inset: detail of the

propagation history. The solid line corresponds to a hyperbolic interpolation
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Figure 20: GI/GII ratio as a function of the applied load level for the propagation step of the

CLS experiment
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