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APPROXIMATE CONTROLLABILITY CONDITIONS FOR SOME

LINEAR 1D PARABOLIC SYSTEMS WITH SPACE-DEPENDENT

COEFFICIENTS

FRANCK BOYER∗ AND GUILLAUME OLIVE∗

Abstract. In this article we are interested in the controllability with one single control force of
parabolic systems with space-dependent zero-order coupling terms. We particularly want to empha-
size that, surprisingly enough for parabolic problems, the geometry of the control domain can have
an important influence on the controllability properties of the system, depending on the structure of
the coupling terms.

Our analysis is mainly based on a criterion given by Fattorini in [Fat66] and systematically used
in [Oli13] for instance, that reduces the problem to the study of a unique continuation property for
elliptic systems. We provide several detailed examples of controllable and non-controllable systems.
This work gives theoretically justifications of some numerical observations described in [Boy13].

Key words. Parabolic systems; Distributed controllability; Geometric condition; Unique con-
tinuation; Hautus test.

AMS subject classifications. 93B05, 93B07, 93C05, 35K05.

1. Introduction. This paper deals with the controllability properties at time
T > 0 of the following class of 1D linear parabolic systems

{
∂ty + L y = A(x)y + 1ωBv in (0, T )× Ω,

y(0) = y0 in Ω.
(1.1)

Here, the domain is Ω = (0, 1), y ∈ C0([0, T ], L2(Ω)n) is the state, y0 ∈ L2(Ω)n

the initial data, A(x) is a n × n real matrix with entries in L∞(Ω), B is a constant
vector in Rn and v ∈ L2((0, T ) × Ω) is the (scalar-valued) control which is acting
only on the control domain ω, a non-empty open subset of Ω. The diffusion operator
L = L Id operates on vector-valued functions component-wise through the scalar
elliptic operator L defined by

L = −∂x (γ(x)∂x·) + γ0(x) ·, (1.2)

with domain D (L) = {u ∈ H1
0 (Ω), Lu ∈ L2(Ω)} corresponding to homogeneous

Dirichlet boundary condition. The coefficients of L are supposed to satisfy standard
assumptions γ, γ0 ∈ L∞(Ω), with infΩ γ > 0.

This is an important class of systems that can be considered as ”toy models”
to understand how the structure of the coupling terms can influence the behavior
of a controlled system with a few number of controls. In the case where A(x) = A
is constant, it is shown in [AKBDGB09a] that (1.1) is null-controllable if and only
if the Kalman rank condition between matrices A and B holds. This result is thus
independent of the control domain ω and of the operator L (and is actually true in
any space dimension).

The situation is more complex for systems with space-dependent coupling coef-
ficients in which case there exist only few controllability results [GBdT10, KdT10,
RdT11, ABL12, AB12, Mau13, Oli13, BCGdT13]. Most of them are still partial and
deal with systems of 2 equations. In [GBdT10], the null-controllability was established
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for n×n systems with some structure assumption on the coupling and under the cru-
cial hypothesis that the control domain ω intersects the support O of the coupling
terms. The structural assumption was removed in [BCGdT13] and [Mau13], however
with some other technical hypothesis, still in the case ω ∩O 6= ∅. On the other hand,
approximate controllability in the case where the coupling term only acts away from
the control domain, that is ω ∩ O = ∅, was proved for a cascade system with non-
negative coupling terms in [KdT10]. In the same framework, the null-controllability
was then obtained in the one-dimensional case in [RdT11], and then in any dimen-
sion in [AB12] under a geometric condition on the control and the coupling domains,
though. These restrictions come from the geometric control condition (GCC) for the
wave-type systems that are used in these works to deduce results for parabolic systems
through the transmutation method.

We will see in this paper that the geometry of the control domain ω will play an
important role in the study of those systems, even though the GCC is automatically
satisfied in 1D; for instance we shall provide examples of systems which are controllable
for some choices of ω but not controllable for other choices. This is not usual in the
parabolic framework.

We will also give some examples of one-parameter families of coupling matrices
(x 7→ Ad(x))d such that, for suitable ω, L and B, we have

(1.1) is approximately controllable ⇐⇒ d 6∈ Q,

showing that the influence of the coupling terms on the controllability property of
parabolic systems can be quite complex.

Let us also underline that the results in [KdT10], [RdT11] and [AB12] require
some sign conditions for the coupling terms. To the authors knowledge there is no
available result in the literature in the case ω∩O = ∅ without such a sign assumption.
However, it is worth mentionning that the proof of sufficient controllability conditions
given in [KdT10] still holds without this sign assumption, see Section 3.3.1. This
is another achievement of the present paper to provide necessary and sufficient con-
ditions in the general case, that is without a priori assumptions on the sign of the
coupling terms.

Last but not least, we also investigate the case of some n× n systems with n > 2
that do not enter the framework of [GBdT10] and [Mau13].

The notion we deal with in this is paper is the one of approximate controllability
(which is weaker than null-controllability [Ghi86]), that can be stated as follows: For
every ǫ > 0 and y0, yT ∈ L2(Ω)n, find a control v ∈ L2(0, T ;L2(Ω)) such that the
solution y of (1.1) satisfies

‖y(T )− yT ‖L2(Ω)n ≤ ǫ.

Since B is a non-trivial constant vector, and L = L Id, we see that a simple linear
change of unknowns let us transform the system into the case where B = (1, 0, . . . , 0)∗,
the first vector of the canonical basis of Rn (in this work we denote by M∗ the
transpose of any matrix M). This means that the direct action of the control v only
concerns the first component of the system.

We are particularly interested in the study of the system under the following
structural assumptions on the coupling terms:
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1. Controllability of a 2× 2 cascade system (section 3.3.1)

A(x) =


 0 0

a21(x) 0


 . (1.3)

2. Simultaneous controllability of two 2× 2 cascade systems (section 3.3.2)

A(x) =




0 0 0

a21(x) 0 0

a31(x) 0 0


 . (1.4)

3. Controllability of a 3× 3 cascade system (section 4)

A(x) =




0 0 0

a21(x) 0 0

0 a32(x) 0


 . (1.5)

Finally, in section 5 we give some examples and counter-examples of simultaneous
controllability for an uncoupled 2× 2 system (A ≡ 0) with different diffusion on each
equation, that is when the operator L is not anymore of the form L = L Id (but still
diagonal).

2. Unique continuation criterion for triangular systems.

2.1. The Fattorini theorem. The adjoint system of (1.1) is

{
−∂tq + L q = A(x)∗q in (0, T )× Ω,

q(T ) = qF in Ω,
(2.1)

and it is well known (see for instance [Cor07, Theorem 2.43]) that the approximate
controllability at time T > 0 of (1.1) is equivalent to the unique continuation property
for the adjoint parabolic system: there is no non-trivial solutions of (2.1) such that
B∗q = 0 on (0, T )× ω.

However, Fattorini proved in [Fat66] that, for such systems, this parabolic unique
continuation property is actually equivalent to an elliptic unique continuation property
which is much easier to handle (and which does not depend on T ).

Theorem 2.1 ([Fat66, Corollary 3.3]). System (1.1) is approximately controllable
at time T > 0, if and only for any s ∈ C and any u ∈ D (L ) we have

L u−A(x)∗u = su in Ω

B∗u = 0 in ω

}
=⇒ u = 0. (2.2)

This means that the analysis of the approximate controllability for the original
system can be reduced to a careful study of the eigenfunctions (associated with the
eigenvalue s) of the underlying elliptic operator

A = L −A(x)∗.
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In the theory of ordinary differential system, this controllability condition is also
known as the Hautus test. The characterization given by Fattorini has been recently
developped and used in [BT12] and [Oli13] for the study of some other parabolic
systems.

Note that, for the particular systems studied in the present paper (excepted in
Section 5), B∗u is nothing but the first component of u. Thus, the study of the
approximate controllability of all the systems considered in Sections 3 and 4 reduces
to the following question : does it exist an eigenfunction of A whose first component
is identically zero on the control domain ω ?

In all the cases considered, we observe that for any x ∈ Ω, A(x) is strictly lower
triangular. Thus, the eigenvalues of the operator A are simply the {λk}k≥1 where
λk is the kth eigenvalue of (L,D (L)), the corresponding eigenfunction being denoted
by φk. Indeed, assume that u is an eigenfunction of A associated with an eigenvalue
s ∈ C and let i ≥ 1 be the higher index for which ui is not identically zero. Writing
the ith component of the equation A u = su, leads to

sui = Lui −
∑

j>i

aji(x)uj = Lui,

so that s is an eigenvalue of L and finally s = λk for some k ≥ 1.
Moreover, we observe that the first component u1 of u solves an equation of the

following form

Lu1 − λku1 = F in (0, T )× Ω, (2.3)

where F can be computed as a function of the other components of u and the entries
in A(x) as we shall see below.

As a starting point of the analysis we are thus led to study necessary and sufficient
conditions on the source term F ensuring that (2.3) does not have any solution u1
which identically vanishes on the control domain ω.

2.2. Notations. For any k ≥ 1, let φ̃k be any solution of the ordinary differential
equation Lφ̃k−λkφ̃k = 0 which satisfies φ̃k(0) 6= 0. Observe that φk and φ̃k are linearly

independent, and that φ̃k 6∈ D (L) since it does not satisfy the Dirichlet boundary

condition. In the case L = −∂2x, one can choose for instance φ̃k(x) = cos (kπx).
Obviously, one can check that all the results given in this paper do not depend on the
particular choice of φ̃k satisfying the above properties.

We denote by C
(
Ω\ω

)
the set of all connected components of Ω\ω, and for every

C ∈ C
(
Ω\ω

)
and f ∈ L1(Ω), we define the vector Mk (f, C) ∈ R2 by

Mk (f, C) =








∫
C

fφk dx

0


 if C ∩ ∂Ω 6= ∅,




∫
C

fφk dx

∫
C

fφ̃k dx


 if C ∩ ∂Ω = ∅.

(2.4)

Then, for any f ∈ L1(Ω) we define the following family of vectors of R2

Mk (f, ω) = (Mk (f, C))C∈C(Ω\ω) ∈ (R2)C(Ω\ω).
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We will frequently use the fact that, for any u ∈ D (L), we have u, γ∂xu ∈ C0(Ω).
Moreover, in order to simplify a little the notation, we shall write v′ (resp. v′′) instead
of ∂xv (resp. ∂2xv) for functions v depending only on the 1D variable x.

2.3. Unique continuation for a 1D non-homogeneous scalar problem.

We establish necessary and sufficient conditions for a non-homogeneous scalar problem
to have a solution which vanishes identically on a given subset of the domain. As we
will see below, this is the main tool for analysing the elliptic unique continuation
property for eigenfunctions of A .

Theorem 2.2. Let F ∈ L2(Ω) and ω be a non-empty open subset of Ω. Let k ≥ 1
be fixed. There exists a solution u ∈ D (L) to the following problem

{
Lu− λku = F in Ω,

u = 0 in ω,
(2.5)

if and only if

{
F = 0 in ω,

Mk (F, ω) = 0.
(2.6)

Proof. Let us perform a preliminary computation. Let [α, β] ⊂ [0, 1] and u ∈
D (L) be a solution of Lu− λku = F .

Let v ∈ L2(Ω) be any distribution solution of the ordinary differential equation
Lv − λkv = 0. We multiply by v the equation satisfied by u and we perform two
integration by parts to get

∫ β

α

Fv dx =−
[
(γu′)(β)v(β)− u(β)(γv′)(β)

]

+
[
(γu′)(α)v(α)− u(α)(γv′)(α)

]
,

(2.7)

This formula will be used in the sequel with v = φk and v = φ̃k. We can now turn to
the proof of the claimed equivalence.

⇒ Assume that there exists a u satisfying (2.5).
– Since u = 0 in ω, it is clear from the equation that F = 0 on ω. Moreover,

by continuity, u and γu′ are identically 0 on ω.
– Let C = [α, β] be a connected component of Ω\ω. Observe that α (resp.
β) necessarily belongs either to ω or to ∂Ω, and that

{
α ∈ ∂Ω =⇒ u(α) = 0 and φk(α) = 0,

α ∈ ω =⇒ u(α) = 0 and γu′(α) = 0.

Therefore, in both cases, we have u(α) = 0 and φk(α)(γu
′)(α) = 0, the

same being true for when one changes α into β.
It follows from (2.7) with v = φk that

∫

C

Fφk dx = 0,

which proves the claim.
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– Assume additionally that the connected component C is such that C ∩
∂Ω = ∅. As we have seen above, in that case we have u(α) = u(β) =
(γu′)(α) = (γu′)(β) = 0.

Therefore, (2.7) with v = φ̃k immediately gives that

∫

C

Fφ̃k dx = 0.

⇐ SinceMk (F, ω) = 0, we can sum all the integrals corresponding to the various
connected components to obtain that

∫
Ω\ω Fφk dx = 0. Using that F = 0

on ω, we conclude that
∫
Ω
Fφk dx = 0. This orthogonality condition implies

the existence of at least one solution u0 ∈ D (L) of the non-homogeneous
equation

Lu0 − λku0 = F, in Ω.

Actually, any solution of this problem has the form u = u0+µφk, µ ∈ R. We
will show that we can find a µ such that this function u vanishes identically
on ω.

– We first show that one can choose µ in such a way that there exists a
point x0 ∈ ω satisfying

u(x0) = (γu′)(x0) = 0. (2.8)

∗ Assume first that ω ∩ ∂Ω 6= ∅ and for instance that 0 ∈ ω. Thanks
to the Dirichlet boundary condition we have u(0) = 0 and we just
need to impose (γu′)(0) = 0, that is (γu′0)(0)+µ(γφ

′
k)(0) = 0. This

determines µ in a unique way since (γφ′k)(0) 6= 0 and gives x0 = 0.
∗ In the case where ω ∩ ∂Ω = ∅, we denote by [0, β] the connected

component of Ω\ω containing 0. By assumption

∫ β

0

Fφk dx = 0. (2.9)

Since F = 0 in ω, we can replace β in this formula by β + δ with
δ > 0 small enough such that ]β, β + δ[⊂ ω and φk(β + δ) 6= 0 (the
zeros of the eigenfunction φk are isolated).
We can then fix the parameter µ in such a way that

u(β + δ) = u0(β + δ) + µφk(β + δ) = 0.

It follows from (2.7) with v = φk, (2.9) (with the upper bound β+ δ
instead of β), and from the boundary condition satisfied by u and
φk at 0, that

0 = (γu′)(β + δ)φk(β + δ)− u(β + δ)(γφ′k)(β + δ).

Since u vanishes at β + δ, but φk does not, we deduce that

(γu′)(β + δ) = 0.

Therefore u and (γu′) vanish at the same point x0 = β + δ in ω.
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– The parameter µ is now fixed and we know that there is a x0 such that
(2.8) holds.
We want to show that u = 0 on ω. By contradiction, we assume that
there is a x1 ∈ ω, such that u(x1) 6= 0. Without loss of generality we

assume for instance that x0 < x1. Observe that [x0, x1] ∩
(
Ω\ω

)
is a

(possibly empty) union of connected components of Ω\ω and that none of
them touches the boundary of Ω. Since F = 0 in ω, and Mk (F, ω) = 0,
we deduce that

0 =

∫ x1

x0

Fφk dx =

∫ x1

x0

Fφ̃k dx.

Using (2.7) with v = φk (resp. with v = φ̃k) and (2.8), we get

{
0 = (γu′)(x1)φk(x1)− u(x1)(γφ

′
k)(x1),

0 = (γu′)(x1)φ̃k(x1)− u(x1)(γφ̃
′
k)(x1).

Since the Wronskian matrix

φk(x1) −(γφ′k)(x1)

φ̃k(x1) −(γφ̃′k)(x1)


 ,

is invertible (recall that φk and φ̃k are two independant solutions of
the second order differential equation Lv − λkv = 0) we deduce that
u(x1) = (γu′)(x1) = 0 which is a contradiction.

3. Simultaneous controllability of several 2× 2 cascade systems. In this
section we are interested in the controllability of system (1.1) when the matrix A(x)
is of the following form

A(x) =




0 · · · · · · 0

a21(x) 0 · · · 0
...

...
. . .

...

an1(x) 0 · · · 0



. (3.1)

In this system, the distributed control v only acts on the first component y1
and this component serves itself as a simultaneous control for the other components
through the coupling terms a21, . . . , an1.

3.1. Reduction. Observe first that we can always reorder the unknowns yk and
the entries ak1, for 2 ≤ k ≤ n, in such a way that for some p ∈ {2, ..., n+ 1}

{
Span (a211ω, ..., an11ω) = Span (ap11ω, ..., an11ω) ,

ap11ω, ..., an11ω are linearly independent,
(3.2)

where, conventionally, the case p = n + 1 is the one where ak1 = 0 in ω for any
2 ≤ k ≤ n in which case both properties are obvious.
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By using (3.2), we can write

ai11ω =

n∑

j=p

αijaj11ω, ∀i ∈ {2, ..., p− 1},

for some αij ∈ R. We perform now the (revertible) change of unknowns y → ỹ defined
by





ỹi = yi −
n∑

j=p

αijyj , ∀i ∈ {2, ..., p− 1},

ỹi = yi, ∀i ∈ {1} ∪ {p, ..., n}.

It is easily verified that ỹ solves a system of the same form as (1.1), with a new
coupling matrix, still referred to as A(x), which satisfies

{
ai1 = 0, on ω, ∀i ∈ {2, ..., p− 1},
ap11ω, ..., an11ω, are linearly independent.

(3.3)

Finally, since the change of variable is invertible, we observe that the controllability
of the original system for y is equivalent to the one of the new system for ỹ.

Therefore, from now on we shall assume that (3.3) holds and we introduce the
following reduced system of size p− 1

{
∂tŷ + L ŷ = Â(x)ŷ + 1ωBv in (0, T )× Ω,

ŷ(0) = ŷ0 in Ω,
(3.4)

where Â(x) is the (p− 1)× (p− 1) matrix defined by

Â(x) =




0 · · · · · · 0

a21(x) 0
...

...
...

. . .
...

ap−1,1(x) 0 · · · 0



. (3.5)

Proposition 3.1. Assume that (3.3) holds, then the following statements are
equivalent.

1. System (1.1) is approximately controllable for any initial data y0 ∈ L2(Ω)n.
2. System (3.4) is approximately controllable for any initial data ŷ0 ∈ L2(Ω)p−1.

Proof.

1.⇒2. This is obvious since (3.4) is a subsystem of (1.1).
2.⇒1. Assume that (1.1) is not approximately controllable. The criterion given by

Fattorini (Theorem 2.1) implies that (2.2) is not true. Therefore, there exists
a non-trivial u ∈ D (L ) which satisfies, for some k ≥ 1,

{
L u−A(x)∗u = λku in Ω,

u1 = 0 in ω.
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Observe that, from the particular structure of A(x)∗, u = (u1, . . . , un)
∗ has

necessarily the following form

u =




u1

δ2φk
...

δnφk



,

with δi ∈ R for i = 2, ..., n and that u1 solves

Lu1 − λku1 =

(
n∑

i=2

δiai1

)
φk.

Since u1 vanishes on ω as well as ai1 for i = 2, ..., p − 1 (from Assumption
(3.3)), we deduce that




n∑

i=p

δiai1


φk = 0, almost everywhere in ω.

Since φk 6= 0 almost everywhere (its zeros are isolated), it follows that

n∑

i=p

δiai11ω = 0.

By (3.3), the functions ai11ω, i = p, ..., n are linearly independent so that
δi = 0 for any i = p, ..., n.
Coming back to the equation satisfied by u1, we get

Lu1 − λku1 =

(
p−1∑

i=2

δiai1

)
φk =

(
p−1∑

i=2

ai1ui

)
.

It follows that the reduced vector û(x) = (u1(x), ..., up−1(x))
∗ ∈ Rp−1 is a

non-trivial eigenfunction of the reduced adjoint system

L û− Â(x)∗û = λkû,

that satisfies

û1 = u1 = 0, in ω.

From Theorem 2.1, this is in contradiction with the approximate controlla-
bility of the reduced system (3.4).

The conclusion of this discussion is that for the study of the approximate con-
trollability of System (1.1) with A(x) given by (3.1), we can always assume that all
the supports of the coupling functions ai1(x), i = 2, ..., n do not intersect the control
domain ω, that is

ai11ω = 0, ∀i ∈ {2, ..., n}. (3.6)
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3.2. Necessary and sufficient approximate controllability conditions.

The main result of this section is the following
Theorem 3.2. Consider the matrix A(x) as defined in (3.1) and assume that

(3.6) holds.
Then, System (1.1) is approximately controllable if and only if

∀k ≥ 1, rank {Mk (a21φk, ω) , . . . ,Mk (an1φk, ω)} = n− 1.

Remark 1. In this formula the rank condition is understood in the (possibly

infinite dimensional) vector space
(
R2
)C(Ω\ω)

.

In the usual case where Ω\ω has a finite number of connected components, this
condition can be more classically written in a matrix formulation.

Remark 2. The first conclusion that the rank condition above let us draw is that
there is a minimal number of connected components of Ω\ω that are required to have
a chance to control the system. Recall that the goal is to be able to control all the n
components of the solution with only one control v.

More precisely, we see that it is necessary (but not at all sufficient) to have

2 card C
(
Ω\ω

)
≥ n − 1 for the approximate controllability to be possible. Observe

that, if the system is not controllable, it is of course useless to split the control domain
ω into smaller parts: this will actually increase the number of connected components
of Ω\ω but without adding non-trivial terms in the rank condition, because of (3.6).

Looking more attentively at the rank condition we see that, for instance, one can
not hope to control a 3×3 system (resp. a 4×4 system) of this form if ω is an interval
that touches the boundary (resp. that does not touch the boundary). A more detailed
description of such examples is given in Section 3.3.2.

Proof. We use the criterion of Fattorini (Theorem 2.1) and we study whether or
not (2.2) holds. As we have already seen in Section 2.1, the only non-trivial case is the
one where s = λk for some k ≥ 1, in which case a solution u of L u− A(x)∗u = λku
can be written

u =




u1

δ2φk
...

δnφk



,

with δi ∈ R, i = 2, ..., n and u1 ∈ D (L) satisfying

Lu1 − λku1 =

(
n∑

i=2

δiai1

)
φk.

From Theorem 2.2, and since by assumption all the ai1 vanish on ω, such a
solution u exists and satisfies u1 = 0 in ω, if and only if

Mk

(
n∑

i=2

δiai1φk, ω

)
= 0. (3.7)

On the other hand, note that u = 0 if and only if δ2 = · · · = δn = 0 and u1 = 0
on ω. This follows from the unique continuation for a single parabolic equation (see
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for instance [Miz58], [FI96] and [AE08], depending on the regularity required for the
diffusion coefficient γ).

In summary, (2.2) holds if and only if (3.7) implies δ2 = ... = δn = 0. Clearly,

Mk

(
n∑

i=2

δiai1φk, ω

)
=

n∑

i=2

δiMk (ai1φk, ω) ,

and thus the approximate controllability is equivalent to the linear independence of
the vectors (Mk (ai1φk, ω))2≤i≤n, for any k ≥ 1, which gives exactly the claim.

3.3. Some applications.

3.3.1. A single 2 × 2 cascade system. Let us study the following simplest
example of system concerned by the previous analysis

{
∂ty1 + Ly1 = 1ωv in (0, T )× Ω,

∂ty2 + Ly2 = a21(x)y1 in (0, T )× Ω,
(3.8)

which corresponds to the case (1.3). Depending on the assumptions on the coupling
term a21 different results can be obtained. A first result in this direction is the
following.

Theorem 3.3. Let us denote the support of a21 by O2.
1. If O2 ∩ ω 6= ∅, then System (3.8) is approximately controllable.
2. Assume now that O2 ∩ ω = ∅.

(a) If the coupling coefficient a21 satisfies

∫ 1

0

a21(φk)
2 dx 6= 0, ∀k ≥ 1, (3.9)

then System (3.8) is approximately controllable.
(b) If System (3.8) is approximately controllable and O2 is entirely included

in a connected component of Ω\ω that touches the boundary ∂Ω, then
(3.9) holds.

Remark 3.
• In the first situation it can be proved that System (3.8) is even null-controllable
in this case (see for instance [GBdT10]), but the proof is much longer and
technical.

• With (3.9) we recover the (sufficient) condition of [KdT10, Theorem 1.5].
It is easy to see that this condition is fulfilled if a21 has a sign on Ω: for
instance a21 6≡ 0 and a21 ≥ 0 almost everywhere on Ω. Actually, under this
sign assumption, the null-controllability of this system is known (see [RdT11,
Theorem 5]).

• The geometric configuration required in the last point (2b) holds in particu-
lar if O2 and ω are two disjoint intervals. Condition (3.9) is however not
necessary in general, see the examples below.

Proof (of Theorem 3.3).
1. If a21 is not identically zero on ω, we deduce from Proposition 3.1 (with
p = n = 2) that the approximate controllability of (3.8) is equivalent to the
one of the scalar parabolic equation

∂tŷ + Lŷ = 1ωv
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with Dirichlet boundary condition. This kind of scalar heat equation is known
to be approximately controllable (see the references given in the proof of The-
orem 3.2) and thus, we obtain that (3.8) is also approximately controllable.

2. Assume now that O2 ∩ ω = ∅. In this case, the rank condition in Theorem
3.2 simply reduces to the property

Mk (a21φk, ω) 6= 0, ∀k ≥ 1. (3.10)

(a) In particular, if we assume that (3.9) holds, then, for any k ≥ 1, there
exists at least one connected component C of Ω\ω such that

∫

C

a21(φk)
2 dx 6= 0.

This shows that the first component ofMk (a21φk, C) is not zero and thus
Condition (3.10) holds and System (3.8) is approximately controllable.

(b) Let C be the connected component of Ω\ω that contains O2. Since by
assumption C touches the boundary of Ω, we have Mk (a21φk, ω) 6= 0 if
and only if

∫
C
a21(φk)

2 dx 6= 0. On the other hand, since O2 ⊂ C, we

have
∫ 1

0
a21(φk)

2 dx =
∫
C
a21(φk)

2 dx and the claim is proved.

We will now investigate some examples (not necessarily under the assumptions of
the previous theorem though).

1. In the first example we consider a coupling coefficient a21 that vanishes in ω
and does not have a constant sign in Ω\ω. We will provide in particular some
controllable systems for which (3.9) fails. Up to our knowledge our analysis
is the first available result in this framework.
We will study two slightly different situations depending on the geometry of
the control domain ω, as shown in Figure 3.1.

ω

O2

(a) ω is connected

ω ω

O2

(b) ω is not connected

Fig. 3.1: Two geometries for the study of a 2× 2 system

• For some α ∈ R, we consider (see Figure 3.1a)

ω ⊂
(
3

4
, 1

)
, a21(x) = (x− α)1O2

(x), O2 =

(
1

4
,
3

4

)
.

In this case, we are in the framework of Theorem 3.3 and, as a result,
the approximate controllability holds if and only if (3.9) holds. If, for
any k ≥ 1, we set

αk =

∫
O2

xφ2k(x) dx∫
O2

φ2k(x) dx
,
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then we obtain that

(3.8) is approximately controllable ⇐⇒ α 6∈ {αk}k≥1.

As an illustration, in the case L = −∂2x, we have φk(x) = sin (kπx) and
a direct computation shows that αk = 1/2 for any k ≥ 1. Therefore, the
system is approximately controllable if and only if α 6= 1/2.
To our knowledge, no (positive or negative) null-controllability result
is available for this system. However, the numerical results given in
[Boy13] in a similar case seem to suggest that it is possible that null-
controllability does not hold in general when approximate controllability
holds.

• With the same choice of a21 and O2, we consider now the case where

ω ∩ O2 = ∅, ω ∩
(
3

4
, 1

)
6= ∅, and ω ∩

(
0,

1

4

)
6= ∅,

as shown in Figure 3.1b.
For α 6∈ {αk}k≥1, the controllability result obtained above immediately
imply the approximate controllability of the system in this new frame-
work.
However, for α ∈ {αk}k≥1 it may happen that the system is approxi-
mately controllable with this new choice of the control domain ω despite
it is not approximately controllable for the previous choice of ω. Indeed,
we observe that the only connected component of Ω\ω that plays a role
in the problem does not touch the boundary ∂Ω anymore. Therefore,
in the rank condition given in Theorem 3.2, the second components in
Mk (a21φk, ω) are no more trivial (see (2.4)) and we have, if α = αk for
some k ≥ 1,

(3.8) is approximately controllable ⇐⇒
∫

O2

(x− αk)φkφ̃k dx 6= 0.

This new condition is not explicit in general, but for instance in the case
L = −∂2x we have φk(x) = sin (kπx) and φ̃k(x) = cos (kπx) we can
check that (recall that α = 1/2 is the only interesting value here)

∫

C

a21(x)φk(x)φ̃k(x) dx = kπ

∫ 3/4

1/4

(x− 1/2) sin (kπx) cos (kπx) dx

=

{
−1
8 (−1)k/2 if k is even,
−1
4kπ (−1)(k−1)/2 if k is odd.

As a consequence, those integrals are never equal to zero and the ap-
proximate controllability of the system is proved in this case for any
value of α.
It is worth mentioning that for this example the null-controllability of
the system remains an open problem (it seems that there is no result
available in this direction as soon as the coupling function a21 does not
have a constant sign).

2. Let us go back to the geometry of Figure 3.1a, in the particular case L = −∂2x
and α = 1

2 .
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We have seen that System (3.8) is not approximately controllable in that case,
which means that there is at least one initial data y0 that can not be steered
as close to zero as we would like to.
Actually, we can obtain a more precise result in that case since we have seen
that, when α = 1

2 , the integrals
∫
C

(x− 1
2 )φ

2
k dx vanish for every k ≥ 1 (and not

only for one value of k). More precisely, we will identify a set of an infinite
number of necessary conditions that should be satisfied by the initial data y0
in order for the system to be approximately controllable from y0.
Using that Mk (a21φk, ω) = 0 for any k ≥ 1, so that from Theorem 2.2, we
deduce the existence (and uniqueness) of a function denoted by ψk which
satisfies

{
−ψ′′

k − λkψk = a21φk in Ω,

ψk = 0 in ω.
(3.11)

Proposition 3.4. Let y0 = (y0,1, y0,2)
∗ ∈ L2(Ω)2. If System (3.8) is ap-

proximately controllable from the initial data y0, we have

〈y0,1, ψk〉L2(Ω) + 〈y0,2, φk〉L2(Ω) = 0, ∀k ≥ 1. (3.12)

Proof. We introduce the set QF of the non-observable adjoint states defined
as follows

QF =
{
qF ∈ L2(Ω)2, s.t. the solution of (2.1) satisfies 1ωB

∗q(t) = 0, ∀t
}
.

In the present case, we recall that B∗q = q1 is the first component of q.
It is proved in [Boy13, Proposition 1.17] that our system is approximately
controllable at time T from a given initial data y0 if and only if

〈y0, q(0)〉L2(Ω) = 0, for any solution q of (2.1) with qF ∈ QF . (3.13)

By construction of ψk, the vector qF = (ψk, φk)
∗ belongs to QF for any k ≥ 1,

and the associated solution of the adjoint problem (2.1) is nothing but

q(t) = e−λk(T−t)qF .

It follows that, if the system is controllable from y0, we necessarily should
have

0 = 〈y0, q(0)〉L2(Ω) = e−λkT 〈y0, qF 〉L2(Ω)

= e−λkT
(
〈y0,1, ψk〉L2(Ω) + 〈y0,2, φk〉L2(Ω)

)
,

for any k ≥ 1, and the proof is complete.
Remark 4. It follows from this proposition that the set of initial data
for which System (3.8) is approximately controllable is a closed subspace of
L2(Ω)2 of infinite codimension.
However, we observe that this set is not trivial. Indeed, let us consider an
initial data of the form y0 = (y0,1, y0,2)

∗ with y0,1 supported in ω then we
have

(3.8) is approximately controllable from y0 ⇐⇒ y0,2 = 0.
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⇒ Since for any k ≥ 1, ψk = 0 in ω and y0,1 is supported in ω, the first term
in (3.12) automatically vanishes. Therefore, we have 〈y0,2, φk〉L2(Ω) = 0
for any k ≥ 1 which leads to y0,2 = 0.

⇐ We use the characterisation (3.13) which reduces to 〈y0,1, q1(0)〉L2(Ω) = 0
for any qF ∈ QF , since y0,2 = 0. But this new condition is automatically
satisfied because y0,1 is supported in ω and q1(0) = 0 in ω by definition
of QF .

3. Let us give another example where the controllability conditions are slightly
more complex. Our aim is to emphasize that the notion of approximate
controllability is very sensitive to the coupling terms in the system; in some
sense we can say that it is not a stable notion with respect to the coefficients
of the equation under study.
The situation we consider is the following (see Figure 3.2)





L = −∂2x, so that φk(x) = sin (kπx) , ∀k ≥ 1,

ω ⊂ (β, 1) , a21 = 1O2
− 1O′

2
,

with O2 = [α, α+ L],O′
2 = [α+ d, α+ d+ L],

(3.14)

for some fixed β ∈ (0, 1) and L, d, α ≥ 0 such that α+ L+ d ≤ β. Therefore,
the coupling term a21 takes the values 1 and −1 on two intervals of the same
length and its support does not touch the control domain ω.

α
|
O2

distance d

O′
2

β
| ω

Fig. 3.2: The geometry for example (3.14)

There is again one single connected component of Ω\ω, that we denote by
C, that plays a role in the controllability, and this latter one touches the
boundary ∂Ω. Thus, we are in the framework of Theorem 3.3. Let us compute
∫

C

a21(x) sin
2 (kπx) dx =

∫ α+L

α

sin2 (kπx) dx−
∫ α+d+L

α+d

sin2 (kπx) dx

=
−1

kπ
sin (kπL) sin (kπd) sin (kπ(2α+ d+ L)) .

As a conclusion, System (3.8) is approximately controllable if and only if

L 6∈ Q, d 6∈ Q, 2α+ d+ L 6∈ Q.

Fix for instance L, α ≥ 0 such that L 6∈ Q, 2α+L ∈ Q and α+L < β. Then,
for any d ∈ [0, β − α− L], we have

System (3.8) is approximately controllable ⇐⇒ d 6∈ Q.

3.3.2. Simultaneous control of 2 × 2 cascade systems. In this section we
study the controllability properties of the following 3× 3 one-dimensional system,





∂ty1 + Ly1 = 1ωv in (0, T )× Ω,

∂ty2 + Ly2 = a21(x)y1 in (0, T )× Ω,

∂ty3 + Ly3 = a31(x)y1 in (0, T )× Ω,

(3.15)
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which corresponds to the case (1.4). Observe that there is no direct interaction be-
tween y2 and y3 so that the problem can be understood as follows : find a single
control v ∈ L2(0, T ;L2(Ω)) which simultaneously drives near zero at time T the solu-
tions of the two 2 × 2 subsystems for (y1, y2) in the one hand and for (y1, y3) in the
other hand.

We recall that we can always assume that the coupling terms a21 and a31 iden-
tically vanish on ω, see section 3.1. Let us denote by O2 and O3 the supports of a21
and a31, respectively.

We will illustrate the controllability properties of the system in various situations
depending on the geometric configuration of the coupling domains O2, O3 and of the
control domain ω.

1. We assume first that ω is connected.
In such case there is at most two connected components in Ω\ω, say C1 and
C2, and they necessarily touch the boundary. Theorem 3.2 then states that
system (3.15) is approximately controllable if and only if

rank


Mk (a21φk, C1) Mk (a31φk, C1)

Mk (a21φk, C2) Mk (a31φk, C2)


 = 2, ∀k ≥ 1. (3.16)

C1 C2ω

O2O3

(a) Coupling terms in the same connected component of Ω\ω

C1 C2ω

O2 O3

(b) Coupling terms in different connected components of Ω\ω

Fig. 3.3: Various geometric situations for the 3× 3 system

• First case : O2 and O3 are included in the same connected component
of Ω\ω, see Figure 3.3a. We see that system (3.15) can not be approxi-
mately controllable (whether the supports of a21 and a31 intersect each
other or not). Indeed, (3.16) cannot be true because

rank


Mk (a21φk, C1) Mk (a31φk, C1)

0 0


 ≤ 1, ∀k ≥ 1,

since C1 touches the boundary ∂Ω and thus there is only one row in this
4× 2 matrix which can be non-trivial, see (2.4).

• Second case : O2 and O3 are included in two different connected com-
ponents of Ω\ω, see Figure 3.3b.
Here, we have

rank


Mk (a21φk, C1) 0

0 Mk (a31φk, C2)


 = 2 ⇐⇒

{
Mk (a21φk, C1) 6= 0,

Mk (a31φk, C2) 6= 0.
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O2O3

ωω

Fig. 3.4: The case of a non-connected control domain

Thus, the approximate controllability of system (3.15) in this case is
equivalent to the approximate controllability of the two 2× 2 systems

{
∂tŷ1 + Lŷ1 = 1ω v̂ in (0, T )× Ω,

∂tŷ2 + Lŷ2 = a21(x)ŷ1 in (0, T )× Ω,

and
{
∂tỹ1 + Lỹ1 = 1ω ṽ in (0, T )× Ω,

∂tỹ3 + Lỹ3 = a31(x)ỹ1 in (0, T )× Ω,

Of course, it is not required here that the controls v̂ and ṽ are the same.
Actually, by a direct argument we can even prove that the null-controllability
of system (3.15) is equivalent to the null-controllability of these 2×2 systems.
Indeed, let ω = (a, b) ⊂⊂ Ω = (0, 1) and take L = −∂2x for simplicity. Let
α, β ∈ C∞(Ω) be smooth cut-off functions satisfying





α = 1 in (0, a),

α = 0 in (b, 1),





β = 0 in (0, a),

β = 1 in (b, 1).

If v̂ and ṽ are null-controls for the 2× 2 systems above, we define the control
v by

v = αv̂ + βṽ + (∂2xα)ŷ + 2(∂xα)(∂xŷ) + (∂2xβ)ỹ + 2(∂xβ)(∂xỹ),

It is clear that v belongs to L2(Ω) and is supported in ω. On the other
hand we can check that y1 = αŷ1 + βỹ1, y2 = ŷ2 and y3 = ỹ3 so that
y1(T ) = y2(T ) = y3(T ) = 0.

2. Let us consider now a case where ω is not connected. More precisely, we
choose ω = (0, α) ∪ (β, 1) with, for instance, α < 1/2 < β. In that case,
Ω\ω has also one single connected component C but C does not touch the
boundary of Ω. In order to make the computations explicit, we set L = −∂2x.
We take a21 = 1O2

, a31 = 1O3
where O2 =]1/2 − δ2, 1/2 + δ2[ is an interval

centered at 1/2 and O3 is another interval O3 =]α3 − δ3, α3 + δ3[. They
are chosen in such a way that O2 ∩ ω = O3 ∩ ω = ∅, see Figure 3.4. The
controllability rank condition given by Theorem 3.2 then writes

rank




∫
O2

sin (kπx)
2
dx

∫
O3

sin (kπx)
2
dx

∫
O2

sin (kπx) cos (kπx) dx
∫
O3

sin (kπx) cos (kπx) dx


 = 2, ∀k ≥ 1.

Using the symmetry of O2 with respect to 1/2, we see that
∫

O2

sin (kπx) cos (kπx) dx = 0.
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Since
∫
O2

sin (kπx)
2
dx > 0, if follows that the system is controllable if and

only if
∫
O3

sin (kπx) cos (kπx) dx 6= 0 for any k ≥ 1. A straightforward
computation shows that

∫

O3

sin (kπx) cos (kπx) dx =
sin (2kπδ3) sin (2kπα3)

2kπ
,

so that we conclude that

The system is approximately controllable ⇐⇒ α3 6∈ Q and δ3 6∈ Q.

Let us draw a kind of summary of the previous discussion when a21 = 1O2
and

a31 = 1O3
are the characteristic functions of intervals that do not intersect ω:

• In the situation of Figure 3.3a, System (3.15) is never approximately control-
lable.

• In the situation of Figure 3.3b, System (3.15) is always approximately con-
trollable.

• In the situation of Figure 3.4, the approximate controllability of System
(3.15), depends on the precise size and position of the intervals O2 and O3.

4. Controllability of a 3×3 cascade system. In this section, we are interested
in the controllability properties of the following system





∂ty1 + Ly1 = 1ωv in (0, T )× Ω,

∂ty2 + Ly2 = a21(x)y1 in (0, T )× Ω,

∂ty3 + Ly3 = a32(x)y2 in (0, T )× Ω.

(4.1)

This system has a cascade structure since the control v only acts on the first compo-
nent of the solution which itself has an influence on the second component y2 through
the coupling term a21y1, and finally y2 also acts on the third component through
another coupling term a32y2.

For simplicity, we assume all along this section that there exists a non-empty open
set O2 ⊂ Ω such that

a21 6= 0 a.e. in O2, a21 = 0 a.e. in Ω \ O2. (4.2)

This is a (weak) regularity assumption which holds for instance if a21 is piecewise
continuous and not identically zero.

Remark 5. A first necessary condition for the approximate controllability of
System (4.1) is the approximate controllability of the subsystem (3.8), which has been
studied in Section 3.3.1.

The following result give additional necessary and sufficient conditions that allows
a quite simple analysis of the approximate controllability of System (4.1). Under
particular assumptions on the coupling coefficients, we see that the study of the
controllability for the 3× 3 system (4.1) reduces to the study of the controllability of
some 2× 2 systems. This should be connected with Theorem 3.3 for 2× 2 systems.

Theorem 4.1. Assume that the 2× 2 subsystem (3.8) is approximately control-
lable and let a21 satisfy (4.2).

1. Assume that O2 ∩ ω 6= ∅.
(a) If the 2× 2 system

{
∂ty2 + Ly2 = 1O2∩ω v̂ in (0, T )× Ω,

∂ty3 + Ly3 = a32(x)y2 in (0, T )× Ω,
(4.3)
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is approximately controllable, then System (4.1) is itself approximately
controllable.

(b) If System (4.1) is approximately controllable and O2 ⊂ ω, then System
(4.3) is approximately controllable.

2. Assume now that O2 ∩ ω = ∅.
(a) If the coupling coefficient a32 satisfies

∫ 1

0

a32(φk)
2 dx 6= 0, ∀k ≥ 1, (4.4)

then, System (4.1) is approximately controllable.
(b) If System (4.1) is approximately controllable and O2 is entirely included

in a connected component of Ω\ω that touches the boundary ∂Ω, then
(4.4) holds.

Let us consider some basic examples of applications of this result.
• Assumption (4.4) is for example fulfilled if a32 has a constant sign on Ω and

is not identically zero. Combining this result with the discussion in Section
3.3.1, we deduce that our 3 × 3 system is approximately controllable if a32
and a21 both have constant signs (not necessarily the same sign) on Ω, and
are non-identically zero. This situation is illustrated numerically in [Boy13,
Sect 4.4.2].

• However, observe that the sign condition for a32 is not necessary for the
previous corollaries to apply. For instance, as we have seen in the item #1 of
Section 3.3.1, (4.4) also holds for any k ≥ 1 in the case where L = −∂2x and
a32 = (x− α)1(1/4,3/4)(x) for α 6= 1/2.

• Finally, consider the case where L = −∂2x, ω = (1/2, 1), a21(x) = 1(0,1/2)(x)
and a32(x) = x − 1/2. Here the coupling domain O2 = (0, 1/2) and ω are
two disjoint intervals. Since a straightforward computation shows that (4.4)
fails for any k ≥ 1, we can apply Theorem 4.1 and see that the system is
not approximately controllable. This result is also numerically illustrated in
[Boy13, Section 4.4.2]
Observe that the subsystem satisfied by (y1, y2) is approximately control-
lable. The lack of controllability is thus a consequence of the structure of the
coupling term a32 between the second and third components.

The proof of Theorem 4.1 relies on the following characterization.
Proposition 4.2. Assume that the 2×2 subsystem (3.8) is approximately control-

lable and let a21 satisfy (4.2). Then, System (4.1) is not approximately controllable
if and only if there exists k ≥ 1 and v ∈ D (L) such that





Lv − λkv = a32(x)φk in Ω,

v = 0 in O2 ∩ ω,
Mk (a21v, ω) = 0.

(4.5)

Proof (of Proposition 4.2). From Theorem 2.1, System (4.1) is not approximately
controllable if and only if there exists k ≥ 1 and u = (u1, u2, u3)

∗ ∈ D (L ) with u 6= 0
such that





Lu1 − λku1 = a21u2 in Ω,

Lu2 − λku2 = a32u3 in Ω,

Lu3 − λku3 = 0 in Ω,

u1 = 0 in ω.
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Clearly, u3 = δφk for some δ ∈ R. Moreover, we have δ 6= 0. Indeed, if we assume
that δ = 0 then (u1, u2) is not trivial and satisfies





Lu1 − λku1 = a21u2 in Ω,

Lu2 − λku2 = 0 in Ω,

u1 = 0 in ω,

and this is a contradiction with the approximate controllability of the subsystem (3.8),
by Theorem 2.1.

Thus, under this assumption, System (4.1) is not approximately controllable if
and only if there exists k ≥ 1, δ 6= 0 and u1, u2 ∈ D (L) such that





Lu1 − λku1 = a21u2 in Ω,

Lu2 − λku2 = δa32φk in Ω,

u1 = 0 in ω.

Using Theorem 2.2 this is equivalent to the existence of k ≥ 1, δ 6= 0 and u2 ∈ D (L)
such that





Lu2 − λku2 = δa32φk in Ω,

a21u2 = 0 in ω,

Mk (a21u2, ω) = 0.

Finally, by definition of O2 (see (4.2)), we have a21u2 = 0 almost everywhere in ω if
and only if u2 = 0 almost everywhere in O2∩ω. This proves the lemma with v = u2/δ.

We turn out to the proof of Theorem 4.1.
Proof (of Theorem 4.1). We use the characterization of Proposition 4.2.
1. Assume first that O2 ∩ω 6= ∅. Note that this condition automatically implies

the approximate controllability of the 2× 2 subsystem (3.8) by Theorem 3.3.
(a) Looking at the first two equations of (4.5) and using Theorem 2.1, it is

not difficult to see that, if System (4.1) is not approximately controllable,
then the 2× 2 system (4.3) is not approximately controllable either.

(b) When O2 ⊂ ω, the third condition Mk (a21v, ω) = 0 of (4.5) is always
fulfilled since, in the one hand a21 = 0 almost everywhere in Ω \ O2 (by
(4.2)) and in the other hand v = 0 almost everywhere in O2∩ω = O2. It
follows from Theorem 2.1 that System (4.1) is approximately controllable
if and only if so is the 2× 2 system (4.3).

2. Assume now that O2 ∩ ω = ∅.
(a) The orthogonality condition (4.4) is necessary for the existence of a so-

lution to the first equation of (4.5). Thus, System (4.1) is approximately
controllable if this latter one fails.

(b) It follows in particular from the assumption on O2 that O2 ∩ ω = ∅.
Thus, the second equation of (4.5) is now empty. On the other hand,
let k ≥ 1 be such that

∫ 1

0

a32(φk)
2 dx = 0.

Then, we know that the first equation in (4.5) admits an infinite number
of solutions of the form v = v0 + αφk, α ∈ R, where v0 ∈ D (L) is the
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unique solution of this equation that satisfies 〈v0, φk〉L2(Ω) = 0. Let C be

the connected component of Ω\ω that contains O2. Since by assumption
C touches the boundary of Ω, and by (2.4), we have Mk (a21v, ω) = 0
if and only if

∫
C
a21vφk dx = 0. It remains to prove that we can choose

α such that
∫

C

a21vφk dx =

∫

C

a21v0φk dx+ α

∫

C

a21(φk)
2 dx = 0.

In particular, it is enough to prove that
∫
C
a21(φk)

2 dx 6= 0. By assump-
tion the 2×2 subsystem (3.8) is approximately controllable, and a21 = 0
almost everywhere in ω ⊂ Ω \ O2. Thus, Mk (a21φk, ω) 6= 0 (by Theo-
rem 3.2), so that

∫
C
a21(φk)

2 dx 6= 0 (same reasoning as above), and the
claim is proved.

5. Simultaneous control of uncoupled systems. In this section we still
study systems of the general form (1.1) but in a slightly different framework com-
pared to the previous sections.

Since we are mainly going to deal with examples, we restrict ourselves to the case
n = 2 for simplicity. We assume here that B = (b1, b2)

∗ is any vector in R2, that the
coupling terms satisfy A(x) = 0 for any x ∈ Ω and that the (diagonal) operator L is
given by

L =


L1 0

0 L2


 , (5.1)

where L1 and L2 are two possibly different elliptic operators. Hence, the system we
are interested in writes

{
∂ty + L y = 1ωBv in (0, T )× Ω,

y(0) = y0 in Ω.
(5.2)

We assume that b1 6= 0 and b2 6= 0, because if it is not the case, the controllability of
(5.2) clearly fails. Observe that the controllability also fails if L1 = L2.

In the case where the operators Li are different but multiples of the same operator
L the following null-controllability result was proved in [AKBDGB09b, Remark 1.1].

Theorem 5.1. Let L be an elliptic operator as defined in the introduction (1.2)
and ω a non-empty open subset in Ω. For i = 1, 2, we set Li = diL for some di > 0,
we define L by (5.1) and we suppose given B = (b1, b2)

∗ with b1 6= 0 and b2 6= 0.
Then,

(5.2)is null-controllable ⇐⇒ d1 6= d2.

We are interested here in studying some examples where the operators Li are
different but not proportional to a given elliptic operator; this appears to be a more
intricate problem. The strategy is still based on the unique continuation criterion
given by Fattorini and is therefore restricted to the approximate controllability prop-
erty.
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We will assume that L1 = −∂2x and that L2 = −∂x (γ(x)∂x·) for some γ ∈ L∞(Ω)
and infΩ γ > 0.

In this framework, Theorem 2.1 says that the system is approximately controllable
if and only if, for any s ∈ C we have

L1u1 = su1 in Ω

L2u2 = su2 in Ω

b1u1 + b2u2 = 0 in ω





=⇒ u1 = u2 = 0, ∀u1 ∈ D (L1) , u2 ∈ D (L2) .

However, since bi 6= 0, this condition is equivalent to

L1u1 = su1 in Ω

L2u2 = su2 in Ω

u1 = u2 in ω





=⇒ u1 = u2 = 0, ∀u1 ∈ D (L1) , u2 ∈ D (L2) . (5.3)

Of course, if L1 and L2 have no common eigenvalues then this condition is auto-
matically satisfied and the system is approximately controllable. If L1 and L2 have
a common eigenvalue, we have to analyse if the corresponding eigenfunctions can
coincide on the control domain ω.

Let us look more precisely at two different examples.
• Example 1: the diffusion coefficients are equal in the control domain ω.

More precisely, we set ω = (0, 1/2) and we assume that γ is piecewise constant

γ(x) =

{
1, for x ∈ (0, 1/2) = ω,

γ2, for x ∈ (1/2, 1),

with γ2 > 0.
Let λk = k2π2, k ≥ 1 be an eigenvalue of L1 = −∂2x and u1(x) = sin (kπx)
be the associated eigenfunction. An eigenfunction u2 of L2 for the same
eigenvalue and which coincides with u1 in ω has necessarily the following
form

u2(x) =

{
sin (kπx) , for x ∈ (0, 1/2)

δ sin
(

kπ√
γ2

(x− 1)
)
, for x ∈ (1/2, 1),

and, δ should be determined in order to satisfy the following transmission
conditions at x = 1/2





−δ sin
(

kπ

2
√
γ2

)
= sin

(
kπ

2

)
,

δ
√
γ2 cos

(
kπ

2
√
γ2

)
= cos

(
kπ

2

)
.

– If k = 2p is even, the existence of a δ satisfying those equations is
equivalent to

√
γ2 =

p

q
, for some q ∈ N∗.

– If k = 2p+ 1 is odd, the existence of δ is equivalent to

√
γ2 =

2p+ 1

2q + 1
, for some q ∈ N∗.
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The conclusion of this study is that, the system is approximately controllable
if and only if

√
γ2 6∈ Q.

• Example 2: The non-controllability situations that we underlined in Example
1 seem to be the consequence of the fact that the diffusion coefficients of the
two operators L1 and L2 coincide in the control domain ω. However, we want
to show here that we can construct an example of a non-controllable system
of the same kind even if the diffusion coefficients are completely different for
the two operators.
We first choose 0 < α < 1/4, and the control domain ω = (0, α). We set

β =
sin (2πα)

sin (πα)
, C =

sin (πα) cos (2πα)

2 sin (2πα)
− cos (πα) .

We consider now the following definition of the diffusion coefficient that de-
fines the operator L2

γ(x) =

{
1 + C

cos(πx) , for x ∈ (0, α) = ω,
1
4 , for x ∈ (α, 1).

Observe that, even if C < 0, we still have inf γ > 0. A straightforward
computation shows that the function u2 defined by

u2(x) =

{
sin (πx) , for x ∈ (0, α) = ω,

β sin (2πx) , for x ∈ (α, 1),

is an eigenfunction of L2 associated with the eigenvalue π2 which obviously
coincides with sin (πx) on ω.
As a consequence, with this particular choice of the diffusion coefficient, the
parabolic system under study is not approximately controllable.

6. Conclusion and perspectives. In this paper, we have given some easily
checkable necessary and sufficient conditions for the approximate controllability of
some 1D coupled parabolic systems with space-dependent coefficients. These condi-
tions have been illustrated on many simple examples to show that the controllability
issue for those systems can be an intricate problem depending on the geometry of the
control domain and of the characteristics of the coupling terms in the system.

In particular, we explicitly described some one-parameter families of systems that
are approximately controllable if and only if the parameter is not a rational number.
Observe that the study of the null-controllability of such systems is completely open
up to now. Actually, non-standard behaviors (in the parabolic framework) may be
expected for the values of the parameters that give the approximate controllability.
It is for instance possible that those systems are approximately controllable but not
null-controllable, or that the null-controllability only holds for a large enough control
time T . These kind of behaviors have been recently established in [AKBGBdT12] in
the framework of the boundary control of parabolic systems.

Another point that we should explore is the link between the distributed control
problem, that we studied in this paper, and the boundary control problem of parabolic
systems. Even if it is known since [FCGBdT10] that there is no equivalence between
these properties for systems with a few number of controls (in contrast with scalar
equations), it seems that there exist however some relations between the two notions
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when the coupling domain does not meet the control domain. For instance, Theorem
3.3 should be connected with [Oli13, Theorem 3.2].

Finally, we observe that some of our examples can be extended to simple Cartesian
geometries but the study of the general multi-dimensional systems is far from being
straightforward and is still widely open.
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