
HAL Id: hal-00848708
https://hal.science/hal-00848708

Submitted on 28 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Expressing and Computing Passage Time Measures of
GSPN Models with HASL

Elvio Amparore, Paolo Ballarini, Marco Beccuti, Susanna Donatelli, Giuliana
Franceschinis

To cite this version:
Elvio Amparore, Paolo Ballarini, Marco Beccuti, Susanna Donatelli, Giuliana Franceschinis. Express-
ing and Computing Passage Time Measures of GSPN Models with HASL. Application and Theory of
Petri Nets and Concurrency, Jun 2013, Milan, Italy. �10.1007/978-3-642-38697-8_7�. �hal-00848708�

https://hal.science/hal-00848708
https://hal.archives-ouvertes.fr

Expressing and computing passage time measures of
GSPN models with HASL

Elvio Gilberto Amparore1, Paolo Ballarini2, Marco Beccuti1,
Susanna Donatelli1, and Giuliana Franceschinis3

1 Università di Torino, Dipartimento di Informatica
{beccuti, susi, amparore}@di.unito.it

2 Ecole Centrale Paris, Laboratoire MAS
paolo.ballarini@ecp.fr

3 Università Piemonte Orientale, Dipartimento di Informatica
giuliana.franceschinis@di.unipmn.it

Abstract. Passage time measures specification and computation for Generalized
Stochastic Petri Net models have been faced in the literature from different points
of view. In particular three aspects have been developed: (1) how to select a spe-
cific token (called the tagged token) and measure the distribution of the time em-
ployed from an entry to an exit point in a subnet; (2) how to specify in a flexible
way any condition on the paths of interest to be measured, (3) how to efficiently
compute the required distribution. In this paper we focus on the last two points:
the specification and computation of complex passage time measures in (Tagged)
GSPNs using the Hybrid Automata Stochastic Logic (HASL) and the statistical
model checker COSMOS. By considering GSPN models of two different systems
(a flexible manufacturing system and a workflow), we identify a number of rele-
vant performance measures (mainly passage-time distributions), formally express
them in HASL terms and assess them by means of simulation in the COSMOS
tool. The interest from the measures specification point of view is provided by
the possibility of setting one or more timers along the paths, and setting the con-
ditions for the paths selection, based on the measured values of such timers. With
respect to other specification languages allowing to use timers in the specifica-
tion of performance measures, HASL provides timers suspension, reactivation,
and rate change along a path.

1 Introduction

Performance analysis of systems through Generalized Stochastic Petri Net (GSPN)
models or similar formalisms has evolved significantly since their introduction, in par-
ticular an interesting research direction concerns how to express and compute relevant
performance measures. The languages that have been proposed to this purpose span
from classical reward based ones to logics like the Continuous Stochastic Logic (CSL)
and its extensions (action based, timed-automata based and reward based), to automata
based languages. In this paper the focus is on the automata based languages, allow-
ing to analyze a measure of interest on a selected set of paths through the model state
space. Such paths are executions of a stochastic process (quite often a Continuous Time
Markov Chain (CTMC) for which efficient analysis techniques exist) usually described

by means of a high level formalism like GSPN or Stochastic Process Algebra (SPA) of
various sorts.

The passage time distribution is a specific type of performance index which is par-
ticularly useful when reasoning about properties related with Service Level Agreements
(SLA) or safety requirements. In these cases classical performance measures based on
mean values, like the average response time, are not sufficient and an estimate of the
probability distribution for the time to complete a specific model activity (for example a
recovery process) is needed instead. Moreover often only specific behaviors should be
accounted for in the computation of such probability distributions, which brings us back
to the need of estimating the passage time distribution on a subset of model evolution
paths.

A passage time measure specification for CTMC is usually based on the definition
of entry, goal and forbidden states: the distribution of the time required to reach a goal
state from any entry state without hitting any forbidden state can be computed with
different methods and tools [17, 12]. This typically requires the (automatic) manipula-
tion of either the CTMC or of the high level model used to generate the CTMC. When
specific paths must be isolated however, the CTMC may undergo a transformation,
often obtained by synchronizing it with an automata describing the paths of interest.
Examples of languages proposed in the literature to express these type of measures are
the Extended Stochastic Probes (XSP [11], operating on PEPA models [16]), Path Au-
tomata (PA, operating on Stochastic Activity Networks [18]), Probe Automata (PrA [3],
operating on GSPN or on Tagged GSPN [7]). More recently the HASL (Hybrid Au-
tomata Stochastic Logic) [8] language has been introduced, operating on any Discrete
Event Stochastic Process (but up to now experimented only with an extended version
of GSPNs): we shall exploit its expressive power in the present paper, with reference
precisely to GSPN models.

Another issue when expressing passage time measures on high level models is the
possibility to identify entities in the model (customers), and measure the time required
for a selected entity to go through a number of steps (activities), corresponding to the
movement of the entity through a sequence of components in the high level model
(possibly conditioned on some state-based predicate being true). In GSPN terms this
often leads to the need to follow a specific token through the net. This issue is not
trivial if the token to be followed may go through places containing other tokens, since
they are indistinguishable: this aspect has been tackled in the literature by introducing
a formalism extension called Tagged GSPNs [11].

This paper introduces the use of the HASL logic for the specification of passage time
measures over GSPN models extended with general firing time distributions. The mea-
sure computation is performed using the statistical model checker COSMOS: stochastic
discrete event simulation of the GSPN stochastic process synchronized with a Linear
Hybrid Automaton (LHA) is performed. Cosmos generates a (statistically significant)
sample of GSPN paths conforming to the HASL specification, and estimates the mea-
sures of interest from such sample (a confidence interval is provided for each measure).

The conclusion is that the HASL expressive power is adequate to specify (passage
time) performance measure as can be specified with PrA and with the TGSPN passage
time measure specification language, and that the COSMOS statistical model checker

is an appropriate and useful tool to estimate such measures, even in presence of non ex-
ponential transition firing times and on models with very large state spaces. In addition
more complex paths selection is possible, in particular those characterized by conditions
on the duration of specific phases along the path (requiring to set one or more timers
during the evolution, with the possibility of suspending, resuming and proceeding with
different rates).

The paper is organized as follows: Section 2 describes the stochastic logic HASL,
the associated LHA and the statistical model checker COSMOS. The use of LHA for the
specification of passage time of paths of a stochastic Petri net model is then illustrated
in Section 3, based on a simple workflow model taken from the literature; in this section
we also report results for the passage time computation using COSMOS. The literature
on the definition of passage time for tagged GSPN, based on entry, exit and forbid-
den condition for subnet identification or based on Probe Automata, is then recalled in
Section 4. The difference and similarities of HASL based specification with respect to
Probe Automata specification of passage times is discussed in Section 5, supported by
a classical FMS example. Finally some conclusive remarks are given in Section 6.

2 Background: HASL

The Hybrid Automata Stochastic Logic (HASL) [9] is a recently introduced, automata-
based, formalism for statistical model checking of discrete event stochastic processes
(DESP). It enjoys two main features: generality and expressiveness. HASL is general
with respect to modelling capabilities as it addresses a class of models (i.e. DESPs)
which includes, but (unlike most stochastic logics) is not limited to, CTMCs. With
respect to expressiveness HASL turns out to be a powerful language through which
temporal reasoning is naturally blended with elaborate reward-based analysis. In that
respect HASL unifies the expressiveness of CSL[4] and its action-based variant [5],
timed-automata [14, 10] and reward-based [15] extensions, in a single powerful for-
malism. The HASL model checking method belongs to the family of statistical model
checking approaches (i.e. those that employ stochastic simulation as a means to estimate
a model’s property) and, more specifically, it employs confidence-interval methods to
estimate the expected value of the target measure (i.e. either a measure of probability
or a generic real-valued measure). Finally a prototype software tool for HASL model
checking, named COSMOS [8], gives the possibility to actually apply HASL to real case
studies (see [8] and [13] for a comparison of COSMOSwith other tools implementing sta-
tistical model checking). In the following we informally introduce the basic elements
of the HASL methodology referring the reader to the literature [9] for formal details.

2.1 HASL models: DESPs as GSPNs

The HASL logic refers to DESP models. Informally a DESP is a stochastic process con-
sisting of a (possibly infinite) set S of states and whose dynamic is triggered by a (finite)
set E of (time-consuming) discrete events. For reasons of generality no restrictions are
considered on the nature of the delay distributions associated with events, thus any

distribution with non-negative support may be considered. In practice the HASL frame-
work [9] has been formalized referring to a high-level representation of DESP, namely:
an HASL model consists of an (extended) GSPN whose timed-transitions may be as-
sociated with any delay distribution with non-negative support (e.g. Exponential, De-
terministic, Uniform, LogNormal, etc.). The choice of GSPNs as modeling formalisms
is due to two factors: (1) they allow a flexible modeling w.r.t. the policies defining the
process (choice, service and memory) and (2) they provide an efficient path generation
(due the simplicity of the firing rule which drives their dynamics). For the sake of space
in this paper we omit the formal definition of DESP but we rather introduce the ratio-
nale behind it through description of some examples. Also, in the remainder we will
simply use the notation term GSPN referring, in facts, to a DESP model in GSPN form.

2.2 HASL formulas: a Linear Hybrid Automaton and a target expression

A HASL formula is a pair (A ,Z) where A is Linear Hybrid Automaton (i.e. a restric-
tion of hybrid automata [2]) and Z is an expression involving data variables of A . The
goal of HASL model checking is to estimate the value of Z by synchronization of a
GSPN N with the automaton A . This is achieved through stochastic simulation of the
synchronized process (N ×A), a procedure by means of which infinite timed execu-
tions of process N are selected through automaton A until some final state is reached
or the synchronization fails. During such synchronization, data variables evolve and the
values they assume condition the successive evolution of the synchronization. The syn-
chronization stops as soon as either: a final location of A is reached (in which case the
values of the variables are considered in the estimate of Z), or the considered trace of
N is rejected by A (in which case variables’ values are discarded).

LHA: Again here we only provide an informal description of LHA referring the reader
to [9] for formal definitions. Simply speaking an LHA is an automaton consisting of
the following elements: a finite set of locations L (some of which are Final and some
other are Initial); a finite set of events E (corresponding to the GSPN transition labels);
a finite non-empty set X of n real variables; a location labeling function (Λ : L→ Prop)
which associates each location with a (boolean) property that refers to GSPN states (i.e.
markings); a flow function (flow : L 7→ Indn) which associates with each location an n-
tuple of GSPN indicators (conditions referring to GSPN markings) expressing the rate
(i.e. the first derivative) at which each data variable in X changes in that location; vari-
able’s flow can be simple constants or functions of the current state of the GSPN (hence
they are expressed by means of GSPN state indicators, denote Ind). Finally a transi-

tion from a source location l to a target location l′ has the following form l
E ′,γ,U−−−→ l′,

where: I) E ′ ⊆ E ∪{]} is a set of labels of synchronizing events (including the extra
label] denoting autonomous edges); II) γ is a constraint (i.e. a boolean combination of
inequalities of the form ∑1≤i≤n αixi +c≺ 0 where αi,c∈Ind are GSPN state indicators
and ≺∈{=,<,>,≤,≥} and xi∈X). III) U is a set of updates (i.e. an n-tuple of func-
tions u1, ...,un where each uk is of the form xk = ∑1≤i≤n αixi + c where the αi,c∈ Ind
are GSPN indicators) by means of which new values are assigned to variables of X on
traversing of the edge.

P1

T1T0

Fig. 1. A toy GSPN model.

l0

ṫ : 1
ṅ1 : 0

l1

{T1}, t < T, {n1 + +}

ALL \ {T1}, t < T,∅

�, t = T,∅

(a) Time bounded measure. (b) Event bounded measure.

l1

{T1}, n1 < N, {n1 + +}

ALL \ {T1}, n1 < N, ∅

�, n1 = N,�
w ← w

N

�

l0

ṫ : 1
ẇ : P1

ṅ1 : 0

Fig. 2. Example of LHA for simple properties of the GSPN model in Fig. 1.

Example of LHA: Figure 2 depicts two variants of a simple two locations LHA charac-
terizing path measures of the toy GSPN model of Figure 1 (such a GSPN may represent
a simple unbounded queue with service/arrival represented by T1 and T0 respectively,
while tokens in place P1 represent the customers in queue and in service). The loca-
tions named l0 and l1 are the initial and the final locations for the two automata. Both
automata employ two data-variables: an integer variable n1 (hence with flow ṅ1 = 0 in
every location), counting the occurrences of transition T1, and a real-valued variable t
which is used as a timer (hence with flow ṫ = 1) to record the simulation-time along the
path; moreover the LHA of Figure 2(b) has a variable w with flow equal to the mark-
ing of place P1 (hence it measures the integral of the number of waiting customers in
the queue) along the observed path. Both automata have two synchronizing edges (the
self-loops on l0) and one autonomous edge (from l0 to l1). The topmost synchronizing
edge synchronizes with occurrences of T1 and by incrementing the value of n1 at each
synchronization it allows for counting the occurrences of T1 (stored in n1). The bottom-
most synchronizing edge, on the other hand, synchronizes with any transitions (denoted
ALL) of the GSPN model except T1, without performing any update. The autonomous
edge l0→ l1 instead leads to the final location as soon as its constraint is fulfilled. Note
that the the condition leading to the final location in the LHA of Figure 2 (b) represents
a time-bounded constraint on the simulation time t, i.e.: as soon as t = T the processed
path is accepted (and, by that time, n1 will be equal to the number of firings of T1 up
to time t = T). On the other hand, in the LHA of Figure 2 (b) the condition that leads
to the final location is an event-bounded constraint, as it accepts paths as soon as T1
has occurred n1 = N times. More specifically, variable n1 is incremented every time T1
fires in location l0, until n1 becomes equal to N; in the same location variable w grows
with rate equal to the marking of P1. Just before taking the transition from l0 to l1, w
contains therefore a quantity that corresponds to the summation of the residence times

of all tokens observed in P1 along the simulation; when the transition is taken, it is
updated to w = w/n1, hence, on acceptance, w will be equal to the average residence
time of customers in place P1 along the observed path, that is to say after the first N
occurrences of T1.

HASL expression: The second component of an HASL formula is an expression, de-
noted as Z and defined by the following grammar:

Z ::= E(Y) | Z +Z | Z×Z |CDFI(Y) | PDFI(Y) | PROB()

Y ::= c | Y +Y | Y ×Y | Y/Y | last(y) | min(y) | max(y) | int(y) | avg(y)

y ::= c | x | y+ y | y× y | y/y
(1)

y is an arithmetic expression built on top of LHA data variables (x) and constants (c).
Y is a path dependent expression built on top of basic path random variables such as
last(y) (i.e. the last value of y along a synchronizing path), min(y)/max(y) (the mini-
mum/maximum value of y along a synchronizing path), int(y) (the integral over time
along a path) and avg(y) (the average value of y along a path). Finally Z, the target
measure of an HASL experiment, is an arithmetic expression built on top of the first
moment of Y (E[Y]), and thus allowing to consider more complex measures including,
e.g. Var(Y)≡E[Y 2]−E[Y]2, Covar(Y1,Y2)≡E[Y1·Y2]−E[Y1] ·E[Y2].
The expressions CDFI(Y) and PDFI(Y) compute a sequence of cumulative/instantaneous
values, subdivided in discrete samples of uniform size described by a sampling interval
I = 〈t0, tFinal,∆ t〉, where t0 and tFinal are the extremes of the sampling and ∆ t is the size
of the uniform step at which the samples are taken. Usually, the target data variable of
CDF/PDF is a time counter, in order to compute a density or a distribution function.
The target expression PROB() measures the mean number of paths accepted by the
LHA automaton over the total number of simulated paths. It is the only operator that
is influenced by rejected paths, since E(Y), CDFI(Y) and PDFI(Y) takes samples from
accepted paths only.

l0
ṫ:1

ṅ1:0
l1

{T 1},(t<T),{n1++}

ALL\{T 1},(t<T), /0

],(t=T)∧n1≤N

Fig. 3. The LHA used to compute the probability of observing less than N occurrences of T 1
within time T .

Measures of probability with HASL:
With reference to the two LHAs of Figure 2, and considering the quantities accu-

mulated along the accepted paths in the variables t, n1 and w, we can define the expres-
sions E(last(n1)) for the LHA (a) to estimate the mean number of T 1 firing up to time

T , while for the LHA ((b) we could define E(last(w)) to estimate the mean average
waiting time for behaviors up to the N-th firing of T 1 and CDFI(t) for a given interval,
to estimate the (normalized) distribution of the time to complete

Note that, in the definition provided by HASL, and its corresponding computation
implemented in Cosmos, the CDF is actually normalized, so as to asymptotically reach
1. This is motivated by the fact that the CDF of certain quantities may be ”defective”
in HASL, since it is computed only on accepted paths: if only a subset of the paths is
accepted, the CDF may not tend to 1 but to an asymptotic value which is the probability
of accepted paths.

Figure 3 shows another simple example of LHA (a small variant of the LHA in
Figure 2(a)) for measuring φ1: the probability that the number of occurrences of tran-
sition T1 within time T does not exceed N. This is achieved by using the condition
(t = T)∧ (n1 < N) on the autonomous edge from l0 to l1 and t < T on the other two
edges departing from l0. If a path counts more than N occurrences of T 1 within time
T , the edge l0 → l1 will not be triggered and the LHA will not be able to synchro-
nize with any successive GSPN transitions. Such a path is therefore rejected.The rate of
acceptance is measured by defining the target measure Z = PROB().

3 HASL and passage time of selected paths

Given a discrete-state stochastic process with state space S, and sets E,G,D ⊂ S the
passage-time Prob(E,G,D, t) is a CDF measure expressing the probability of reaching
any goal state in G starting from any enter state in E and avoiding forbidden states in D
and with a delay no greater than t [17, 12]. The measure Prob(E,G,D, t) is defined in
function of the state-dependent random variable PG,D

x , denoting the probability to reach
a goal state in G starting from state x and avoiding states in D.
Here we discuss how to take advantage of an expressive property specification formal-
ism, such as HASL, from the point of view of passage-time related measures. More
specifically we are going to show how the HASL formalism can be used to express
“standard” passage time measures as well as more complex ones. In other words we
consider the possibility of an extended characterisation of passage-time measure where
the constraining factor does not necessarily consist of state-conditions (i.e. the forbid-
den states D) but it may involve performance characteristics of the model (i.e. mea-
sured during the passage from an entry state to the reaching of a goal state). Such
performance-constrained extensions of passage time can be formally expressed and
measured through the HASL logic.

In this section we consider passage times as the time to traverse a set of selected
paths, while we shall consider the use of HASL for representing the passage time of
tagged customers in subnets of GSPN models, as defined in [3], in Section 4. The pre-
sentation in this section is supported by a specific GSPN model taken from the litera-
ture [1], which represents a business workflow. This will allow us to illustrate the rich-
ness of HASL in characterizing paths based on the actions performed and on the states
visited along the path, as in any stochastic logic, but also based on accumulated discrete
and continuous measures, including accumulated performance indices. The generality

of the model considered will also allow us to bring evidence of the usefulness of such a
rich specification language.

3.1 Business workflow model

The model considered is a case of an order-handling business process model, taken from
[1]. Fig. 4 shows the GSPN that models the processing of a single order. The workflow

start start_F register_F

start_L register_L

start_E register_E

checking

billing

billing_F send_bill_F

reminder

billed

receive_payment

payed

checking_L

check_availability

checked

in_stock

reorder

do_not_order
replenish

updating

update

shipping shipping_L

ship_goods

shipped

replenish_L

replenishing

archiving_F

archive_Farchiving_L

archive_L

archiving_E

archive_E archived

NE
employees

NF
finance

NL
logistics

new_order

Fig. 4. The workflow model for an order-handling process.

involves two separate tasks of preparing and sending the bill to the client, and to ship
the requested goods. The company reckons on three types of employees: those who
manage accounting (F), logistics (L) and generic employees (E). Different tasks are
carried out by different employees. The Petri net is made of some subnets consisting
of an immediate transition, a place and a timed transition. Such subnets first allocate
one of these staff resources, execute the specified task and then release the resource.
The staff is represented by three places finance, logistics and employees. Arrows from
and to these three places are drawn only for the case of the activity represented by the
register E transition, done by a generic employee, which is reserved just before the
register E transition becomes enabled, and released upon firing. All the other subnets
whose timed transitions have labels with suffixes “ E”, “ F” and “ L” use a similar
schema, acquiring and releasing the appropriate employee resources.

The Petri net represents the lifetime of an order from the start place, when it is
received, to the archived place, when it has been served. Upon receiving of an order,
one employee prepares the request to the warehouse and to the accounting department.
A logistic personnel checks if the requested item is available: if it is not, a reorder is
issued (replenish), and the shipping is delayed until the items are available (update). In
the meanwhile, the bill is sent to the client. If after some time the payment has not been
received (receive payment), the billing is resent (reminder). When the item has been
shipped and payed, the request is archived. The actual model contains several replicas

of the model in Figure 4, all sharing the three resource places. Since replicas are kept
separate, we can easily follow the possible paths followed by each single order.

3.2 HASL based passage-time measures

Referring to the GSPN model of the business workflow we illustrate a number of
passage-time measures expressed in HASL terms. For each measure we provide first
an informal specification then the corresponding formal characterization as an HASL
formula (i.e. an LHA paired with an HASL expression as by grammar (1)). Finally for
each such measures we provide numerical results obtained by running experiments with
the COSMOS tool.

Measure w1: the CDF of the passage-time for an ordered good to be delivered.

l0

ṫ : 1

ALL, True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order}, True,∅

{new order},
True, {t = 0}

l2

ṫ : 1

l3

ṫ : 0

archived = 0 archived = 1

ALL, t ≤ T,∅

ALL, t < T,∅

Skipping the initial transient,
until initT seconds have passed.

HASL expression: Z1 = CDFI(last(t))

Fig. 5. The LHA automaton for the workflow passage-time w1.

The probability measure w1 can be encoded by the HASL formula φw1 = (A1,Z1)
where A1 is the LHA depicted in Figure 5 and Z1 is the HASL expression Z1 =
CDFI(last(t)). The automaton A1 employs one data variable: a timer t that records the
simulation time of the synchronising paths. A1 works as follows: the initial location l0
is used only to emulate a transient window, letting a random trajectory of duration initT
being simulated before the actual analysis starts in location l1. The automaton then re-
mains in l1 for as long as the first occurrence of (the GSPN) transition new order, whose
firing takes A1 into location l2: note that on traversing the l1 → l2 edge the timer t is
reset, corresponding to the beginning of the passage-time measuring. From l2 a path is
accepted (i.e. by reaching final location l3) as soon as the GSPN place archived is filled
in with a token (representing the delivering of previous incoming order). The edge from
l2 to the final locations l3 is taken only when the condition archived=1 is met. If at the
instant when place archived is filled in with one token the passage-time is t < T then
the path is accepted. On the contrary, if t > T the LHA becomes unable to synchronize
with further transitions of the GSPN, and the path is rejected.
Measure w2: the CDF of the passage-time for an ordered good to be delivered given
that it was out-of-stock.
The probability measure w2 can be encoded by the HASL formula φw2 = (A2,Z2)
where A2 is the LHA depicted in Figure 6 and Z2 = CDFI(Last(t)). Automaton A2 is

ALL, t ≤ T,∅

ALL, t < T,∅

l0

ṫ : 1

ALL, True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order}, True,∅

{new order},
True, {t = 0}

l2

ṫ : 1

archived = 0

ALL \ {reorder}, t < T,∅

archived = 1archived = 0

{reorder},
t < T,∅

l3

ṫ : 1

l4

ṫ : 0

HASL expression: Z2 = CDFI(last(t))

Fig. 6. The LHA automaton for the workflow property w2.

a variant of A1 and employs the same data variable t for the elapsed time. As in A1
the initial location l0 is used only to let the transient window pass before entering in l1
where the actual analysis of the synchronised path begins. From l1 the LHA moves to
l2 on firing of a new order transition (which also trigger the timer t reset). From l2, l3
is reached only on occurrence of a reorder transition (i.e. the ordered good was out-of-
stock). From l3 the final location l4 is then reached under exactly the same conditions as
of A1. As a result the GSPN paths leading to the final location are those which contain
an occurrence of new order followed by an occurrence of reorder and that finally lead
to a marking M(archived) = 1.

Measure w3: the CDF of the passage-time for an ordered good to be delivered given
that it is not out-of-stock and that the total delay for checking its availability and ship-
ping it does not exceed K .

l0

ṫ : 1

ALL, True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order}, True,∅

{new order},
True, {t = 0}

l3

ṫ : 0

archived = 0 archived = 1

ALL \ {reorder, replenish}, t < T,∅

l2

ṫ : 1, ṫ� : (∗)
ALL \ {reorder, replenish},

t ≤ T ∧ t� < K, ∅

(*) = checking L + shippingHASL expression: Z3 = CDFI(last(t))

Fig. 7. The LHA automaton for the workflow property w3.

The probability measure w3 can be encoded by the HASL formula φw3 = (A3,Z3)
where A3 is the LHA depicted in Figure 7 and Z3 =CDFI(last(t)). Automaton A3 em-
ploys two data variables: a timer t, (as A1 and A2) plus an extra real-valued variable t ′

which is used to further conditioning the accepted paths. More specifically t ′ is used to
measure the total time that the system spends in either checking the availability of the
ordered good or in shipping it while assuming that the ordered good does not require
a reorder (i.e. it is present in stock). For this the rate of variation of t ′ (i.e. its flow)
corresponds to the sum of the marking of places checking L and shipping (location l2).
Furthermore note that the exclusion of paths containing an occurrence of either reorder
or replenish is obtained by using ALL\{reorder,replenish} in the on all arcs departing
from l2 as synchronisation (constraint) set: i.e. if the currently simulated GSPN path
has lead to l2 then the occurrence of either reorder or replenish causes the path to be

rejected (no LHA transition is enabled). Finally, from l2 a path is accepted as soon as
place archived is filled in with one token (delivery of the ordered good) and the condi-
tion on t ′ is satisfied (i.e. if t ′ < K, where K is a constant parameter of the A3).

Measure w4: the CDF of the passage-time for an ordered good to be delivered given
that the total delay for reordering and updating the stock does not exceed K .

l0

ṫ : 1

ALL, True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {new order}, True,∅

{new order},
True, {t = 0}

l3

ṫ : 0

archived = 0 archived = 1

ALL, t < T,∅

l2

ṫ : 1, ṫ� : (∗)

(*) = replenish L + updating

ALL, t ≤ T ∧ t� < K,∅

HASL expression: Z4 = CDFI(last(t))

Fig. 8. The LHA automaton for the workflow property w4.

The probability measure w4 can be encoded by the HASL formula φw4 = (A4,Z4)
where A4 is the LHA depicted in Figure 8 and Z4 =CDFI(Last(t)). Automaton A4 is a
variant of A3 and uses the same two data variables only that now t ′ is used to measure
the total time that the system spends in either replenishing after a re-order or updat-
ing the stock. Thus the rate of variation of t ′ corresponds to the sum of the marking of
places replenish L and updating (location l2).

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

Passage Time CDF

Pr
ob

ab
ili

ty

w1

w2

w4

w3

Fig. 9. Passage times for the workflow properties w1 to w4, with sampling interval I = 〈0,100,1〉.

Experiments: to assess the value of w1, w2, w3 and w4 we have performed a number
of experiments using the COSMOS tool: i..e. we encoded the GSPN model of the busi-
ness workflow and the LHA formulae φw1,φw2,φw3,φw4 into COSMOS and executed
a set of experiments. Figure 9 shows the plots of the results for the passage-time CDF

corresponding to HASL formulae φw1,φw2,φw3,φw4, including the confidence intervals
for each time sample.

The plot of φw1 represents the CDF of the average passage time in the workflow
net, from the arrival of a new order to its archiving. The workflow has three replicas
of the model, and has 1 generic employee, 1 accounting employee and 2 persons at the
logistics. The transition names appearing on LHA edges refer to the first of the three
replicas (due to the system symmetry the result is independent on the replica chosen
for the measure). The other three curves represent the passage time distributions of a
selected set of paths, where only paths that respect the additional constraints described
in the LHAs are considered. For instance, φw3 selects only paths that avoid reorders and
also perform checking and shipping within a given time bound, so the average passage
time of φw3-accepted paths will be less that that of φw1. On the contrary, φw2 consider
only paths that do at least one reorder, so their average passage time will be greater than
that of φw1. Finally φw4 lays in between φw1 and φw3 because it admits paths that require
a reorder, but impose a limit on the total delay for reordering and updating the stock.

The workflow model keeps the status of each ordered good separated, by using a
distinct replication of the subnet where the order is circulating. In general, keeping
tracks of specific tokens in a net can be derived by a proper tagging of a selected token
through the subnets where the tagged token flows. This can be done automatically by
using tagged GSPNs. In the next sections we shall consider the use of HASL for the
specification and computation of passage times, as defined for queueing networks and
tagged GSPN.

COSMOS performances
measure conf-level width num-cores build-time (s) runtime (s) gen-paths

w1

99%

0.01
1 2.91 56.07 6.7 e03

w1 2 2.91 32.86 6.7 e03
w1 4 2.91 25.66 6.7 e03
w1

0.001
1 2.91 5569.42 6.635 e06

w1 2 2.91 3307.99 6.635 e06
w1 4 3.50 2521.05 6.635 e06
w1

95%

0.01
1 2.87 33.37 3.9 e03

w1 2 2.85 20.15 3.9 e03
w1 4 2.84 13.07 3.9 e03
w1

0.001
1 3.21 3262.36 3.842 e06

w1 2 2.82 1917.90 3.842 e06
w1 4 3.33 1365.10 3.842 e06

¡¡¡¡¡¡¡ .mine ======= ¿¿¿¿¿¿¿ .r673

Table 1. COSMOS runtime in function of confidence-level, interval-width and chosen level of
parallelisation.

COSMOS performances. ¡¡¡¡¡¡¡ .mine Table 1 reports about the performances of the
COSMOS tool4. referring to experiments for assessing measure w1 (i.e. CDF of pas-
sage time for an ordered good to be delivered) of the workflow model. Essentially it
show how the simulation-time (i.e. the runtime for sampling trajectories in a quantity

4 experiments executed on an Apple MacBook Pro, processor Intel dual Core i7 2.8GHz, 8GB
1333 MHZ DDR3 RAM. 256KB L2 cache, 4MB L3 cache.

sufficient to match the required accuracy of estimation) varies in function of the chosen
accuracy (i.e. the confidence level and width of the estimated interval) of an experi-
ment. Since Cosmos also allows for the parallelisation of trajectory simulation we also
considered the level of parallelisation (expressed in terms of chosen number of cores
over which an experiment is distributed) as a parameter of each experiment. Observe
that, quite sensibly, the runtime gain is less than linear wrt the level of parallelisation
======= Table 1 reports about the performances of the COSMOS tool5. referring to
experiments for assessing measure w1 of the workflow model. Essentially it show how
the simulation-time (i.e. the runtime for sampling trajectories in a quantity sufficient to
match the required accuracy of estimation) varies in function of the chosen accuracy
(i.e. the confidence level and width of the estimated interval) of an experiment. Since
Cosmos also allows for the parallelisation of trajectory simulation we also considered
the level of parallelisation (expressed in terms of chosen number of cores over which an
experiment is distributed) as a parameter of each experiment. Observe that, quite sen-
sibly, the runtime gain is less than linear wrt the level of parallelisation ¿¿¿¿¿¿¿ .r673
and in particular the gain drastically decreases when the chosen number of cores over
which the computation is distributed is beyond the actual cores the CPU consists of
(in our experiments two)6. Finally observe that Cosmos adopts a model-driven code-
generation scheme, i.e. a customised C++ instance of HASL simulator is generated for
each input (GSPN, HASL-formula) pair and compiled before the actual computation
starts. The time to complete this phase, is illustrated in the build-time column of Ta-
ble 1, whereas the gen-paths column indicates the number of trajectories generated by
each experiment.

4 Background: tagged GSPN and Probe Automata

GSPN have been widely used in research and applications to compute classical perfor-
mance measures, as the mean number of tokens in places or the throughput of transi-
tions. One type of performance index which is not straightforward to define on GSPN
models is the distribution of the time required for a (specific) token to pass through a
given sub-net , since it requires “token-centric” [6, ?] view of the system where the to-
kens represent system entities/customers moving through the net. However, in general,
tokens in GSPNs cannot be interpreted as entities which travel throughout the models,
but they are indistinguishable quantities consumed and generated by transition firing.
Hence, the idea of selecting one token to make it “tagged” and of following it through-
out the net is not a trivial task, unless exploiting certain structural properties of the net.

The work in [6] proposes to exploit invariant properties (i.e. p-invariant) to identify
places where tokens with indistinguishable behavior are preserved so that such tokens
can be treated similarly to the customers of Queuing Network models and can thus be
tagged by the modeler to compute the distribution of the time required by one specific
token to travel between points of the net. This has led to the introduction of the Tagged

5 experiments executed on an Apple MacBook Pro, processor Intel dual Core i7 2.8GHz, 8GB
1333 MHZ DDR3 RAM. 256KB L2 cache, 4MB L3 cache.

6 The runtime for num-cores > 4, not shown in Table 1 for the sake of space, are essentially the
same as that for num-cores= 4.

Generalized Stochastic Petri Net (TGSPN) formalism which extends classical GSPN
with primitives to specify the subnet on which the passage time should be computed.
In particular the counterpart of the observed (tagged) customer is the identification of
a p-semiflow that leads to a partial unfolding of the subnet identified by the semiflow:
transitions and places of the subnet are replicated: each place Pi has a replica Ptag

i (same
for transitions), and the token in the tagged subnet represents the tagged customer. The
condition upon which to start, finish or stop the computation of the passage time are
specified by the Entry, Exit and Forbid conditions, identifying respectively the tran-
sitions corresponding to the start and stop of passage time count, and those causing
the abort of the measurement (i.e. allowing to discard the paths where any forbidden
transition fires). Actually the conditions are specified as triplets {〈t,Cin,Cout〉}, where
Cin is the marking condition that has to be satisfied in the tangible marking where t
is fired, and Cout is the marking condition which has to be satisfied in the tangible
marking reached after firing it. Any of the three elements may be omitted. The TGSPN
computation of passage time is based on the tangible reachability graph. Therefore, the
semantics is slightly more complicated, since arcs in a TRG are labeled with extended
firing sequences: a timed transition followed by zero or more immediate, leading to a
tangible marking. So Entry = {〈t,Cin,Cout〉}means that the computation of the passage
time starts when we reach a tangible marking satisfying Cout from a tangible marking
satisfying Cin with an extended firing sequence containing t.

To make this more concrete we introduce another example taken from the literature.
This is the model of a Flexible Manufacturing System (FMS), a model that was already
used in [6] to explain tagged GSPN, and that we report in Fig. 10 for ease of reference.
This FMS comprises four manufacturing stations, from M1 through M4, where two of

p1

p0

p2 p8p7p6p5p4p3

p9 p12p10 p11

p21

p20

p19

p18p18

p16

p17

T1 T2 T4T3

T10
T8

T9

T6

T0

π=3π=2

t1 t2 t3 t4

t7

t6

M1 M2 M3 M4

Repairmen

Palletsn

p14p22

p15

p13

T7

T5

t8
t5

3

3

p23Spares

L/U

Figure 1. A FMS with machines breakdown and repair.

is the activating extended firing set, and γpost ∈ B(P)
is the post-condition. For each edge e in E, it should
hold that l ∈ LP ⇒ l� ∈ LP .

Final locations LF select the states of the TRG that con-
clude the passage time computation, passage locations LP

select states of the TRG along which the passage time is
computed, while initial locations in L0 and init identify, for
each TRG marking, the starting location of the probe. Once
a passage location is reached, the probe may no longer visit
non-passage locations until a final location is reached (see
the last condition in the definition of the edges E). For
GSPNs, the P and T alphabets coincide with the place and
the transition sets of the GSPN (possibly derived from the
unfolding of a TGSPN). The state of the probe automaton
P is given entirely by its current location l ∈ L.

Given a TRG arc (m,ν,m�) and a probe edge e =
(l, γpre, X, γpost, l

�), e ∈ E, we say that the edge constraints
of e are satisfied by the TRG arc, written as (m,ν,m�) |=
e, iff m |= γpre ∧ ν ∈ X ∧ m� |= γpost. A probe automaton
P accepts the language of tangible paths. Given a tangible
path τ = m1[ν1�m2[ν2� . . . beginning in m1 ∈ TRS(G),
the initial state of the probe P for τ is a location l0 ∈ L0

chosen such that m1 |= init(l0). We say that:

r : (l0, k0)
e1−→ (l1, k1)

e2−→ (l2, k2)
e3−→ . . .

is a run over the path τ , with ki ∈ N≥0, k0 = 1, provided
that l0 is an initial location for m1 and, for all i ≥ 1, there
exists an edge e = (li−1, γpre, X, γpost, li) in E such that
(mki−1 ,νki−1 ,mki) |= e.

A run r over a path τ is an accepting run for a target
final location lF ∈ LF iff ∃k ≥ 0 such that ∀i ≥ k the
probe location li is lF . The language LlF (P) is the set of
all accepting runs that end in lF , and L(P) =

�
l∈LF

Ll(P)
is the union of all the languages accepted by P .

Figure 2 illustrates a simple PrA. Non-passage (l0) and
passage (l1, l2 and l3) locations are drawn with diamonds
and circles, and are labeled with a name. Final locations
have a double border. Edges are labeled with constraints

l0

l2

l3

l1

P0 =0

P0 �=0

−/∗/P0 �=0

−/T1/P1 =0

−/{T1t2}/P1 >0

Figure 2. Probe automaton example.

written as γpre/X/γpost. Each L0 location has an associated
init constraint, shown as an entering arrow (l0, l1). The
minus sign denotes the absence of a pre/post condition, and
an asterisk denotes the entire extended firing set ΣT . For
example, the edge from l0 to l1 is triggered by the firing of
any extended transition, as soon as the post-condition P0 �=
0 holds in a tangible state. An extended firing set is denoted
as a list inside curly braces (as in the edge from l1 to l2). We
use the shorthand notation of writing a transition t (without
curly braces) to indicate the set of all extended firings that
contain t, as in the edge from l1 to l3. This probe automaton
has two final locations and therefore accepts two languages.
For instance, the language Ll2(P) contains all the runs that
first match a T1t2 firing when P1 > 0, after a state where
P0 �=0 has been visited.

l0 l1

lok

lko

Cin(T tag
in)/T tag

in /Cout(T
tag
in)

Cin(T tag
out)/T tag

out/Cout(T
tag
out)

Cin(T tag
forbid)/T tag

forbid/Cout(T
tag
forbid)

−

� �� �
Forbid condition

Exit condition� �� �
Entry condition� �� �

Figure 3. Passage time in GSPNs

Given a run r, let i be the minimum index s.t. li ∈ LP ,
and let j be the index of the final location lj ∈ lF that ends
r (or j = ∞ if the run r is infinite and does not end in

5

SPAREbroken

SPARErepairing

M2ko failM2 failM3

M3ko

M3repairing

M2go M3go
M3on

M3idleM2idleM1idle M4idle

M4onM1onM1buff M2buff M3buff M4buff sw4sw3sw2sw1 ew2ew1 ew3 ew4

repM2
repSPAREs

repSPAREe

ended

idle

repM3s

repM3e

goready

goready2

M2on

load

ready

goidle

π=2 π=3

Fig. 10. A FMS with machines breakdown and repair.

them, M2 and M3, can fail. Raw parts are loaded on suitable pallets at the Load/Unload
(L/U) station represented by the pair – place Pallets and single server transition load –
and are then manufactured, being sequentially brought to the four machines. The model
then cycle back (pallet reused on a new raw part). Machine M2 and M3 can fail, but

while machine M3 has no spares, so when it breaks down it has to undergo a reparation
by a repairman (initially located in place REPMANidle), machine M2 has a set of spares
available in place Spares. When all spares have been used, a repairman will intervene to
repair all spares, and make them available again. Repairmen are not always available:
they cycle between vacation and repair periods. Upon return from a vacation (goready)
a repairman checks if a machine has failed (repSPAREs, repM3s) and in such case starts
a repair activity (repSPAREe, repM3e), otherwise goes back to vacation (goidle). After
the repairman ends working on a failed machine, he takes a rest (goready2) before
starting a new cycle. If both M2 and M3 require the intervention of a repairman, priority
is given to machine M3.

The modeler could be interested in several passage time measures on such model,
for instance the distribution of the waiting time in place M2ko, that is the time spent
by a part in machine M2 awaiting for the spare parts to be replaced by a repairman.
This could be simply expressed as: (P1) the first passage time from a state where
M2ko becomes marked (due to the firing of transition failM2 when there are no tokens
representing spare tools in place Spares) to a state where the same place becomes empty
(due to the firing of transition repM2). This passage time is specified in TGSPN as
Entry = {〈failM2,Spares= 0,−〉} and Exit = {〈repM2,−,−〉} . Note that the transition
repM2 in the triplet means ”an extended firing sequence that contains repM2“, which
could match, for instance, the firing of the timed transition repSPAREe followed by the
two immediates repM2 and repSPAREs.

However, it has been recognized that the “triplet-based” specification language of
TGSPN is not flexible enough to express passage time measures in presence of more
elaborate customer behaviour. For example we cannot express the requirement of a pas-
sage time distribution of the full cycle in the system (time between two successive fir-
ings of transition loadtag), taking into account only those paths which have experienced
at least one “real” breakdown of machine M2 (a breakdown when no spare is available,
which is equivalent to reaching a tangible marking satisfying the condition M2ko > 0),
before starting the computation of the passage time. To cope with this limitation Probe
Automata (PrA) have been introduced in [3]. PrA uses a path automaton [18], which
recognizes paths based on the transitions that fire along the path, enriched with the pre
and post conditions on the arcs: an arc labelled t can be taken in marking m only if m
satisfies the precondition of the arc, and the state reached through the firing of t satisfies
the post condition. A formal definition of PrA can be found in [3], and we only recall

P := l0
−

l1 lok
−/loadtag/− −/loadtag/−

l2
Spares=0/failM2/M2ko>0

Fig. 11. PrA measuring the tagged token cycle time after a stop for breakdown of machine M2.

them informally on the example of Fig. 11, that models the complex passage time mea-
sure described earlier in words. The PrA in the figure has four locations, and locations
can be of two different types: passage locations, where passage time is accumulated, and
non-passage location, where time is not accumulated. Non-passage locations (l0 and l1)

are drawn as rhombuses and passage (l2) locations are drawn as circles. As usual, initial
locations (only l0) are identified by an entering edge, while final locations (lok) have a
double border. Finally, edges are labeled with constraints written as Cin/t/Cout .

5 HASL and Probe Automata

When using HASL for the specification of passage time properties of PrA type, there
are some peculiarities of PrA that require specific attention. A very general difference
is that PrA have been explicitly designed to specify passage time over GSPN subnets,
so we cannot expect LHA to be as compact as PrA in representing the same property.

There are indeed two peculiar features of PrA that make them more compact than
LHA for passage time specification. The first one is that PrA have implicit loops over
locations, accepting all transition firings different from the one present on outgoing
arcs. In LHA instead, all events have to be specified, otherwise a path is rejected. The
second one is that pre and post conditions over arcs in PrA have no direct counterpart in
LHA. An equivalent LHA automaton will have a multiplication of locations to model
the same behavior of the PrA, to distinguish locations that do and do not satisfy the
conditions. This may lead to a significant increase in the number of locations of the
LHA. These differences are not really limitations in the expressiveness, it is only an
issue of how easy it is to model a property.

On the other side LHA allow for multiple data variables with flow that can depend
on the location. PrA instead has a single, implicit, clock variable, which is equivalent
of having a single data variable t with flow of 1 in the counting locations, and 0 other-
wise. LHA variables allow to store state informations, that in the PrA would require a
multiplication of locations.

Another fundamental difference between PrA and LHA is that PrA are defined over
the TRG of the GSPN, while LHA observe the full RG, which includes also vanishing
states, so what can be observed with PrA differs in nature from what can be observed by
an LHA on the same GSPN. An automatic translation from PrA to LHA would require,
for each arc of the PrA labeled with a transition t, the expansion into a subnet that accept
all sub-paths from tangible to a tangible marking, passing only through vanishing states
and having at least a firing of t along the path.

A difference that requires some caution is that measuring of passage-time through
Probe-Automata [3] is based on the idea that a probe may be plugged in (hence be-
coming operative) at any moment in time of the process described by the considered
GSPN, which basically amounts to saying that probes compute passage time assuming
that the initial state(s) for the probe have a distribution that is equivalent to the steady
state probability. Since HASL does not (inherently) support steady-state measures, then,
in order to cope with the probe plugging in approach, it is necessary that an LHA for
passage-time measures is equipped with a so-called transient emulator, i.e. a (unique)
initial location whose goal is simply to simulate the GSPN model for a given delay initT
(assuming that at initT the GSPN has reached steady state).

Finally, PrA have been carefully designed to allow a numerical solution, while LHA
have instead been designed with simulation in mind. This last difference involves two
main aspects: the PrA assumes that the underlying state model is finite and known (this

is necessary if we want to allow for an initial distribution, but especially if we want to
use the steady state distribution as the initial distribution, as discussed above) and a PrA
has a single timer, so as to allow for a reuse of classical Markov renewal theory results
in the computation of the passage time

Using again the FMS model, we consider three PrA passage time specifications P1
to P3 (taken from [3]), provide the corresponding LHA (F1 to F3) and add a new FMS
property expressed through LHA F4, which cannot be expressed by PrA.

The first example (Figure 12) shows a simple passage time CDF specification that
leads to the computation of the distribution of a piece of the cycle (time to load the pallet
plus the work time of M1 and M2) for the tagged customer. P1 shows the PrA, while
F1 is the LHA. As expected there are some more arcs, and more annotations over arcs.
Note the use of the initial additional location l0 to skip the initial transient. The passage
location l1 states that time should be accumulated starting in l2, which is rendered in
the LHA by a reset of the clock t while entering location l2.

P1 :=
−/ew4tag/− −/ew2tag/−

l0 l1 lok
−

F1 :=
l0

ṫ : 1

ALL, True,∅

l1

ṫ : 1

�, t = initT,∅

ALL \ {ew4tag}, True,∅

l2

ṫ : 1

ALL \ {ew2tag}, t < T,∅

{ew2tag}, t ≤ T,∅{ew4tag},
True, {t = 0}

l3

ṫ : 0

HASL expression: Z1 = CDFI(last(t))

Fig. 12. The Probe Automaton P1 and the LHA automaton F1 for the FMS model.

Figure 13 is the cycle time for a tagged token conditioned on at most one break-
down occurring during the cycle (to either the tagged customer itself, or to any other,
untagged, customer). The specification of “at most one breakdown” cycle in PrA re-
quires to keep memory of the failures occurred in the past, which leads to the intro-
duction of location l2 The corresponding LHA appears to be more complex, at least in
terms of arc annotations, but it is actually more general: the number of breakdowns is
accumulated in the discrete variable n, and paths are accepted if there have been at most
N breakdowns.

Property P3 of Figure 14 shows an example of PrA arcs with pre and post condi-
tions. By requiring that failM2 is pre conditioned on place Spares being equal to zero
and post conditioned on M2ko being greater than zero, we are catching the first break-
down of M2 that finds no spare parts available. In the LHA this is translated expanding
the arc from l0 to l1 of the PrA into the three locations l1, l2, l3 of the LHA.

Finally, Figure 15 shows an FMS property that is not present in [3]. It is an example
in which the acceptance of a passage time (in this case the time to go through machines
M1, M3, and M3) is conditioned on having a mean number of spare parts under repair
(modeled by the sum of tokens in places SPARESbroken and SPARESrepairing), all
along the path, less than a constant parameter WBS. This is an interesting case in which

P2 := l0
−

l1
−/loadtag/−

lok

lkol2−/failMtag
3 /−

−/failM2/M2ko>0

−/failMtag
3 /−

−/failM2/M2ko>0

−/loadtag/−−/loadtag/−

l0

ṫ : 1

l1

ṫ : 1

ALL,
t < initT, �

F2 := {loadtag},
t ≥ initT, {t = 0}

ALL \ {loadtag},
t ≥ initT, �

l2

ṫ : 1

l3

ṫ : 0

{failM3}, t < T ∧ n < N, {n + +}
{repM2}, t < T ∧ n < N,∅

{failM2}, t < T ∧ n < N,∅

ALL \ {repM2},
t < T ∧ n < N, {n + +}

{loadtag}, t ≤ T ∧ n < N,∅

ALL \ {loadtag, failM3, failM2},
t < T ∧ n < N,∅

HASL expression: Z2 = CDFI(last(t))

Fig. 13. The Probe Automaton P2 and the LHA automaton F2 for the FMS model.

the acceptance of a path is conditioned on a performance measure relative to the path
itself.

Figure 16 shows the CDF of passage time for F4 (Figure 15), comparing the un-
conditioned passage-time versus the WBS conditioned passage-time (considering two
different values of the conditioning bound WBS), i.e. the accepted paths conditioned by
the fact that the average number of spare parts that are broken or under reparation is less
than the specified value (i.e. WBS). Note that, for this plot, we have instructed Cosmos
to report ”unnormalized”, defective, passage time CDF.

All the measures shown in this section refer to the initial marking of 9 pallets in
the load/unload station, that can be compared with the results of [3]. Note that the state
space of the FMS model may be quite large as the number of pallets grows (for instance,
with 20 pallets it has more than 3 million states, or for 300 pallets reaches 150 billion
states). With such large state spaces, the simulation approach becomes virtually the only
applicable method.

6 Conclusion and future work

In this paper we have considered the problem of defining and computing complex pas-
sage time distributions on (tagged) GSPN models, extended with general firing delays,
by means of the HASL language. In particular the measure of interest has to be com-
puted on a subset of paths satisfying some requirement on the fired transitions and on
the properties of the traversed states. In addition it may be useful to put constraints on
the duration of some activity carried on along the path, or on quantitative properties
of the path as a whole. Work is ongoing on an extension of Cosmos for Symmetric
Stochastic Nets (also known as colored Petri nets).

Comparing the HASL expressive power with that of PrA and of TGSPN passage
time measure definitions it has been shown on an example from the literature that HASL

l0 l1 lok
−P3 :=

M2ko=0/failM2/M2ko>0 −/repM2/−

F3 :=
l0

ṫ : 1

ALL, True,∅

l1

ṫ : 1

�, t = initT,∅

l2

ṫ : 1

M2ko = 0

M2ko > 0

�, t = initT,∅

ALL, True,∅

l3

ṫ : 1A
L
L

\{
fa

ilM
2 },

T
ru

e,∅

A
L
L
,T

ru
e,
∅

{failM2}, True,∅

{repM2}, True,∅

l4

ṫ : 1

l5

ṫ : 0

ALL \ {repM2},
t < T,∅

{repM2}, t ≤ T,∅

ALL \ {repM2},
True, {t = 0}

M2ko = 0

ALL \ {failM2}, True,∅

HASL expression: Z3 = CDFI(last(t))

Fig. 14. The Probe Automaton P3 and the LHA automaton F3 for the FMS model.

l0

ṫ : 1

ALL, True,∅

�, t = initT,∅ l1

ṫ : 1

ALL \ {loadtag}, True,∅

l3

ṫ : 0

{loadtag},
True, {t = 0}

ALL \ {ew3tag}, True,∅

l2

ṫ : 1
İN : (∗)

(*) = SPARESbroken + SPARESrepairing

{ew3tag}, t ≤ T ∧
∧ (IN/t ≤ WBS),∅

HASL expression: Z4 = CDFI(last(t))

Fig. 15. The LHA automaton for the FMS property F4.

allows one to define more complex performance measures. In some cases the LHA
structure is more complex with respect to the corresponding PrA, since the latter has
been specifically designed with passage time specifications in mind.

Finally, the experimental results performed on two different models (i.e. FMS and
Business workflow) have shown that the COSMOS statistical model checker is an ad-
equate tool to estimate such measures, even in presence of non exponential transition
firing times and on models with very large state spaces.

References

1. Aalst, W.: Business process management demystified: A tutorial on models, systems
and standards for workflow management. In: Desel, J., Reisig, W., Rozenberg, G. (eds.)
Lectures on Concurrency and Petri Nets, Lecture Notes in Computer Science, vol.
3098, pp. 1–65. Springer Berlin Heidelberg (2004), http://dx.doi.org/10.1007/

978-3-540-27755-2_1
2. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic

approach to the specification and verification of hybrid systems. In: Hybrid Systems. LNCS
736 (1992)

0 5 10 15 20 25
0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ili

ty

Passage Time CDF

unconditioned

WBS = 2.0

WBS = 1.15

WBS = 1.0

WBS = 0.85

WBS = 0.1

WBS = 0.5

Fig. 16. Passage time property F4 of the FMS model.

3. Amparore, E., Beccuti, M., Donatelli, S., Franceschinis, G.: Probe automata for passage
time specification. In: Quantitative Evaluation of Systems (QEST), 2011 Eighth International
Conference on. pp. 101 –110 (sept 2011)

4. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model-checking continuous-time Markov
chains. ACM Trans. Comput. Logic 1(1), 162–170 (2000)

5. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model Checking Markov Chains
with Actions and State Labels. IEEE Transactions on Software Engineering 33, 209–224
(2007)

6. Balbo, G., Beccuti, M., De Pierro, M., Franceschinis, G.: First Passage Time Computation
in Tagged GSPNs with Queue Places. The Computer Journal (2010), first published online
July 22, 2010.

7. Balbo, G., De Pierro, M., Franceschinis, G.: Tagged Generalized Stochastic Petri Nets. In:
Computer Performance Engineering. vol. LNCS 5652, pp. 1–15. Springer-Verlag, Berlin
(2009)

8. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: COSMOS: a statistical model
checker for the hybrid automata stochastic logic. In: Proceedings of the 8th International
Conference on Quantitative Evaluation of Systems (QEST’11). pp. 143–144. IEEE Com-
puter Society Press (sep 2011)

9. Ballarini, P., Djafri, H., Duflot, M., Haddad, S., Pekergin, N.: HASL: an expressive language
for statistical verification of stochastic models. In: Proc. Valuetools (2011)

10. Chen, T., Han, T., Katoen, J.P., Mereacre, A.: Quantitative Model Checking of Continuous-
Time Markov Chains Against Timed Automata Specifications. Logic in Computer Science,
Symposium on 0, 309–318 (2009)

11. Clark, A., Gilmore, S.: State-aware performance analysis with extended stochastic probes.
In: Proceedings of the 5th European Performance Engineering Workshop on Computer Per-
formance Engineering. pp. 125–140. EPEW ’08, Springer-Verlag, Berlin, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-87412-6_10

12. Dingle, N.J., Harrison, P.G., Knottenbelt, W.J.: Uniformisation and Hypergraph Partitioning
for the Distributed Computation of Response Time Densities in Very Large Markov Models.
Journal of Parallel and Distributed Computing 64(8), 309–920 (August 2004)

13. Djafri, H.: Numerical and Statistical Approaches for Model Checking of Stochastic Pro-
cesses. Ph.D. thesis, ENS Cachan (June 2012)

14. Donatelli, S., Haddad, S., Sproston, J.: Model checking timed and stochastic properties with
CSLTA. IEEE Trans. Softw. Eng. 35(2), 224–240 (2009)

15. Haverkort, B., Cloth, L., Hermanns, H., Katoen, J.P., Baier, C.: Model checking performa-
bility properties. In: Proc. DSN’02 (2002)

16. Hillston, J.: Process algebras for quantitative analysis. In: Proceedings of the 20th Annual
IEEE Symposium on Logic in Computer Science. pp. 239–248. IEEE Computer Society,
Washington, DC, USA (2005), http://portal.acm.org/citation.cfm?id=1078035.
1079698

17. Kulkarni, V.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London, UK
(1995)

18. Obal, II, W.D., Sanders, W.H.: State-space support for path-based reward variables. Per-
form. Eval. 35, 233–251 (May 1999), http://dx.doi.org/10.1016/S0166-5316(99)
00010-3

