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ABSTRACT

Geometric modeling by constraints leads to large systems of algebraic equations. This paper
studies bipartite graphs underlaid by systems of equations. It shows how these graphs make
possible to polynomially decompose these systems into well constrained, over-, and under-
constrained subsystems. This paper also gives an efficient method to decompose well
constrained systems into irreducible ones. These decompositions greatly speed up the
resolution in case of reducible systems. They  also allow debugging systems of constraints.
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1.  INTRODUCTION

Geometric modeling by constraints is an
interesting approach in CAD. Typically, in 2D,
geometric modeling by constraints specifies
geometrical objects such as points, lines,
circles, conics by a set of constraints : distances
between points, points and lines, parallel lines,
angles between lines, incidence relations
between points and lines, points and circles,
tangency relations between lines and circles or
between circles, and so on. In 3D,  geometric
modeling by constraints must take into account
new objects like planes, quadrics, and new
constraints such as dihedral angles.

Geometric modeling yields large systems of
algebraic equations (linear or not linear). Many
programming styles or languages have been
investigated : imperative, object oriented, rules
driven. Many resolution methods have been
investigated : geometric, numerical, symbolic...
Geometric methods can be very efficient but are
only applicable to particular kinds of problems :
see [Owen91]. Numerical methods (Newton
iteration, gaussian elimination, matrix inversion
and so on) are  O(N3) or worse. Symbolic

methods (Grobner bases, elimination with
resultants) are typically exponential in time and
space. Report to the survey in [Verroust90] and
[Roller et al.89] for details on these different
approaches. Anyway, all general methods are
time-consuming on large systems, so any
reduction method is interesting.

This paper considers the natural bipartite graph
associated with systems of equations and gives
some structural properties of this graph, which
can be used to simplify resolution. This bipartite
graph has one vertex per equation, one vertex
per unknown, and an edge between an
unknown x and an equation y iff x appears in
equation y . This type of graphs has been
already used, for example by Serrano in
[Serrano91]. By convention, equation vertices
are elements of Y, unknowns are elements of
X , and in all figures, equation vertices are
drawn above unknown vertices.

In the general case, this graph is sufficient
enough to decompose the system of equations
in three parts : well constrained, over-
constrained and under-constrained subsystems.
Some of these parts can be empty. This



decomposition, which always exists and is
unique, is due to Dulmage and Mendelsohn.
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Figure 1.

In Figure 1, { y 1 , y2 , x1 , x2 }  is a well
constrained subsystem. {y3, y4, x3} is an over-
constrained subsystem. {y5, x3, x5}  is an
under-constrained subsystem.

Let us first give some intuitive definitions. An
over-constrained system has more equations
than unknowns; its equations are either
redundant, or contradictory and thus yield no
solution. An under-constrained system has
more unknowns than equations and has
generally an infinite and not enumerable set of
solutions. In a well constrained system, the
number of equations is equal to the number of
unknowns, the system contains no over-
constrained subsystem, and it has a finite
number of solutions. The associated graph is
said to be well constrained (respectively under-,
over-) when its system is well constrained
(respectively under-, over-).

In a mathematical way, a system is well
constrained iff its associated bipartite graph
satisfies the König-Hall relation : for any
subset Y� of the set Y of equations, we have

|Γ(Y�)| ≥ |Y�|, where Γ(Y�) is the set of all
neighbours of Y� , ie the set of unknowns
appearing in Y�, and |  |  is the cardinality. This
condition is equivalent to the existence of a
perfect matching, see later in the paper.

Let us introduce a second decomposition.

A well constrained graph G  is said to be
irreducible iff for any proper subset Y�, we

have |Γ(Y�)| > |Y�|. Let us call a down-subgraph

any subgraph of G induced by Y� and Γ(Y�) ,
where Y� is a subset of Y. It is easy to show
that any well constrained graph is either
irreducible, or contains an irreducible down-
subgraph I . Moreover G - I is still well
constrained, or empty. So the resolution of the
system associated with G is reduced to the

successive resolution of the subsystems
associated with the irreducible subgraphs of G.

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

Figure 2.

In Figure 2, G is well constrained. I1 = {y1,
y2, x1, x2} is the unique irreducible down-
subgraph of G . I2 = {y3, y4, x3, x4} is the
unique down-irreducible subgraph of G - I1. G
- I1 - I2 = {y5 , y6 , y7 , x5 , x6 , x7 }  is
irreducible.

As proved in the sequel, bipartite graphs
associated with over-constrained systems admit
also such a decomposition, but it is not unique.

This paper gives an efficient method to obtain
such decompositions. Its cost is bounded by the
time of the search of a maximum matching.

These two decompositions are interesting in two
ways.

First, programming by constraints is still
programming, and so there are always bugs !
One can even think that debugging constraints
programs is more difficult than debugging
imperative programs. Then the decomposition
in well, over- and under- constrained parts is a
first and important help. Moreover, when the
system is well constrained, the decomposition
into irreducible parts enables the user to follow
the resolution process step by step, ie
irreducible after irreducible : the decomposition
gives the trace of running of the resolution
process. This is a very important feature :
remember that classical numerical methods
cannot explain their way to the user.

On the other hand, for well constrained
systems, the decomposition into irreducible
ones greatly speeds up the resolution.
Numerical methods of resolution needs times at
least cubic in the size of the system, and
symbolic methods needs exponential time, so
any method which reduces the system into
smaller ones is interesting. Maybe the system is
irreducible, but anyway the time needed by this



decomposition is negligible compared to the
time of the brute force approach.

For over-constrained systems, the graph is not
sufficient enough to decide wether the equations
are redundant or contradictory. A possible way
to solve such a system is to find any well
constrained subsystem, to solve it (this system
can also be reduced into irreducible
components) and to verify if the remaining
equations are satisfied or not.

For under-constrained systems, we do not have
enough information to set all the unknowns. A
possible way is to consider some of them as
parameters. We can choose them to obtain a
well constrained system, and then we can apply
the previous method. Howewer, there is a
problem in this choice : this will be detailed
later.

Geometric modeling by constraints has received
great attention. Barford has given a necessary
and sufficient condition for a system to be well
constrained, in terms of maximum network
flows [Barford87]. Serrano in [Serrano91] has
asked for the decomposition into subsystems,
but he did not detail a polynomial algorithm.
Owen in [Owen91]  also used graphs and
decomposition, but in a very different way.
Murota in [Murota87] also used the Dulmage -
Mendelsohn decomposition, but in a more
sophisticated modelization : he differentiates
unknowns and parameters and he uses a
different bipartite graph. The Dulmage -
Mendelsohn decomposition was sometimes
used to solve large linear systems of equations,
but there exist more specific and efficient
methods in the linear case, see [Duff77] and
[Poth-Fan90].

The results presented here are well known in
graph theory but they seem to be ignored in the
solid modeling community. This paper intends
to be a comprehensive introduction to this
theory, and to show its interest in practical
resolution of systems in solid modeling.

The paper is organised as follows. In the
second section we give some details on the
relation between the algebraic system and the
graph which modelises it. In the third section
we analyze the mathematical structure of
bipartite graph, we present the Dulmage-
Mendelsohn and König decomposition and
explain how to obtain them. In the fourth
section we give the algorithms which calculate
these decompositions, they are linear in space
and their time is bounded by the cost of the
search of a maximum matching in a bipartite

graph, we give also three examples of constraint
systems. We end the paper by some open
problems.

2.  ALGEBRAIC SYSTEM AND
GRAPH

In this paragraph, we investigate some
limitations of our modelization based on the fact
that the knowledge of the structural properties
of the associated bipartite graph is not sufficient
enough to completely solve the system. Let us
mention some of them.

Equations of an over-constrained system are
either redundant or contradictory, but the graph
cannot distinguish between these cases.

Generally, an under-constrained graph is
associated with a system which has an infinite
and not numerable set of solutions. For
instance, the system with one equation and two
unknowns : { x1+ x2= 0 }. Howewer, some
under-constrained systems have a finite (or
empty) set of real solutions, for example the
system with one equation and two unknowns :
{ x1

2 + x2
2 = 0 }. The graph gives no help to

distinguish between these cases.

�Structurally�, a well constrained graph is
associated with a system which has a finite
number of solutions. Howewer, in some
�accidental� (by opposition to �structural�)
cases, the jacobian |∂fi / ∂xj| can be null for all
xj, and the graph cannot detect such a case.

x1 x2

y1 y2

Figure 3.

For example, the graph of Figure 3 is
associated with the well constrained system {x1
+ x2= 1, x1+ 2x2 = 3} which has a finite set of
solutions, with the singular system { x1+ x2=
1, 2x1 + 2x2 = 3} which has no solutions, and
with the singular system { x1+ x2 = 1, 2x1 +
2x 2  = 2} which has an infinite and not
numerable set of solutions. In the last two
cases, the jacobian is null for all xj, due to the
fact that the coefficients satisfy  a �parasite�
condition : if you slightly modify some of the



coefficients, without changing the associated
bipartite graph, the jacobian does not vanish. In
these cases, the nullity of the jacobian has
nothing to do with the structure of the graph.

y1 y2 y3

x1 x2 x3

Figure 4.

On the contrary, the graph in Figure 4 is not
well constrained (there is no perfect matching),
so we can assert that the jacobian of all
associated systems is �structurally� null, and no
matter the values of the coefficients. In fact, the
rank of the jacobian is always smaller or equal
to the cardinality of a maximum matching of the
associated bipartite graph. In general, these two
values are equal. When they are different, it is
due to �accidental� reasons, as said in the
previous paragraph. See [Murota87].

In a more mathematical way, when all
coefficients of the system are algebraically
independent, then they cannot satisfy any
parasite equation and the rank of the jacobian is
equal to the cardinality of a maximum matching,
see [Murota87].

The following concentrates on the structural
properties of systems of equations and so
ignores these �accidental� cases.

3. STRUCTURAL PROPERTIES OF
BIPARTITE GRAPHS

Let us now present the fundamental results of
Dulmage & Mendelsohn about the
decomposition of bipartite graphs, see
[Dulmage-Mendelsohn58], [Dulmage-
Mendelsohn59], [Dulmage-Mendelsohn62],
[Dulmage-Mendelsohn63]. The decomposition
algorithm will be described in the next
paragraph.

First we need to recall some definitions and to
give some notations.
Let G = (V, E) be a bipartite graph with edges E

and with vertices V. Then V = Y ∪ X  and Y ∩

X= ∅. Y is the set of equations, X is the set of
unknowns.

A matching M of G is any subset of E such that
any two distinct edges in M  do not have a
common vertex. M is a maximum matching iff it
is maximal in cardinality. A vertex is saturated,
or covered, by M iff it is a vertex of one edge in
M. A matching saturating all vertices of G is
called perfect. We use all along the paper the
classical notions of graph theory, see
[Berge83].

Let us just recall the definition of connected
components and of strongly   connected
components.

A graph G = (V, E) is said to be connected iff
for any pair x and y of vertices, there exists a
non directed path joining x and y in G. The
connected components of G are the maximal
connected subgraphs of G. They partition V and
E.

A directed graph G = (V, E) is said to be
strongly  connected iff for any pair x and y  of
vertices, there exist a directed path from x to y
and a directed path from y to x. The strongly
connected components of G are the maximal
strongly connected subgraphs of G . They
partition V.

In a directed graph G, a vertex s is said to be a
source iff G does not contain any arc vs and s is
said to be a sink iff G does not contain any arc
sv.

3 . 1 .  D u l m a g e  -  M e n d e l s o h n
decomposition

As mentionned in the introduction, any bipartite
graph can be canonically partitionned in three
parts. The following theorem due to Dulmage &
Mendelsohn describes this structure.

Theorem 1. Let G = (V, E) be any bipartite
graph G. Then V can be partitionned into three
sets : D, A, C where D is the set of all vertices
in G  which are not covered by at least one
maximum matching, A is the set of all vertices
in V - D adjacent to at least one vertex in D and
finally C is V - A - D. These subsets are unique
and yield a unique decomposition of G into
three subgraphs G1, G2, G3 defined by G1 =

(C1, C2, E1) where C1 = C ∩ Y, C2 = C ∩ X,
and E1 are induced edges of G1, G2 = (D1, A2,

E2) where D1 = D ∩ Y, A2 = A ∩ X, and E2 are
induced edges of G2, G3 = (A1, D2, E3) where

A1 = A ∩ Y, D2 = D ∩ X,  and E3 are induced
edges of G3.

Proof : see [Lovasz-Plummer86].



An example of such a decomposition, called
DM decomposition for short, is shown in
Figure 5. At this point, remark that G1  or G2
or G3 can be empty. On the other hand, the DM
decomposition has been extended to general
graphs by Gallaï and Edmonds, see [Lovasz-
Plummer86].

C1 D1 A1

C2 A2 D2

G1 G2 G3

Figure 5.

This decomposition has the following
properties :

� There is no edge between D1 and C2, between
D2 and C1, between D1 and D2.

� G1  has a perfect matching, so |C1| = |C2| .

� Every maximum matching of G consists of a
perfect matching of G1, a matching of A1 into
D2 (all vertices of A1 are covered, at least one
vertex of D2 is not), and a matching of A2 into
D1 (all vertices of A2 are covered, at least one
vertex of D1 is not). So |M| = |C1| + |A1| + |A2|
and |D1| > |A2|, |A1| < |D2|.

� Edges between C1 and A2, between C2 and
A 1, between A 1 and A 2 never belong to a
maximum matching.

G1 corresponds to the well constrained part of
the system, G2 to the over-constrained part, and
G3 to the under-constrained part.

3.2. Bipartite graphs with a perfect
matching

Let us now consider a bipartite graph G = (V,
E) with a perfect matching : the associated
system is structurally well constrained. G is
defined to be irreducible iff for every proper

subset Z of Y, |Γ(Z)| > |Z|. Equivalently, G is
irreducible iff for each edge e of G there always
exists a perfect matching containing e, see
[Berge83]. In other words, with our model, an
irreducible graph corresponds to a well

constrained system whose all proper
subsystems are under-constrained.
Another result due to König, and Dulmage &
Mendelsohn gives the unique and canonical
decomposition of any bipartite graph with a
perfect matching into irreducible subgraphs :

Theorem 2. Let H be the graph obtained from
G after deleting all edges which never belong to
a perfect matching of G. Then the connected
components H 1 , H2 , ... Hk  of H  are
irreducible.

Proof. see [Lovasz-Plummer86].

An example is shown in Figure 6.

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

A perfect matching of a bipartite graph G.

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

Another perfect matching of G.

H1 H2 H3

x1 x2 x3 x4 x5 x6 x7

y1 y2 y3 y4 y5 y6 y7

The graph H.

Figure 6.

The question is now to have an efficient way to
find this decomposition. The following property
gives an answer to this question.



Property 1. Consider any perfect matching M
of G. Let G� be the directed graph obtained
from G by replacing each edge xy in M by the
two arcs xy and yx, and by orienting all the
other edges from Y to X. Then the strongly
connected components of G�  are exactly the
connected components of H : H1, H2, ... Hk.

Proof. It is sufficient to note that we have : G

is irreducible ⇔ G� is strongly connected. This
equivalence can be easily proved. So the
strongly connected components of G�� are
irreducible, they necessarily correspond to the
unique H1, H2, ... Hk of Theorem 2.

In fact this construction yields more
information. Let R  be the directed graph
obtained from G  by contracting in one vertex
each strongly connected component of G� (or
H). For instance the previous graph leads to the
graph R shown in Figure 7.

H1 H2 H3

Figure 7.

It is well known that R is acyclic, so R induces
a partial order on H 1, H2, ... Hk. For our
needs, this means that if R has an arc from Hi
to H j , then subsystem H i uses some
unknown(s) of subsystem Hj ; thus Hj must be
solved before Hi.

3.3. General case

Let us now consider any bipartite graph G and
let M  be any maximum matching of G . We
define G� to be the directed graph obtained from
G by replacing each edge xy in M by two arcs
xy and yx, and by orienting all other edges from
Y to X. The strongly connected components of
G� are included either in G1, or in G2, or in G3.
Moreover, if Y contains non saturated vertices,
then they are sources of G2 , thus G2 is not
empty. Symmetrically if X  contains non
saturated vertices, then they are sinks of G3 ,
which is therefore not empty. These properties
result directly from the definition of G�, from
Theorem 1 and its consequences.

Then the structure obtained on G� h a s
necessarily the form given in Figure 8.

G1

G2 G3

sinks

sources

  strongly
 connected
components

  strongly
 connected
components

  strongly
 connected
components

Figure 8.

The property 1 ensures a unique decomposition
for G1, but the decompositions of G2 and G3
depends on the maximum matching M chosen.
Anyway we have the following property.

Property 2.

G2 = { z | ∃ path y,..., z in G� such that y
is a source of G� }

G3  = { t | ∃ path t,..., x in G� such that x
is a sink of G� }

Proof. It is an immediate consequence of the
structure of G�.

Similarly to the case of graphs with a perfect
matching, the directed graph R, obtained from
G� by contracting in one vertex each strongly
connected component, is acyclic, this induces a
partial order between strongly connected
components. Thus any compatible total order
gives an order of resolution of subsystems
associated with strongly connected components
of G1 and G2 with cardinality strictly greater
than 1. This is a consequence of the fact that G1

∪ G2 always contains an irreducible down-
subgraph. On the other hand, as G3 cannot
contain an irreducible down-subgraph, there is
no way to solve it, except by seting unknowns
corresponding to its non saturated vertices.

It is important to mention that the order of
resolution on G2 is fundamentally dependent on
the choice of the maximum matching. In fact,
G 2  contains several irreducible down-
subgraphs, and the best method is to solve the
smallest in cardinality. However, efficiently
finding the smallest irreducible down-subgraph
of G2 is an open problem. Another strategy is to
choose any subset S of D1 with cardinality |A2|;



the down-subgraph generated by S and denoted
by T  has a perfect matching under the
hypothesis that G2 has only one connected
component. Otherwise we have to work on each
connected component of G2. Then we apply the
decomposition given in 3.2 to this subgraph T.

A similar problem arises with G3. We can set
any subset of unknowns in D2 with cardinality
|D2| - |A1|, for instance the non saturated vertices
of D2. The resulting subgraph T has a perfect
matching under the hypothesis that G3 has only
one connected component. Otherwise we have
to work on each connected component. Then
we apply the decomposition given in 3.2 to this
subgraph T. A problem here is to find a good
subset S , that means one that will yield a
subgraph T with the smallest irreducible down-
subgraph. This seems to be a difficult problem.

For instance, consider the graph G shown in
Figure 9 and a maximum matching M = {
y1x1, y2x2, y4x3, y6x4, y7x6} :

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

Figure 9.

y3 and y5 are the non saturated vertices of Y,
and so the sources of G2. By  property 2, we
get G 2 = {y3, x3, y4, y5, x4, y6} , shown in
Figure 10. Note that G2 has two connected
components {y3, x3, y4} and {y5, x4, y6}.

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

Figure 10.

x5 and x7 are the non saturated vertices of X,
and so the sinks of G3. By property 2, we get
G3 = {y7, x5, x6, x7}, shown in Figure 11.

y1 y2 y3 y4 y5 y6 y7

x1 x2 x3 x4 x5 x6 x7

Figure 11.

Finally we get G1 = G - G2 - G3 = {x1, x2, y1,
y2} .

4. ALGORITHMS

Let G = (V, E) be a bipartite graph associated
with a system of equations. Let us take the
notations n = |V|, m = |E|. We now give the
algorithms to obtain the previously presented
decompositions. Their proofs are direct
consequences of the properties described in
section 3 :

4.1. DM - Decomposition

The subgraphs G 1 , G2 , G3 of G  can be
obtained by the following algorithm :

1. Find a maximum matching M of G.

2. Build the directed graph G�  from G  by
replacing each edge xy in M by two arcs xy and
yx, and by orienting all other edges from Y to
X .

3. G2 is the set of all descendants of sources of
G�.

4. Symmetrically, G3 is the set of all ancestors
of sinks of G�.

5. Finally, G1  is G - G2 - G3.

The steps 2, 3, 4 and 5 can be computed in O(
n+m), and the whole algorithm runs  in O( m
n1/2) using Hopcroft & Karp�s algorithm
[Hopcroft-Karp73] for step 1.

The computation of the connected components
of G1, G2, G3 can be done by using depth first
or breadth first search in linear time.

4.2. Decomposition into irreducible
parts

4.2.1. Well constrained systems



Suppose G is well constrained, G = G1 and G2

= G3 = ∅. The following algorithm gives the
unique decomposition of G into its irreducible
components and an order of resolution between
them (see Theorem 2).

1. Find a maximum matching M of G (actually,
M is a perfect matching).

2. Built the directed graph G�  from G  by
replacing each edge xy in M by two arcs xy and
yx, and by orienting all other edges from Y to
X .

3. Compute the strongly connected components
of G�.  Each of these strongly  connected
components is irreducible.

4. To compute the dependencies between these
irreducible subgraphs, build the reduced graph
R  from G�  by contracting each strongly
connected component in a vertex. Each arc of
R, say from s1 to s2, means : solve subsystem
s2 before s1 . A compatible total order between
subsystems can be obtained by any topological
sorting of R.

Steps 2, 3 and 4 can be computed in O( n+m).
Step 3 and 4 can be executed using Tarjan�s
algorithm [Tarjan72]. At this point, we can note
that the order of obtention of the strongly
connected components (ie the irreducible
subsystems) is a compatible order of resolution,
it is a byproduct of Tarjan's algorithm. Thus the
step 4 can be suppressed if we do not want the
partial order induced by R. Running time of the
whole algorithm including step 1 is bounded by
the cost of the search of a maximum matching.
Of course, if a maximum matching is already
known, the algorithm is linear.

The decomposition is independent of the
maximum matching M.

4.2.2. Well and over-constrained
systems

The previous method can be applied to G1 ∪

G2. However, the maximum matching M is not
perfect, and remember that the decomposition of
G2 depends on the maximum matching M.

The method corresponds to reject the non
saturated vertices of G2. Thus we obtain a well
constrained system which can be completely
solved. At the end, we have to verify that the
discarded equations are satisfied by the found
solutions.

4.3. Experiments

We present here three illustratives examples of
real systems of constraints and give for each the
corresponding decomposition.

A �dimensioning scheme� is shown in figure
12. The points A and B are initially fixed. The
labelled edges corresponds to the distance
constraints (quadratic equations). ß1 and ß2 are
the arguments of the angle constraints.

A B

C D

E

F G

ß1 ß2
5

6

7

9

10

1
3

4

2
8

Figure 12.

The system of equations corresponding to this
scheme is well constrained so G = G1 and G2 =
G3 = Ø. The perfect matching {eq1xC, eq2yC,
eq3xD , eq4yD , eq5xE, eq6yE, eq7xF, eq8yF,
eq9xG, eq10yG}  and the decomposition of G
into irreducible components is shown in figure
13. The order of resolution of these irreducible
parts is the following : G11, G12, G13, G14 and
G15. We first compute the coordinates of the
point C using the two first equations, then the
coordinates of points D, E, F and G  in this
order.

xC yC xD yD xE yE xF yF xG yG

eq1 eq2eq3eq5 eq6eq7eq8 eq9 eq10eq4

G11 G12 G13 G14 G15

G1

Figure 13.



In practice, to solve algebraic systems, we use a
variant of Krawczyk - Moore algorithm : a
bisection method that use interval Newton
iterations (see [Kearfott87],  [Moore-Qi82] or
[Snyder92]). This method finds all solutions in
a given domain. The resolution time of figure
12 is divided by 20 when using this
decomposition instead of methods that solve
simultaneously the set of equations. The gain
can be more important  for big reducible
systems. For irreducible systems, the
decomposition can not speed up the resolution
but the decomposition time is anyway negligible
compared to the resolution time.

Both under and over constrained systems
causes numerical difficulties if solved by
classical methods. The decomposition we used
here allow us detecting under and over
constrained geometries of a scheme. An
example of an under-constrained dimensioning
scheme is illustrated in figure 14. The point E is
free to move along the circle centered in C with
the distance between points C and E as ray. As
shown above, the points A and B are fixed.

A B

C D

E

1
2

3

4

5

Figure 14.

The decomposition of the associated graph is
shown in figure 15.

eq1 eq2 eq3 eq4 eq5

xC yCxD yD xE yE

G11 G12

G1 G3

Figure 15.

G = G1 + G3, G2 = Ø.

The sub-graph G3 is not empty so we have an
under-constrained geometry (here the point E).

An example of an over-constrained
dimensioning scheme is illustrated in figure 16.

A B

C D

1
2

3

4
5

Figure 16.

The decomposition of the associated graph is
shown in figure 17.

G = G2, G1 = G3 = Ø.

The sub-graph G2 is not empty so we have
conflicting constraints. A strategy is to solve the
system of equations after removing (eq5)  (the
non satured equation vertex) and then test if the
found solution verifies (eq5).

eq1 eq2 eq3 eq4 eq5

xC yCxD yD

G2

Figure 17.

This work was implemented on a SUN
workstation using LeLisp language.

5. CONCLUSION

The methods presented in this paper can be used
to gain some knowledge on the combinatorial
structure of the systems of equations, and so to
debug them. On the other hand, they
significantly speed up the resolution and enable
the user to follow the resolution process.



However the problem is not completely solved
for over- and under-constrained systems. In the
first case, efficiently finding the smallest
irreducible down-subgraph of the associated
graph and, in the second case, finding the best
subset of unknowns to set, seems to be
interesting problems of graph theory.

Previous algorithms build decompositions from
scratch, but for interactive use, the possibility to
incrementally modify the systems of constraints
is useful. In this context, we have to
incrementally and efficiently update the
decompositions after each modification :
insertion or suppression of a vertex or an edge.
This is another open question.
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