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ABSTRACT

In this paper, we propose a polar-based 8-PSK demapper
for DVB-S2 receivers. This demapper computes the Log-
Likelihood Ratio (LLR) of the transmitted bit using the polar
coordinate of the received 8-PSK symbol. Thanks to inter-
polation and approximation, the resulting demapper outper-
forms the classical LLR receiver based on Cartesian coordi-
nates. Simulation shows almost no degradation compared to
the optimal LLR generation for a 5-bit input precision of the
LDPC decoder1 .

Index Terms— Receivers, Digital communication, Digi-
tal video broadcasting, Satellite communication, Telecommu-
nications, Phase shift keying

1. INTRODUCTION

In DVB-S2, the demodulation is done in four successive
steps: time synchronization followed by frequency synchro-
nization, phase correction, and the generation of the Log
Likelihood Ratio (LLR) of the transmitted bits [1]. In [2], the
authors presented a synchronization method using polar coor-
dinates. In this paper, we extend the use of polar coordinates
to also compute the LLR. When using an 8-PSK modulation
(see Fig. 1), assuming an Additive White Gaussian Noise
(AWGN) channel, the exact computation of the LLRLi, as-
sociated to the three bitsbi, i = 0, 1, 2 of the 8-PSK symbol
is given by

Li(y) = log

∑

c∈C0
i
e−

(c−y)2

2σ2

∑

c∈C1
i
e−

(c−y)2

2σ2

(1)

whereC0

i (respectivelyC1

i ) is the subset of the points of the
constellation so that theith bit, i ∈ {0, 1, 2}, is equal to
bi = 0 (respectively,bi = 1), y is the received point from the
channel andσ2 is the variance of the noise. This expression

1The authors thank the ”Ŕegion Bretagne” and the ”European Funds for
Regional Development”(FEDER) for funding materials used in the study in
the frame of the PALMYRE II project.

Fig. 1. Modulation 8-PSK and its associated binary mapping

is too complex to compute directly and could be simplified
using an approximation.

In this paper, we propose a different approach by directly
approximating eq. (1) in the polar domain, i.e. by using the
modulusρ and the phaseθ of the received pointy = ρejθ as
shown in Fig. 2. Since the polar coordinate is the natural base
to represent the 8-PSK modulation, the resulting demapper
is much simpler than the LLR receiver based on Cartesian
coordinates.

The remainder of the paper is organized as follows. Sec.
2 briefly reviews the techniques used in the state of the art
to compute the LLRs. Sec. 3 explains the quantization rules
for the output LLRs and the input polar coordinates. Sec.
4 describes the approximation of the ideal model by linear
interpolations. Sec. 5 gives simulation results and complexity
estimation. Finally, sec. 6 summerizes the paper with some
conclusive remarks.

2. STATE-OF-THE-ART

In this section, we briefly describe the conventional LLR com-
putation. First, the logarithm of a sum of exponentials can be
simplified by considering only the most significant term in-
side a logarithm (max-log approximation), i.e.



Fig. 2. Steps of DVB-S2 transmission

log(ea + eb) ∼= max(a, b). (2)

Using this approximation, eq. (1) can be rewritten as

L2

m(y) = max(D0, D1, D2, D3)−max(D4, D5, D6, D7)

L1

m(y) = max(D0, D1, D4, D5)−max(D2, D3, D6, D7)

L0

m(y) = max(D0, D2, D4, D6)−max(D1, D3, D5, D7),

whereDj , j = 0, 1, . . . , 7 is given by

Dj = log(e
−|y−cj |

2

2σ2 ) =
−|y − cj |

2

2σ2
(3)

and the indexm stands for “max-log approximation”. The
computation ofLm can be further reduced using:

Li
m(y) =

1

2σ2
(|c1i − y|2 − |c0i − y|2) (4)

wherec1i = argmin{|c−y|/c ∈ C1

i } andc0i = argmin{|c−
y|/c ∈ C0

i }. The complexity of the computation of (4) has
two components: first, (4) implies the selection of the two
closest points fori = 0, 1, 2. Among those 6 points, 3 are
identical and correspond to the closest point of the 8-PSK
constellation to the received symboly, i.e., there are in fact
only 4 distances. Second, (4) requires the computation of 4
quadratic distances in the complex domain, 3 subtractions and
finally, 3 normalizations by the1/2σ2 factor. Most of the state
of the art deals with the computation of (4), with methods to
determine the pointsc0i andc1i , for i = 0, 1, 2, as described in
[3], [4].

Another way to approximateL is to use directly the re-
ceived in-phase and in-quadrature signal [5]. This method can

Fig. 3. The 3 steps of the quantization process

be applied when the 8-PSK constellation contains the points:

cj = ej
(2j+1)π

8 , j = 0, 1, . . . , 7

associated with a Gray mapping. In this case, the LLRs can be
approximated using I, Q and a scaling factor given by the ratio
of the signal amplitudeρ multiplied by one over the noise
varianceσ2:

L0

g(y) =
ρ

σ2
Q (5)

L1

g(y) =
ρ

σ2
I (6)

L2

g(y) =
ρ

σ2
(|I| − |Q|) (7)

This 8-PSK constellation is similar to the DBV-S2 8-PSK
constellation with a rotation ofπ/8. Thus, performing a rota-
tion of −π/8 of the received point allows to use directly this
method. The computation ofLg seems very simple, since
it requires only 4 multipliers (one to computeA ρ

σ2 , plus 3
for eachLi

g values). Nevertheless, the computation ofρ =
√

I2 +Q2 is not straightforward. Moreover, it requires also
a rotation of−π/8 in order to be applied in the context of the
DVB-S2 standard. Finally,Lg gives only a rough approxima-
tion ofL.

3. QUANTIZATION RULES

In this section, we define a method to derive the fixed point
model from the floating point model. Fig. 3 shows the three
steps of the quantization process. The first two steps are to
determine the quantization rules to obtain the LLR quantized
onnb bits (the input of the LDPC decoder, see Fig. 3.a) and
then quantize the inputρ andθ (see Fig. 3.b). The third step is
the linear approximation of the ideal quantized function (see
Fig. 3.c). In this section, only the first two steps are described.
The last step is presented in Section 4.
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Fig. 4. Minimization of BER as a function of the quantization
rangeR for rate 2/3 and 3/4(long frame DBV-S2 LDPC code
with 8-PSK modulation)

3.1. Quantization of LLR values

The quantization law to obtain the quantized versionL̄i(y) of
Li(y) coded onnb bits is given in equation (8):

L̄i(y) =

⌊

sat(Li(y), R)×
2nb−1 − 1.5

R
+ 0.5

⌋

(8)

where⌊x⌋ is the greatest integer smaller or equal thanx and
sat(L,R) represents the saturation ofL to ±(R + ǫ) outside
the interval[−R,R], whereǫ is an almost zero positive num-
ber. With this quantization scheme, ifL(y) ≥ R thenL̄(y) =
2nb−1 − 1 and ifL(y) ≤ −R thenL̄(y) = −(2nb−1 + 1).

For each code rate, the value ofR is determined by sim-
ulation. Fig. 4 shows the output Bit Error Rate (BER) for
energy per symbol over noise(Es/N0) equal to 6.62 dB (rate
2/3 LDPC) and 7.91 dB (rate 3/4 LDPC) with 8-PSK modu-
lation. The LLR are quantized onnb = 5 bits. The LDPC
decoding algorithm used in the simulation is the min-sum al-
gorithm with vertical scheduling, similar to the one presented
in [7]. To reduce the time of simulation, the number of de-
coding iterations is limited to 20. The curve shows that the
optimal value for these two code rates is byR = 6.0.

3.2. Quantization of polar coordinate

We propose to use polar coordinate to simplify the LLR com-
putation. Thus, each received points will be first transformed
in polar coordinatesy = ρejθ; thenρ ∈ [0,+∞) andθ ∈
[0, 2π) are quantized intōρ and θ̄ respectively onnρ andnθ

bits according to the rules:

ρ̄ =

⌊

sat(ρ,Rρ)×
2nρ − 1.5

Rρ

+ 0.5

⌋

(9)

θ̄ =

⌊

θ

2π
2nθ + 0.5

⌋

mod 2nθ (10)
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Fig. 5. Quantization in polar coordinate,nρ = 5, nθ = 5

From the integer value of̄ρ andθ̄, the quantized valueρQ and
θQ are given by

ρQ = ρ̄×
Rρ

2nρ − 1
(11)

θQ = θ̄ ×
2π

2nθ
(12)

FromρQ andθQ, the quantized valueyQ of y is given by

yQ = ρQe
jθQ (13)

In practice, we select the number of bits ofnρ andnθ so
that the absolute quantization error ofL̄ is bounded by 1. In
other words,∀y, |L̄i(y)− L̄i(yQ)| ≤ 1. We obtainednρ = 5
bits,Rρ = 3.2 andnθ = 7. Figures 5 shows an example of
polar quantization grid fornρ = 5, Rρ = 3.2 andnθ = 5.

The quantization rules are now fixed (see Fig. 3.b). In the
next chapter, we study the approximation of the LLR (see Fig.
3.c).

4. APPROXIMATION OF LLR COMPUTATION

Using the quantization rules (8) with the value ofR = 6.0,
we plot on Fig. 6 the quantized LLR valuēLi, i = 0, 1, 2
for ρ̄ = 10 (ρQ = 1, according to (11)) as a function of̄θ
(θQ = 2πθ̄/128 rd, according to (10)). The quantized LLR
has a very regular periodic triangular shape that can be eas-
ily interpolated. Fig. 7 shows the variation ofL̄0 for several
values ofρ as a function of̄θ. One can note the periodic tri-
angular shape, except for high value ofρ due to the saturation
process between -15 and 15 (nb = 5 bits). We can see that
the LLR can be approximated by a piecewise linear function.
The shape of this function does not depend on the value ofσ.
To avoid the direct computation of the LLRs, we propose to
approximateLi by a simple piecewise linear function defined
as:

L̃i = si(θ̄)sat(
⌊

ρ̄× α× hi(θ̄) + 0.5
⌋

, 2nθ−1 − 1) (14)
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wheresi(θ̄) is a function that defines the sign of theith LLR,
hi(θ̄) performs translation, symmetry and saturation onθ̄ so
that hi(θ̄) belongs to [0, 31] andα is a scaling factor that
minimizes the BER at the output of the LDPC decoder. The
computation ofh0(θ̄) ands0(θ̄) is given in Algorithm 1. For
the computation ofh1(θ̄) ands1(θ̄), step a in Algorithm 1 is
replaced byh1(θ̄) = (θ̄ − 2nθ−4 − 2nθ−2) mod 2nθ , steps
b, c and d remain unchanged. The computation ofh2(θ̄) and
s2(θ̄) is given in Algorithm 2.

Fig. 8 shows the steps of the quantization process to com-
puteL̃0. The same architecture can be conceived to compute
L̃1 andL̃2. The value ofα is set toα = 2−4+2−6 in order to
have both good performance and to reduce the productρ̄× α
to a simple addition of two binary shifted versions ofρ̄. The
value ofρ̄×α is coded on 9 bits. It is then multiplied byhi(θ̄)
coded on 5 bits to produce a result on 14 bits. The saturation
and quantization unit reduced the final result from 15 bits to
5 bits. Note also that the final multiplication bysi(θ̄) = ±1
is a simple change of sign that doesn’t require a multiplier.

a) Rotation of̄θ by π/8 (symmetrical distribution)
h0(θ̄) = (θ̄ − 2nθ−4) mod2nθ

b) Translation ofh0(θ̄)
s0(θ̄) = −1
if h0(θ̄) > 2nθ−1 then

h0(θ̄) = h0(θ̄)− 2nθ−1

s0(θ̄) = 1
end
c) Symmetry ofh0(θ̄)
if h0(θ̄) > 2nθ−2 then

h0(θ̄) = 2nθ−1 − h0(θ̄)
end
d) Saturationh0(θ̄) = min(2nθ−2 − 2, h0(θ̄));

Algorithm 1: Computation ofh0(θ̄) ands0(θ̄)

a) Rotation of̄θ by π/8 + π/4
h2(θ̄) = (θ̄ − 2nθ−4 − 2nθ−3) mod2nθ−1

b) Translation ofh2(θ̄)
s2(θ̄) = 1
if h2(θ̄) > 2nθ−2 then

h2(θ̄) = h2(θ̄)− 2nθ−2

s2(θ̄) = −1
end
c) Symmetry ofh2(θ̄)
if h2(θ̄) > 2nθ−3 then

h2(θ̄) = 2nθ−2 − h2(θ̄)
end
d) Saturationh2(θ̄) = min(2nθ−3 − 2, h2(θ̄));

Algorithm 2: Computation ofh2(θ̄) ands2(θ̄)

5. SIMULATION RESULTS

Fig. 9 shows the BER as a function of the SNR for a 2/3 and
a 3/4 LDPC code rate (code size equals toN = 64800 bits).
We can see that the performance of our proposed method is
quite similar to the optimal one. Table 1 shows in the first
line of data the Mean Square Error (MSE) between exact and
approximated LLR computation of the 3 methods. The re-
maining lines of the table compare the complexity of the 3
methods..

Fig. 8. Architecture of computation of̃L0



6 6.5 7 7.5 8
−6

−5

−4

−3

−2

−1

0

Es/No

Lo
g(

B
E

R
)

DBV−S2, long frame length, 8−PSK modulation

 

 

2/3 exact
2/3 proposed
2/3 max−log
3/4 optimal
3/4 proposed
3/4 max−log

Fig. 9. Binary Error Rate as a function of the signal to noise
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Table 1. Comparaison of methods of LLR generation
Method Max [4] I andQ [5] Polar
MSE 0.94 1.54 0.89

Sel. closest points yes no no
Square Distance 4 0 0

√

I2 +Q2 0 1 0
-π/8 rotation 0 1 0

Add/sub 3 1 1
Product 3 4 3

(hi(θ̄), si(θ̄))i=1,2,3 0 0 1

We can notice that the polar approximation is slightly
more accurate than the max-log method [4] and, overall, is
simpler to implement. In terms of performance, both max-
log approximation and polar approximatoin lead to similar
results. The main application domain of the polar LLR com-
putation is for ”polar based” demodulator [2], since it avoid
the use of a CORDIC to transform back polar coordinates to
cartesian coordinnates.

6. CONCLUSION

This paper proposes a novel approach for the demapping of
8-PSK modulation. The idea is to use polar coordinates in-
stead of Cartesian coordinates. The polar domain allows ap-
proximating the LLR using simple linear interpolation. This
kind of function is very simple to compute and allows us to
obtain a better reliability and lower complexity than the state-
of-the-art methods. This approach is particularly well suited
for demodulator that uses polar-based coordinates to perform
some of the synchronization tasks, since it avoids a polar to

Cartesian transformation.
The method can be extended to the 16-APSK or the 32-

APSK modulations, since the plot of LLR as a function of
θ̄ gives also triangular shapes. In other words, the method
shown in the paper can serve as a basis for implementing all
PSK modulations in the DVB-S2 standard.
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