
HAL Id: hal-00848617
https://hal.science/hal-00848617

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Failure Models and Error Propagation in
Product Lines

Sara Bessling

To cite this version:
Sara Bessling. Towards Failure Models and Error Propagation in Product Lines. SAFECOMP 2013 -
Workshop DECS (ERCIM/EWICS Workshop on Dependable Embedded and Cyber-physical Systems)
of the 32nd International Conference on Computer Safety, Reliability and Security, Sep 2013, Toulouse,
France. pp.NA. �hal-00848617�

https://hal.science/hal-00848617
https://hal.archives-ouvertes.fr

Towards Failure Models and Error Propagation in

Product Lines

Sara Bessling

Department of Informatics, Clausthal University of Technology
Clausthal-Zellerfeld, Germany

sara.bessling@tu-clausthal.de

Abstract. Safety-critical systems and especially their software compo-
nents need a thorough verification for failures and potential error propa-
gation. Reliability has to be guaranteed for medical devices in particular.
These devices exhibit a broad variability, as well. They have to be suitable
for a diverse variety of individual requirements leading to product lines
which share a common base functionality, but each product is adapted
to different requirements.
We present an approach in which failure models are assigned to features
which are combined into different product models. Starting with a base
model, further product models are derived from it by model transforma-
tions. We investigate the structure of the failure models and a possible
error propagation. We demonstrate our method using Scade Suite for
the model-based product line design of cardiac pacemakers. Formal safety
analysis is performed by using the Scade Design Verifier.

1 Introduction

Software product lines are characterized by sharing functionalities grouped in
features resulting in similar products. Regarding product lines of dependable
systems, the application of formal approaches is complicated by restrictive formal
product building mechanisms. Moreover, an integrated specification of product-
specific failure models is missing during the design methodology. This restricts
the usability of formal techniques to dependable systems product lines.

Currently, products of software product lines, especially for safety-critical
systems, are verified individually resulting in very time consuming processes. If
failure models are appended to a product model at a late design stage, the prod-
uct model may need to be reinspected and possibly redesigned. An investigation
of the product structure and its features, leading to adding failure models to
a certain feature, is more profitable. The reduced functional range of a single
feature simplifies the definition of safety constraints and failure models. We can
revert to them when creating a new product out of single features. As features
are already analyzed, we only have to concentrate on possible feature interaction.

We already investigated how software product lines and their features can be
expanded by individual safety constraints in [8]. Moreover, we showed how indi-
vidual products containing safety constraints can be derived from a single base

2 S. Bessling

model by graph transformation. Following, we verified the individual product
models with the Scade Design Verifier.

We present an approach in which we append failure models to specific fea-
tures. In order to accomplish this, we perform a model transformation in which
not only features are combined into a new product but also failure models are
transformed and attached to the new product at the same time. Architectural
decomposition and functional structuring is not only applied on features, as it
is well known for product lines, but on the safety constraints derived from them
and their verification as well.

For demonstrating our approach we use the Scade development framework
for the phases of architectural and functional design. Our transformational ap-
proach shows that we have a seamless integration of failure models into product
models within our feature-oriented transformational approach.

2 Basics

2.1 Dependable System Modeling Using Scade

The acronym Scade stands for Safety-Critical Application Development Envi-
ronment. The main objectives of the Scade Suite are (1) to support systematic,
model-based development of correct software based on formal methods and (2)
to cover the whole development process [5]. Its formal semantics is based on a
synchronous model of computation.

The Scade Suite is an integrated development environment that covers many
development activities of a typical process for safety-critical software: modeling,
formal verification using the SAT-based Scade Design Verifier [2], certified au-
tomatic code generation producing readable C-code, requirements tracing down
to model elements and code, simulation and testing on the code level.

2.2 AADL

The Architecture Analysis & Design Language (AADL) [7] is a formal declara-
tive language to model system architectures consisting of software and hardware
components. It was standardized by the SAE. AADL offers predefined elements
to model system components and their connections. Furthermore it differentiates
between a declaration of a certain system component and its explicit implemen-
tation. AADL can be extended by several annexes. The Error Model Annex [6]
offers a predefined mean to express error models and their propagation.

2.3 Related Work

Like us, Liu et al. [11,12] consider a product line of pacemakers as a case study.
Their sequential composition is less flexible compared to our synchronous prod-
uct, as they assume that only one feature is currently active. UPPAAL is used
by Jee et al. [9,10] to formally develop and verify the software control of pace-
makers. As they investigate a product-centric assurance case in [9], a thoughtful

Towards Failure Models and Error Propagation in Product Lines 3

combination of methods and results from safety analysis, design and verifica-
tion is needed. But [11] and [9] introduce other formalisms than we do, but the
intended seamless integration of safety analysis, development and verification
is similar to our approach. Sun et al. [1] concentrate on the integration of FTA
results into AADL, whereas we use AADL to describe and derive failure models.

3 Adding Failure Models to Features

3.1 Defining Failure Models

Before starting with our method, we need a step ahead. Errors and their causes
have to be identified by a safety analysis in advance. The exact method for the
safety analysis is not relevant for our approach as long as we receive a list of
errors and their causes. Assigning these errors to features is the first step in our
approach.

fa i lure model <name>
states

<ErrorFree >: i n i t i a l state ;
<Fa i lS ta te >: state ;

events

<InError >: in event ;
<ErrorProp >: out event ;

transitions

<ErrorFree> − [<Condit ion /
Event>] −> <Fai lS ta te >;

<Fa i lS ta te > − [<Condit ion /
Event>] −> <ErrorFree >;

Listing 1. Template failure model

We concentrate on software fea-
tures which are modeled in detail,
the associated hardware features are
modeled as a hardware abstraction
layer. The identified errors are ana-
lyzed in detail to find the exact cause
and the place where the errors oc-
curs first. Starting with a hazard, we
identify errors leading to it. Then we
analyze the specific errors trying to
find its source. This source is a cer-
tain function belonging to a feature.
The error is assigned to this feature.
Possible error propagation can be identified through the search for the source if
further features are affected afore. In the next step we have to classify the errors.

We differentiate between errors which are only singular affecting only one
feature and errors leading to an error propagation. This has to be done as the
failure models differ regarding these both error types. Error propagation leads to
further or altered failure models in at least one further feature as these models
have to react to incoming or outgoing propagated errors.

After the assignment and classification, we concentrate on the single fail-
ure models for each feature. Every feature, to which an error is attributed, is
amended by a description for a failure model. This description is based on the
AADL Error Annex [6]. We do not provide an implementation of a failure model
at this point, only a definition. Our definition enfolds the states of the failure
model and the transitions between the states. Further aspects are possible events
for an incoming or outgoing (propagated) error. Error propagation can be under-
stood as a broadcast of an event, as a propagated error does not have a specific
goal. Propagation is carried out by means of certain rules. Error propagation
can only occur along existing connections between features or in hierarchical

4 S. Bessling

structures. A further possibility is propagation by resources. Features can use
shared resources and this leads to an implicit connection between features. We
call this effect mutual reaction.

A template for a failure model is shown in Listing 1. Template elements in
chevrons are placeholders for names of the elements. Events are used as inputs
or outputs. Outputs are an equivalent for the error propagation. The second
transition has to be deleted for persistent errors.

3.2 Implementation of the Approach

In order to be able to verify different product models of a product line, we need
to perform different steps. We develop a base product model which consists not
only of single features, but also includes the safety constraints and failure models.
This base model is modeled in SysML by using the SCADE System Designer.
Each feature is modeled as a part in the Internal Block Diagram (ibd) of the
product model. Further product models are derived from this base model by
model transformations. These transformations are described in detail in [8]. The
single product models are then imported into the Scade Suite for verification.
The Scade Suite offers a special interface for converting SysML models into
Scade models, but only if the SysML models are annotated with special Scade

types. However before we can verify our product models, we have to implement
the inner logic to the automatic compiled operators. Failure models are modeled
as state machines with at least two states: one for normal and one for erroneous
behavior.

4 Case Study: Product Line of CardiacPacemakers

The heart is a very complex biological system. The single heart beats are trig-
gered by electric impulses which are transmitted over the cardiac conduction
system. These impulses trigger the contraction of the cardiac chambers. Failures
in this system lead to a misbehavior of the heart. A pacemaker is used to handle
it. As there are several different points in the system where a single failure can
occur, or even several ones in combination, different pacemakers exist to fit the
possible failures and the resulting misbehavior.

4.1 The Pacemaker Product Line

Industrial pacemakers are categorized by an international code, the NASPE/BPEG
Code [3] which we also use to structure the pacemaker’s features as shown in
Fig. 1. Its definition enfolds five letters. The first three letters characterize the
main functions of a pacemaker as the stimulation of the heart, the detection of
natural heart paces and the response mode to detection. The letters indicate the
heart chambers affected by stimulation or detection, i.e. “V” denotes ventricular
stimul3tion.

Towards Failure Models and Error Propagation in Product Lines 5

The mandatory functionalities for stimulation, sensing and the sensing re-
sponse mode are classified into feature groups on the first layer. The stimulation
features can be found in the group “chambers paced”, the features for sensing
in “chambers sensed” and the ones for the sensing response mode in “sensing
response”. The feature ”rate modulation” in the correspondent group is optional
despite the AND connection between all features groups because we can choose
between the feature itself and a “none (0)” feature. Such features do not offer
any functionality and serve just for compliance to the NASPE/BPEG code. The
feature “rate modulation” ist not a necessary feature, but it was first introduced
as a comfort functionality which has become quite common. At the second layer,
a single feature is selected from each group (XOR operator). But a feature from
each group cannot be chosen arbitrarily as the groups condition each other.
These dependencies are shown in Fig. 1 as lines with a “D” between the groups.
For example the feature group sensing response depends on the feature group
sensing. If the feature “none” is chosen in sensing, a selection of any other feature
as “none” in sensing response is not reasonable.

Fig. 1. Feature diagram of pacemaker product line

In the case study we investigate which software errors occur in a pacemaker.
We analyze the pacemaker’s architecture with the help of an VVI pacemaker.
This is a variant that stimulates the ventricle, in case no ventricular pace is de-
tected. The pacemaker awaits a natural pace or a stimulation and then switches
into the refractory period. A transformation is done into an DDDR pacemaker
senses and stimulates both chambers and can adapt its pacing intervals to the
patient’s physical stress. All behavioral details and an informal specification of
the safety requirements originate from an industrial specification document by
Boston Scientific [13].

4.2 Product Variability

Every product model is derived from a base model. The VVI pacemaker is the
base model in this case because it is a central pacemaker regarding its function-
ality. To receive a DDDR pacemaker, several steps are needed. The ventricular

6 S. Bessling

features are transformed into dual features by adding elements and altering the
existing ones. The feature rate modulation has to added as a totally new feature
including its connection to the residual features, as the VVI does not contain
such a feature.

4.3 Architecture of the Pacemaker

The architecture of each pacemaker model is divided into two parts. We dif-
ferentiate between hardware elements, respectively their abstractions, and soft-
ware elements. The hardware structure of the pacemaker is reduced to four
elements: a processor, a battery, memory and an electrode. The processor is
modeled as system clock, whereas the battery and the memory do not offer a
further functionality. Both elements only deliver values. The memory only pro-
vides the parameters of the pacemaker and the battery only a voltage value.
The electrode is modeles as output. Depending on the chosen feature of the
group “chambers sensed”, an input is modeled as well for sensing natural cardiac
paces. In case of dual features the model elements of the electrode are doubled
to tend to each chamber. The sensor of the feature “rate modulation” is modeled
as input if this feature is chosen providing a value for the activity measuring.

Fig. 2. Architecture of the VVI pacemaker

The software architecture
of the pacemaker is divided
into three parts on the first
layer. The pacemaker’s func-
tionality is integrated into the
blocks “Timer” and “Control”.
The “Control” block contains
the functional logic of the
pacemaker which is needed
to detect natural paces at
the right time for example.
The “Timer” block includes
counters which use the sys-
tem clock. These timers con-
trol the pacemaker’s time intervals. Both blocks are connected by the “Inter-
ruptHandling” which conducts the signals and events for the “Control”. The
“Control” itself can trigger counters in “Timer” like restarting them. An exem-
plary architecture of a VVI pacemaker is shown in Fig. 2. It includes further parts
like observer nodes for the later verification and are attached to each feature.
The observer nodes are first a representation for safety constraints regarding the
pacemaker’s behavior and second a control system to react to certain errors. The
Safety constraints shall ensure that e.g. during a defined base interval only one
stimulation occurs or during the same interval one stimulation or natural pace
is detected. Further reading regarding the safety constraints is offered in [8].

Towards Failure Models and Error Propagation in Product Lines 7

4.4 Errors of the Pacemaker

We differentiate between three different groups of failures according to their
origin: software errors, hardware errors and environment errors. Each of them
can lead to a feature hazard or even a system hazard. The errors are grouped
according an architecture scheme consisting of layers for software, hardware and
environment.

In the Boston Scientific Product Performance Report [4] several errors for
a pacemaker are noted. These errors are grouped into two categories: errors
affecting the leads and errors affecting the pulse generation. We aggregate these
errors into six errors and assign them to software or hardware errors. As lead
errors we have undersensing, oversensing and a complete fallout of the electrode’s
pacing or sensing part. A complete fallout results in a total miss of paces to
stimulate the heart respectively a total miss of all natural cardiac paces which
shall inhibit the pacemaker. Undersensing, as well as oversensing, happens due to
material failures of the lead or its dislocation. Undersensing means a sporadically
loss of natural paces. Impulses in neighboring muscles of the heart are interpreted
as cardiac paces in case of oversensing. A mechanical defect of the activity sensor
for the rate modulation can form a further error. These errors belong to the
group of hardware errors and do not lead to an error propagation. Missing or
misinterpreted paces do not lead to an erroneous behaviour of further features.
The pacemaker still works as expected, although its input is erroneous. Instead
these errors lead directly to system hazards.

For the errors affecting the pulse generation we concentrate on two failures: a
missing pulse generation itself and a reset of the time parameters. The first error
describes a sporadically loss of a generated pulse although the electrode is not
defected and the pacemaker is working correctly apart from that. This error can
result from a missing interrupt signal which shall trigger the stimulation. A reset
of time parameters is connected to memory errors. A pacemaker owns default
parameters which are changed to fit the timing of the patient’s heart. A memory
error can lead to a permanent reset of the timing parameters to the default ones.
Furthermore the detection algorithm for natural paces can misinterpret natural
paces and thus leads to behavior similar to over- or undersensing. Another al-
gorithm failure can arise in case of rate modulation by interpreting signals and
activity sensor values falsely. These errrors are regarded as software failures. As
well as the hardware errors, these errors do not lead to an error propagation.

A special case are errors concerning the battery and its charge. These er-
rors can be software or hardware failures. If the charge drops below a certain
value, the pacemaker will generate too weak stimulation pulses if at all. Further-
more, a charge measurement is integrated into the pacemaker software which can
measure wrong values leading to a software failure. This error triggers an error
propagation, manifesting in the consecutively shut down of each feature due to
low charge. Errors regarding the environment of the pacemaker can concern the
heart itself. A fibrosis can arise around the electrode and thus prevent it from
sensing, pacing or even both. This triggers an error propagation as well.

8 S. Bessling

4.5 Fault Injection and Error Propagation

fa i lure model batte ry
states

HighVoltage : i n i t i a l state ;
LowVoltage : state ;

events

DropVoltage : in event ;
VoltageDropped : out event ;

transitions

HighVoltage − [DropVoltage]
−> LowVoltage ;

Listing 2. Failure model battery

For every error mentioned, a failure
model is integrated into the single fea-
tures. An exemplary failure model de-
scription is shown in List. 2. This fail-
ure model owns an error propagation
and triggers further failure models.
Further, observer nodes are included
into the product model reacting if a
certain erroneous behavior happens.
In case of undersensing, oversensing
and memory errors, the pacemaker
cannot react to these errors. Instead the pacemaker only records its behavior
and if it detects a certain pattern, a possible error is implied. A physician an-
alyzes the pacemaker’s protocol and decides if an error really occurred. Thus
these observer nodes are a part of a warning system.

We added failure models to the pacemaker in combination with a simple
heart model. The heart model guarantees that a natural pace does not occur in
every base interval cycle. A further restriction is that not all natural paces occur
during the blanking period. The aim of the following control safety constraints
is a falsification during the verification if an error occurs. If no error occurs, they
will be valid during the verification.

– Undersensing Control (UC) If a specific number of stimulated paces occur
in a defined interval, under-sensing is detected.

– Oversensing Control (OC) If a specific number of sensed paces occur in a
defined interval shortly after the end of the refractory period, oversensing is
detected.

– Parameter Control (PC) The time parameters have not changed iff the time
parameters of time n+1 are the same as at time n.

In summary all safety constraints except the control safety constraints stayed
valid as the single failures were triggered. We anticipated this result as the errors
have mainly only one impact on the heart. The pacemaker is still working cor-
rectly according to its safety constraints. We investigated further what happens,
if the battery depletes. Only this error leads to a falsification of the regular safety
constraints.

5 Conclusion

Our transformational model-based approach offers an integration of failure mod-
els into product models for product lines of safety-critical systems. Possible er-
rors were analyzed and converted into failure models. Then we demonstrated
the approach within the SCADE framework for the modeling and verification of
dependable medical device software.

Towards Failure Models and Error Propagation in Product Lines 9

Medical products need a comparatively high adaption to the individual re-
quirements of each patient. This leads to complex product lines with the demand
for a high dependability. By allocating failure models to single features, we can
reduce this complexity but preserve the requirement for a highly dependable
system. Scade Suite is approved in practice and provides certified code genera-
tion for dependable systems according to several safety standards and, moreover,
formal verification by STA-based model checking.

Our next step will be the development of a safety analysis method for features
of product lines, so that we have a formal methodology to find possible errors
and hazards.

References

1. Integrating Product-Line Fault Tree Analysis into AADL Models (2007), http:
//dx.doi.org/10.1109/hase.2007.28

2. Abdulla, Deneux, Stålmarck, Ågren, Åkerlund: Designing safe, reliable systems
using Scade. In: Intern. Symp. On Leveraging Applications of Formal Methods,
Verification and Validation (ISoLA). LNCS, vol. 4313, pp. 115–129. Springer (2004)

3. Bernstein, Daubert, Fletcher, Hayes, Lüderitz, Reynolds, Schoenfeld, Sutton: The
revised NASPE/BPEG generic code for antibradycardia, adaptive-rate, and multi-
site pacing. Journal of Pacing and Clinical Electrophysiology 25, 260 – 264 (2002)

4. Boston: Crm product performance report 2012 - q3 edition (09 2012)
5. Esterel Technologies: SCADE Suite KCG 6.1: Safety case report of KCG 6.1.2

(July 2009)
6. Feiler, P., Rugina, A.: Dependability modeling with the architecture analysis &

design language (AADL). Tech. rep., Software Engineering Institute, CMU (July
2007)

7. Feiler, P.H., Gluch, D.P.: Model-Based Engineering with AADL: An Introduction
to the SAE Architecture Analysis & Design Language. Addison-Wesley Profes-
sional, 1st edn. (2012)

8. Huhn, M., Bessling, S.: Enhancing product line development by safety requirements
and verification. In: 2nd International Symposium on Foundations of Health Infor-
mation Engineering and Systems (FHIES 2012). LNCS, Springer (2013)

9. Jee, Lee, Sokolsky: Assurance cases in model-driven development of the pace-
maker software. In: Proceedings of the 4th international conference on Leverag-
ing applications of formal methods, verification, and validation - Volume Part II.
pp. 343–356. Springer-Verlag, Berlin, Heidelberg (2010), http://portal.acm.org/
citation.cfm?id=1939345.1939383

10. Jee, Wang, Kim, Lee, Sokolsky, Lee: A safety-assured development approach for
real-time software. In: Proceedings of the 2010 IEEE 16th International Conference
on Embedded and Real-Time Computing Systems and Applications. pp. 133–142.
IEEE Computer Society, Washington, DC, USA (2010), http://dx.doi.org/10.
1109/RTCSA.2010.42

11. Liu, J., Basu, S., Lutz, R.R.: Compositional model checking of software product
lines using variation point obligations. Autom. Softw. Eng. 18(1), 39–76 (2011)

12. Liu, J., Dehlinger, J., Lutz, R.R.: Safety analysis of software product lines using
state-based modeling. The Journal of Systems and Software 80, 1879–1892 (2007)

13. Scientific, B.: PACEMAKER System Specification (Jan 2007)

