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Abstract. ISO 26262 - ”Road vehicles-Functional Safety” is a stan-
dard for the automotive industry, administered in an attempt to pre-
vent potential accidents due to systematic and random failures in the
Electrical/Electronic-system. In general, requirements in industry is of-
ten of poor quality and considering the strong emphasis on requirements
management in ISO 26262, we believe that there is a strong need for
guidance and experience-sharing on the specification of requirements in
practice.
We therefore present a reference example on the application of ISO 26262
in practice, where we perform a breakdown of a Safety Goal of an in-
dustrial system down to Software Safety Requirements on the C-code
implementation. As a basis for structuring and formulating the require-
ments, we use the concepts of contracts and port variables.

1 Introduction

ISO 26262 - ”Road vehicles-Functional Safety” is a standard for the automotive
industry, administered in an attempt to prevent potential accidents due to sys-
tematic and random failures in the Electrical/Electronic-system. For a particular
system, ISO 26262 advocates a complete set of safety requirements covering both
its top-level functionality as well as requirements on individual SW components.
In general, requirements in industry is often of poor quality [1] and considering
the strong emphasis on requirements management in ISO 26262, we believe that
there is a strong need for guidance and experience-sharing on the specification
of requirements in practice. In this paper, we therefore share our results and
experiences from specifying safety requirements, as proposed by ISO 26262, for
an industrial system.

The main contribution is a reference example on the application of ISO 26262
in practice, considering safety requirements from all requirement levels: from a
Safety Goal down to requirements on SW components. In SW, we provide a
wide range of safety requirements for real industrially written C-code covering
both application- and basic SW. As a basis for structuring and formulating the
requirements, we use the principles of contracts [2], and in particular, the notion
of port variables [3].

In a literature search for references on the application of ISO 26262 and IEC
61508 with respect to requirements engineering, we find few other in-depth exam-
ples on how to apply the standard in practice. We encountered papers discussing
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general approaches, such as Model-Based Development [4] or Contract-Based De-
sign [5], to meet the demands on requirement management in ISO 26262 and IEC
61508. However, none of these papers went into any depth in their examples and
would therefore provide limited support for an everyday engineer. Other papers,
such as [6] and [7], go into more depth and provide experiences and insights of
practical issues encountered when applying the standard. The scope in [6] is,
however, limited to solely one of the development phases and the focus in [7] is
on architectural design, rather than on requirements engineering. In contrast, in
the present paper, we cover a wider scope as we consider a breakdown from a
Safety Goal of an industrial system down to Software Safety Requirements on a
C-code implementation.

In Sec. 2, we briefly describe the industrial case - the Fuel Level Display
(FLD) system. In Sec. 3, we present the breakdown of the Safety Goal of the
FLD-system down to requirements on individual SW components. In Sec. 4, we
conclude our experiences collected while working with the FLD-system.

2 Industrial Case - The Fuel Level Display-system

The FLD-system is a safety-critical system present on all Scania vehicles and
we will here consider the actual C-code flashed onto the produced vehicles. The
basic functionality of the FLD-system is to provide an estimate of the fuel volume
in the fuel tank to the driver. The functionality is distributed across three ECU
(Electric Control Unit)-systems, i.e. an ECU with sensors and actuators, in the
Electronic/Electrical (E/E)-system of the truck: Engine Management System
(EMS), Instrument Cluster (ICL), and Coordinator (COO). The ECU-systems
also interact with the fuel tank and the parking brake system that is outside of
the E/E-system of the truck.

There are several architectural variants of FLDS, e.g. variability in fuel tanks,
types of sensors, etc. Due to space restrictions, only one type of system variant
is considered here. The considered variant is shown in Fig. 1.

COO estimates the fuel volume actualFuelVolume[%] in the tank by a
Kalman filter. The input signals to COO are: the position of a floater in the
fuel tank sensedFuelLevel[%], as sensed by the fuel sensor; and the CAN sig-
nal FuelRate[l/h] in the message FuelEconomy-E, transmitted on CAN from
EMS. The CAN signal FuelRate[l/h] is an estimate of the current fuel con-
sumption injectedFuel[l/h]. The estimated fuel volume is transmitted on
CAN as the CAN-signal FuelLevel[%] in the CAN-message DashDisplay. The
CAN message is received by ICL where a fuel gauge indicatedFuelVolume[%]

in the display provides the information to the driver.
A development according to ISO 26262 revolves around an item, which is in

[8] described as ”a system that implements a function at a vehicle level”. For
the analysis in this paper, COO is chosen to be the item. In Fig. 1, we can see
the item boundary along with the SW architecture of the ECU of the COO, the
ECU-HW, the fuel sensor, and its environment. We can also see the data flow
and control flow between the different elements in the SW architecture.
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The SW architecture of COO is structured as followed: the APPLication
(APPL) SW consists of SW components that implement the high level function-
ality of the ECU; the MIDDleware (MIDD) SW contains the SW components
in charge of controlling the I/O, e.g. sensors and actuators, connected to the
ECU and the encoding/decoding of CAN-messages; and the Basic Input/Output
System (BIOS) SW contains the SW components that manages the low-level in-
teraction with the executing platform, i.e. the ECU HW.

3 Specification and Break-down of Safety Requirements

In this section, we specify the Safety Goal (SG) and the safety requirements for
the FLD-system. Similar to our work in [9] and to the concepts of contracts as
described in [3], we consider a requirement to be a relation on variables and
also consider each requirement on an element to be applicable under explicitly
identified assumptions on the environment to the element. Different hierarchical
levels of requirements as described in ISO 26262, i.e. Safety Goals (SGs), Func-
tional Safety Requirements (FSRs), Technical Safety Requirements (TSRs), and
Hardware and Software Safety Requirements (HSRs/SSRs) are mapped to the
type of variable refered to in the requirements. That is, if a requirement refers
to variables that model properties at a vehicle level or those shared between
ECU-systems, it is considered to be an FSR. If both variables with HW and SW
properties are refered to, it is considered to be a TSR and if only variables with
e.g. only SW properties are referenced, it is considered to be a SSR, and so on.

Concerning the format of the requirements/assumptions specifications, we
refer to variables using the format ’name[unit]’, such as e.g. actualFuel-

Volume[%]. Furthermore, we write ’func: . . . ’ to indicate if a requirement is
applicable only when the function func is called. To pair a requirement with
assumptions, we make a reference to one, or a set of assumptions, by writ-
ing ’(A#)’ besides the requirement. Similarly, for assumptions specifications, we
write, ’(SR#)’ or ’(Element)’ beside the assumption to either: refer to the re-
quirements that implement the assumption; or to an element where a subset of
its requirements implement the assumption. We use the term ’corresponds to’
when two variables are approximately equal, e.g. when they differ in type or
deviate due to small delays.

As a limitation due to space restrictions, we only consider those requirements
that are applicable when the ignition is on. In SW that corresponds to only
including requirements applicable during run-time. We make a global assumption
that every main function, identified as xyz 20ms in Fig. 1, is run every 20 ms and
that the data-flow is exclusive to what is shown in Fig. 1, i.e. no other element
can read or write to a variable other than what is shown.

3.1 Safety Requirements on COO and Application SW

In Table 1, the safety requirements allocated to COO and the SW component
FUEL are presented, along with the assumptions on their respective environ-
ments. The Safety Goal SG1 can be interpreted as: the FLD-system does not



4 Jonas Westman and Mattias Nyberg

Fig. 1. System and SW architecture of the FLD-system. White blocks represent el-
ements such as software components, C-functions, the HW of COO, the fuel sen-
sor, ECU-systems, and the fuel tank. Yellow boxes with a bolded bottom line rep-
resent system properties, modelled as variables. Green boxes, without a black out-
line, represent a set of elements. Different relations, e.g. data and control flow,
between the different elements and variables are explained in the legend at the
bottom of the figure. The item boundary is indicated by the bolded dashed line.
We consider the HW as a black box where the variables model its interfaces.
NOTE: We modify the architecture and the naming to protect the integrity of the
implementation. The original complexity and intent of the architecture is, however,
sustained.
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provide misguiding information to the driver while the parking brake is not ap-
plied. We hence consider the state when the vehicle is parked as a safe state of
the vehicle. The assumptions A1−5

COO on the environment to COO can be inter-
preted as the following, respectively: the vehicle is not refueled while the parking
brake is not applied ; the fuel sensor is correctly installed ; EMS provides an ac-
curate estimate of the fuel consumption; and ICL displays the estimated fuel
volume, provided by COO, to the driver. COO hence imposes, by the use of
the assumptions, the necessary requirements on its environment in order to be
able to implement the Safety Goal. That is, if e.g. the fuel sensor is installed
incorrectly, COO cannot guarantee that the Safety Goal is implemented.

The FSR FSR1
FUEL allocated to FUEL, derived from the SG SG1, states

that COO estimates the fuel volume in the tank and transmits it on CAN.
Assumptions A1−3

FUEL are equal to A1−3
COO. Assumption A4

FUEL states that the in-
put signal fuelSensorRes Val F32[%] corresponds to the position of the floater
sensedFuelLevel[%], or the status signal fuelSensorRes SS U08[Enum] has
value ERR. Assumption A5−6

FUEL states that the input signal fuelRate Val F32-

[litres/h] to FUEL corresponds to the CAN signal FuelRate[l/h] in the
message FuelEconomy-E in case it does not have the value 0xFE (error). In
case FuelRate[l/h] has the value 0xFE (error) or if the signal was expected
sooner, then fuelRate SS U08[Enum] has the value ERR. Assumption A7−8

FUEL

states that output signal estFuelLevel Val F32[%] to FUEL is transmitted on
CAN as the signal FuelLevel[%] in the CAN-message DashDisplay if est-

FuelLevel SS U08[Enum] does not have the value ERR. In case estFuelLev-

el SS U08[Enum] has the value ERR, then FuelLevel[%] has the value 0xFE.

3.2 Safety Requirements on Middleware SW

In Table 2, the safety requirements allocated to the SW components ANIN,
ICAN and OCAN are presented, along with the assumptions on their respective
environments. The SW components in the MIDD SW provide the APPL SW
with SW-signals that correspond to readings from sensors and CAN-signals and
also encodes SW-signals from the APPL SW into CAN-messages.

The TSR TSR1
ANIN allocated to ANIN is equal to the assumption A4

FUEL

in Table 1, which means that TSR1
ANIN implements A4

FUEL. The assumptions
A1

ANIN and A2
ANIN on the environment to ANIN state that the SW-signal

fPinRes s32[mV] corresponds to a voltage value V Fuel[mV] at one of the input
pins of the ECU and also that the fuel sensor either provides the intended values
or values that are out-of-range. The SSRs SSR1−2

ANIN , derived from TSR1
ANIN ,

state that fuelSensorRes Val F32[%] corresponds to a filtered value of fPin-

Res s32[mV], or fuelSensorRes SS U08[Enum] has the value ERR.

Note that the TSRs TSR1−2
ICAN allocated to ICAN are equal to, and hence

also implement, the assumptions A5−6
FUEL in Table 1. The assumption A1

ICAN

on the environment to ICAN states that if the oldest message msg in the queue
FiFoBuffer has the Parameter Group Number (PGN) number OxFEF2, then
msg is equal to FuelEconomy-E. As stated in the assumption A2

ICAN on the
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Table 1. Safety requirements allocated to COO and APPL SW components

SG1
IF actualParkingBrake[Bool] is not applied (false), THEN indicatedFuelVolume[%], shown
by the fuel gauge, is less than actualFuelVolume[%]; OR indicatedFuelVolume[%] has a value
below 0%. (A1−5

COO)

A1
COO

IF actualParkingBrake[Bool] is not applied (false), THEN injectedFuel[l/h] is equal to the
derivative of actualFuelVolume[%]. (Driver)

A2
COO

The position of the floater sensedFuelLevel[%], sensed by the fuel sensor, does not deviate
more than ±10% from actualFuelVolume[%] in the fuel tank. (Fuel tank)

A3
COO

The CAN signal FuelRate[litres/h] in the CAN message FuelEconomy-E does not deviate
more than ±1% from injectedFuel[l/h]; OR FuelRate[litres/h] has the value 0xFE (er-
ror); OR FuelEconomy-E is delayed more than 0.3s. (EMS)

A4
COO

IF actualParkingBrake[Bool] is not applied (false) AND the CAN signal FuelLevel[%] has
the value 0xFE (error) THEN indicatedFuelVolume[%], shown by the fuel gauge, has a
value below 0%. (ICL)

A5
COO

IF actualParkingBrake[Bool] is not applied (false) AND the CAN signal FuelLevel[%]
does not have the value 0xFE (error) THEN indicatedFuelVolume[%] corresponds to
FuelLevel[%]. (ICL)

FSR1
FUEL

IF actualParkingBrake[Bool] is not applied (false), THEN the CAN signal FuelLevel[%]
in the CAN message DashDisplay is less than actualFuelVolume[%]; OR FuelLevel[%] has

the value 0xFE (error). (A1−8
FUEL)

A1
FUEL See A1

COO

A2
FUEL See A2

COO

A3
FUEL See A3

COO

A4
FUEL See TSR1

ANIN in Table 2 (TSR1
ANIN )

A5
FUEL See TSR1

ICAN in Table 2 (TSR1
ICAN )

A6
FUEL See TSR2

ICAN in Table 2 (TSR2
ICAN )

A7
FUEL See TSR1

OCAN in Table 2 (TSR1
OCAN )

A8
FUEL See TSR2

OCAN in Table 2 (TSR2
OCAN )

Table 2. Safety requirements allocated to MIDD SW components

TSR1
ANIN

fuelSensorRes Val F32[%] corresponds to the floater position sensedFuelLevel[%],
sensed by the fuel sensor; OR fuelSensorRes SS U08[Enum] has the value ERR.
(A1−2

ANIN )

SSR1
ANIN

On Anin 20ms(): IF 200 ≤FuelPin s32[mV]≥ 30003, THEN fuelSensorRes Val F32[%] is
set to the interpolated value of fPinRes s32[mV] according to table X3.

SSR2
ANIN

On Anin 20ms(): IF 3000 <fPinRes s32[mV]3 OR fPinRes s32[mV]< 2003, THEN
fuelSensorRes SS U08[Enum] has the value ERR.

A1
ANIN See TSR1

ADCC in Table 3 (TSR1
ADCC)

A2
ANIN

The fuel sensor converts the floater position sensedFuelLevel[%] into a voltage value
V Fuel[mV] according to table Y3; OR 3000 <V Fuel[mV] OR V Fuel[mV]< 2003 (Fuel
sensor)

TSR1
ICAN

IF the CAN signal FuelRate[l/h] in the CAN-message FuelEconomy-E does not have the
value 0xFE (error) AND has been received within 0.3s3 THEN fuelRate Val F32[l/h]

corresponds to FuelRate[l/h]. (A1−2
ICAN )

TSR2
ICAN

IF the CAN signal FuelRate[l/h] has the value 0xFE (error) OR is delayed more than

0.3s3 THEN fuelRate SS U08[Enum] is set to the value ERR. (A1−2
ICAN )

A1
ICAN See SSR1

RCAN in Table 3 (SSR1
RCAN )

A2
ICAN See TSR1

RCAN in Table 3 (TSR1
RCAN )

TSR1
OCAN

IF estFuelLevel SS U08[Enum] has the value ERR, THEN the CAN signal FuelLevel[%]
in the CAN-message DashDisplay is transmitted with the value 0xFE (error) every 1s3.
(A1

OCAN )

TSR2
OCAN

IF estfuelLevel SS U08[Enum] does not have the value ERR, THEN the CAN signal
FuelLevel[%] is transmitted with a value that corresponds to estFuelLevel Val F32[%]
every 1s3. (A1

OCAN )

A1
OCAN See TSR1

TCAN in Table 3 (TSR1
TCAN )

3For integrity reasons, we either modify the values or choose not provide this information.
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Table 3. Safety requirements allocated to BIOS SW components

TSR1
ADCC fPinRes s32[mV] corresponds to the voltage value V Fuel[mV]. (A1−3

ADCC)

A1
ADCC

IF the DMA channels timerCh U32 AND rfifoCh U32 are enabled for approx. 20ms,
THEN a RAW value of V Fuel[mV] is available in ADC RFIFO. (ADC (HW))

A2
ADCC See SSR1

DMAC (SSR1
DMAC)

A3
ADCC See SSR2

DMAC (SSR2
DMAC)

TSR1
RCAN IF DashDisplay is received within 20ms THEN it is available in FiFoBuffer. (A1−3

RCAN )

SSR1
RCAN

On Rcan getRxMsg U32(): IF the oldest message in FiFoBuffer has PGN 0xFEF2, THEN

msg=FuelEconomy is returned. (A2−3
RCAN )

A1
RCAN

On Rcan decodeCan: a new CAN message is available in HW receive buffer (CAN-
Controller (HW))

A2
RCAN See SSR1

BUFF (SSR1
BUFF )

A3
RCAN See SSR2

BUFF ( SSR2
BUFF )

TSR1
TCAN

On Tcan putTxMsg E(msg): IF msg has PGN 0xFEFC, THEN DashDisplay=msg is trans-
mitted onto CAN. (A1

TCAN )

A1
TCAN The messages put in HW send buffer is transmitted onto CAN. (CAN-Controller (HW))

SSR1
DMAC On Dmac enableCh(ch U32): the DMA channel ch U324 is enabled.

SSR2
DMAC On Dmac disableCh(ch U32): the DMA channel ch U324 is disabled.

SSR1
BUFF On Buff put B(msg): Adds msg to FiFoBuffer.

SSR2
BUFF On Buff get B(): returns the oldest message msg from FiFoBuffer.

4ch U32=(timerCh U32 OR rfifoCh U32)

environment to ICAN, if FuelEconomy-E has arrived within 20ms, i.e. since the
latest execution tick, then it has been placed in the queue FiFoBuffer.

Note that the TSRs TSR1−2
OCAN allocated to OCAN are equal to, and hence

also implement, the assumptions A7−8
FUEL in Table 1. The assumption A1

OCAN

on the environment to OCAN states that if the function Tcan putTxMsg E is
called with an argument msg that has a PGN number OxFEF2, then the CAN-
message DashDisplay is transmitted on CAN.

3.3 Safety Requirements on Basic Input/Output System SW

In Table 3, the safety requirements allocated to the SW components TCAN,
RCAN, ADCC, DMAC and BUFF are presented, along with their assumptions
on their respective environments. The SW components in the BIOS-layer provide
the MIDD-layer with SW-signals that correspond to voltage values at the input
pins for analogue sensors and manages the HW/SW interaction.

Notably, the TSR TSR1
ADCC allocated to ADCC is equal to, and hence also

implement, the assumption A1
ANIN in Table 2. As stated in A1

ADCC , a RAW AD
value is available if the ADC is allowed to sample for 20ms, i.e. an execution tick.
ADCC controls the ADC by enabling/disabling Direct Memory Access (DMA)-
channels by calling functions in DMAC. Hence, as stated in the assumptions
A2−3

ADCC on DMAC, the DMA-channels are enabled/disabled by calling the func-
tions Dmac disableCh(ch U32) and Dmac enableCh(ch U32), respectively, by
passing the appropriate DMA channels with the argument ch U32. The assump-
tions A2−3

ADCC are implemented by the SSRs SSR1−2
DMAC allocated to DMAC.

The TSR TSR1
RCAN allocated to RCAN implement A2

ICAN since TSR1
RCAN

and A2
ICAN are equal. In the same manner, the SSR SSR1

RCAN implement
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A1
ICAN . As stated in A2−3

RCAN , the put and get functions in BUFF manages
the queue FiFoBuffer. Note that the assumptions A2−3

RCAN are implemented by
SSR1−2

BUFF allocated to BUFF. Furthermore, as stated in assumption A1
RCAN ,

RCAN is notified whenever a new message has arrived in HW receive buffer.
The TSR TSR1

TCAN allocated to TCAN implement A1
OCAN since TSR1

TCAN

and A1
OCAN are equal. The assumption A1

TCAN on the environment to TCAN
states that the messages placed in HW send buffer are transmitted on CAN.

4 Conclusions

We have, in Sec. 3, presented a reference example on the specification of safety
requirements in ISO 26262 in practice: from a safety goal down to software safety
requirements. The reference example is intended as a source of guidance and
experience-sharing on the application of requirements engineering within ISO
26262. As a basis for structuring and formulating the requirements, we have used
the concept of assume-guarantee contracts, and the concept of port variables.
Thus, the example provided in the paper is not only a reference example on ISO
26262 and requirements engineering in general, but also serves as an example
of using assume-guarantee contracts and explicit port references in the context
of requirements specification. Although further practical validation is needed,
the presented example indicates that the concepts are fully possible to use in an
industrial context.
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