
HAL Id: hal-00848607
https://hal.science/hal-00848607

Submitted on 26 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scenario-based Automated Evaluation of Test Traces of
Autonomous Systems

Gergő Horányi, Zoltán Micskei, István Majzik

To cite this version:
Gergő Horányi, Zoltán Micskei, István Majzik. Scenario-based Automated Evaluation of Test Traces
of Autonomous Systems. SAFECOMP 2013 - Workshop DECS (ERCIM/EWICS Workshop on De-
pendable Embedded and Cyber-physical Systems) of the 32nd International Conference on Computer
Safety, Reliability and Security, Sep 2013, Toulouse, France. pp.NA. �hal-00848607�

https://hal.science/hal-00848607
https://hal.archives-ouvertes.fr

Scenario-based Automated Evaluation of Test Traces of

Autonomous Systems

Gergő Horányi, Zoltán Micskei, István Majzik

Budapest University of Technology and Economics,

Dept. of Measurement and Information Systems, Budapest, Hungary

[horanyi.gergo,micskeiz,majzik]@inf.mit.bme.hu

Abstract. Testing the robustness and safety of autonomous systems (like do-

mestic or manufacturing robots) is a challenging task since these systems can

make decisions on their own depending on their environment. We proposed a

model based testing approach to capture the context and basic safety-related be-

havioural requirements of such systems, and to generate test data representing

stressful contexts. During the execution of these tests in a real or simulator

based test environment, the captured test traces shall be checked by comparison

with the requirements in order to detect the violation of any requirement in each

situation. In this paper we analyse this test evaluation problem and propose a

method that can be used for efficient comparison.

Keywords. Robustness testing, test evaluation, test comparator, test coverage

1 Introduction

Autonomous systems can make and execute decisions to achieve their goals without

direct human control [1]. A significant part of these systems, for example autonomous

robots used in the household or manufacturing, operate in real, uncontrolled environ-

ment, thus they must properly react to unexpected combinations of environmental

objects and events: they shall be robust to be capable of correctly handling unforeseen

situations and safe to avoid harmful effects with respect to humans. This way the

evaluation of their robustness (precisely, the degree to which they can function cor-

rectly in the presence of invalid inputs or stressful environmental conditions) and

functional safety forms an important part of their verification and validation.

To support the testing of the robustness and safety of the context-aware behaviour

of autonomous robots, in the R3-COP project [2] we developed a model based testing

concept [3]. It is characterized by three main components: (1) context and require-

ments modelling to represent test requirements, (2) a search based test generation

method to derive stressful contexts for robustness testing, and (3) an automated off-

line test evaluation approach. We focused on the systematic generation of the stressful

contexts that can be derived from the context model and the behavioural require-

ments, in order to satisfy robustness related test goals and related coverage criteria.

Having these test contexts generated, the tests can be executed in a real or simula-

tor based environment: each generated test context is set as initial context of execu-

tion, then the autonomous system is started to perform its mission, and the events,

actions and context changes are recorded in a test trace until the mission is ended.

According to this testing concept, the evaluation of the test traces has several chal-

lenges. Each requirement shall be mapped to a test oracle that is able to compare the

sequence of contexts, events and actions recorded in a test trace to the ones allowed

by the requirement. Since the test contexts represent complex situations that may

match several requirements, each test trace shall be compared to each requirement.

Moreover, this comparison shall be started in each step of the test trace (even in an

overlapped way) since it may happen that during a test execution an initial context of

another requirement evolves. The comparison of context objects and their properties

shall take into account the hierarchy of object types and the abstract relations (like

“tooClose” and “near” relations mapped to physical distances) that are included in the

context model and in the requirements.

To address these challenges, we propose solutions (algorithms and tools) to solve

the test evaluation problem in an efficient way: for context matching, we use a graph

based algorithm that is optimized for matching multiple graphs at the same time, and

adapt it to hierarchical context models with multiple valuations. To present our solu-

tion, first we provide a brief overview of our testing framework (Section 2), and then

introduce the running example used in the paper (Section 3). The problems of the test

evaluation are analysed and the basic ideas of our solution are presented in Section 4.

The main parts of our test evaluation approach, the context matching and the scenario

matching algorithms are described in Section 5. The properties of the algorithms are

assessed in Section 6.

2 Overview of the Testing Framework

Our robustness testing framework that supports both test generation and test evalua-

tion was published in [3]. This section presents a short overview in order to put the

test evaluation problem tackled by the current paper in context. The testing frame-

work (Fig. 1) consists of manual and tool-supported activities. As the behaviour of

autonomous robots is context-aware (i.e., it depends not only on the commands the

robot receives, but also on the perceived state of its environment), the framework

focuses on generating test data that can be used to evaluate the control module of the

robot in complex situations. Note that the control module of one robot is considered

as system under test (SUT), everything else is treated as its environment.

In the first steps of our testing process, the context (the environment of the SUT),

the events (the inputs the SUT can receive from its perception components), and the

actions (the operations the SUT can execute using its actuators) are modelled. Then

on the basis of these models the safety related requirements of the SUT are captured

in graphical scenarios with the help of domain experts.

The context of the robot is represented by a context metamodel that includes the

types of environment objects (including dynamic objects that may appear, disappear

or move), their properties, relations and constraints. The test requirements are cap-

tured using a language that combines a context view (on the basis of the context met-

amodel) with a scenario based behaviour specification (using a limited subset of

UML2 Sequence Diagram elements to refer to the sequence of events and actions of

the SUT). According to our goals, each test requirement formalizes a basic rule with

respect to the expected safe behaviour of the SUT: it fixes an initial context fragment

(that captures a condition regarding the initial context of the robot using a relevant

combination of objects, properties and relations from the context metamodel), a se-

quence of initial events, actions and interim contexts that form the trigger (condition)

part of the behaviour, and finally an assert part that specifies the events, actions and

final context that shall (or shall not) happen after the trigger part occurred. For exam-

ple, a test requirement may specify that in case of an approaching human in a room

(specified in the initial context), when she/he is detected in a dangerous area (trigger

part), the robot shall issue a sound alarm (assert part).

Fig. 1. Overview of the robustness testing framework

The test data generation is a systematic search (using metaheuristics [4]) for test

contexts that satisfy our testing goals: (1) extension of the initial context fragments

with extra environment objects to check the behaviour of the robot in case of unex-

pected objects, (2) systematic combination of initial context fragments from the re-

quirements to check the behaviour in complex situations, and (3) generation of com-

binations of objects that violate semantic constraints (with respect to property values,

multiplicity of objects etc.) to check the behaviour in these stressful situations.

Next, the SUT is observed in each of these environments (in a simulated or a real

setup), and execution traces of the SUT are collected and evaluated against the re-

quirements using the method presented in this paper.

3 Running example

A simplified household vacuum cleaner robot will be used as a running example

throughout the paper. This section gives an overview of the context and requirement

models created for the example in order to help understand the test evaluation prob-

lem and our proposed solutions.

Fig. 2 illustrates part of a context metamodel that can be created for our example

robot. The metamodel contains concepts representing the static objects in the robot’s

environment (e.g., Furniture or Human) and dynamic context events, namely Appear-

Event, DisappearEvent, and MoveEvent that can be associated with the objects that

are concerned (e.g. specifying that an object will appear during the execution). In-

stances of the context metamodel form the test data generated by the testing frame-

work.

Robot ContextEvent

Table Human

Room

AppearEvent

Object

Bed Animal

LivingBeing

targetisPlaced
isPlaced

Furniture

neartooClose

Fig. 2. Part of a context metamodel

The metamodel may include abstract relations that represent partitions of concrete

property values relevant for the requirements (e.g., the near association between two

Objects in the example represents a partition of the concrete distance). Once test data

are selected, a post-processing creates concrete test data by selecting values (for the

undefined properties in the model) that satisfy the abstract relations.

alt

sd REQ1

assert

Perception SUT : Robot

humanDetected

stop

Actuators

animalDetected

{ Context: CF1 }

CF1

R1 : Room

SUT : Robot L : LivingBeing
tooClose

Fig. 3. Example scenario with a context fragment

Fig. 3 and Fig. 4 depict example requirements. Requirements capture what events

the control component of the robot can receive from its sensors, and what actions

should it send in response to the actuators. In the first requirement, the context frag-

ment on the left hand side is referenced in the beginning of the event view’s sequence

diagram, making it its initial context fragment. The trigger part of the scenario con-

sists of an alternate construct with the humanDetected or animalDetected events, and

the assert part (the mandatory behaviour that shall happen once the trigger part oc-

curred) is sending the stop action.

sd REQ2

assert

Perception SUT : Robot Actuators
CF2

SUT : Robot L : LivingBeing
tooClose

AE :

AppearEvent

CF3

SUT : Robot L : LivingBeing
near

loop(0,*)

hornBell

{ Context: CF2 }

{ Context: CF3 }

Fig. 4. Example scenario with a final context

To make the evaluation of traces with respect to the scenarios possible, an opera-

tional semantics of the language was defined [5]. It allows the construction of an ob-

server automaton for the whole scenario, where the SUT receives events and sends

actions, see Fig. 5.

alt

sd REQ1

assert

SUT : Robot

humanDetected

stop

animalDetected

{ Context: CF1

0

1

2 3

4

5

t5: ?humanDetected t4: ?animalDetected

t7: truet6: true

t9: !stop

t8: ~(!stop)

t1: true

t2: context(CF1)

t3: ~(?humanDetected)
 ∧ ~(?animalDetected)

Fig. 5. Observer automaton generated from the scenario

The transitions of the observer automaton are labelled with guards that refer to

context fragments, events and actions that are allowed by the requirement scenario.

Trivial accepting states (denoted with double circles) mark that the processing is still

inside the trigger part of the scenario, thus if a trace stops here then the requirement is

neither satisfied nor violated (i.e., it is inconclusive). Reject states (denoted with sin-

gle circles) are inside the assert part; stopping here means that some mandatory be-

haviour is still missing, thus the requirement is violated. Finally, stringent accepting

states (denoted with triple circles) represent that the trace successfully reached the

end of the assert part, thus the requirement was triggered and satisfied.

4 The Test Evaluation Problem

According to our test strategy, each segment of the test trace captured during the test

execution shall be evaluated against each of the requirements to identify whether any

requirement is violated during the test. The observer automaton belonging to a re-

quirement is used as a test oracle. Matching is examined in each step of the test trace,

and depending on the state of the observer automaton where the matching stops, in-

conclusive, violated and satisfied requirements are collected.

The two subtasks of matching are related to the two views included in the require-

ments: context and event/action sequences. In case of matching the contexts, the

changes represented by dynamic events need special handling. In case of an Appear-

Event or a DisappearEvent, its ‘timing’ property determines the relative time when

the specified change in the context shall occur, and the matching can take this time

into account by dynamically (i.e., “on-the-fly” during the matching procedure) updat-

ing the context that shall be matched. In case of MoveEvents, we assume that interim

context fragments are used to specify when a moving object becomes relevant from

the point of view of the requirement (e.g., a moving human reaches the dangerous

area). According to these considerations, sequence(s) of static contexts fragments can

be derived from each requirement, and these precisely include the occurrences of the

dynamic events given in the initial context fragment.

This way we can formulate the context matching problem in a more abstract way

as follows. Context fragments in requirements, as well as context configurations rec-

orded in a test trace are instances of the context metamodel. Instances of a metamodel

can be commonly represented as labelled graphs: objects are mapped to graph vertices

(where vertex labels determine the type of the object), and the relations among them

are mapped to graph edges (where edge labels determine the type of the relation).

This way the sequences of context fragments from requirements are represented as so-

called requirement graph sequences, while the configurations in the test trace are

represented as configuration graph sequences.

In the following, let us analyse the main challenges of the test evaluation, and pre-

sent the basic ideas of our solutions.

 Matching all requirements from each step of the test trace: To check potential

violations of any requirement in each segment of the test trace, matching of each

requirement shall be examined (by trying to match first its initial context fragment)

in each step of the test trace. Moreover, in each step the requirements that were al-

ready partially matched in the previous steps, shall be checked for progress (con-

tinuation or failure of the matching). Accordingly, a configuration graph (repre-

senting a configuration in a given step of the test trace) shall be matched to multi-

ple requirement graphs. To solve this problem, we use a graph matching algorithm

that is optimized for matching multiple graphs: the requirement graphs that are to

be checked for matching a configuration graph in a given step are represented to-

gether in a so-called decomposition structure. In a decomposition structure the

isomorph subgraphs (from multiple graphs) are represented only once, and this

way the re-use of partial matching is supported. Re-use is efficient when the re-

quirement graphs contain similar patterns, which is expected when the behaviour

of a robot in a given environment (e.g., in a living room, where similar setup of ob-

jects appear in case of several requirements) is specified. In Fig. 6 two requirement

graphs (CF1 and CF2' on the left) and their decomposition structure (on the right)

are illustrated. The dashed rectangles are individual subgraphs stored in the de-

composition structure, while the dashed lines represent how a complex subgraph is

decomposed into simpler ones. For example, the graph representing CF1 is decom-

posed into one which contains only a Room vertex, and one with a Robot and Liv-

ingBeing vertices. This latter subgraph consisting of the vertices Robot and Liv-

ingBeing can be found in both requirements, but it is represented only once, thus

its matching detected in the first requirement graph shall not be checked again

when the second requirement graph is checked.

Room RobotLivingBeing

Robot LivingBeing
tooClose

Room

Robot LivingBeing
tooClose

CF1

CF2'

Fig. 6. Requirement graphs from Fig. 3 and Fig. 4 and their decomposition structure

It may happen that the same requirement can be matched from multiple steps of a

test trace, even in an overlapped way (e.g., when the robot moves close to several

objects). To solve this problem, the test evaluation runs several instances of the ob-

server automata to check the matching. Each observer automaton has a loop transi-

tion in its initial state, this way the matching can be started at any step of the test

trace, as there will be a run of the automaton that skips any potential prefix. This

also solves the problem of matching one requirement overlapping with itself.

 Handling the potential valuations: If the observer automaton contains a context

related transition with several potential matching to the configuration graph (i.e.,

with different valuations of graph elements), then an automaton instance is created

for each possible valuation. To keep track of the potential valuations that may be

applied at the same time, these are represented in a separate data structure linked to

the decomposition structure. For example in Fig. 7 the LivingBeing element in the

requirement can be matched either to a Human or an Animal in the trace.

RobotLivingBeing

Robot LivingBeing
tooClose

CF2'
{Robot→VacuumCleaner,
LivingBeing→Human}

CF2'
{Robot→VacuumCleaner,
LivingBeing→Animal}

Fig. 7. Handling different valuations of the same graph structure

 Matching abstract relations: The mapping between the abstract relations and the

concrete values (in the trace) shall be considered. To reconstruct the abstract rela-

tions, we perform a pre-processing step on the test trace which derives the valid

and relevant abstract relations on the basis of the concrete values.

 Matching the hierarchy of object types: The hierarchy of the types of context ob-

jects shall also be considered: a subtype instance in the trace shall match its ances-

tor type in the requirement. To match the labels of vertices and edges (i.e., to pro-

vide valuations of graph elements), the so-called compatibility relation is intro-

duced (instead of the direct equivalence of labels), that conforms to the type hierar-

chy defined in the context metamodel.

 Handling dynamic changes: As introduced above, there are dynamic objects speci-

fied in the initial context fragment that appear/disappear with a given timing. Since

the requirements can also contain a sequence of events, actions, and interim con-

texts that not necessarily include the precise timing of their occurrence (only their

ordering), the relation between these and the occurrence of the dynamic changes is

not known in advance. Therefore, the matching procedure shall insert these chang-

es into the requirement graph sequence “on-the-fly” when the timing of the test

trace (relative to the start of matching) equals the timing property of a dynamic

event. Formally, the representation of the necessary interim context is inserted into

the observer automaton in the form of a new state with a context switch, and also

the subsequent context fragments are updated.

 Nondeterministic observer automaton: A requirement may contain alternatives in

the behaviour, this way one state in the observer automaton may have more succes-

sor states. The evaluation shall consider all possible runs simultaneously.

5 The Solution to the Test Evaluation Problem

To apply these solutions, we developed algorithms for (i) matching context graphs

using the decomposition approach, and (ii) matching requirement scenarios by using

an observer automata execution context that is responsible for starting and evaluating

the runs of the observer automata, and storing the results. Due to space constraints

here only an overview is presented, the detailed algorithms can be found in [6].

5.1 Matching Context Graphs Using a Decomposition Approach

Our algorithm for searching valuations that result in subgraph isomorphism between a

configuration graph and multiple requirement graphs is based on the work of Mess-

mer et al. [7], where the idea of decomposition structures was introduced. Here we

utilize this idea to represent the requirement graphs in a compacted form: the decom-

position structure stores each isomorph subgraph only once, therefore during the

search for valuations the isomorph subgraphs have to be processed only once. The

resulting valuations are bijective functions between the configuration graph and the

requirement graphs (as illustrated in Fig. 8).

valuations Requirement context fragments

Test trace
context

Context
fragment from

REQ2

Context
fragment from

REQ1

Context fragment
from REQ3

Fig. 8. Finding valuations to match requirements graphs with a configuration graph

The decomposition. The decomposition structure is built by adding the requirement

graphs one by one. The algorithm has three inputs. The first input is the current de-

composition structure (empty at the beginning), while the second input is the next

requirement graph to be added to this structure. The third input is a set of valuations

(empty at the beginning), which were already fixed during the previous steps of

matching and thus considered as restrictions on the graph. Here a graph may have

several valuations or no valuation at all. The decomposition algorithm handles the

valuations separately from the structure of the graphs, therefore multiple valuations

can be processed together. An example of the decomposition structure is presented on

Fig. 6, where CF1 and CF2’ context fragments (from Fig. 3 and Fig. 4) are decom-

posed, potential valuations are illustrated in Fig. 7.

The search algorithm. The search algorithm is used to search for all possible valua-

tions between an input configuration graph and the graphs in a decomposition struc-

ture. In comparison with the original algorithm [7], the decomposition structure has

been modified: our decomposition structure contains valuations separately (rather

than substituting the valuations and storing concrete vertices), which makes the struc-

ture more compact, as the similarities of the subgraphs are searched in the structure of

the graph and not in the concrete vertices.

5.2 Matching Scenarios using Observer Automata

During test evaluation, the observer automata (generated from the requirement scenar-

ios) are executed as test oracles that compare the sequence of contexts, events and

actions recorded in a test trace to the ones allowed by the requirement. Several in-

stances of these automata are executed simultaneously, and each possible run is con-

sidered. For this purpose, we defined an execution context (EC), which is responsible

for creation and execution of the observer automata.

An observer automaton has two kinds of transitions: transitions guarded with con-

text information and transitions without context. A transition with a context can fire

only if its context is matched to the actual configuration of the test trace. The EC uses

the decomposition-based search approach to find a matching.

The core algorithm of the EC (that executes an observer automaton) can be consid-

ered as a cycle with two separate phases:

 Silent phase: In this part the algorithm computes all independent paths of the ob-

server automaton, which consist of subsequent transitions that do not contain any

event or action to match (i.e., only context related or true guards are found on the

transitions). These paths are evaluated to check whether they can be traversed: a

path can be traversed if all contexts on the path are compatible with the current

configuration in the test trace. The EC creates observer automaton instances for the

different paths that can be traversed, and these paths are followed.

 Event/action matching phase: After the silent phase, the EC processes the next

event/action or context change from the test trace and checks whether it can be

matched with the next enabled transition of the observer automaton.

The EC uses the decomposition approach when a context matching is performed.

The number of checking a context from the test trace is limited by the maximal length

of the paths found in the silent phase, plus one for the event/action matching phase.

The EC collects all requirement graphs into one decomposition structure and uses the

search algorithm presented in Section 5.1.

As we presented in Section 4, the dynamic events are handled on-the-fly: the con-

texts in the observer automata shall be updated dynamically according to their timing

property. For this reason, the EC registers the trace time, when a new observer autom-

aton instance is started. The dynamic events are handled differently in the steps of the

silent phase and in the event/action matching phase. As the events and actions of the

test trace have exact timing, the related dynamic events can be simply collected and

inserted. However, in case of silent steps the EC only knows that silent steps are made

before the next event/action step. Therefore the EC shall examine all possible inser-

tions of dynamic events (including also the extreme cases when no dynamic event is

inserted and when all events are inserted). This may increase the number of the simul-

taneous observer automaton instances.

6 Related Work and Assessment

As stated in a recent paper [8], testing autonomous systems is still an unsolved key

area. Related research focused first of all on high fidelity simulators [9], excessive

field testing [10], and testing the physical aspects [11]. There are only a few frame-

works that offer automated test generation. An approach similar to ours is presented

in [12]: it uses metaheuristic search techniques for on-line test generation, calculating

the fitness of potential test data on the basis of evaluating the execution of the SUT. In

our case, we perform off-line test generation and evaluation to satisfy robustness re-

lated testing goals on the basis of a flexible context metamodel and graphical scenari-

os. This way our approach does not depend on the domain of the SUT.

We mapped the problem of matching contexts to the problem of matching graph

sequences, which is a relatively rarely addressed problem [13]. Our test evaluation

technique is similar to the related solution that was proposed for processing mobility

traces using the GraphSeq tool [14]. However, as we focused on robustness testing in

complex situations, we addressed the specific challenge of comparing configurations

recorded in a test trace to multiple requirements that contain similar context frag-

ments. Accordingly, we adapted a decomposition technique for searching graph iso-

morphism in multiple graphs at the same time, and extended it to handle multiple

valuations (separated from the decomposition structure), type hierarchy, dynamic

events, and abstract relations.

The decomposition based approach offers a significant increase in efficiency [7]:

the search is faster than the classical Ullman’s algorithm; in best case its expense is

 while in worst case it is , where N is the number of graphs, I is the

number of vertices in the configuration graph, and M is the average size of the re-

quirement graphs. In the best case the N graphs are the same, while in the worst case

N completely different complete graphs are decomposed. Of course, the decomposi-

tion structure has to be constructed that is characterized in worst case by .
Considering behavioural requirements of a robot operating in a given environment,

the common parts in the requirement graphs are relatively frequent.

Another important characteristic of the performance of the test evaluation is the

number of observer automata that are executed simultaneously. In our test setup the

requirements (and thus the observer automata) are relatively small (i.e., they consist

of a small number of states and transitions), but the test traces are typically long. Ac-

cording to our experiments, the number of simultaneous observers does not depend on

the length of the test trace, but depends on the structure of the observer automata

(mainly the alternative behaviours represented in the scenario), and the number of

dynamic events (that may interleave with the recorded events and actions).

7 Conclusions

This paper presented the challenges and proposed solutions for test evaluation of au-

tonomous systems. The need of comparing complex configurations recorded during

test execution to multiple requirements (that typically include common context frag-

ments) lead to the use of specific algorithms for matching multiple graphs. As behav-

ioural requirements frequently utilize abstraction (type hierarchy and abstract rela-

tions) in the context models, we extended the graph matching with efficient handling

of valuations and compatibility relations. The test evaluation tool was implemented

and successfully applied in case of various test suites constructed in our framework.

Currently we are working on a more extensive validation of our testing framework by

generating, executing and then evaluating tests for the control modules of ROS (Ro-

bot Operating System) [15] robot implementations in a Gazebo based simulation envi-

ronment [16].

Acknowledgements. This work was supported by the ARTEMIS JU and the Hungar-

ian National Development Agency (NFÜ) in frame of the R3-COP project. The first

author was also supported by the Magyar Fejlesztési Bank through the Habilitas pro-

gramme.

References

1. Connelly, J., Hong, W., Mahoney, R., Sparrow, D.: Challenges in Autonomous System

Development. In: Proc. 4th IEEE Int. Workshop on Safety, Security and Rescue Robotics,

NIST, Gaithersburg (2006)

2. R3-COP: Resilient Reasoning Robotic Cooperating Systems. ARTEMIS-2009-1 Project

No. 100233, http://www.r3-cop.eu/

3. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A Concept for Testing Robustness and Safe-

ty of the Context-Aware Behaviour of Autonomous Systems. In: Proc. 1st Int. Workshop

on Trustworthy Multi-Agent Systems, Springer LNCS 7327, pp. 504–513, (2012)

4. Szatmári, Z., Oláh, J., Majzik, I.: Ontology-Based Test Data Generation Using Metaheuris-

tics. In: Proc. 8th International Conference on Informatics in Control, Automation, and

Robotics (ICINCO 2011), pp. 217–222, SciTePress (2011)

5. Majzik, I., Micskei, Z., Oláh, J., Szatmári, Z.: Models, Languages and Coverage Criteria

for Behaviour Testing of Individual Autonomous Systems. R3-COP deliverable D4.2.1

Part I, http://www.r3-cop.eu/.

6. Horányi, G., Majzik I.: Automated Evaluation of the Test Traces of Autonomous Systems.

Technical report, BME (2013) https://www.inf.mit.bme.hu/en/research/publications/TR-

2013-Trace-Evaluation

7. Messmer, B. T., Bunke, H.: Efficient Subgraph Isomorphism Detection: A Decomposition

Approach. IEEE Trans. on Knowledge and Data Engineering, 12:2, pp. 307–323 (2000)

8. Weiss, L.G.: Autonomous Robots in the Fog of War. IEEE Spectrum, 48.8, pp. 30–57

(2011)

9. Scrapper, C., Balakirsky, S., Messina, E.: MOAST and USAR-Sim: A Combined Frame-

work for the Development and Testing of Autonomous Systems. Proc. SPIE 6230, (2006)

10. Kelly, A., et al.: Toward Reliable Off Road Autonomous Vehicles Operating in Challeng-

ing Environments. Journal of Robotics Research, 25:5-6, pp. 449–483 (2006)

11. Michelson, R. C.: Test and Evaluation for Fully Autonomous Micro Air Vehicles. In:

ITEA Journal, 29.4, pp. 367–374 (2008)

12. Nguyen, C.D., Perini, A., Tonella, P., Miles, S., Harman, M., Luck, M.: Evolutionary Test-

ing of Autonomous Software Agents. In: Proc. AAMAS (1) pp. 521–528, (2009)

13. Bunke, H. et al.: Matching Sequences of Graphs. In: A Graph-Theoretic Approach to En-

terprise Network Dynamics. Progress in Computer Science and Applied Logic, vol. 24, pp.

131–143, Birkhäuser (2007)

14. Nguyen, M. D., Waeselynck, H., Riviere, N: GraphSeq: A Graph Matching Tool for the

Extraction of Mobility Patterns. In 3rd Int. Conf. on Software Testing, Verification and

Validation, ICST 2010, pp. 195–204, IEEE Computer Society, (2010)

15. Robot Operating Systems (ROS) Wiki. http://www.ros.org/wiki/

16. Gazebo – Multi-Robot Simulator. http://gazebosim.org/

http://www.r3-cop.eu/
http://www.ros.org/wiki/

