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Abstract. Testing the robustness and safety of autonomous systems (like do-

mestic or manufacturing robots) is a challenging task since these systems can 

make decisions on their own depending on their environment. We proposed a 

model based testing approach to capture the context and basic safety-related be-

havioural requirements of such systems, and to generate test data representing 

stressful contexts. During the execution of these tests in a real or simulator 

based test environment, the captured test traces shall be checked by comparison 

with the requirements in order to detect the violation of any requirement in each 

situation. In this paper we analyse this test evaluation problem and propose a 

method that can be used for efficient comparison. 
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1 Introduction 

Autonomous systems can make and execute decisions to achieve their goals without 

direct human control [1]. A significant part of these systems, for example autonomous 

robots used in the household or manufacturing, operate in real, uncontrolled environ-

ment, thus they must properly react to unexpected combinations of environmental 

objects and events: they shall be robust to be capable of correctly handling unforeseen 

situations and safe to avoid harmful effects with respect to humans. This way the 

evaluation of their robustness (precisely, the degree to which they can function cor-

rectly in the presence of invalid inputs or stressful environmental conditions) and 

functional safety forms an important part of their verification and validation. 

To support the testing of the robustness and safety of the context-aware behaviour 

of autonomous robots, in the R3-COP project [2] we developed a model based testing 

concept [3]. It is characterized by three main components: (1) context and require-

ments modelling to represent test requirements, (2) a search based test generation 

method to derive stressful contexts for robustness testing, and (3) an automated off-

line test evaluation approach. We focused on the systematic generation of the stressful 

contexts that can be derived from the context model and the behavioural require-

ments, in order to satisfy robustness related test goals and related coverage criteria. 



Having these test contexts generated, the tests can be executed in a real or simula-

tor based environment: each generated test context is set as initial context of execu-

tion, then the autonomous system is started to perform its mission, and the events, 

actions and context changes are recorded in a test trace until the mission is ended. 

According to this testing concept, the evaluation of the test traces has several chal-

lenges. Each requirement shall be mapped to a test oracle that is able to compare the 

sequence of contexts, events and actions recorded in a test trace to the ones allowed 

by the requirement. Since the test contexts represent complex situations that may 

match several requirements, each test trace shall be compared to each requirement. 

Moreover, this comparison shall be started in each step of the test trace (even in an 

overlapped way) since it may happen that during a test execution an initial context of 

another requirement evolves. The comparison of context objects and their properties 

shall take into account the hierarchy of object types and the abstract relations (like 

“tooClose” and “near” relations mapped to physical distances) that are included in the 

context model and in the requirements. 

To address these challenges, we propose solutions (algorithms and tools) to solve 

the test evaluation problem in an efficient way: for context matching, we use a graph 

based algorithm that is optimized for matching multiple graphs at the same time, and 

adapt it to hierarchical context models with multiple valuations. To present our solu-

tion, first we provide a brief overview of our testing framework (Section 2), and then 

introduce the running example used in the paper (Section 3). The problems of the test 

evaluation are analysed and the basic ideas of our solution are presented in Section 4. 

The main parts of our test evaluation approach, the context matching and the scenario 

matching algorithms are described in Section 5. The properties of the algorithms are 

assessed in Section 6. 

2 Overview of the Testing Framework 

Our robustness testing framework that supports both test generation and test evalua-

tion was published in [3]. This section presents a short overview in order to put the 

test evaluation problem tackled by the current paper in context. The testing frame-

work (Fig. 1) consists of manual and tool-supported activities. As the behaviour of 

autonomous robots is context-aware (i.e., it depends not only on the commands the 

robot receives, but also on the perceived state of its environment), the framework 

focuses on generating test data that can be used to evaluate the control module of the 

robot in complex situations. Note that the control module of one robot is considered 

as system under test (SUT), everything else is treated as its environment. 

In the first steps of our testing process, the context (the environment of the SUT), 

the events (the inputs the SUT can receive from its perception components), and the 

actions (the operations the SUT can execute using its actuators) are modelled. Then 

on the basis of these models the safety related requirements of the SUT are captured 

in graphical scenarios with the help of domain experts. 

The context of the robot is represented by a context metamodel that includes the 

types of environment objects (including dynamic objects that may appear, disappear 



or move), their properties, relations and constraints. The test requirements are cap-

tured using a language that combines a context view (on the basis of the context met-

amodel) with a scenario based behaviour specification (using a limited subset of 

UML2 Sequence Diagram elements to refer to the sequence of events and actions of 

the SUT). According to our goals, each test requirement formalizes a basic rule with 

respect to the expected safe behaviour of the SUT: it fixes an initial context fragment 

(that captures a condition regarding the initial context of the robot using a relevant 

combination of objects, properties and relations from the context metamodel), a se-

quence of initial events, actions and interim contexts that form the trigger (condition) 

part of the behaviour, and finally an assert part that specifies the events, actions and 

final context that shall (or shall not) happen after the trigger part occurred. For exam-

ple, a test requirement may specify that in case of an approaching human in a room 

(specified in the initial context), when she/he is detected in a dangerous area (trigger 

part), the robot shall issue a sound alarm (assert part). 

 

Fig. 1. Overview of the robustness testing framework 

The test data generation is a systematic search (using metaheuristics [4]) for test 

contexts that satisfy our testing goals: (1) extension of the initial context fragments 

with extra environment objects to check the behaviour of the robot in case of unex-

pected objects, (2) systematic combination of initial context fragments from the re-

quirements to check the behaviour in complex situations, and (3) generation of com-

binations of objects that violate semantic constraints (with respect to property values, 

multiplicity of objects etc.) to check the behaviour in these stressful situations. 

Next, the SUT is observed in each of these environments (in a simulated or a real 

setup), and execution traces of the SUT are collected and evaluated against the re-

quirements using the method presented in this paper. 

3 Running example 

A simplified household vacuum cleaner robot will be used as a running example 

throughout the paper. This section gives an overview of the context and requirement 

models created for the example in order to help understand the test evaluation prob-

lem and our proposed solutions. 



Fig. 2 illustrates part of a context metamodel that can be created for our example 

robot. The metamodel contains concepts representing the static objects in the robot’s 

environment (e.g., Furniture or Human) and dynamic context events, namely Appear-

Event, DisappearEvent, and MoveEvent that can be associated with the objects that 

are concerned (e.g. specifying that an object will appear during the execution). In-

stances of the context metamodel form the test data generated by the testing frame-

work. 

Robot ContextEvent

Table Human

Room

AppearEvent

Object

Bed Animal

LivingBeing

targetisPlaced
isPlaced

Furniture

neartooClose

 

Fig. 2. Part of a context metamodel 

The metamodel may include abstract relations that represent partitions of concrete 

property values relevant for the requirements (e.g., the near association between two 

Objects in the example represents a partition of the concrete distance). Once test data 

are selected, a post-processing creates concrete test data by selecting values (for the 

undefined properties in the model) that satisfy the abstract relations. 

alt

sd REQ1

assert

Perception SUT : Robot

humanDetected

stop

Actuators

animalDetected

{ Context: CF1 }

CF1

R1 : Room

SUT : Robot L : LivingBeing
tooClose

 

Fig. 3. Example scenario with a context fragment 

Fig. 3 and Fig. 4 depict example requirements. Requirements capture what events 

the control component of the robot can receive from its sensors, and what actions 

should it send in response to the actuators. In the first requirement, the context frag-

ment on the left hand side is referenced in the beginning of the event view’s sequence 



diagram, making it its initial context fragment. The trigger part of the scenario con-

sists of an alternate construct with the humanDetected or animalDetected events, and 

the assert part (the mandatory behaviour that shall happen once the trigger part oc-

curred) is sending the stop action. 

 

sd REQ2

assert

Perception SUT : Robot Actuators
CF2

SUT : Robot L : LivingBeing
tooClose

AE : 

AppearEvent

CF3

SUT : Robot L : LivingBeing
near

loop(0,*)

hornBell

{ Context: CF2 }

{ Context: CF3 }

 

Fig. 4. Example scenario with a final context 

To make the evaluation of traces with respect to the scenarios possible, an opera-

tional semantics of the language was defined [5]. It allows the construction of an ob-

server automaton for the whole scenario, where the SUT receives events and sends 

actions, see Fig. 5. 

alt

sd REQ1

assert

SUT : Robot

humanDetected

stop

animalDetected

{ Context: CF1

 

  

0

1

2 3

4

5

t5: ?humanDetected t4: ?animalDetected

t7: truet6: true

t9: !stop

t8: ~(!stop)

t1: true

t2: context(CF1)

t3: ~(?humanDetected) 
     ∧ ~(?animalDetected)

 

Fig. 5. Observer automaton generated from the scenario 

The transitions of the observer automaton are labelled with guards that refer to 

context fragments, events and actions that are allowed by the requirement scenario. 

Trivial accepting states (denoted with double circles) mark that the processing is still 

inside the trigger part of the scenario, thus if a trace stops here then the requirement is 

neither satisfied nor violated (i.e., it is inconclusive). Reject states (denoted with sin-



gle circles) are inside the assert part; stopping here means that some mandatory be-

haviour is still missing, thus the requirement is violated. Finally, stringent accepting 

states (denoted with triple circles) represent that the trace successfully reached the 

end of the assert part, thus the requirement was triggered and satisfied. 

4 The Test Evaluation Problem 

According to our test strategy, each segment of the test trace captured during the test 

execution shall be evaluated against each of the requirements to identify whether any 

requirement is violated during the test. The observer automaton belonging to a re-

quirement is used as a test oracle. Matching is examined in each step of the test trace, 

and depending on the state of the observer automaton where the matching stops, in-

conclusive, violated and satisfied requirements are collected. 

The two subtasks of matching are related to the two views included in the require-

ments: context and event/action sequences. In case of matching the contexts, the 

changes represented by dynamic events need special handling. In case of an Appear-

Event or a DisappearEvent, its ‘timing’ property determines the relative time when 

the specified change in the context shall occur, and the matching can take this time 

into account by dynamically (i.e., “on-the-fly” during the matching procedure) updat-

ing the context that shall be matched. In case of MoveEvents, we assume that interim 

context fragments are used to specify when a moving object becomes relevant from 

the point of view of the requirement (e.g., a moving human reaches the dangerous 

area). According to these considerations, sequence(s) of static contexts fragments can 

be derived from each requirement, and these precisely include the occurrences of the 

dynamic events given in the initial context fragment. 

This way we can formulate the context matching problem in a more abstract way 

as follows. Context fragments in requirements, as well as context configurations rec-

orded in a test trace are instances of the context metamodel. Instances of a metamodel 

can be commonly represented as labelled graphs: objects are mapped to graph vertices 

(where vertex labels determine the type of the object), and the relations among them 

are mapped to graph edges (where edge labels determine the type of the relation). 

This way the sequences of context fragments from requirements are represented as so-

called requirement graph sequences, while the configurations in the test trace are 

represented as configuration graph sequences. 

In the following, let us analyse the main challenges of the test evaluation, and pre-

sent the basic ideas of our solutions. 

 Matching all requirements from each step of the test trace: To check potential 

violations of any requirement in each segment of the test trace, matching of each 

requirement shall be examined (by trying to match first its initial context fragment) 

in each step of the test trace. Moreover, in each step the requirements that were al-

ready partially matched in the previous steps, shall be checked for progress (con-

tinuation or failure of the matching). Accordingly, a configuration graph (repre-

senting a configuration in a given step of the test trace) shall be matched to multi-

ple requirement graphs. To solve this problem, we use a graph matching algorithm 



that is optimized for matching multiple graphs: the requirement graphs that are to 

be checked for matching a configuration graph in a given step are represented to-

gether in a so-called decomposition structure. In a decomposition structure the 

isomorph subgraphs (from multiple graphs) are represented only once, and this 

way the re-use of partial matching is supported. Re-use is efficient when the re-

quirement graphs contain similar patterns, which is expected when the behaviour 

of a robot in a given environment (e.g., in a living room, where similar setup of ob-

jects appear in case of several requirements) is specified. In Fig. 6 two requirement 

graphs (CF1 and CF2' on the left) and their decomposition structure (on the right) 

are illustrated. The dashed rectangles are individual subgraphs stored in the de-

composition structure, while the dashed lines represent how a complex subgraph is 

decomposed into simpler ones. For example, the graph representing CF1 is decom-

posed into one which contains only a Room vertex, and one with a Robot and Liv-

ingBeing vertices. This latter subgraph consisting of the vertices Robot and Liv-

ingBeing can be found in both requirements, but it is represented only once, thus 

its matching detected in the first requirement graph shall not be checked again 

when the second requirement graph is checked. 

Room RobotLivingBeing

Robot LivingBeing
tooClose

Room

Robot LivingBeing
tooClose

CF1

CF2'

 

Fig. 6. Requirement graphs from Fig. 3 and Fig. 4 and their decomposition structure 

It may happen that the same requirement can be matched from multiple steps of a 

test trace, even in an overlapped way (e.g., when the robot moves close to several 

objects). To solve this problem, the test evaluation runs several instances of the ob-

server automata to check the matching. Each observer automaton has a loop transi-

tion in its initial state, this way the matching can be started at any step of the test 

trace, as there will be a run of the automaton that skips any potential prefix. This 

also solves the problem of matching one requirement overlapping with itself. 

 Handling the potential valuations: If the observer automaton contains a context 

related transition with several potential matching to the configuration graph (i.e., 

with different valuations of graph elements), then an automaton instance is created 

for each possible valuation. To keep track of the potential valuations that may be 

applied at the same time, these are represented in a separate data structure linked to 

the decomposition structure. For example in Fig. 7 the LivingBeing element in the 

requirement can be matched either to a Human or an Animal in the trace. 



RobotLivingBeing

Robot LivingBeing
tooClose

CF2'
{Robot→VacuumCleaner,
LivingBeing→Human}

CF2'
{Robot→VacuumCleaner,
LivingBeing→Animal}

 

Fig. 7. Handling different valuations of the same graph structure 

 Matching abstract relations: The mapping between the abstract relations and the 

concrete values (in the trace) shall be considered. To reconstruct the abstract rela-

tions, we perform a pre-processing step on the test trace which derives the valid 

and relevant abstract relations on the basis of the concrete values. 

 Matching the hierarchy of object types: The hierarchy of the types of context ob-

jects shall also be considered: a subtype instance in the trace shall match its ances-

tor type in the requirement. To match the labels of vertices and edges (i.e., to pro-

vide valuations of graph elements), the so-called compatibility relation is intro-

duced (instead of the direct equivalence of labels), that conforms to the type hierar-

chy defined in the context metamodel. 

 Handling dynamic changes: As introduced above, there are dynamic objects speci-

fied in the initial context fragment that appear/disappear with a given timing. Since 

the requirements can also contain a sequence of events, actions, and interim con-

texts that not necessarily include the precise timing of their occurrence (only their 

ordering), the relation between these and the occurrence of the dynamic changes is 

not known in advance. Therefore, the matching procedure shall insert these chang-

es into the requirement graph sequence “on-the-fly” when the timing of the test 

trace (relative to the start of matching) equals the timing property of a dynamic 

event. Formally, the representation of the necessary interim context is inserted into 

the observer automaton in the form of a new state with a context switch, and also 

the subsequent context fragments are updated. 

 Nondeterministic observer automaton: A requirement may contain alternatives in 

the behaviour, this way one state in the observer automaton may have more succes-

sor states. The evaluation shall consider all possible runs simultaneously. 

5 The Solution to the Test Evaluation Problem 

To apply these solutions, we developed algorithms for (i) matching context graphs 

using the decomposition approach, and (ii) matching requirement scenarios by using 

an observer automata execution context that is responsible for starting and evaluating 

the runs of the observer automata, and storing the results. Due to space constraints 

here only an overview is presented, the detailed algorithms can be found in [6]. 



5.1 Matching Context Graphs Using a Decomposition Approach 

Our algorithm for searching valuations that result in subgraph isomorphism between a 

configuration graph and multiple requirement graphs is based on the work of Mess-

mer et al. [7], where the idea of decomposition structures was introduced. Here we 

utilize this idea to represent the requirement graphs in a compacted form: the decom-

position structure stores each isomorph subgraph only once, therefore during the 

search for valuations the isomorph subgraphs have to be processed only once. The 

resulting valuations are bijective functions between the configuration graph and the 

requirement graphs (as illustrated in Fig. 8). 

valuations Requirement context fragments

Test trace
context

Context 
fragment from 

REQ2

Context 
fragment from 

REQ1

Context fragment 
from REQ3

 

Fig. 8. Finding valuations to match requirements graphs with a configuration graph 

The decomposition. The decomposition structure is built by adding the requirement 

graphs one by one. The algorithm has three inputs. The first input is the current de-

composition structure (empty at the beginning), while the second input is the next 

requirement graph to be added to this structure. The third input is a set of valuations 

(empty at the beginning), which were already fixed during the previous steps of 

matching and thus considered as restrictions on the graph. Here a graph may have 

several valuations or no valuation at all. The decomposition algorithm handles the 

valuations separately from the structure of the graphs, therefore multiple valuations 

can be processed together. An example of the decomposition structure is presented on 

Fig. 6, where CF1 and CF2’ context fragments (from Fig. 3 and Fig. 4) are decom-

posed, potential valuations are illustrated in Fig. 7. 

The search algorithm. The search algorithm is used to search for all possible valua-

tions between an input configuration graph and the graphs in a decomposition struc-

ture. In comparison with the original algorithm [7], the decomposition structure has 

been modified: our decomposition structure contains valuations separately (rather 

than substituting the valuations and storing concrete vertices), which makes the struc-

ture more compact, as the similarities of the subgraphs are searched in the structure of 

the graph and not in the concrete vertices. 

5.2 Matching Scenarios using Observer Automata 

During test evaluation, the observer automata (generated from the requirement scenar-

ios) are executed as test oracles that compare the sequence of contexts, events and 



actions recorded in a test trace to the ones allowed by the requirement. Several in-

stances of these automata are executed simultaneously, and each possible run is con-

sidered. For this purpose, we defined an execution context (EC), which is responsible 

for creation and execution of the observer automata. 

An observer automaton has two kinds of transitions: transitions guarded with con-

text information and transitions without context. A transition with a context can fire 

only if its context is matched to the actual configuration of the test trace. The EC uses 

the decomposition-based search approach to find a matching. 

The core algorithm of the EC (that executes an observer automaton) can be consid-

ered as a cycle with two separate phases: 

 Silent phase: In this part the algorithm computes all independent paths of the ob-

server automaton, which consist of subsequent transitions that do not contain any 

event or action to match (i.e., only context related or true guards are found on the 

transitions). These paths are evaluated to check whether they can be traversed: a 

path can be traversed if all contexts on the path are compatible with the current 

configuration in the test trace. The EC creates observer automaton instances for the 

different paths that can be traversed, and these paths are followed. 

 Event/action matching phase: After the silent phase, the EC processes the next 

event/action or context change from the test trace and checks whether it can be 

matched with the next enabled transition of the observer automaton. 

The EC uses the decomposition approach when a context matching is performed. 

The number of checking a context from the test trace is limited by the maximal length 

of the paths found in the silent phase, plus one for the event/action matching phase. 

The EC collects all requirement graphs into one decomposition structure and uses the 

search algorithm presented in Section 5.1. 

As we presented in Section 4, the dynamic events are handled on-the-fly: the con-

texts in the observer automata shall be updated dynamically according to their timing 

property. For this reason, the EC registers the trace time, when a new observer autom-

aton instance is started. The dynamic events are handled differently in the steps of the 

silent phase and in the event/action matching phase. As the events and actions of the 

test trace have exact timing, the related dynamic events can be simply collected and 

inserted. However, in case of silent steps the EC only knows that silent steps are made 

before the next event/action step. Therefore the EC shall examine all possible inser-

tions of dynamic events (including also the extreme cases when no dynamic event is 

inserted and when all events are inserted). This may increase the number of the simul-

taneous observer automaton instances. 

6 Related Work and Assessment 

As stated in a recent paper [8], testing autonomous systems is still an unsolved key 

area. Related research focused first of all on high fidelity simulators [9], excessive 

field testing [10], and testing the physical aspects [11]. There are only a few frame-

works that offer automated test generation. An approach similar to ours is presented 



in [12]: it uses metaheuristic search techniques for on-line test generation, calculating 

the fitness of potential test data on the basis of evaluating the execution of the SUT. In 

our case, we perform off-line test generation and evaluation to satisfy robustness re-

lated testing goals on the basis of a flexible context metamodel and graphical scenari-

os. This way our approach does not depend on the domain of the SUT. 

We mapped the problem of matching contexts to the problem of matching graph 

sequences, which is a relatively rarely addressed problem [13]. Our test evaluation 

technique is similar to the related solution that was proposed for processing mobility 

traces using the GraphSeq tool [14]. However, as we focused on robustness testing in 

complex situations, we addressed the specific challenge of comparing configurations 

recorded in a test trace to multiple requirements that contain similar context frag-

ments. Accordingly, we adapted a decomposition technique for searching graph iso-

morphism in multiple graphs at the same time, and extended it to handle multiple 

valuations (separated from the decomposition structure), type hierarchy, dynamic 

events, and abstract relations. 

The decomposition based approach offers a significant increase in efficiency [7]: 

the search is faster than the classical Ullman’s algorithm; in best case its expense is 

      while in worst case it is         , where N is the number of graphs, I is the 

number of vertices in the configuration graph, and M is the average size of the re-

quirement graphs. In the best case the N graphs are the same, while in the worst case 

N completely different complete graphs are decomposed. Of course, the decomposi-

tion structure has to be constructed that is characterized in worst case by         . 
Considering behavioural requirements of a robot operating in a given environment, 

the common parts in the requirement graphs are relatively frequent. 

Another important characteristic of the performance of the test evaluation is the 

number of observer automata that are executed simultaneously. In our test setup the 

requirements (and thus the observer automata) are relatively small (i.e., they consist 

of a small number of states and transitions), but the test traces are typically long. Ac-

cording to our experiments, the number of simultaneous observers does not depend on 

the length of the test trace, but depends on the structure of the observer automata 

(mainly the alternative behaviours represented in the scenario), and the number of 

dynamic events (that may interleave with the recorded events and actions). 

7 Conclusions 

This paper presented the challenges and proposed solutions for test evaluation of au-

tonomous systems. The need of comparing complex configurations recorded during 

test execution to multiple requirements (that typically include common context frag-

ments) lead to the use of specific algorithms for matching multiple graphs. As behav-

ioural requirements frequently utilize abstraction (type hierarchy and abstract rela-

tions) in the context models, we extended the graph matching with efficient handling 

of valuations and compatibility relations. The test evaluation tool was implemented 

and successfully applied in case of various test suites constructed in our framework. 

Currently we are working on a more extensive validation of our testing framework by 



generating, executing and then evaluating tests for the control modules of ROS (Ro-

bot Operating System) [15] robot implementations in a Gazebo based simulation envi-

ronment [16]. 
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