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Abstract

This paper establishes the asymptotic normality of frequency polygons in the

context of stationary strongly mixing random fields indexed by Z
d. Our method

allows us to consider only minimal conditions on the width bins and provides a

simple criterion on the mixing coefficients. In particular, we improve in several

directions a previous result by Carbon, Francq and Tran (2010).
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1 Introduction and notations

The frequency polygon is a density estimator based on the histogram. It has the

advantage to be conceptually and computationaly simple since it just consists of linking

the mid points of the histogram bars but its simplicity is not the only interest. In fact,

for time series, Scott [16] as shown that the rate of convergence of frequency polygon

is superior to the histogram for smooth densities. For other references on non-spatial

density estimation based on the frequency polygon, one can refer to Beirlant et al. [1]

and Carbon et al. [7]. To our knowledge, the only references in the spatial context are

Carbon [5] and Carbon et al. [6] for strongly mixing random fields indexed by Z
d and

Bensaid and Dabo-Niang [2] for strongly mixing random fields indexed by R
d. In [6] the

asymptotic normality of the frequency polygon estimator is obtained under interleaved

conditions on the width bin and the strong mixing coefficients. In this paper, we provide

a simple criterion on the mixing coefficients for the frequency polygon to satisfy the

central limit theorem when only minimal conditions on the width bin (see Assumption

(A2) below) are assumed. Our main result (Theorem 1) improve Theorem 4.1 in [6] in

several directions. Our approach which is based on the Lindeberg’s method seems to



be superior to the so-called Bernstein’s blocking method used in [6] but also in many

others papers on nonparametric estimation for random fields (see [2], [8], [9], [12], [17]).

For another application of the Lindeberg’s method, one can refer to El Machkouri [11]

where the asymptotic normality of the Parzen-Rosenblatt kernel density estimator is

proved for strongly mixing random fields improving a previous result by Tran [17]

obtained also by the Bernstein’s blocking method an coupling arguments. Note that

the central limit theorem in [11] is obtained for random fields observed on squares Λn

of Z
d but actually the result still holds if the regions Λn are only assumed to have

cardinality going to infinity as n goes to infinity. In particular, it is not neccessary to

impose any condition on the boundary of Λn.

Let d be a positive integer and let (Xi)i∈Zd be a stationary real random field defined on

some probability space (Ω,F ,P) with an unknown marginal density f . For any finite

subset B of Zd, denote |B| the number of elements in B. In the sequel, we assume

that we observe (Xi)i∈Zd on a sequence (Λn)n≥1 of finite subsets of Zd such that |Λn|
goes to infinity as n goes to infinity. We lay emphasis on that we do not impose any

condition on the boundary of the regions Λn. Given two σ-algebras U and V, we recall

the α-mixing coefficient introduced by Rosenblatt [15] and defined by

α(U ,V) = sup{|P(A ∩ B)− P(A)P(B)| , A ∈ U , B ∈ V}

and the ρ-mixing coefficient introduced by Kolmogorov and Rozanov [13] and defined

by

ρ(U ,V) = sup

{ |Cov(f, g)|
‖f‖2‖g‖2

, f ∈ L
2(U), g ∈ L

2(V)
}

.

It is well known that 4α(U ,V) ≤ ρ(U ,V) (see [4]). For any τ in N
∗ ∪ {∞} and any

positive integer n, we consider the mixing coefficients α1,τ (n) and ρ1,τ (n) defined by

α1,τ (n) = sup {α(σ(Xk),FB), k ∈ Z
d, |B| ≤ τ, Ξ(B, {0}) ≥ n},

ρ1,τ (n) = sup {ρ(σ(Xk),FB), k ∈ Z
d, |B| ≤ τ, Ξ(B, {0}) ≥ n}

where FB = σ(Xi ; i ∈ B) for any subset B of Zd and the distance Ξ is defined for

any subsets B1 and B2 of Z
d by Ξ(B1, B2) = min{|i − j|, i ∈ B1, j ∈ B2} where

|i − j| = max1≤k≤d |ik − jk| for any i = (i1, ..., id) and j = (j1, ..., jd) in Z
d. We

say that the random field (Xi)i∈Zd is α-mixing or ρ-mixing if limn→∞ α1,τ (n) = 0 or

limn→∞ ρ1,τ (n) = 0 for some τ in N
∗ ∪ {∞} respectively.

Let (bn)n≥1 be a sequence of positive real numbers going to zero when n goes to infinity.

For each n in N
∗, we consider the partition (In,k)k∈Z of the real line defined for any k in
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Z by In,k = [(k− 1)bn, kbn). Let (n, k) be fixed in N
∗ ×Z and let In,k and In,k+1 be two

adjacent histogram bins. Denote νn,k and νn,k+1 the numbers of observations falling

in these intervals respectively. The values of the histogram in these previous bins are

given by νn,k(|Λn|bn)−1 and νn,k+1(|Λn|bn)−1 and the frequency polygon fn,k is defined

for x ∈ Jn,k :=
[(

k − 1
2

)

bn,
(

k + 1
2

)

bn
)

by

fn,k(x) =

(

1

2
+ k − x

bn

)

νn,k
|Λn|bn

+

(

1

2
− k +

x

bn

)

νn,k+1

|Λn|bn
.

Define Yi,s = 11Xi∈In,s for any s in Z, then

fn,k(x) =
1

|Λn|bn
∑

i∈Λn

ak(x)Yi,k + ak(x)Yi,k+1

where as(u) =
1
2
+s− u

bn
and as(u) = a−s(−u) for any s in Z and any u in Jn,s. Finally,

we consider the normalized frequency polygon estimator fn defined for any x in R such

that f(x) > 0 by

fn(x) =
∑

k∈Z

fn,k(x)

σn,k(x)
11Jn,k(x) where σ2

n,k(x) =

(

1

2
+ 2

(

k − x

bn

)2
)

f(x).

Our main results are stated in Section 2 and the proofs are given in Section 3.

2 Main results

We consider the following assumptions.

(A1) The density function f is differentiable and its derivative f
′
is locally bounded.

(A2) bn goes to zero such that |Λn|bn goes to infinity as n goes to infinity.

(A3) supj 6=0 P (X0 ∈ In,s, Xj ∈ In,t) = O(b2n) for any s and t in Z.

(B3) P (X0 ∈ In,s, Xj ∈ In,t) = o(bn) for any s, t and j in Z.

Remark 1. Obviously (B3) is weaker than (A3). Moreover, if the joint density f0,j

of (X0, Xj) exists then (A3) is true by assuming that supj 6=0 f0,j is locally bounded

whereas (B3) is true by assuming only that f0,j is locally bounded for each j 6= 0.

As in Theorem 3.1 in [6], the following result gives the asymptotic variance of fn.
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Proposition 1 Assume that (A1) and (A2) hold. If one of the following assumptions

i) (A3) holds and
∑

m≥1m
2d−1 α1,1(m) <∞,

ii) (B3) holds and
∑

m≥1m
d−1 ρ1,1(m) <∞,

is true then limn→∞ |Λn|bnV(fn(x)) = 1 for any x in R such that f(x) > 0.

Our main result is the following central limit theorem.

Theorem 1 Assume that (A1) and (A2) hold. If one of the following assumptions

i) (A3) holds and
∑

m≥1m
2d−1 α1,∞(m) <∞,

ii) (B3) holds and
∑

m≥1m
d−1 ρ1,∞(m) <∞,

is true then for any positive integer r and any distinct points x1, ..., xr in R such that

f(xi) > 0 for any 1 ≤ i ≤ r,

(|Λn|bn)1/2






fn(x1)− Efn(x1)
...

fn(xr)− Efn(xr)







Law−−−−−→
n→∞

N (0, Id) (1)

where Id is the unit matrix of order r.

Remark 2. Theorem 1 improves Theorem 4.1 in [6] in three directions: the regions

Λn where the random field is observed are not reduced to rectangular ones (we do not

assume any boundary condition), the assumption (A2) on the width bin bn is minimal

and the α-mixing condition is weaker than the one assumed in Theorem 4.1 in [6], that

is α1,∞(m) = O(m−θ) with θ > 2d.

3 Proofs

Throughout this section, the symbol κ will denote a generic positive constant which the

value is not important and we recall that |i| = max1≤k≤d |ik| for any i = (i1, ..., id) ∈ Z
d.

Let τ ∈ N
∗ ∪ {∞} be fixed and consider the sequence (mn,τ)n≥1 defined by

mn,τ = max











vn,











1

bn

∑

|i|>vn

|i|d α1,τ (|i|)





1
d






+ 1











(2)

where vn =
[

b
−1
2d
n

]

and [ . ] denotes the integer part function. The following technical

lemma is a spatial version of a result by Bosq, Merlevède and Peligrad ([3], pages

88-89).
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Lemma 1 Let τ ∈ N
∗ ∪ {∞} be fixed. If

∑

m≥1m
2d−1 α1,τ (m) <∞ then

mn,τ → ∞, md
n,τ bn → 0 and

1

md
n,τ bn

∑

|i|>mn,τ

|i|d α1,τ (|i|) → 0.

Proof of Lemma 1. First, mn,τ goes to infinity since bn goes to zero and mn,τ ≥ vn.

We consider the function ψ defined for any m in N
∗ by ψ(m) =

∑

|i|>m |i|d α1,τ (|i|).
Since

∑

m≥1m
2d−1 α1,τ (m) <∞, we have ψ(m) converges to zero as m goes to infinity.

Consequently, md
n,τbn ≤ max

{√
bn, κ

(

√

ψ (vn) + bn

)}

−−−−−→
n→∞

0. Moreover, noting

that md
n,τ ≥ 1

bn

√

ψ (vn) ≥ 1
bn

√

ψ (mn,τ ) (since vn ≤ mn,τ ), we derive also

1

md
n,τbn

∑

|i|>mn,τ

|i|d α1,τ (|i|) ≤
√

ψ(mn,τ) −−−−−→
n→∞

0.

The proof of Lemma 1 is complete.

Proof of Proposition 1. For any n ≥ 1 and any x in R,

|Λn|bnV(fn(x)) =
∑

k∈Z

|Λn|bnV(fn,k(x))
σ2
n,k(x)

11Jn,k(x).

Let x in R such that f(x) > 0. For any integer n ≥ 1, we denote by k(n) the unique

integer such that x belongs to Jn,k(n). It suffices to show that

lim
n→∞

|Λn|bnV(fn,k(n)(x))
σ2
n,k(n)(x)

= 1.

In the sequel, we write k instead of k(n) and we denote ps =
∫

In,s
f(u)du for any s in

Z. We have

|Λn|bnV(fn,k(x)) = a2k(x)







pk(1− pk)

bn
+

1

|Λn|bn
∑

i,j∈Λn
i 6=j

Cov(Yi,k, Yj,k)







+ a2k(x)







pk+1(1− pk+1)

bn
+

1

|Λn|bn
∑

i,j∈Λn
i 6=j

Cov(Yi,k+1, Yj,k+1)







+ 2ak(x)ak(x)







−pkpk+1

bn
+

1

|Λn|bn
∑

i,j∈Λn
i 6=j

Cov(Yi,k, Yj,k+1)






.
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Denote also

wn,k(x) =
1

bn

(

a2k(x)pk(1− pk) + a2k(x)pk+1(1− pk+1)− 2ak(x)ak(x)pkpk+1

)

.

Arguing as in the proof of Lemma 3.2 in [6], we have by Taylor expansion

pk = bnf(x) +
bn
2
(2(kbn − x)− bn)f

′

(ck)

pk+1 = bnf(x) +
bn
2
(2(kbn − x) + bn)f

′

(ck+1)

where ck ∈ Jn,k and ck+1 ∈ Jn,k+1. Then for j = k or j = k + 1,

max{0, f(x)bn − κb2n} ≤ pj ≤ f(x)bn + κb2n. (3)

Consequently

max{0, bnf 2(x)− 2b2nκf(x) + κ2b3n} ≤ pkpk+1

bn
≤ bnf

2(x) + 2b2nκf(x)− κ2b3n (4)

and for j = k or j = k + 1,

max{0, f(x)− (κ+ f 2(x)bn) + κ2b3n} ≤ pj(1− pj)

bn
≤ f(x) + (κ− f 2(x))bn + κ2b3n. (5)

Finally, we obtain

lim
n→∞

wn,k(x)

σ2
n,k(x)

= 1.

Let (s, t) be equal to (k, k), (k, k + 1) or (k + 1, k + 1). It suffices to show that

lim
n→∞

1

|Λn|bn
∑

i,j∈Λn
i 6=j

Cov(Yi,s, Yj,t) = 0 (6)

By stationarity of the random field (Xi)i∈Zd, we have

1

|Λn|bn

∣

∣

∣

∣

∣

∣

∣

∑

i,j∈Λn
i 6=j

Cov(Yi,s, Yj,t)

∣

∣

∣

∣

∣

∣

∣

≤ 1

bn

∑

j∈Zd

j 6=0

|Cov(Y0,s, Yj,t)|. (7)

Using (3), for j 6= 0, we have

|Cov(Y0,s, Yj,t)| ≤ ‖Y0,s‖2‖Y0,t‖2ρ1,1(|j|) =
√
psptρ1,1(|j|) ≤ κbnρ1,1(|j|). (8)

Moreover, using again (3), for any j 6= 0,

|Cov(Y0,s, Yj,t)| ≤ P (X0 ∈ In,s, Xj ∈ In,t) + κb2n. (9)
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Assuming (B3) and
∑

m≥1m
d−1ρ1,1(m) < ∞ and combining (8) and (9) with the

dominated convergence theorem, we obtain

∑

j∈Zd

j 6=0

|Cov(Y0,s, Yj,t)|
bn

= o(1). (10)

Finally, (6) follows from inequality (7). Similarly, by Rio’s covariance inequality (cf.

[14], Theorem 1.1),

|Cov(Y0,s, Yj,t)| ≤ 2

∫ 2α(σ(Y0,s),σ(Yj,t))

0

QY0,s(u)QYj,t(u)du

where QZ(u) = inf{t; P(|Z| > t) ≤ u} for any u in [0, 1]. Since Y0,s and Yj,t are

bounded by 1, we derive

|Cov(Y0,s, Yj,t)| ≤ 4α1,1(|j|). (11)

Using (9) and assuming (A3), we derive

sup
j 6=0

|Cov(Y0,s, Yj,t)| ≤ κb2n. (12)

Assuming
∑

m≥1m
2d−1α1,1(m) <∞ and combining (11), (12) and Lemma 1, we obtain

∑

j∈Zd

j 6=0

|Cov(Y0,s, Yj,t)|
bn

≤ κ



md
n,1bn +

1

md
n,1bn

∑

|j|>mn,1

|j|dα1,1(|j|)



 = o(1) (13)

where (mn,1)n≥1 is defined by (2). Finally, using inequality (7), we obtain again (6).

The proof of Proposition 1 is complete.

Remark 3. The reader should note that the asymptotic variance given in Theo-

rem 3.1 in [6] is not the good one. In fact, using the notations in [6], it should be

(1/2 + 2(k0 − x/b)2)f(x) instead of (1/2 + (2k0 − x/b)2)f(x).

Proof of Theorem 1. Without loss of generality, we assume that r = 2 and we de-

note x and y in place of x1 and x2. Let λ1 and λ2 be fixed in R such that λ21 + λ22 = 1.

For any i in Z
d, we define ∆i = λ1Zi(x) + λ2Zi(y) where for any u in R such that

f(u) > 0,

Zi(u) =
1√
bn

∑

s∈Z

as(u)(Yi,s − E(Yi,s)) + as(u)(Yi,s+1 − E(Yi,s+1))

σn,s(u)
11Jn,s(u),

as(u) =
1
2
+ s− u

bn
, as(u) = a−s(−u) and σ2

n,s(u) =

(

1
2
+ 2

(

s− u
bn

)2
)

f(u).
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Lemma 2 E(∆2
0) −−−−−→

n→∞
1 and

∑

i∈W E|∆0∆i| ≤ κ|W |bn+ o(1) for any finite subset

W of Zd\{0}.

Proof of Lemma 2. Recall that ps =
∫

In,s
f(u)du and Jn,s = [(s − 1

2
)bn, (s +

1
2
)bn) for

any s in Z. We have

E(∆2
0) = λ21E(Z

2
0 (x)) + λ22E(Z

2
0(y)) + 2λ1λ2E(Z0(x)Z0(y)) (14)

and

bnE(Z0(x)Z0(y)) =
∑

(k,l)∈Z2

ak(x)al(y)

σn,k(x)σn,l(y)
E(Y0,k − pk)(Y0,l − pl) 11Jn,k×Jn,l(x, y)

+
∑

(k,l)∈Z2

ak(x)al(y)

σn,k(x)σn,l(y)
E(Y0,k − pk)(Y0,l+1 − pl+1) 11Jn,k×Jn,l(x, y)

+
∑

(k,l)∈Z2

ak(x)al(y)

σn,k(x)σn,l(y)
E(Y0,k+1 − pk+1)(Y0,l − pl) 11Jn,k×Jn,l(x, y)

+
∑

(k,l)∈Z2

ak(x)al(y)

σn,k(x)σn,l(y)
E(Y0,k+1 − pk+1)(Y0,l+1 − pl+1) 11Jn,k×Jn,l(x, y)

For n sufficiently large, (x, y) belongs to Jn,k × Jn,l with |k − l| ≥ 2. Then for any

s = k or s = k + 1 and t = l or t = l + 1, |E(Y0,s − ps)(Y0,t − pt)| = pspt ≤ κb2n. Since

0 ≤ as(u) ≤ 1, 0 ≤ as(u) ≤ 1 and σ2
n,s(u) ≥ f(u)/2 > 0 for any u in Jn,s such that

f(u) > 0 and any s in Z, we obtain

|E(Z0(x)Z0(y))| ≤ κbn. (15)

Similarly, for any u in R, we have

bnE(Z
2
0 (u)) =

∑

k∈Z

a2k(u)

σ2
n,k(u)

E(Y0,k − pk)
2 11Jn,k(u)

+ 2
∑

k∈Z

ak(u)ak(u)

σ2
n,k(u)

E(Y0,k − pk)(Y0,k+1 − pk+1) 11Jn,k(u)

+
∑

k∈Z

a2k(u)

σ2
n,k(u)

E(Y0,k+1 − pk+1)
2 11Jn,k(u).

Noting that E(Y0,s − ps)
2 = ps(1 − ps) and E(Y0,s − ps)(Y0,s+1 − ps+1) = −psps+1 for

any s in Z and keeping in mind (4) and (5), we obtain for any u in R,

E(Z2
0 (u)) −−−−−→

n→∞
1. (16)
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Combining (14), (15) and (16), we obtain E(∆2
0) −−−−−→

n→∞
λ21 + λ22 = 1.

Let W be a finite subset of Zd\{0} and let i ∈ W be fixed. We have

E|∆0∆i| ≤ λ21E|Z0(x)Zi(x)|+ 2|λ1||λ2|E|Z0(x)Zi(y)|+ λ22E|Z0(y)Zi(y)|. (17)

If u and v are fixed in R then

bnE|Z0(u)Zi(v)| ≤
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

E
∣

∣(Y0,k − pk)(Yi,l − pl)
∣

∣ 11Jn,k×Jn,l(u, v)

+
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

E
∣

∣(Y0,k − pk)(Yi,l+1 − pl+1)
∣

∣ 11Jn,k×Jn,l(u, v)

+
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

E
∣

∣(Y0,k+1 − pk+1)(Yi,l − pl)
∣

∣ 11Jn,k×Jn,l(u, v)

+
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

E
∣

∣(Y0,k+1 − pk+1)(Yi,l+1 − pl+1)
∣

∣ 11Jn,k×Jn,l(u, v).

Noting that for any s and t in Z,

E|(Y0,s − ps)(Yi,t − pt)| ≤ E(Y0,sYi,t) + 3pspt ≤ |Cov(Y0,s, Yi,t)|+ κb2n,

we derive

E|Z0(u)Zi(v)| ≤
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

|Cov(Y0,k, Yi,l)|
bn

11Jn,k×Jn,l(u, v)

+
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

|Cov(Y0,k, Yi,l+1)|
bn

11Jn,k×Jn,l(u, v)

+
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

|Cov(Y0,k+1, Yi,l)|
bn

11Jn,k×Jn,l(u, v)

+
∑

(k,l)∈Z2

|ak(u)al(v)|
σn,k(u)σn,l(v)

|Cov(Y0,k+1, Yi,l+1)|
bn

11Jn,k×Jn,l(u, v)

+ κbn.

Assuming (B3) and
∑

m>0m
d−1ρ1,1(m) < ∞ and using (10) or assuming (A3) and

∑

m>0m
2d−1α1,1(m) <∞ and using (13), we obtain

∑

i∈W
E|Z0(u)Zi(v)| ≤ κ|W |bn + o(1). (18)

9



Combining (17) and (18), we obtain
∑

i∈W E|∆0∆i| ≤ κ|W |bn + o(1). The proof of

Lemma 2 is complete.

We are going to follow the Lindeberg-type proof of the central limit theorem for sta-

tionary random fields established in [10]. Let ϕ be a one to one map from [1, κ] ∩ N
∗

to a finite subset of Zd and (ξi)i∈Zd a real random field. For all integers k in [1, κ], we

denote

Sϕ(k)(ξ) =
k
∑

i=1

ξϕ(i) and Scϕ(k)(ξ) =
κ
∑

i=k

ξϕ(i)

with the convention Sϕ(0)(ξ) = Scϕ(κ+1)(ξ) = 0. On the lattice Z
d we define the lexi-

cographic order as follows: if i = (i1, ..., id) and j = (j1, ..., jd) are distinct elements

of Z
d, the notation i <lex j means that either i1 < j1 or for some p in {2, 3, ..., d},

ip < jp and iq = jq for 1 ≤ q < p. To describe the set Λn, we define the one to one

map ϕ from [1, |Λn|] ∩ N
∗ to Λn by: ϕ is the unique function such that ϕ(k) <lex ϕ(l)

for 1 ≤ k < l ≤ |Λn|. From now on, we consider a field (ξi)i∈Zd of i.i.d. random

variables independent of (Xi)i∈Zd such that ξ0 has the standard normal law N (0, 1).

We introduce the fields Γ and γ defined for any i in Z
d by

Γi =
∆i

|Λn|1/2
and γi =

ξi
|Λn|1/2

Let h be any function from R to R. For 0 ≤ k ≤ l ≤ |Λn| + 1, we introduce

hk,l(Γ) = h(Sϕ(k)(Γ)+S
c
ϕ(l)(γ)). With the above convention we have that hk,|Λn|+1(Γ) =

h(Sϕ(k)(Γ)) and also h0,l(Γ) = h(Scϕ(l)(γ)). In the sequel, we will often write hk,l instead

of hk,l(Γ). We denote by B4
1(R) the unit ball of C4

b (R): h belongs to B4
1(R) if and only

if h is bounded by 1, belongs to C4(R) and its first four derivatives are also bounded

by 1. It suffices to prove that for all h in B4
1(R),

E
(

h
(

Sϕ(|Λn|)(Γ)
))

−−−−−→
n→∞

E (h (ξ0)) .

We use Lindeberg’s decomposition:

E
(

h
(

Sϕ(|Λn|)(Γ)
)

− h (ξ0)
)

=

|Λn|
∑

k=1

E (hk,k+1 − hk−1,k) .

Now,

hk,k+1 − hk−1,k = hk,k+1 − hk−1,k+1 + hk−1,k+1 − hk−1,k.

10



Applying Taylor’s formula we get that:

hk,k+1 − hk−1,k+1 = Γϕ(k)h
′

k−1,k+1 +
1

2
Γ2
ϕ(k)h

′′

k−1,k+1 +Rk

and

hk−1,k+1 − hk−1,k = −γϕ(k)h
′

k−1,k+1 −
1

2
γ2ϕ(k)h

′′

k−1,k+1 + rk

where |Rk| ≤ Γ2
ϕ(k)(1 ∧ |Γϕ(k)|) and |rk| ≤ γ2ϕ(k)(1 ∧ |γϕ(k)|). Since (Γ, ξi)i 6=ϕ(k) is inde-

pendent of ξϕ(k), it follows that

E

(

γϕ(k)h
′

k−1,k+1

)

= 0 and E

(

γ2ϕ(k)h
′′

k−1,k+1

)

= E

(

h
′′

k−1,k+1

|Λn|

)

Hence, we obtain

E
(

h(Sϕ(|Λn|)(Γ))− h (ξ0)
)

=

|Λn|
∑

k=1

E(Γϕ(k)h
′

k−1,k+1)

+

|Λn|
∑

k=1

E

(

(

Γ2
ϕ(k) −

1

|Λn|

)

h
′′

k−1,k+1

2

)

+

|Λn|
∑

k=1

E (Rk + rk) .

Let 1 ≤ k ≤ |Λn| be fixed. Since |∆0| is bounded by κ/
√
bn, applying Lemma 2 we

derive

E|Rk| ≤
E|∆0|3
|Λn|3/2

≤ κ

(|Λn|3 bn)1/2
and E|rk| ≤

E|ξ0|3
|Λn|3/2

.

Consequently, we obtain

|Λn|
∑

k=1

E (|Rk|+ |rk|) = O

(

1

(|Λn|bn)1/2
+

1

|Λn|1/2
)

= o(1).

Now, it is sufficient to show

lim
n→∞

|Λn|
∑

k=1

(

E(Γϕ(k)h
′

k−1,k+1) + E

(

(

Γ2
ϕ(k) −

1

|Λn|

)

h
′′

k−1,k+1

2

))

= 0. (19)

First, we focus on
∑|Λn|

k=1 E
(

Γϕ(k)h
′

k−1,k+1

)

. Let the sets {V k
i ; i ∈ Z

d , k ∈ N
∗} be

defined as follows: V 1
i = {j ∈ Z

d ; j <lex i} and V k
i = V 1

i ∩ {j ∈ Z
d ; |i − j| ≥ k} for

k ≥ 2. Let (Nn)n≥1 be a sequence of positive integers satisfying

Nn → ∞ such that Nd
nbn → 0. (20)
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For all n in N
∗ and all integer 1 ≤ k ≤ |Λn|, we define

E
(n)
k = ϕ([1, k] ∩ N

∗) ∩ V Nn
ϕ(k) and S

(n)
ϕ(k)(Γ) =

∑

i∈E
(n)
k

Γi.

For any function Ψ from R to R, we define Ψ
(n)
k−1,l = Ψ(S

(n)
ϕ(k)(Γ) + Scϕ(l)(γ)). We are

going to apply this notation to the successive derivatives of the function h. Our aim is

to show that

lim
n→∞

|Λn|
∑

k=1

E

(

Γϕ(k)h
′

k−1,k+1 − Γϕ(k)

(

Sϕ(k−1)(Γ)− S
(n)
ϕ(k)(Γ)

)

h
′′

k−1,k+1

)

= 0. (21)

First, we use the decomposition

Γϕ(k)h
′

k−1,k+1 = Γϕ(k)h
′(n)
k−1,k+1 + Γϕ(k)

(

h
′

k−1,k+1 − h
′(n)
k−1,k+1

)

.

We consider a one to one map ψ from [1, |E(n)
k |] ∩N

∗ to E
(n)
k such that |ψ(i)− ϕ(k)| ≤

|ψ(i− 1)− ϕ(k)|. For any subset B of Zd, recall that FB = σ(Xi ; i ∈ B) and set

EM (Xi) = E(Xi|FVMi
), M ∈ N

∗, i ∈ Z
d.

The choice of the map ψ ensures that Sψ(i)(Γ) and Sψ(i−1)(Γ) are F
V

|ψ(i)−ϕ(k)|
ϕ(k)

-measurable.

The fact that γ is independent of Γ imply that E
(

Γϕ(k)h
′
(

Scϕ(k+1)(γ)
))

= 0. Therefore

∣

∣

∣
E

(

Γϕ(k)h
′(n)
k−1,k+1

)∣

∣

∣
=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

E
(n)
k

∣

∣

∣

∑

i=1

E
(

Γϕ(k) (θi − θi−1)
)

∣

∣

∣

∣

∣

∣

∣

(22)

where θi = h
′
(

Sψ(i)(Γ) + Scϕ(k+1)(γ)
)

. Since Sψ(i)(Γ) and Sψ(i−1)(Γ) are F
V

|ψ(i)−ϕ(k)|
ϕ(k)

-

measurable, we can take the conditional expectation of Γϕ(k) with respect to F
V

|ψ(i)−ϕ(k)|
ϕ(k)

in the right hand side of (22). On the other hand the function h
′
is 1-Lipschitz, hence

|θi − θi−1| ≤ |Γψ(i)|. Consequently,
∣

∣E
(

Γϕ(k) (θi − θi−1)
)∣

∣ ≤ E|Γψ(i)E|ψ(i)−ϕ(k)|
(

Γϕ(k)
)

|
and

∣

∣

∣
E

(

Γϕ(k)h
′(n)
k−1,k+1

)∣

∣

∣
≤

∣

∣

∣

E
(n)
k

∣

∣

∣

∑

i=1

E|Γψ(i)E|ψ(i)−ϕ(k)|(Γϕ(k))|.

Hence,
∣

∣

∣

∣

∣

∣

|Λn|
∑

k=1

E

(

Γϕ(k)h
′(n)
k−1,k+1

)

∣

∣

∣

∣

∣

∣

≤ 1

|Λn|

|Λn|
∑

k=1

|E(n)
k

|
∑

i=1

E|∆ψ(i)E|ψ(i)−ϕ(k)|(∆ϕ(k))|

≤
∑

|j|≥Nn

‖∆jE|j|(∆0)‖1.
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For any j in Z
d, we have ‖∆jE|j|(∆0)‖1 = Cov

(

|∆j|
(

11E|j|(∆0)≥0 − 11E|j|(∆0)<0

)

,∆0

)

and consequently ‖∆jE|j|(∆0)‖1 ≤ ‖∆0‖22ρ1,∞(|j|). By Lemma 2, we know that ‖∆0‖2
is bounded. So, assuming

∑

m≥0m
d−1ρ1,∞(m) <∞, we derive

∣

∣

∣

∣

∣

∣

|Λn|
∑

k=1

E

(

Γϕ(k)h
′(n)
k−1,k+1

)

∣

∣

∣

∣

∣

∣

= o(1). (23)

By Rio’s covariance inequality (cf. [14], Theorem 1.1), we have also

‖∆jE|j|(∆0)‖1 ≤ 4

∫ α1,∞(|j|)

0

Q2
∆0
(u)du

where Q∆0 is defined by Q∆0(u) = inf{t ≥ 0 ; P(|∆0| > t) ≤ u} for any u in [0, 1]. Since

|∆0| is bounded by κ/
√
bn, we have Q∆0 ≤ κ/

√
bn and ‖∆jE|j|(∆0)‖1 ≤ κ

bn
α1,∞(|j|).

Assuming
∑

m≥0m
2d−1α1,∞(m) < ∞ and choosing Nn = mn,∞ (recall that (mn,∞)n≥1

is defined by (2) and satisfies mn,∞ → ∞ such that md
n,∞bn → 0), we derive

∣

∣

∣

∣

∣

∣

|Λn|
∑

k=1

E

(

Γϕ(k)h
′(n)
k−1,k+1

)

∣

∣

∣

∣

∣

∣

≤ κ

md
n,∞bn

∑

|j|≥mn,∞

|j|d α1,∞(|j|).

By Lemma 1, we obtain again (23). Now, applying Taylor’s formula,

Γϕ(k)(h
′

k−1,k+1 − h
′(n)
k−1,k+1) = Γϕ(k)(Sϕ(k−1)(Γ)− S

(n)
ϕ(k)(Γ))h

′′

k−1,k+1 +R
′

k,

where |R′

k| ≤ 2|Γϕ(k)(Sϕ(k−1)(Γ)−S
(n)
ϕ(k)(Γ))(1∧ |Sϕ(k−1)(Γ)− S

(n)
ϕ(k)(Γ)|)|. Consequently

(21) holds if and only if limn→∞
∑|Λn|

k=1 E|R
′

k| = 0. In fact, denoting Wn = {−Nn +

1, ..., Nn − 1}d and W ∗
n =Wn\{0}, we have

|Λn|
∑

k=1

E|R′

k| ≤ 2E

(

|∆0|
(

∑

i∈Wn

|∆i|
)(

1 ∧ 1

|Λn|1/2
∑

i∈Wn

|∆i|
))

= 2E







∆2
0 +

∑

i∈W ∗
n

|∆0∆i|





(

1 ∧ 1

|Λn|1/2
∑

i∈Wn

|∆i|
)





≤ 2

|Λn|1/2
∑

i∈Wn

E(∆2
0|∆i|) + 2

∑

i∈W ∗
n

E|∆0∆i|.
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Since |∆0| ≤ κ√
bn

, we derive

|Λn|
∑

k=1

E|R′

k| ≤
κ

(|Λn|bn)1/2
∑

i∈Wn

E(|∆0∆i|) + 2
∑

i∈W ∗
n

E|∆0∆i|

≤ κE(∆2
0)

(|Λn|bn)1/2
+

(

κ

(|Λn|bn)1/2
+ 2

)

∑

i∈W ∗
n

E(|∆0∆i|)

= O

(

1

(|Λn|bn)1/2
+

(

1

(|Λn|bn)1/2
+ 2

)

(

Nd
nbn + o(1)

)

)

(by Lemma 2)

= o(1) (by (20) and Assumption (A2)).

In order to obtain (19) it remains to control

F0 = E





|Λn|
∑

k=1

h
′′

k−1,k+1

(

Γ2
ϕ(k)

2
+ Γϕ(k)

(

Sϕ(k−1)(Γ)− S
(n)
ϕ(k)(Γ)

)

− 1

2|Λn|

)



 .

Applying Lemma 2, we have

F0 ≤

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1(∆
2
ϕ(k) − E(∆2

0))





∣

∣

∣

∣

∣

∣

+ |1− E(∆2
0)|+ 2

∑

j∈V 1
0 ∩Wn

E|∆0∆j |

≤

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1(∆
2
ϕ(k) − E(∆2

0))





∣

∣

∣

∣

∣

∣

+O(Nd
nbn) + o(1).

Since Nd
nbn → 0, it suffices to prove that

F1 =

∣

∣

∣

∣

∣

∣

E





1

|Λn|

|Λn|
∑

k=1

h
′′

k−1,k+1(∆
2
ϕ(k) − E(∆2

0))





∣

∣

∣

∣

∣

∣

goes to zero as n goes to infinity. In fact, keeping in mind Wn = {−Nn+1, ..., Nn−1}d
and W ∗

n = Wn\{0}, we have

F1 ≤
1

|Λn|

|Λn|
∑

k=1

(L1,k + L2,k)
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where L1,k =
∣

∣

∣
E

(

h
′′(n)
k−1,k+1

(

∆2
ϕ(k) − E (∆2

0)
))∣

∣

∣
= 0 since h

′′(n)
k−1,k+1 is FV

mn,∞
ϕ(k)

-measurable

and

L2,k =
∣

∣

∣
E

((

h
′′

k−1,k+1 − h
′′(n)
k−1,k+1

)

(

∆2
ϕ(k) − E

(

∆2
0

))

)∣

∣

∣

≤ E

((

2 ∧
∑

i∈Wn

|∆i|
|Λn|1/2

)

∆2
0

)

≤ κ

(

E(∆2
0)

(|Λn|bn)1/2
+

∑

i∈W ∗
n
E|∆0∆i|

(|Λn|bn)1/2

)

(since |∆0| ≤
κ√
bn

a.s.)

= O

(

1

(|Λn|bn)1/2
+
Nd
nbn + o(1)

(|Λn|bn)1/2
)

(by Lemma 2)

= o(1) (by (20) and Assumption (A2)).

The proof of Theorem 1 is complete.
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