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Introduction and notations

The frequency polygon is a density estimator based on the histogram. It has the advantage to be conceptually and computationaly simple since it just consists of linking the mid points of the histogram bars but its simplicity is not the only interest. In fact, for time series, Scott [START_REF] Scott | Frequency polygons: theory and application[END_REF] as shown that the rate of convergence of frequency polygon is superior to the histogram for smooth densities. For other references on non-spatial density estimation based on the frequency polygon, one can refer to Beirlant et al. [START_REF] Beirlant | On piecewise linear density estimators[END_REF] and Carbon et al. [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF]. To our knowledge, the only references in the spatial context are Carbon [START_REF] Carbon | Polygone des fréquences pour des champs aléatoires[END_REF] and Carbon et al. [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF] for strongly mixing random fields indexed by Z d and Bensaid and Dabo-Niang [START_REF] Bensaïd | Frequency polygons for continuous random fields[END_REF] for strongly mixing random fields indexed by R d . In [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF] the asymptotic normality of the frequency polygon estimator is obtained under interleaved conditions on the width bin and the strong mixing coefficients. In this paper, we provide a simple criterion on the mixing coefficients for the frequency polygon to satisfy the central limit theorem when only minimal conditions on the width bin (see Assumption (A2) below) are assumed. Our main result (Theorem 1) improve Theorem 4.1 in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF] in several directions. Our approach which is based on the Lindeberg's method seems to be superior to the so-called Bernstein's blocking method used in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF] but also in many others papers on nonparametric estimation for random fields (see [START_REF] Bensaïd | Frequency polygons for continuous random fields[END_REF], [START_REF] Carbon | Kernel density estimation for random fields: the l 1 theory[END_REF], [START_REF] Carbon | Kernel density estimation for random fields[END_REF], [START_REF] Hallin | Density estimation for spatial linear processes[END_REF], [START_REF] Tran | Kernel density estimation on random fields[END_REF]).

For another application of the Lindeberg's method, one can refer to El Machkouri [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF] where the asymptotic normality of the Parzen-Rosenblatt kernel density estimator is proved for strongly mixing random fields improving a previous result by Tran [START_REF] Tran | Kernel density estimation on random fields[END_REF] obtained also by the Bernstein's blocking method an coupling arguments. Note that the central limit theorem in [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF] is obtained for random fields observed on squares Λ n of Z d but actually the result still holds if the regions Λ n are only assumed to have cardinality going to infinity as n goes to infinity. In particular, it is not neccessary to impose any condition on the boundary of Λ n . Let d be a positive integer and let (X i ) i∈Z d be a stationary real random field defined on some probability space (Ω, F , P) with an unknown marginal density f . For any finite subset B of Z d , denote |B| the number of elements in B. In the sequel, we assume that we observe (X i ) i∈Z d on a sequence (Λ n ) n≥1 of finite subsets of Z d such that |Λ n | goes to infinity as n goes to infinity. We lay emphasis on that we do not impose any condition on the boundary of the regions Λ n . Given two σ-algebras U and V, we recall the α-mixing coefficient introduced by Rosenblatt [START_REF] Rosenblatt | A central limit theorem and a strong mixing condition[END_REF] and defined by α(U, V) = sup{|P(A ∩ B) -P(A)P(B)| , A ∈ U, B ∈ V} and the ρ-mixing coefficient introduced by Kolmogorov and Rozanov [START_REF] Kolmogorov | On a strong mixing condition for stationary Gaussian processes[END_REF] and defined by

ρ(U, V) = sup |Cov(f, g)| f 2 g 2 , f ∈ L 2 (U), g ∈ L 2 (V) .
It is well known that 4α(U, V) ≤ ρ(U, V) (see [START_REF] Bradley | Basic properties of strong mixing conditions. A survey and some open questions[END_REF]). For any τ in N * ∪ {∞} and any positive integer n, we consider the mixing coefficients α 1,τ (n) and ρ 1,τ (n) defined by

α 1,τ (n) = sup {α(σ(X k ), F B ), k ∈ Z d , |B| ≤ τ, Ξ(B, {0}) ≥ n}, ρ 1,τ (n) = sup {ρ(σ(X k ), F B ), k ∈ Z d , |B| ≤ τ, Ξ(B, {0}) ≥ n}
where F B = σ(X i ; i ∈ B) for any subset B of Z d and the distance Ξ is defined for any subsets B 1 and

B 2 of Z d by Ξ(B 1 , B 2 ) = min{|i -j|, i ∈ B 1 , j ∈ B 2 } where |i -j| = max 1≤k≤d |i k -j k | for any i = (i 1 , ..., i d ) and j = (j 1 , ..., j d ) in Z d . We say that the random field (X i ) i∈Z d is α-mixing or ρ-mixing if lim n→∞ α 1,τ (n) = 0 or lim n→∞ ρ 1,τ (n) = 0 for some τ in N * ∪ {∞} respectively.
Let (b n ) n≥1 be a sequence of positive real numbers going to zero when n goes to infinity. For each n in N * , we consider the partition (I n,k ) k∈Z of the real line defined for any k in 

Z by I n,k = [(k -1)b n , kb n ). Let (n, k) be fixed in N * × Z
for x ∈ J n,k := k -1 2 b n , k + 1 2 b n by f n,k (x) = 1 2 + k - x b n ν n,k |Λ n |b n + 1 2 -k + x b n ν n,k+1 |Λ n |b n .
Define Y i,s = 1 1 X i ∈In,s for any s in Z, then

f n,k (x) = 1 |Λ n |b n i∈Λn a k (x)Y i,k + a k (x)Y i,k+1
where a s (u) = 1 2 + s -u bn and a s (u) = a -s (-u) for any s in Z and any u in J n,s . Finally, we consider the normalized frequency polygon estimator f n defined for any x in R such that f (x) > 0 by

f n (x) = k∈Z f n,k (x) σ n,k (x) 1 1 J n,k (x) where σ 2 n,k (x) = 1 2 + 2 k - x b n 2 f (x).
Our main results are stated in Section 2 and the proofs are given in Section 3.

Main results

We consider the following assumptions.

(A1) The density function f is differentiable and its derivative f ′ is locally bounded.

(A2) b n goes to zero such that |Λ n |b n goes to infinity as n goes to infinity.

(A3) sup j =0 P (X 0 ∈ I n,s , X j ∈ I n,t ) = O(b 2 n )
for any s and t in Z.

(B3) P (X 0 ∈ I n,s , X j ∈ I n,t ) = o(b n ) for any s, t and j in Z.

Remark 1. Obviously (B3) is weaker than (A3). Moreover, if the joint density f 0,j of (X 0 , X j ) exists then (A3) is true by assuming that sup j =0 f 0,j is locally bounded whereas (B3) is true by assuming only that f 0,j is locally bounded for each j = 0.

As in Theorem 3.1 in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF], the following result gives the asymptotic variance of f n .

Proposition 1 Assume that (A1) and (A2) hold. If one of the following assumptions

i) (A3) holds and m≥1 m 2d-1 α 1,1 (m) < ∞, ii) (B3) holds and m≥1 m d-1 ρ 1,1 (m) < ∞, is true then lim n→∞ |Λ n |b n V(f n (x)) = 1 for any x in R such that f (x) > 0.
Our main result is the following central limit theorem.

Theorem 1 Assume that (A1) and (A2) hold. If one of the following assumptions

i) (A3) holds and m≥1 m 2d-1 α 1,∞ (m) < ∞, ii) (B3) holds and m≥1 m d-1 ρ 1,∞ (m) < ∞,
is true then for any positive integer r and any distinct points

x 1 , ..., x r in R such that f (x i ) > 0 for any 1 ≤ i ≤ r, (|Λ n |b n ) 1/2    f n (x 1 ) -Ef n (x 1 ) . . . f n (x r ) -Ef n (x r )    Law -----→ n→∞ N (0, Id) (1) 
where Id is the unit matrix of order r.

Remark 2. Theorem 1 improves Theorem 4.1 in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF] in three directions: the regions Λ n where the random field is observed are not reduced to rectangular ones (we do not assume any boundary condition), the assumption (A2) on the width bin b n is minimal and the α-mixing condition is weaker than the one assumed in Theorem 4.1 in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF], that

is α 1,∞ (m) = O(m -θ ) with θ > 2d.

Proofs

Throughout this section, the symbol κ will denote a generic positive constant which the value is not important and we recall that

|i| = max 1≤k≤d |i k | for any i = (i 1 , ..., i d ) ∈ Z d .
Let τ ∈ N * ∪ {∞} be fixed and consider the sequence (m n,τ ) n≥1 defined by

m n,τ = max      v n ,      1 b n |i|>vn |i| d α 1,τ (|i|)   1 d    + 1      (2) 
where v n = b 

Lemma 1 Let τ ∈ N * ∪ {∞} be fixed. If m≥1 m 2d-1 α 1,τ (m) < ∞ then m n,τ → ∞, m d n,τ b n → 0 and 1 m d n,τ b n |i|>mn,τ |i| d α 1,τ (|i|) → 0.
Proof of Lemma 1. First, m n,τ goes to infinity since b n goes to zero and m n,τ ≥ v n . We consider the function ψ defined for any m in

N * by ψ(m) = |i|>m |i| d α 1,τ (|i|). Since m≥1 m 2d-1 α 1,τ (m) < ∞, we have ψ(m) converges to zero as m goes to infinity. Consequently, m d n,τ b n ≤ max √ b n , κ ψ (v n ) + b n -----→ n→∞ 0. Moreover, noting that m d n,τ ≥ 1 bn ψ (v n ) ≥ 1 bn ψ (m n,τ ) (since v n ≤ m n,τ
), we derive also

1 m d n,τ b n |i|>mn,τ |i| d α 1,τ (|i|) ≤ ψ(m n,τ ) -----→ n→∞ 0.
The proof of Lemma 1 is complete.

Proof of Proposition 1. For any n ≥ 1 and any x in R,

|Λ n |b n V(f n (x)) = k∈Z |Λ n |b n V(f n,k (x)) σ 2 n,k (x) 1 1 J n,k (x).
Let x in R such that f (x) > 0. For any integer n ≥ 1, we denote by k(n) the unique integer such that x belongs to J n,k(n) . It suffices to show that

lim n→∞ |Λ n |b n V(f n,k(n) (x)) σ 2 n,k(n) (x) = 1.
In the sequel, we write k instead of k(n) and we denote p s = In,s f (u)du for any s in Z. We have

|Λ n |b n V(f n,k (x)) = a 2 k (x)    p k (1 -p k ) b n + 1 |Λ n |b n i,j∈Λn i =j Cov(Y i,k , Y j,k )    + a 2 k (x)    p k+1 (1 -p k+1 ) b n + 1 |Λ n |b n i,j∈Λn i =j Cov(Y i,k+1 , Y j,k+1 )    + 2a k (x)a k (x)    -p k p k+1 b n + 1 |Λ n |b n i,j∈Λn i =j Cov(Y i,k , Y j,k+1 )    .
Denote also

w n,k (x) = 1 b n a 2 k (x)p k (1 -p k ) + a 2 k (x)p k+1 (1 -p k+1 ) -2a k (x)a k (x)p k p k+1 .
Arguing as in the proof of Lemma 3.2 in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF], we have by Taylor expansion

p k = b n f (x) + b n 2 (2(kb n -x) -b n )f ′ (c k ) p k+1 = b n f (x) + b n 2 (2(kb n -x) + b n )f ′ (c k+1 )
where

c k ∈ J n,k and c k+1 ∈ J n,k+1 . Then for j = k or j = k + 1, max{0, f (x)b n -κb 2 n } ≤ p j ≤ f (x)b n + κb 2 n . (3) 
Consequently

max{0, b n f 2 (x) -2b 2 n κf (x) + κ 2 b 3 n } ≤ p k p k+1 b n ≤ b n f 2 (x) + 2b 2 n κf (x) -κ 2 b 3 n (4) 
and for j = k or j

= k + 1, max{0, f (x) -(κ + f 2 (x)b n ) + κ 2 b 3 n } ≤ p j (1 -p j ) b n ≤ f (x) + (κ -f 2 (x))b n + κ 2 b 3 n . (5) 
Finally, we obtain

lim n→∞ w n,k (x) σ 2 n,k (x) = 1.
Let (s, t) be equal to (k, k), (k, k + 1) or (k + 1, k + 1). It suffices to show that

lim n→∞ 1 |Λ n |b n i,j∈Λn i =j Cov(Y i,s , Y j,t ) = 0 (6) 
By stationarity of the random field (X i ) i∈Z d , we have

1 |Λ n |b n i,j∈Λn i =j Cov(Y i,s , Y j,t ) ≤ 1 b n j∈Z d j =0 |Cov(Y 0,s , Y j,t )|. (7) 
Using (3), for j = 0, we have

|Cov(Y 0,s , Y j,t )| ≤ Y 0,s 2 Y 0,t 2 ρ 1,1 (|j|) = √ p s p t ρ 1,1 (|j|) ≤ κb n ρ 1,1 (|j|). (8) 
Moreover, using again (3), for any j = 0,

|Cov(Y 0,s , Y j,t )| ≤ P (X 0 ∈ I n,s , X j ∈ I n,t ) + κb 2 n . (9) 
Assuming (B3) and m≥1 m d-1 ρ 1,1 (m) < ∞ and combining ( 8) and ( 9) with the dominated convergence theorem, we obtain

j∈Z d j =0 |Cov(Y 0,s , Y j,t )| b n = o(1). (10) 
Finally, (6) follows from inequality [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF]. Similarly, by Rio's covariance inequality (cf.

[14], Theorem 1.1), 

|Cov(Y 0,s , Y j,t )| ≤ 2 2α(σ(Y 0,s ),σ(Y j,t )) 0 Q Y 0,s (u)Q Y j,t ( 
Using [START_REF] Carbon | Kernel density estimation for random fields[END_REF] and assuming (A3), we derive

sup j =0 |Cov(Y 0,s , Y j,t )| ≤ κb 2 n . (12) 
Assuming m≥1 m 2d-1 α 1,1 (m) < ∞ and combining [START_REF] Machkouri | Asymptotic normality for the parzen-rosenblatt density estimator for strongly mixing random fields[END_REF], [START_REF] Hallin | Density estimation for spatial linear processes[END_REF] and Lemma 1, we obtain

j∈Z d j =0 |Cov(Y 0,s , Y j,t )| b n ≤ κ   m d n,1 b n + 1 m d n,1 b n |j|>m n,1 |j| d α 1,1 (|j|)   = o(1) (13) 
where (m n,1 ) n≥1 is defined by (2). Finally, using inequality [START_REF] Carbon | Frequency polygons for weakly dependent processes[END_REF], we obtain again [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF].

The proof of Proposition 1 is complete.

Remark 3. The reader should note that the asymptotic variance given in Theorem 3.1 in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF] is not the good one. In fact, using the notations in [START_REF] Carbon | Asymptotic normality of frequency polygons for random fields[END_REF], it should be

(1/2 + 2(k 0 -x/b) 2 )f (x) instead of (1/2 + (2k 0 -x/b) 2 )f (x).
Proof of Theorem 1. Without loss of generality, we assume that r = 2 and we denote x and y in place of x 1 and x 2 . Let λ 1 and λ 2 be fixed in R such that λ 2 1 + λ 2 2 = 1. For any i in Z d , we define

∆ i = λ 1 Z i (x) + λ 2 Z i (y) where for any u in R such that f (u) > 0, Z i (u) = 1 √ b n s∈Z a s (u)(Y i,s -E(Y i,s )) + a s (u)(Y i,s+1 -E(Y i,s+1 )) σ n,s (u) 1 1 J n,s (u), a s (u) = 1 2 + s -u bn , a s (u) = a -s (-u) and σ 2 n,s (u) = 1 2 + 2 s -u bn 2 f (u). Lemma 2 E(∆ 2 0 ) -----→ n→∞ 1 and i∈W E|∆ 0 ∆ i | ≤ κ|W |b n + o(1)
for any finite subset

W of Z d \{0}.
Proof of Lemma 2. Recall that p s = In,s f (u)du and J n,s = [(s -1 2 )b n , (s + 1 2 )b n ) for any s in Z. We have

E(∆ 2 0 ) = λ 2 1 E(Z 2 0 (x)) + λ 2 2 E(Z 2 0 (y)) + 2λ 1 λ 2 E(Z 0 (x)Z 0 (y)) (14) 
and

b n E(Z 0 (x)Z 0 (y)) = (k,l)∈Z 2 a k (x)a l (y) σ n,k (x)σ n,l (y) E(Y 0,k -p k )(Y 0,l -p l ) 1 1 J n,k ×J n,l (x, y) + (k,l)∈Z 2 a k (x)a l (y) σ n,k (x)σ n,l (y) E(Y 0,k -p k )(Y 0,l+1 -p l+1 ) 1 1 J n,k ×J n,l (x, y) + (k,l)∈Z 2 a k (x)a l (y) σ n,k (x)σ n,l (y) E(Y 0,k+1 -p k+1 )(Y 0,l -p l ) 1 1 J n,k ×J n,l (x, y) + (k,l)∈Z 2 a k (x)a l (y) σ n,k (x)σ n,l (y) E(Y 0,k+1 -p k+1 )(Y 0,l+1 -p l+1 ) 1 1 J n,k ×J n,l (x, y)
For n sufficiently large, (x, y) belongs to J n,k × J n,l with |k -l| ≥ 2. Then for any s = k or s = k + 1 and t = l or t = l + 1, |E(Y 0,sp s )(Y 0,tp t )| = p s p t ≤ κb 2 n . Since 0 ≤ a s (u) ≤ 1, 0 ≤ a s (u) ≤ 1 and σ 2 n,s (u) ≥ f (u)/2 > 0 for any u in J n,s such that f (u) > 0 and any s in Z, we obtain

|E(Z 0 (x)Z 0 (y))| ≤ κb n . (15) 
Similarly, for any u in R, we have

b n E(Z 2 0 (u)) = k∈Z a 2 k (u) σ 2 n,k (u) E(Y 0,k -p k ) 2 1 1 J n,k (u) + 2 k∈Z a k (u)a k (u) σ 2 n,k (u) E(Y 0,k -p k )(Y 0,k+1 -p k+1 ) 1 1 J n,k (u) + k∈Z a 2 k (u) σ 2 n,k (u) E(Y 0,k+1 -p k+1 ) 2 1 1 J n,k (u).
Noting that E(Y 0,sp s ) 2 = p s (1p s ) and E(Y 0,sp s )(Y 0,s+1p s+1 ) = -p s p s+1 for any s in Z and keeping in mind ( 4) and ( 5), we obtain for any u in R,

E(Z 2 0 (u)) -----→ n→∞ 1. (16) 
Combining ( 14), ( 15) and ( 16), we obtain

E(∆ 2 0 ) -----→ n→∞ λ 2 1 + λ 2 2 = 1.
Let W be a finite subset of Z d \{0} and let i ∈ W be fixed. We have

E|∆ 0 ∆ i | ≤ λ 2 1 E|Z 0 (x)Z i (x)| + 2|λ 1 ||λ 2 |E|Z 0 (x)Z i (y)| + λ 2 2 E|Z 0 (y)Z i (y)|. ( 17 
)
If u and v are fixed in R then

b n E|Z 0 (u)Z i (v)| ≤ (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) E (Y 0,k -p k )(Y i,l -p l ) 1 1 J n,k ×J n,l (u, v) + (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) E (Y 0,k -p k )(Y i,l+1 -p l+1 ) 1 1 J n,k ×J n,l (u, v) + (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) E (Y 0,k+1 -p k+1 )(Y i,l -p l ) 1 1 J n,k ×J n,l (u, v) + (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) E (Y 0,k+1 -p k+1 )(Y i,l+1 -p l+1 ) 1 1 J n,k ×J n,l (u, v).
Noting that for any s and t in Z,

E|(Y 0,s -p s )(Y i,t -p t )| ≤ E(Y 0,s Y i,t ) + 3p s p t ≤ |Cov(Y 0,s , Y i,t )| + κb 2 n ,
we derive

E|Z 0 (u)Z i (v)| ≤ (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) |Cov(Y 0,k , Y i,l )| b n 1 1 J n,k ×J n,l (u, v) + (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) |Cov(Y 0,k , Y i,l+1 )| b n 1 1 J n,k ×J n,l (u, v) + (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) |Cov(Y 0,k+1 , Y i,l )| b n 1 1 J n,k ×J n,l (u, v) + (k,l)∈Z 2 |a k (u)a l (v)| σ n,k (u)σ n,l (v) |Cov(Y 0,k+1 , Y i,l+1 )| b n 1 1 J n,k ×J n,l (u, v) + κb n .
Assuming (B3) and m>0 m d-1 ρ 1,1 (m) < ∞ and using [START_REF] Dedecker | A central limit theorem for stationary random fields[END_REF] or assuming (A3) and m>0 m 2d-1 α 1,1 (m) < ∞ and using [START_REF] Kolmogorov | On a strong mixing condition for stationary Gaussian processes[END_REF], we obtain

i∈W E|Z 0 (u)Z i (v)| ≤ κ|W |b n + o(1). ( 18 
)
Combining ( 17) and ( 18), we obtain i∈W E|∆ 0 ∆ i | ≤ κ|W |b n + o(1). The proof of Lemma 2 is complete.

We are going to follow the Lindeberg-type proof of the central limit theorem for stationary random fields established in [START_REF] Dedecker | A central limit theorem for stationary random fields[END_REF]. Let ϕ be a one to one map from [1, κ] ∩ N * to a finite subset of Z d and (ξ i ) i∈Z d a real random field. For all integers k in [1, κ], we denote

S ϕ(k) (ξ) = k i=1 ξ ϕ(i) and S c ϕ(k) (ξ) = κ i=k ξ ϕ(i)
with the convention S ϕ(0) (ξ) = S c ϕ(κ+1) (ξ) = 0. On the lattice Z d we define the lexicographic order as follows: if i = (i 1 , ..., i d ) and j = (j 1 , ..., j d ) are distinct elements of Z d , the notation i < lex j means that either i 1 < j 1 or for some p in {2, 3, ..., d}, i p < j p and i q = j q for 1 ≤ q < p. To describe the set Λ n , we define the one to one map ϕ from [1, |Λ n |] ∩ N * to Λ n by: ϕ is the unique function such that ϕ(k) < lex ϕ(l)

for 1 ≤ k < l ≤ |Λ n |.
From now on, we consider a field (ξ i ) i∈Z d of i.i.d. random variables independent of (X i ) i∈Z d such that ξ 0 has the standard normal law N (0, 1).

We introduce the fields Γ and γ defined for any i in Z d by

Γ i = ∆ i |Λ n | 1/2 and γ i = ξ i |Λ n | 1/2 Let h be any function from R to R. For 0 ≤ k ≤ l ≤ |Λ n | + 1, we introduce h k,l (Γ) = h(S ϕ(k) (Γ)+S c ϕ(l) (γ)).
With the above convention we have that h k,|Λn|+1 (Γ) = h(S ϕ(k) (Γ)) and also h 0,l (Γ) = h(S c ϕ(l) (γ)). In the sequel, we will often write h k,l instead of h k,l (Γ). We denote by B 4 1 (R) the unit ball of C 4 b (R): h belongs to B 4 1 (R) if and only if h is bounded by 1, belongs to C 4 (R) and its first four derivatives are also bounded by 1. It suffices to prove that for all h in B 4 1 (R),

E h S ϕ(|Λn|) (Γ) -----→ n→∞ E (h (ξ 0 )) .
We use Lindeberg's decomposition:

E h S ϕ(|Λn|) (Γ) -h (ξ 0 ) = |Λn| k=1 E (h k,k+1 -h k-1,k ) . Now, h k,k+1 -h k-1,k = h k,k+1 -h k-1,k+1 + h k-1,k+1 -h k-1,k .
Applying Taylor's formula we get that:

h k,k+1 -h k-1,k+1 = Γ ϕ(k) h ′ k-1,k+1 + 1 2 Γ 2 ϕ(k) h ′′ k-1,k+1 + R k and h k-1,k+1 -h k-1,k = -γ ϕ(k) h ′ k-1,k+1 - 1 2 γ 2 ϕ(k) h ′′ k-1,k+1 + r k where |R k | ≤ Γ 2 ϕ(k) (1 ∧ |Γ ϕ(k) |) and |r k | ≤ γ 2 ϕ(k) (1 ∧ |γ ϕ(k) |). Since (Γ, ξ i ) i =ϕ(k) is inde- pendent of ξ ϕ(k) , it follows that E γ ϕ(k) h ′ k-1,k+1 = 0 and E γ 2 ϕ(k) h ′′ k-1,k+1 = E h ′′ k-1,k+1 |Λ n |
Hence, we obtain

E h(S ϕ(|Λn|) (Γ)) -h (ξ 0 ) = |Λn| k=1 E(Γ ϕ(k) h ′ k-1,k+1 ) + |Λn| k=1 E Γ 2 ϕ(k) - 1 |Λ n | h ′′ k-1,k+1 2 + |Λn| k=1 E (R k + r k ) . Let 1 ≤ k ≤ |Λ n | be fixed. Since |∆ 0 | is bounded by κ/ √ b n , applying Lemma 2 we derive E|R k | ≤ E|∆ 0 | 3 |Λ n | 3/2 ≤ κ (|Λ n | 3 b n ) 1/2 and E|r k | ≤ E|ξ 0 | 3 |Λ n | 3/2 .
Consequently, we obtain

|Λn| k=1 E (|R k | + |r k |) = O 1 (|Λ n |b n ) 1/2 + 1 |Λ n | 1/2 = o(1). Now, it is sufficient to show lim n→∞ |Λn| k=1 E(Γ ϕ(k) h ′ k-1,k+1 ) + E Γ 2 ϕ(k) - 1 |Λ n | h ′′ k-1,k+1 2 = 0. (19) 
First, we focus on

|Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1 . Let the sets {V k i ; i ∈ Z d , k ∈ N * } be defined as follows: V 1 i = {j ∈ Z d ; j < lex i} and V k i = V 1 i ∩ {j ∈ Z d ; |i -j| ≥ k} for k ≥ 2. Let (N n ) n≥1 be a sequence of positive integers satisfying N n → ∞ such that N d n b n → 0. ( 20 
)
For all n in N * and all integer 1 ≤ k ≤ |Λ n |, we define

E (n) k = ϕ([1, k] ∩ N * ) ∩ V Nn ϕ(k)
and S

(n)

ϕ(k) (Γ) = i∈E (n) k Γ i .
For any function Ψ from R to R, we define

Ψ (n) k-1,l = Ψ(S (n) ϕ(k) (Γ) + S c ϕ(l) (γ)).
We are going to apply this notation to the successive derivatives of the function h. Our aim is to show that

lim n→∞ |Λn| k=1 E Γ ϕ(k) h ′ k-1,k+1 -Γ ϕ(k) S ϕ(k-1) (Γ) -S (n) ϕ(k) (Γ) h ′′ k-1,k+1 = 0. (21) 
First, we use the decomposition

Γ ϕ(k) h ′ k-1,k+1 = Γ ϕ(k) h ′ (n) k-1,k+1 + Γ ϕ(k) h ′ k-1,k+1 -h ′ (n) k-1,k+1
.

We consider a one to one map ψ from [1,

|E (n) k |] ∩ N * to E (n) k such that |ψ(i) -ϕ(k)| ≤ |ψ(i -1) -ϕ(k)|. For any subset B of Z d , recall that F B = σ(X i ; i ∈ B) and set E M (X i ) = E(X i |F V M i ), M ∈ N * , i ∈ Z d . The choice of the map ψ ensures that S ψ(i) (Γ) and S ψ(i-1) (Γ) are F V |ψ(i)-ϕ(k)| ϕ(k) -measurable. The fact that γ is independent of Γ imply that E Γ ϕ(k) h ′ S c ϕ(k+1) (γ) = 0. Therefore E Γ ϕ(k) h ′ (n) k-1,k+1 = E (n) k i=1 E Γ ϕ(k) (θ i -θ i-1 ) (22) 
where

θ i = h ′ S ψ(i) (Γ) + S c ϕ(k+1) (γ) . Since S ψ(i) (Γ) and S ψ(i-1) (Γ) are F V |ψ(i)-ϕ(k)| ϕ(k)
measurable, we can take the conditional expectation of Γ ϕ(k) with respect to

F V |ψ(i)-ϕ(k)| ϕ(k)
in the right hand side of (22). On the other hand the function h

′ is 1-Lipschitz, hence |θ i -θ i-1 | ≤ |Γ ψ(i) |. Consequently, E Γ ϕ(k) (θ i -θ i-1 ) ≤ E|Γ ψ(i) E |ψ(i)-ϕ(k)| Γ ϕ(k) | and E Γ ϕ(k) h ′ (n) k-1,k+1 ≤ E (n) k i=1 E|Γ ψ(i) E |ψ(i)-ϕ(k)| (Γ ϕ(k) )|. Hence, |Λn| k=1 E Γ ϕ(k) h ′ (n) k-1,k+1 ≤ 1 |Λ n | |Λn| k=1 |E (n) k | i=1 E|∆ ψ(i) E |ψ(i)-ϕ(k)| (∆ ϕ(k) )| ≤ |j|≥Nn ∆ j E |j| (∆ 0 ) 1 . For any j in Z d , we have ∆ j E |j| (∆ 0 ) 1 = Cov |∆ j | 1 1 E |j| (∆ 0 )≥0 -1 1 E |j| (∆ 0 )<0 , ∆ 0 and consequently ∆ j E |j| (∆ 0 ) 1 ≤ ∆ 0 2 2 ρ 1,∞ (|j|). By Lemma 2, we know that ∆ 0 2 is bounded. So, assuming m≥0 m d-1 ρ 1,∞ (m) < ∞, we derive |Λn| k=1 E Γ ϕ(k) h ′ (n) k-1,k+1 = o(1). (23) 
By Rio's covariance inequality (cf. [START_REF] Rio | Covariance inequalities for strongly mixing processes[END_REF], Theorem 1.1), we have also

∆ j E |j| (∆ 0 ) 1 ≤ 4 α 1,∞ (|j|) 0 Q 2 ∆ 0 (u)du
where

Q ∆ 0 is defined by Q ∆ 0 (u) = inf{t ≥ 0 ; P(|∆ 0 | > t) ≤ u} for any u in [0, 1]. Since |∆ 0 | is bounded by κ/ √ b n , we have Q ∆ 0 ≤ κ/ √ b n and ∆ j E |j| (∆ 0 ) 1 ≤ κ bn α 1,∞ (|j|). Assuming m≥0 m 2d-1 α 1,∞ (m) < ∞ and choosing N n = m n,∞ (recall that (m n,∞ ) n≥1 is defined by (2) and satisfies m n,∞ → ∞ such that m d n,∞ b n → 0), we derive |Λn| k=1 E Γ ϕ(k) h ′ (n) k-1,k+1 ≤ κ m d n,∞ b n |j|≥mn,∞ |j| d α 1,∞ (|j|) 
.

By Lemma 1, we obtain again (23). Now, applying Taylor's formula,

Γ ϕ(k) (h ′ k-1,k+1 -h ′ (n) k-1,k+1 ) = Γ ϕ(k) (S ϕ(k-1) (Γ) -S (n) ϕ(k) (Γ))h ′′ k-1,k+1 + R ′ k ,
where

|R ′ k | ≤ 2|Γ ϕ(k) (S ϕ(k-1) (Γ) -S (n) ϕ(k) (Γ))(1 ∧ |S ϕ(k-1) (Γ) -S (n) ϕ(k) (Γ)|)|. Consequently (21) holds if and only if lim n→∞ |Λn| k=1 E|R ′ k | = 0. In fact, denoting W n = {-N n + 1, ..., N n -1} d and W * n = W n \{0}, we have |Λn| k=1 E|R ′ k | ≤ 2E |∆ 0 | i∈Wn |∆ i | 1 ∧ 1 |Λ n | 1/2 i∈Wn |∆ i | = 2E     ∆ 2 0 + i∈W * n |∆ 0 ∆ i |   1 ∧ 1 |Λ n | 1/2 i∈Wn |∆ i |   ≤ 2 |Λ n | 1/2 i∈Wn E(∆ 2 0 |∆ i |) + 2 i∈W * n E|∆ 0 ∆ i |. Since |∆ 0 | ≤ κ √ bn , we derive |Λn| k=1 E|R ′ k | ≤ κ (|Λ n |b n ) 1/2 i∈Wn E(|∆ 0 ∆ i |) + 2 i∈W * n E|∆ 0 ∆ i | ≤ κ E(∆ 2 0 ) (|Λ n |b n ) 1/2 + κ (|Λ n |b n ) 1/2 + 2 i∈W * n E(|∆ 0 ∆ i |) = O 1 (|Λ n |b n ) 1/2 + 1 (|Λ n |b n ) 1/2 + 2 N d n b n + o(1)
(by Lemma 2)

= o(1) (by (20) and Assumption (A2)).

In order to obtain (19) it remains to control

F 0 = E   |Λn| k=1 h ′′ k-1,k+1 Γ 2 ϕ(k) 2 + Γ ϕ(k) S ϕ(k-1) (Γ) -S (n) ϕ(k) (Γ) - 1 2|Λ n |   .
Applying Lemma 2, we have Since N d n b n → 0, it suffices to prove that

F 1 = E   1 |Λ n | |Λn| k=1 h ′′ k-1,k+1 (∆ 2 ϕ(k) -E(∆ 2 0 ))  
goes to zero as n goes to infinity. In fact, keeping in mind W n = {-N n + 1, ..., N n -1} d and W * n = W n \{0}, we have

F 1 ≤ 1 |Λ n | |Λn| k=1 (L 1,k + L 2,k ) where L 1,k = E h ′′ (n) k-1,k+1 ∆ 2 ϕ(k) -E (∆ 2 0 ) = 0 since h ′′ (n) k-1,k+1 is F V mn,∞ ϕ(k)
-measurable and

L 2,k = E h ′′ k-1,k+1 -h ′′ (n) k-1,k+1 ∆ 2 ϕ(k) -E ∆ 2 0 ≤ E 2 ∧ i∈Wn |∆ i | |Λ n | 1/2 ∆ 2 0 ≤ κ E(∆ 2 0 ) (|Λ n |b n ) 1/2 + i∈W * n E|∆ 0 ∆ i | (|Λ n |b n ) 1/2 (since |∆ 0 | ≤ κ √ b n a.s.) = O 1 (|Λ n |b n ) 1/2 + N d n b n + o(1) (|Λ n |b n ) 1/2
(by Lemma 2)

= o(1) (by (20) and Assumption (A2)).

The proof of Theorem 1 is complete.

n

  and [ . ] denotes the integer part function. The following technical lemma is a spatial version of a result by Bosq, Merlevède and Peligrad ([3], pages 88-89).

F

  (N d n b n ) + o(1).

  and let I n,k and I n,k+1 be two adjacent histogram bins. Denote ν n,k and ν n,k+1 the numbers of observations falling in these intervals respectively. The values of the histogram in these previous bins are given by ν n,k (|Λ n |b n ) -1 and ν n,k+1 (|Λ n |b n ) -1 and the frequency polygon f n,k is defined
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