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Let p ∈ (0, N N -2α ), α ∈ (0, 1) and Ω ⊂ R N be a bounded C 2 domain containing 0. If δ 0 is the Dirac measure at 0 and k > 0, we prove that the weakly singular solution

), the limit of the u k is a strongly singular solution of (E * ). The same result holds in the case 1
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Introduction

Let Ω be a bounded C 2 domain of R N (N ≥ 2) containing 0, α ∈ (0, 1) and let δ 0 denote the Dirac measure at 0. In this paper, we study the properties of the weak solution to problem

(-∆) α u + u p = kδ 0 in Ω u = 0 in Ω c , (1.1) 
where k > 0 and p ∈ (0, N N -2α ) and (-∆) α is the α-fractional Laplacian defined by (-∆) α u(x) = lim

ǫ→0 + (-∆) α ǫ u(x),
where for ǫ > 0,

(-∆) α ǫ u(x) = - R N u(z) -u(x) |z -x| N +2α χ ǫ (|x -z|)dz and χ ǫ (t) = 0, if t ∈ [0, ǫ] 1, if t > ǫ.
In 1980, Benilan and Brezis (see [START_REF] Brezis | Some variational problems of the Thomas-Fermi type. Variational inequalities and complementarity problems[END_REF][START_REF] Ph | Nonlinear problems related to the Thomas-Fermi equation[END_REF]) studied the case α = 1 in equation (1.1) and proved in particular that equation -∆u + u q = kδ 0 in Ω u = 0 on ∂Ω (1.2) admits a unique solution u k for 1 < q < N/(N -2), while no solution exists when q ≥ N/(N -2). Soon after, Brezis and Véron [START_REF] Brezis | Removable singularities of some nonlinear elliptic equations[END_REF] proved that the problem -∆u + u q = 0 in Ω \ {0} u = 0 on ∂Ω (1.3) admits only the zero solution when q ≥ N/(N -2). When 1 < q < N/(N -2), Véron in [START_REF] Véron | Singular solutions of some nonlinear elliptic equations[END_REF] obtained the description of the all the possible singular behaviour of the positive solutions of (1.3). In particular he proved that this behaviour is always isotropic (when (N + 1)/(N -1) ≤ q < N/(N -2) the assumption of positivity is unnecessary) and that two types of singular behaviour occur: (i) either u(x) ∼ c N k|x| 2-N when x → 0 and k can take any positive value; u is said to have a weak singularity at 0, and actually u = u k .

(ii) or u(x) ∼ c N,q |x| -2 q-1 when x → 0 and u has a strong singularity at 0, and u = u ∞ := lim k→∞ u k .

A large series of papers has been devoted to the extension of semilinear problems involving the Laplacian to problems where the diffusion operator is non-local, the most classical one being the fractional Laplacian, see e.g. [START_REF] Caffarelli | Regularity theory for fully non-linear integrodifferential equations[END_REF][START_REF] Chen | Large solutions to elliptic equations involving fractional Laplacian[END_REF][START_REF] Chen | Estimates on Green functions and poisson kernels for symmetric stable process[END_REF][START_REF] Ros-Oton | The Dirichlet problem for the fractional laplacian: regularity up to the boundary[END_REF][START_REF] Silvestre | Regularity of the obstacle problem for a fractional power of the laplace operator[END_REF]. In a recent work, Chen and Véron [START_REF] Chen | Singular solutions of fractional elliptic equations with absorption[END_REF] considered the problem

(-∆) α u + u p = 0 in Ω \ {0} u = 0 in Ω c , (1.4) 
where 1 + 2α N < p < p * α := N N -2α . They proved that (1.4) admits a singular solution u s which satisfies

lim x→0 u s (x)|x| 2α p-1 = c 0 , (1.5) 
for some c 0 > 0. Moreover u s is the unique positive solution of (1.4) such that 0 < lim inf

x→0 u(x)|x| 2α p-1 ≤ lim sup x→0 u(x)|x| 2α p-1 < ∞. (1.6)
In this article we will call weakly singular solution a solution u of (1.4) which satisfies lim sup x→0 |u(x)||x| N -2α < ∞ and strongly singular solution

if lim x→0 |u(x)||x| N -2α = ∞.
The existence of solutions of (1.1) is a particular case of the more general problem

(-∆) α u + g(u) = ν in Ω u = 0 in Ω c (1.7) 
which has been study by Chen and Véron in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF] under the assumption that g is a subcritical nonlinearity, ν being a positive and bounded Radon measure in Ω.

Definition 1.1 A function u belonging to L 1 (Ω) is a weak solution of (1.7) if g(u) ∈ L 1 (Ω, ρ α dx)
and

Ω [u(-∆) α ξ + g(u)ξ]dx = Ω ξdν ∀ξ ∈ X α , (1.8) 
where ρ(x) := dist(x, Ω c ) and X α ⊂ C(R N ) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω, (ii) (-∆) α ξ(x) exists for all x ∈ Ω and |(-∆) α ξ(x)| ≤ c 1 for some c 1 > 0, (iii) there exist ϕ ∈ L 1 (Ω, ρ α dx) and ǫ 0 > 0 such that |(-∆) α ǫ ξ| ≤ ϕ a.e. in Ω, for all ǫ ∈ (0, ǫ 0 ].
According to Theorem 1.1 in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF], problem (1.1) admits a unique weak solution u k , moreover,

G α [kδ 0 ] -G α [(G α [kδ 0 ]) p ] ≤ u k ≤ G α [kδ 0 ] in Ω, (1.9) 
where G α [•] is the Green operator defined by

G α [ν](x) = Ω G α (x, y)dν(y), ∀ ν ∈ M(Ω, ρ α ), (1.10) 
with G α is the Green kernel of (-∆) α in Ω and M(Ω, ρ α ) denotes the space of Radon measures in Ω such that .11) for some c α,N > 0. From Theorem 1.1 in [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF], there holds

Ω ρ α d | ν |< ∞. By (1.9), lim x→0 u k (x)|x| N -2α = c α,N k. ( 1 
u k (x) ≤ u k+1 (x), ∀x ∈ Ω; (1.12)
then there exists

u ∞ (x) = lim k→∞ u k (x) ∀x ∈ R N \ {0}, (1.13) and u ∞ (x) ∈ R + ∪ {+∞}.
Motivated by these results and in view of the nonlocal character of the fractional Laplacian, in this article we analyse the connection between the solutions of (1.1) and the ones of (1.4). Our main result is the following

Theorem 1.1 Assume that 1 + 2α N ≥ 2α N -2α and p ∈ (0, p * α ). Then u k is a classical solution of (1.4). Furthermore, (i) if p ∈ (0, 1 + 2α N ), u ∞ (x) = ∞ ∀x ∈ Ω; (1.14) (ii) if p ∈ (1 + 2α N , p * α ), u ∞ = u s ,
where u s is the solution of (1.4) satisfying (1.5). Moreover, if 1 + 2α N = 2α N -2α , (1.14) holds for p = 1 + 2α N . The result of part (i) indicates that even if the absorption is superlinear, the diffusion dominates and there is no strongly singular solution to problem (1.4). On the contrary, part (ii) points out that the absorption dominates the diffusion; the limit function u s is the least strongly singular solution of (1.4). Comparing Theorem 1.1 with the results for Laplacian case, part (i) with p ∈ (0, 1] and (ii) are similar as the Laplacian case, but part (i) with p ∈ (1, 1+ 2α N ] is totally different from the one in the case α = 1. This striking phenomenon comes comes from the fact that the fractional Laplacian is a nonlocal operator, which requires the solution to belong to L 1 (Ω), therefore no local barrier can be constructed if p is too close to 1.

At end, we consider the case where 1 + 2α N < 2α N -2α . It occurs when N = 2 and < α < 1. In this situation, we have the following results. Theorem 1.2 Assume that 1 + 2α N < 2α N -2α and p ∈ (0, p * α ). Then u k is a classical solution of (1.4). Furthermore,

(i) if p ∈ (0, N 2α ), then u ∞ (x) = ∞ ∀x ∈ Ω; (ii) if p ∈ (1 + 2α N , 2α N -2α
), then u ∞ is a classical solution of (1.4) and there exist ρ 0 > 0 and c 2 > 0 such that

c 2 |x| -(N-2α)p p-1 ≤ u ∞ ≤ u s ∀x ∈ B ρ 0 \ {0}; (1.15) (iii) if p = 2α N -2α
, then u ∞ is a classical solution of (1.4) and there exist ρ 0 > 0 and c 3 > 0 such that

c 3 |x| -(N-2α)p p-1 (1 + | log(|x|)|) 1 p-1 ≤ u ∞ ≤ u s ∀x ∈ B ρ 0 \ {0}; (1.16) (iv) if p ∈ ( 2α N -2α , p * α ), then u ∞ = u s . We remark that N 2α < 1 + 2α N if 1 + 2α N < 2α N -2α
. Therefore Theorem 1.2 does not provide any description of u ∞ in the region

U := (α, p) ∈ (0, 1) × (1, N N -2 ) : N 2α < 1 + 2α N , N 2α < p < 1 + 2α N .
Furthermore, in parts (ii) and (iii), we do not obtain that u ∞ = u s , since (1.15) and (1.16) do not provide sharp estimates on u ∞ in order it to belong to the uniqueness class characterized by (1.6).

The paper is organized as follows. In Section 2, we present some some estimates for the Green kernel and comparison principles. In Section 3, we prove that the weak solution of (1.1) is a classical solution of (1.4). Section 4 is devoted to analyze the limit of weakly singular solutions as k → ∞.

Preliminaries

The purpose of this section is to recall some known results. We denote by B r (x) the ball centered at x with radius r and B r := B r (0).

Lemma 2.1 Assume that 0 < p < p * α , then there exists c 4 , c 5 , c 6 > 1 such that (i) if p ∈ (0, 2α N -2α ), 1 c 4 ≤ G α [(G α [δ 0 ]) p ] ≤ c 4 in B r \ {0}; (ii) if p = 2α N -2α , - 1 c 5 ln |x| ≤ G α [(G α [δ 0 ]) p ] ≤ -c 5 ln |x| in B r \ {0}; (iii) if p ∈ ( 2α N -2α , p * α ), 1 c 6 |x| 2α-(N -2α)p ≤ G α [(G α [δ 0 ]) p ] ≤ c 6 |x| 2α-(N -2α)p in B r \ {0},
where r = 1 4 min{1, dist(0, ∂Ω)} and G α is defined by (1.9).

Proof. The proof follows easily from Chen-Song's estimates of Green functions [START_REF] Chen | Estimates on Green functions and poisson kernels for symmetric stable process[END_REF], see [6, Theorem 5.2] for a detailled computation.

Theorem 2.1 Assume that O is a bounded domain of R N and u 1 , u 2 are continuous in Ō and satisfy

(-∆) α u + u p = 0 in O.
Moreover, we assume that

u 1 ≥ u 2 in O c . Then, (i) either u 1 > u 2 in O, (ii) or u 1 ≡ u 2 a.e. in R N .
Proof. The proof refers to [5, Theorem 2.3] (see also [START_REF] Caffarelli | Regularity theory for fully non-linear integrodifferential equations[END_REF]Theorem 5.2]).

The following stability result is proved in [5, Theorem 2.2].

Theorem 2.2 Suppose that O is a bounded C 2 domain and h : R → R is continuous. Assume {u n } is a sequence of functions, uniformly bounded in

L 1 (O c , dy 1+|y| N+2α ), satisfying (-∆) α u n + h(u n ) ≥ f n (resp (-∆) α u n + h(u n ) ≤ f n ) in O
in the viscosity sense, where the f n are continuous in O. If there holds (i)

u n → u locally uniformly in O, (ii) u n → u in L 1 (R N , dy 1+|y| N+2α ), (iii) f n → f locally uniformly in O, then (-∆) α u + h(u) ≥ f (resp (-∆) α u + h(u) ≤ f ) in O
in the viscosity sense.

Regularity

In this section, we prove that any weak solution of (1.1) is a classical solution of (1.4). To this end, we introduce some auxiliary lemma.

Lemma 3.1 Assume that w ∈ C 2α+ǫ ( B1 ) with ǫ > 0 satisfies (-∆) α w = h in B 1 ,
where h ∈ C 1 ( B1 ). Then for β ∈ (0, 2α), there exists c 7 > 0 such that

w C β ( B1/4 ) ≤ c 7 ( w L ∞ (B 1 ) + h L ∞ (B 1 ) + (1+|•|) -N -2α w L 1 (R N ) ). (3.1) Proof. Let η : R N → [0, 1] be a C ∞ function such that η = 1 in B 3 4 and η = 0 in B c 1 .
We

denote v = wη, then v ∈ C 2α+ǫ (R N ) and for x ∈ B 1 2 , ǫ ∈ (0, 1 4 ), (-∆) α ǫ v(x) = - R N \Bǫ v(x + y) -v(x) |y| N +2α dy = (-∆) α ǫ w(x) + R N \Bǫ (1 -η(x + y))w(x + y) |y| N +2α dy.
Together with the fact of η(x + y) = 1 for y ∈ B ǫ , we have

R N \Bǫ (1 -η(x + y))w(x + y) |y| N +2α dy = R N (1 -η(x + y))w(x + y) |y| N +2α dy =: h 1 (x), thus, (-∆) α v = h + h 1 in B 1 2 . For x ∈ B 1 2 and z ∈ R N \ B 3 4
, there holds

|z -x| ≥ |z| -|x| ≥ |z| - 1 2 ≥ 1 16 (1 + |z|) which implies |h 1 (x)| =| R N (1 -η(z))w(z) |z -x| N +2α dz | ≤ R N \B 3 4 |w(z)| |z -x| N +2α dz ≤ 16 N +2α R N |w(z)| (1 + |z|) N +2α dz = 16 N +2α (1 + | • |) -N -2α w L 1 (R N ) .
7 By [11, Proposition 2.1.9], for β ∈ (0, 2α), there exists c 8 > 0 such that

v C β ( B1/4 ) ≤ c 8 ( v L ∞ (R N ) + h + h 1 L ∞ (B 1/2 ) ) ≤ c 8 ( w L ∞ (B 1 ) + h L ∞ (B 1 ) + h 1 L ∞ (B 1/2 ) ) ≤ c 9 ( w L ∞ (B 1 ) + h L ∞ (B 1 ) + (1 + | • |) -N -2α w L 1 (R N ) ), where c 9 = 16 N +2α c 8 . Combining with w = v in B 3 4
, we obtain (3.1).

Theorem 3.1 Let α ∈ (0, 1) and 0 < p < p * α , then the weak solution of (1.1) is a classical solution of (1.4).

Proof. Let u k be the weak solution of (1.1). By [8, Theorem 1.1], we have

0 ≤ u k = G α [kδ 0 ] -G α [u p k ] ≤ G α [kδ 0 ]. (3.2) We observe that G α [kδ 0 ] = kG α [δ 0 ] = kG α (•, 0) is C 2 loc (Ω \ {0}). Denote by O an open set satisfying Ō ⊂ Ω \ B r with r > 0. Then G α [kδ 0 ] is uniformly bounded in Ω \ B r/2 , so is u p k by (3.2). Let {g n } be a sequence nonnegative functions in C ∞ 0 (R N
) such that g n → δ 0 in the weak sense of measures and let w n be the solution of

(-∆) α u + u p = kg n in Ω u = 0 in Ω c . (3.3) 
From [START_REF] Chen | Semilinear fractional elliptic equations involving measures[END_REF], we obtain that We observe that 0

u k = lim
≤ w n = G α [kg n ] -G α [w p n ] ≤ kG α [g n ] and G α [g n ] con- verges to G α [δ 0 ]
uniformly in any compact set of Ω \ {0} and in L 1 (Ω); then there exists c 10 > 0 independent of n such that

w n L ∞ (Ω\B r/2 ) ≤ c 10 k and w n L 1 (Ω) ≤ c 10 k.
By [10, Corollary 2.4] and Lemma 3.1, there exist ǫ > 0, β ∈ (0, 2α) and positive constants c 11 , c 12 , c 13 > 0 independent of n and k, such that

w n C 2α+ǫ (O) ≤ c 11 ( w n p L ∞ (Ω\B r 2 ) + kg n L ∞ (Ω\B r 2 ) + w n C β (Ω\B 3r 4 
) )

≤ c 12 ( w n p L ∞ (Ω\B r 2 ) + w n L ∞ (Ω\B r 2 ) + kg n L ∞ (Ω\B r 2 ) + w n L 1 (Ω) ) ≤ c 13 (k + k p ).
Therefore, together with (3.4) and the Arzela-Ascoli Theorem, it follows that u k ∈ C 2α+ ǫ 2 (O). This implies that u k is C 2α+ ǫ 2 locally in Ω \ {0}. Therefore, w n → u k and g n → 0 uniformly in any compact subset of Ω \ {0} as n → ∞. We conclude that u k is a classical solution of (1.4) by Theorem 2.2. Corollary 3.1 Let u k be the weak solution of (1.1) and O be an open set satisfying Ō ⊂ Ω \ B r with r > 0. Then there exist ǫ > 0 and c 14 > 0 independent of k such that

u k C 2α+ǫ (O) ≤ c 14 ( u k p L ∞ (Ω\B r 2 ) + u k L ∞ (Ω\B r 2 ) + u k L 1 (Ω) ). (3.5)
Proof. By Theorem 3.1, u k is a solution of (1.4). Then the result follows from [10, Corollary 2.4] and Lemma 3.1 since there exist ǫ > 0, β ∈ (0, 2α) and constants c 15 , c 16 > 0, independent of k, such that

u k C 2α+ǫ (O) ≤ c 15 ( u k p L ∞ (Ω\B r 2 ) + u k C β (Ω\B 3r 4 ) ) ≤ c 16 ( u k p L ∞ (Ω\B r 2 ) + u k L ∞ (Ω\B r 2 ) + u k L 1 (Ω) ).
Theorem 3.2 Assume that the weak solutions u k of (1.1) satisfy

u k L 1 (Ω) ≤ c 17 (3.6) 
for some c 17 > 0 independent of k and that for any r ∈ (0, dist(0, ∂Ω)), there exists c 18 > 0 independent of k such that

u k L ∞ (Ω\B r 2 ) ≤ c 18 . (3.7)
Then u ∞ is a classical solution of (1.4).

Proof. Let O be an open set satisfying Ō ⊂ Ω \ B r for 0 < r < dist(0, ∂Ω). By (3.5), (3.6) and (3.7), there exist ǫ > 0 and c 19 > 0 independent of k such that

u k C 2α+ǫ (O) ≤ c 19 .
Together with (1.13) and the Arzela-Ascoli Theorem, it implies that u ∞ belongs to C 2α+ ǫ 2 (O). Hence u ∞ is C 2α+ ǫ 2 , locally in Ω \ {0}. Therefore, w n → u k and g n → 0 uniformly in any compact set of Ω \ {0} as n → ∞. Applying Theorem 2.2 we conclude that u ∞ is a classical solution of (1.4).

The limit of weakly singular solutions

We recall that u k denotes the weak solution of (1.1) and d = min{1, dist(0, ∂Ω)}.

The case

p ∈ (0, 1 + 2α N ] Proposition 4.1 Let p ∈ (0, 1], then lim k→∞ u k (x) = ∞ for x ∈ Ω. Proof. We observe that G α [δ 0 ], G α [(G α [δ 0 ]) p ] > 0 in Ω.
Since by (1.9)

u k ≥ kG α [δ 0 ] -k p G α [(G α [δ 0 ]) p ],
this implies the claim when p ∈ (0, 1), for any x ∈ Ω. For p = 1, u k = ku 1 .

The proof follows since u 1 > 0 in Ω.

Now we consider the case of

p ∈ (1, 1+ 2α N ]. Let {r k } ⊂ (0, d 2 
] be a strictly decreasing sequence of numbers satisfying lim k→∞ r k = 0. Denote by {z k } the sequence of functions defined by

z k (x) = -d -N , x ∈ B r k |x| -N -d -N , x ∈ B c r k . (4.1)
Lemma 4.1 Let {ρ k } be a strictly decreasing sequence of numbers such that

r k ρ k < 1 2 and lim k→∞ r k ρ k = 0. Then (-∆) α z k (x) ≤ -c 1,k |x| -N -2α , x ∈ B c ρ k where c 1,k = -c 20 log( r k ρ k ) with c 20 > 0 independent of k.
Proof. For any x ∈ B c ρ k , there holds

(-∆) α z k (x) = - 1 2 R N z k (x + y) + z k (x -y) -2z k (x) |y| N +2α dy = - 1 2 R N |x + y| -N χ B c r k (-x) (y) + |x -y| -N χ B c r k (x) (y) -2|x| -N |y| N +2α dy = - 1 2 |x| -N -2α R N δ(x, z, r k ) |z| N +2α dz, where δ(x, z, r k ) = |z + e x | -N χ B c r k |x| (-ex) (z) + |z -e x | -N χ B c r k |x| (ex) (z) -2 and e x = x |x| . We observe that r k |x| ≤ r k ρ k < 1 2 and |z ± e x | ≥ 1 -|z| ≥ 1 2 for z ∈ B 1 2 . Then there exists c 21 > 0 such that |δ(x, z, r k )| = ||z + e x | -N + |z -e x | -N -2| ≤ c 21 |z| 2 . Therefore, | B 1 2 (0) δ(x, z, r k ) |z| N +2α dz| ≤ B 1 2 (0) |δ(x, z, r k )| |z| N +2α dz ≤ c 21 B 1 2 (0) |z| 2-N -2α dz ≤ c 22 , where c 22 > 0 is independent of k. When z ∈ B 1 2
(-e x ) there holds

B 1 2 (-ex) δ(x, z, r k ) |z| N +2α dz ≥ B c 1 2 (-ex) |z + e x | -N χ B r k |x| (-ex) (z) -2 |z| N +2α dz ≥ c 23 B 1 2 (0)\B r k |x| (0) (|z| -N -2)dz ≥ -c 24 log( r k |x| ) ≥ -c 24 log( r k ρ k ),
where c 23 , c 24 > 0 are independent of k.

For z ∈ B 1 2 (e x ), we have

B 1 2 (ex) δ(x, z, r k ) |z| N +2α dz = B 1 2 (-ex) δ(x, z, r k ) |z| N +2α dz. Finally, for z ∈ O := R N \ (B 1 2 (0) ∪ B 1 2 (-e x ) ∪ B 1 2 (e x )), we have | O δ(x, z, r k ) |z| N +2α dz| ≤ c 25 B c 1 2 (0) |z| -N + 1 |z| N +2α dz ≤ c 26 ,
where c 25 , c 26 > 0 are independent of k.

Combining these inequalities we obtain that there exists c 20 > 0 independent of k such that

(-∆) α z k (x)|x| N +2α ≤ c 20 log( r k ρ k ) := c 1,k ,
which ends the proof.

Proposition 4.2 Assume that 2α N -2α < 1 + 2α N , max{1, 2α N -2α } < p < 1 + 2α N (4.2)
and z k is defined by (4.1) with

r k = k - p-1 N-(N-2α)p (log k) -2 . Then there exists k 0 > 0 such that for any k ≥ k 0 u k ≥ c 1 p-1 2,k z k in B d , (4.3) 
where c 2,k = ln ln k.

Proof. For p ∈ (max{1, 2α N -2α }, 1 + 2α N ), it follows by (1.9) and Lemma 2.1-(iii) that there exist ρ 0 ∈ (0, d) and c 27 , c 28 > 0 independent of k such that, for x ∈ Bρ 0 \ {0},

u k (x) ≥ kG α [δ 0 ](x) -k p G α [(G α [δ 0 ]) p ](x) ≥ c 27 k|x| -N +2α -c 28 k p |x| -(N -2α)p+2α = c 27 k|x| -N +2α (1 - c 28 c 27 k p-1 |x| N -(N -2α)p ).
We choose

ρ k = k - p-1 N-(N-2α)p (log k) -1 . (4.4) 
There exits

k 1 > 1 such that for k ≥ k 1 u k (x) ≥ c 27 k|x| -N +2α (1 - c 28 c 27 k p-1 ρ N -(N -2α)p k ) ≥ c 27 2 k|x| -N +2α , x ∈ Bρ k \ {0}. (4.5) Since p < 1 + 2α N , 1 -2α(p-1) N -(N -2α)p > 0 and there exists k 0 ≥ k 1 such that c 27 2 kr 2α k ≥ (ln ln k) 1 p-1 , (4.6) 
for k ≥ k 0 . This implies

c 27 2 k|x| 2α ≥ (ln ln k) 1 p-1 , x ∈ Bρ k \ B r k .
Together with (4.1) and (4.5), we derive

u k (x) ≥ (ln ln k) 1 p-1 z k (x), x ∈ Bρ k \ B r k , for k ≥ k 0 . Furthermore, it is clear that (ln ln k) 1 p-1 z k (x) ≤ 0 ≤ u k (x) whenever x ∈ B r k or x ∈ B c d . Set c 2,k = ln ln k, then by Lemma 4.1 (-∆) α c 1 p-1 2,k z k (x) + c p p-1 2,k z k (x) p ≤ c p p-1 2,k |x| -N -2α (-1 + |x| N +2α-N p ) ≤ 0, for any x ∈ B d \ B ρ k , since N + 2α -N p ≥ 0 and d ≤ 1. Applying Theorem 2.1, we infer that c 1 p-1 2,k z k (x) ≤ u k (x) ∀x ∈ Bd ,
which ends the proof.

Proposition 4.3 Assume 1 < 2α N -2α ≤ 1 + 2α N and p = 2α N -2α (4.7) 
and let z k be defined by (4.1) with

r k = k - 2α N(N-2α) (log k) -3 and k > 2.
Then there exists k 0 > 2 such that (4.3) holds for k ≥ k 0 .

Proof. By (1.9) and Lemma 2.1-(ii), there exist ρ 0 ∈ (0, d) and c 30 , c 31 > 0 independent of k, such that for x ∈ Bρ 0 \ {0}

u k (x) ≥ c 30 k|x| -N +2α + c 31 k p log |x| = c 30 k|x| -N +2α (1 + c 31 c 30 k p-1 |x| N -2α log |x|). If we choose ρ k = k - 2α N(N-2α) (log k) -2 there exists k 1 > 1 such that for k ≥ k 1 , we have 1 + c 31 c 30 k p-1 ρ N -2α k log(ρ k ) ≥ 1 2 and u k (x) ≥ c 30 2 k|x| -N +2α ∀x ∈ Bρ k \ {0}. (4.8) 
Since 2α N -2α < 1 + 2α N , there holds 1 -4α 2 N (N -2α) > 0 and there exists k 0 ≥ k 1 such that c 30 2 kr 2α k = c 30 2 k 1-4α 2 N(N-2α) (log k) -6α ≥ (ln ln k) 1 p-1
for k ≥ k 0 . The remaining of the proof is the same as in Proposition 4.2.

In the sequel, we point out the fact that the limit behavior of the u k depends which of the following three cases holds:

2α N -2α = 1 + 2α N = N 2α ; (4.9) 2α N -2α < 1 + 2α N < N 2α ; (4.10) 2α N -2α > 1 + 2α N > N 2α . (4.11) Proposition 4.4 Assume 1 < 2α N -2α ≤ 1 + 2α N and 1 < p < 2α N -2α , (4.12 
)

or 1 + 2α N < 2α N -2α and 1 < p < N 2α , (4.13) 
and z k is defined by (4.1) with r k = k -p-1 N-2α (log k) -1 . Then there exists k 0 > 2 such that (4.3) holds for k ≥ k 0 .

Then by Theorem 2.1, we have u kn ≥ w n .

(4.16)

Let η 1 be the solution of

(-∆) α u = 1 in B ρ (x 0 ) u = 0 in B c ρ (x 0 ),
and

v n = w n -nχ B d/2 , then v n = w n in B ρ (x 0 ) and (-∆) α v n (x) + v p n (x) = (-∆) α w n (x) -n(-∆) α χ B d/2 (x) + w p n (x) = n B d/2 dy |y -x| N +2α ∀x ∈ B ρ (x 0 ).
This means that v n is a solution of

(-∆) α u + u p = n B d/2 dy |y -x| N +2α in B ρ (x 0 ), u = 0 in B c ρ (x 0 ). (4.17) 
It is clear that

1 c 35 ≤ B d/2 dy |y -x| N +2α ≤ c 35 ∀x ∈ B ρ (x 0 )
for some c 35 > 1. Furhermore (

n 2c 35 max η 1 )
1 p η 1 is sub solution of (4.17) for n large enough. Then using Theorem 2.1, we obtain that

v n ≥ ( n 2c 35 max η 1 ) 1 p η 1 ∀x ∈ B ρ (x 0 ),
which implies that

w n ≥ ( n 2c 35 max η 1 ) 1 p η 1 ∀x ∈ B ρ (x 0 ). Then lim n→∞ w n (x 0 ) → ∞.
Since x 0 is arbitrary and together with (4.16), it implies that u ∞ = ∞ in Ω, which completes the proof.

The case of

p ∈ (1 + 2α N , N N -2α )
Proposition 4.5 Let α ∈ (0, 1) and r 0 = dist(0, ∂Ω).

Then (i) if max{1 + 2α N , 2α N -2α } < p < p * α , there exist R 0 ∈ (0, r 0 ) and c 36 > 0 such that u ∞ (x) ≥ c 36 |x| -2α p-1 ∀x ∈ B R 0 \ {0}, (4.18) 
(ii) if 2α N -2α > 1 + 2α N and p = 2α N -2α , there exist R 0 ∈ (0, r 0 ) and c 37 > 0 such that

u ∞ (x) ≥ c 37 (1 + | log(|x|)|) 1 p-1 |x| -p(N-2α) p-1 , ∀x ∈ B R 0 \ {0}, (4.19) (iii) if 2α N -2α > 1 + 2α N and p ∈ (1 + 2α N , 2α N -2α ), there exist R 0 ∈ (0, r 0 ) and c 38 > 0 such that u ∞ (x) ≥ c 38 |x| -p(N-2α) p-1 ∀x ∈ B R 0 \ {0}. (4.20)
Proof. (i) Using (1.9) and Lemma 2.1(i) with max{1+ 2α N , 2α N -2α } < p < p * α , we see that there exist ρ 0 ∈ (0, r 0 ) and c 39 , c 40 > 0 such that

u k (x) ≥ c 39 k|x| -N +2α -c 40 k p |x| -(N -2α)p+2α ∀x ∈ B ρ 0 \ {0}. (4.21) Set ρ k = (2 (N -2α)p-2α-1 c 40 c 39 k p-1 ) 1 (N-2α)(p-1)-2α . (4.22) Since (N -2α)(p -1) -2α < 0, there holds lim k→∞ ρ k = 0. Let k 0 > 0 such that ρ k 0 ≤ ρ 0 , then for x ∈ B ρ k \ B ρ k 2 , we have c 40 k p |x| -(N -2α)p+2α ≤ c 40 k p ( ρ k 2 ) -(N -2α)p+2α = c 39 2 kρ -N +2α k ≤ c 39 2 k|x| -N +2α and k = (2 (N -2α)p-2α-1 c 40 c 39 ) -1 p-1 ρ N -2α-2α p-1 k ≥ c 41 |x| N -2α-2α p-1 ,
where c 41 = (2 (N -2α)p-2α-1 c 40 c 39 ) -1 p-1 2 (N -2α)(p-1)-2α-1 . Combining with (4.18), we obtain

u k (x) = c 39 k|x| -N +2α -c 40 k p |x| -(N -2α)p+2α ≥ c 39 2 k|x| -N +2α ≥ c 42 |x| -2α p-1 , (4.23) for x ∈ B ρ k \ B ρ k 2
, where c 42 = Together with u k+1 > u k , we derive

u ∞ (x) ≥ c 42 |x| -2α p-1 , x ∈ B ρ k 0 \ {0}.
(ii) By (1.9) and Lemma 2.1-(ii) with p = 2α N -2α , there exist ρ 0 ∈ (0, r 0 ) and c 43 , c 44 > 0 such that

u k (x) ≥ c 43 k|x| -N +2α -c 44 k p | log(|x|)|, x ∈ B ρ 0 \ {0}. ( 4 

.24)

Let {ρ k } be a sequence of real numbers with value in (0, 1) and such that

c 44 k p-1 | log( ρ k 2 )| = c 43 2 ρ -N +2α k . ( 4 

.25)

Then lim k→∞ ρ k = 0 and there exists k 0 > 0 such that ρ k 0 ≤ ρ 0 . Thus, for any 

x ∈ B ρ k \ B ρ k 2 and k ≥ k 0 , c 43 k p | log(|x|)| ≤ c 44 k p | log( ρ k 2 )| = c 43 2 kρ -N +2α

2 , 1 p- 1 1 ( 1 +c 46 = 1 2 c 1 ( 1 + 1 . 1 ( 1 +

 21111211111 +2α . Therefore, assuming always x ∈ B ρ k \ B ρ k . Consequentlyu k (x) ≥ c 43 k|x| -N +2α -c 44 k p | log(|x|)| ≥ c 43 2 k|x| -N +2α ≥ c 46 |x| -p(N-2α) p-| log(|x|)|) 43 c 45 is independent of k. By (4.25), we can choose a sequence k n ∈ [1, +∞) such that ρ k n+1 ≥ 1 2 ρ kn ,Then for any x ∈ B ρ k 0 \ {0}, there exists k n such that x ∈ B ρ kn \ B ρ kn2. By (4.26) there holdsu kn (x) ≥ c 46 |x| -p(N-2α) p-| log(|x|)|) 1 p-Together with u k+1 > u k , we infer u ∞ (x) ≥ c 46 |x| -p(N-2α) p-| log(|x|)|) 1 p-1 ∀x ∈ B ρ k 0 \ {0}.

( 1 .

 1 iii) By (1.9) and Lemma 2.1-(iii) with p ∈ (1 + 2α N , 2α N -2α ), there exist ρ 0 ∈ (0, r 0 ) and c 47 , c 48 > 0 such thatu k (x) ≥ c 47 k|x| -N +2α -c 48 k p ∀x ∈ B ρ 0 \ {0}. (4.27) Put ρ k = ( c 48 2c 47 k p-1 ) -1 N-2α ,(4.28)then lim k→∞ ρ k = 0 and there existsk 0 > 0 such that ρ k 0 ≤ ρ 0 . Therefore, if x ∈ B ρ k \ B ρ k 2and k ≥ k 0 , there holdsc 48 k p = c 28), where c 49 = 2 -N-2α p-1 ( c 48 2c 47 ) -1 p-1 . Consequently, u k (x) ≥ c 47 k|x| -N +2α -c 48 k p ≥ c 47 2 k|x| -N +2α ≥ c 50 |x| -p p-1 (N -2α) ,(4.29)where c 50 = 1 2 c 47 c 49 is independent of k. By (4.28), we can choose a sequence k n ∈ [1, +∞) such thatρ k n+1 ≥ 1 2 ρ kn , Then for any x ∈ B ρ k 0 \ {0}, there exists k n such that x ∈ B ρ kn \ B ρ kn2 and then by (4.29), u kn (x) ≥ c 50 |x| -p(N-2α) p-Together with u k+1 > u k , we have u ∞ (x) ≥ c 50 |x| -p(N-2α) p-1 ∀x ∈ B ρ k 0 \ {0}, which ends the proof.

  For any x ∈ B ρ k 0 \ {0}, there exists k n such that x ∈ B ρ kn \ B ρ kn

			, then, by
	(4.23),		2
	u kn (x) ≥ c 42 |x| -2α p-1 .
	1 2 c 39 c 41 is independent of k. By (4.22), we
	can choose a sequence {k n } ⊂ [1, +∞) such that
	ρ k n+1 ≥	1 2	ρ kn ,

Proof. By (1.9) and Lemma 2.1-(i), there exist ρ 0 ∈ (0, d) and c 33 , c 34 > 0 independent of k such that for x ∈ Bρ 0 \ {0},

We choose ρ k = k -p-1 N-2α . Then there exists

Clearly p < N 2α by assumptions (4.12), (4.13), together with relations (4.9)(4.10), (4.11), thus 1

for k ≥ k 0 . The remaining of the proof is similar to the one of Proposition 4.2.

The case p

We give below the proof, in two steps, of Theorem 1.

Step 2: We claim that u ∞ = ∞ in Ω. By the fact of u ∞ = ∞ in B d and u k+1 ≥ u k in Ω, then for any n > 1 there exists k n > 0 such that u kn ≥ n in B d . For any x 0 ∈ Ω \ B d , there exists ρ > 0 such that Bρ (x 0 ) ⊂ Ω ∩ B c d/2 . We denote by w n the solution of N , p * α ) and u s be a strongly singular solution of (1.4) satisfying (1.5). Then

where u ∞ is defined by (1.13).

Proof. By (1.5) and (1.9), it follows

which implies that there exists r 1 > 0 such that

Since by Theorem 3.1, u k satisfies 

for some c 51 > 1. Then u ∞ = u s in R N \ {0} since u s is unique in the class of solutions satisfying (1.6).