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Abstract

Let p € (0, 525=), a € (0,1) and © C RY be a bounded C? domain
containing 0. If dg is the Dirac measure at 0 and k& > 0, we prove that
the weakly singular solution uy of (Eg) (—A)*u+uP = kdp in  which
vanishes in Q¢ is a classical solution of (F.) (—A)*u+u? = 0in Q\{0}
with the same outer data. When N2_°‘2a <1+ QWO‘, p e (0,1+ QWO‘] we
show that the uj converges to co in whole €2 when k& — oo, while, for

pe(l+ %O‘, %m)v the limit of the wy is a strongly singular solution

of (E.). The same result holds in the case 1+ 22 < 2% excepted if
22cp<l42
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1 Introduction

Let © be a bounded C? domain of RY(NN > 2) containing 0, « € (0,1) and
let §y denote the Dirac measure at 0. In this paper, we study the properties
of the weak solution to problem

(=A)*u+uP =kdy in Q

1.1
u=20 in Q€ 1)
where k > 0 and p € (0, 525-) and (—A)® is the a-fractional Laplacian
defined by
(~A)u(z) = lim (~A)2u(z),

€
e—0t

where for € > 0,

(a)ue) = [ Ol - 2his
and

Xet:
Q 1, if t>e.

{0, if te]0,¢

In 1980, Benilan and Brezis (see [2, 1]) studied the case & = 1 in equation
(1.1) and proved in particular that equation

—Au+u?l=kép in

1.2
u=20 on ON (1.2)

admits a unique solution uy, for 1 < ¢ < N/(N — 2), while no solution exists
when ¢ > N/(N — 2). Soon after, Brezis and Véron [3] proved that the
problem

—Au+u?=0 in Q) {0}
u=0 on 0N

admits only the zero solution when ¢ > N/(N —2). When 1 < ¢ < N/(N —
2), Véron in [13] obtained the description of the all the possible singular
behaviour of the positive solutions of (1.3). In particular he proved that
this behaviour is always isotropic (when (N +1)/(N —1) < ¢ < N/(N —2)
the assumption of positivity is unnecessary) and that two types of singular
behaviour occur:

(i) either u(x) ~ cxk|z|>Y when z — 0 and k can take any positive value;
u is said to have a weak singularity at 0, and actually v = wug.

(1.3)

2
(ii) or u(x) ~ englz| =T when x — 0 and u has a strong singularity at 0,
and U = U := limy_, o0 Ug.
A large series of papers has been devoted to the extension of semilinear
problems involving the Laplacian to problems where the diffusion operator



is non-local, the most classical one being the fractional Laplacian, see e.g.
[4,5,9, 10, 11]. In a recent work, Chen and Véron [7] considered the problem

(—A)*u+u? =0 in Q\{0}

1.4
u=0 in €°, (4

where 1 + %a <p<pk:= N]_VQQ. They proved that (1.4) admits a singular

solution ug which satisfies

2

ii_)r% us(z)|z|P~T = ¢y, (1.5)
for some ¢y > 0. Moreover ug is the unique positive solution of (1.4) such

that . .
0 < liminf u(z)|z|P-1 < limsup u(z)|z|»-1 < oco. (1.6)

z—0 z—0
In this article we will call weakly singular solution a solution w of (1.4)
which satisfies lim sup,_,o |u(z)||z|Y 2% < oo and strongly singular solution
if limg o |u(z) |||V 2«
The existence of solutions of (1.1) is a particular case of the more general
problem

= OQ.

-A)u+g(u)=v in
(=4) (u) 7
u=0 in Q°

which has been study by Chen and Véron in [8] under the assumption that g
is a subcritical nonlinearity, v being a positive and bounded Radon measure
in Q.

Definition 1.1 A function u belonging to L*(Q) is a weak solution of (1.7)
if g(u) € LY(Q, p*dz) and

L/M<M%+¢@&mz/f@ Ve € X,., (1.8)
Q Q

where p(z) = dist(z,Q°) and X, C C(RY) is the space of functions &
satisfying:

(i) supp(§) C Q,

(ii) (—A)*¢(x) exists for all x € Q and |(—A)*¢(z)| < ¢1 for some ¢ > 0,

(i) there exist ¢ € LY(Q, p*dx) and eg > 0 such that |(—A)%¢| < ¢ a.e. in
Q, for all € € (0, €o].

According to Theorem 1.1 in [8], problem (1.1) admits a unique weak
solution uy, moreover,

Galkdo] — Gal(Galkdo))?] < u < Galkdy] in 9, (1.9)



where G, -] is the Green operator defined by

GalV](z) = /QGa(x,y)dy(y), Ve M, p), (1.10)

with Gy, is the Green kernel of (—A)® in © and (2, p*) denotes the space
of Radon measures in € such that [, p*d | v |< co. By (1.9),

lim ug(2)]z|Y 2% = co Nk (1.11)

z—0

for some ¢o n > 0. From Theorem 1.1 in [8], there holds

ug(z) < ugyq(x), Vo € () (1.12)
then there exists
Uso(T) = klim up(r) Vo e RN\ {0}, (1.13)
—00

and ue(z) € Ry U {+00}.

Motivated by these results and in view of the nonlocal character of the
fractional Laplacian, in this article we analyse the connection between the
solutions of (1.1) and the ones of (1.4). Our main result is the following

Theorem 1.1 Assume that 1 + QWO‘ > NQ:XQQ and p € (0,p}). Then uy is a

classical solution of (1.4). Furthermore,
(@) ifpe (0, 1+ 3),
Uso(x) = 00 Vo € (1.14)

(i) if pe (1+ 3, p5),
Uoo = Us,
where ug is the solution of (1.4) satisfying (1.5).

Moreover, if 1 + QWO‘ = N%O‘Qa, (1.14) holds for p =1+ QWO‘

The result of part (i) indicates that even if the absorption is superlinear,
the diffusion dominates and there is no strongly singular solution to problem
(1.4). On the contrary, part (i7) points out that the absorption dominates
the diffusion; the limit function us is the least strongly singular solution of
(1.4). Comparing Theorem 1.1 with the results for Laplacian case, part (i)
with p € (0,1] and (i7) are similar as the Laplacian case, but part (i) with
p € (1, 1—|—2W0‘] is totally different from the one in the case & = 1. This striking
phenomenon comes comes from the fact that the fractional Laplacian is a
nonlocal operator, which requires the solution to belong to L(£2), therefore
no local barrier can be constructed if p is too close to 1.

2a
N-—2a"

N:2and@<a<10rN:3and@<a<l. In this situation,
we have the following results.

At end, we consider the case where 1 + QWO‘ < It occurs when



Theorem 1.2 Assume that 1 + QWO‘ < NQ:XQQ and p € (0,p}). Then uy is a

classical solution of (1.4). Furthermore,

(2) if pe (0 ,2a) then

Uso(x) = 00 Vo €

(i) if p € (1+ 22, %), then ux is a classical solution of (1.4) and there
exist pg > 0 and ca > 0 such that

(N—2a)p

colz]” Pl < g < ug Vo € By, \ {0}; (1.15)

(ii1) if p = %=, then us is a classical solution of (1.4) and there exist
po > 0 and c3 > 0 such that

‘ ’_(N 2111)17
p
3 ’ — < Us < ug Vo € By, \ {0}; (1.16)

(1 + [log(|a|)[)7=*

(w) if p € (N 2aapa) then
Uso = Us.

We remark that <1 + & if 1 + 2_0‘2a Therefore Theorem 1.2
does not provide any descrlptlon of U in the region

U::{(a,p)E(O,l)x(l,NNQ):2a<1—|-N,2a<p<1+ }

Furthermore, in parts (i) and (iii), we do not obtain that us = us, since
(1.15) and (1.16) do not provide sharp estimates on u in order it to belong
to the uniqueness class characterized by (1.6).

The paper is organized as follows. In Section 2, we present some some
estimates for the Green kernel and comparison principles. In Section 3, we
prove that the weak solution of (1.1) is a classical solution of (1.4). Section
4 is devoted to analyze the limit of weakly singular solutions as k — oco.

2 Preliminaries

The purpose of this section is to recall some known results. We denote by
B, (x) the ball centered at x with radius r and B, := B,(0).

Lemma 2.1 Assume that 0 < p < p?,, then there exists c4,c5,c6 > 1 such
that

(i) if p € (0, 5%%5),
1

a < Ga[(G [50]) ] <¢4 in B, \ {0}’




vy . 2
(ZZ) lfp = r%;

—iln\x! < Cul(Caldo])’] < —cstnfz| in B\ {0}:

(iii) if p € (5%, p),
1 .
a\w!%"w 2P < Go[(Galdo))?] < cglz| N2 in B\ {0},

where r = + min{1, dist(0,00)} and G, is defined by (1.9).

Proof. The proof follows easily from Chen-Song’s estimates of Green func-
tions [9], see [6, Theorem 5.2] for a detailled computation. O

Theorem 2.1 Assume that O is a bounded domain of RN and ui, ug are
continuous in O and satisfy

(—A)*u+u? =0 in O.

Moreover, we assume that u; > us in O°¢. Then,
(i) either uy >wuz in O,

(ii) or u1 = uz a.e. in RV,

Proof. The proof refers to [5, Theorem 2.3] (see also [4, Theorem 5.2]). O
The following stability result is proved in [5, Theorem 2.2].

Theorem 2.2 Suppose that O is a bounded C? domain and h : R — R is
continuous. Assume {un} is a sequence of functions, uniformly bounded in

d . .
LH0, W)y satisfying

(=)t + h1n) > fu (resp (—A)*un + h(un) < fu) i O

in the viscosity sense, where the f, are continuous in O. If there holds
(i) un, — u locally uniformly in O,
(id) wn — u in LNRY, ).
(iii) fr, — f locally uniformly in O,
then
(=A)*u~+ h(u) > f (resp (—A)*u+h(u) < f) nO

in the viscosity sense.



3 Regularity

In this section, we prove that any weak solution of (1.1) is a classical solution
of (1.4). To this end, we introduce some auxiliary lemma.

Lemma 3.1 Assume that w € C?**¢(By) with € > 0 satisfies
(=A)*w=h in B,
where h € C1(By). Then for B € (0,2a), there exists c; > 0 such that
s, ) < er(lloe )+ o)+ I+ 1 ). (3.1
Proof. Let n: RY — [0,1] be a C* function such that
n=1 in B% and n=0 in Bf.

We denote v = wn, then v € C?*T¢(RY) and for z € B, € € (0, 1),
2

) - [ ety @
O I
AV w(r (1 =n+y)w( +y)
R

Together with the fact of n(z + y) =1 for y € B, we have

1—nz+y))w+ 1—n(z+y))wlz +
/RN\BS ( n( ’y‘Nszga( y)dy - /]RN ( n( ’y‘Nszga( y)dy = hl(x)a

thus,
(—A)a?} =h+ h1 n B%

For # € B:1 and z € RY \ Bs, there holds
2 4
=2l > |2 = fo] = 2] — 5 > (1 + 2]
z—x zl — |z zl— = > = z
- - 2716
which implies

(=),

@) =l | e,

IN

w(2)
s dz
/RN\B3 FREILES

|w(2)]

< 16N+20‘/ —
= v (14 |2+

= 16V (L4 | )] .

RN



By [11, Proposition 2.1.9], for 5 € (0,2«), there exists cg > 0 such that

HUHCﬂ(Bl/4) < cs([[vllpoe@my + IR+ h1||L°o(Bl/2))

IN

es([[wll oo (y) + 1llLoeBy) + 1Pl (B, )
< co(llwllpeo(my) + 1Al Loy + 11+ ] ‘)7N72awHL1(]RN))=

— 16N+204

where c¢g ¢s. Combining with w = v in Bs, we obtain (3.1). O
4

Theorem 3.1 Let o € (0,1) and 0 < p < p’, then the weak solution of
(1.1) is a classical solution of (1.4).

Proof. Let uj be the weak solution of (1.1). By [8, Theorem 1.1], we have
0 < U = Ga[kéo] — Ga[uﬁ < Ga[kéo]. (3.2)

We observe that G, [kdy] = kGa[do] = kGa(-,0) is C7 (22 \ {0}). Denote by

O an open set satisfying O C Q\ B, with 7 > 0. Then G,[kdo] is uniformly
bounded in 2\ B, 5, so is u}, by (3.2).
Let {g,} be a sequence nonnegative functions in C§°(RY) such that

gn — Jg in the weak sense of measures and let w,, be the solution of
—A)*u+uP =kg, in Q
(=4) n (33)
u=0 in Q°.

From [8], we obtain that

up = lim w, a.e.in €. (3.4)
n—oo

We observe that 0 < w, = Gulkgn] — Galwh] < kGalgn] and G, lgs] con-
verges to G,[dg] uniformly in any compact set of Q\ {0} and in L!(£2); then
there exists c19 > 0 independent of n such that

[wnllLoe@\B, ) < 1ok and  Jlwn | L1(0) < ciok.

By [10, Corollary 2.4] and Lemma 3.1, there exist € > 0, 8 € (0,2a) and
positive constants ¢i1, ¢12, c13 > 0 independent of n and k, such that

[[wn|c2ate(0) < 011(||wn||7£oo(9\35) +lkgnllz=@\ny) + llwnllos@\sy,)
< Cl?(HU}nHIL),OO(Q\B%) Fllwnllzee@\y) + 1kgnllze@\ny) + lwnllL @)
< Clg(k‘ + k‘p)
Therefore, together with (3.4) and the Arzela-Ascoli Theorem, it follows
that u, € C?**2(0). This implies that uy is C?**2 locally in Q\ {0}.
Therefore, w, — uy and g, — 0 uniformly in any compact subset of Q\ {0}

as n — 0o. We conclude that uy is a classical solution of (1.4) by Theorem
2.2 O



Corollary 3.1 Let uy be the weak solution of (1.1) and O be an open set
satisfying O C Q\ B, with v > 0. Then there exist ¢ > 0 and c14 > 0
independent of k such that

lurllczereo) < cralllunllzo oy p, ) + lurli=@sy) + lukli@). (3:5)
Proof. By Theorem 3.1, uy is a solution of (1.4). Then the result follows
from [10, Corollary 2.4] and Lemma 3.1 since there exist € > 0, 8 € (0, 2«)

and constants ci5, c1g > 0, independent of k, such that

[urllc2ate0) < 015(Huk‘leoo(Q\B%)+HukH05(Q\B%))

< C16(||uk\|z£oo(g\35) el @) + llukllie)-
O
Theorem 3.2 Assume that the weak solutions uy of (1.1) satisfy
ki) < a7 (3.6)

for some c17 > 0 independent of k and that for any r € (0,dist(0,09)),
there exists c1g > 0 independent of k such that

lurll oo @85 < c1s- (3.7)
Then us is a classical solution of (1.4).

Proof. Let O be an open set satisfying O C Q\ B, for 0 < r < dist(0, 92).
By (3.5), (3.6) and (3.7), there exist ¢ > 0 and c¢j9 > 0 independent of k
such that

[u]lc2a+e(0) < c19-

Together with (1.13) and the Arzela-Ascoli Theorem, it implies that u
belongs to C2*F2(0). Hence uq, is C?*T2, locally in Q\ {0}. Therefore,
wy, — ug and g, — 0 uniformly in any compact set of Q\ {0} as n — co.
Applying Theorem 2.2 we conclude that us, is a classical solution of (1.4).
(]

4 The limit of weakly singular solutions

We recall that uy denotes the weak solution of (1.1) and d = min{1, dist(0, 02)}.



4.1 The case p € (0,1 + 2]

Proposition 4.1 Let p € (0,1], then limg_, o ug(x) = oo for x € Q.

Proof. We observe that G4[0o], Ga[(Ga[do])?] > 0 in Q. Since by (1.9)
ug 2 kGa[do] — KGal(Gald0])"],

this implies the claim when p € (0, 1), for any x € Q. For p = 1, up = ku;.
The proof follows since uq > 0 in €. O

Now we consider the case of p € (1, 1+ 22]. Let {ry} C (0, ] be a strictly
decreasing sequence of numbers satisfying limy_, o 7, = 0. Denote by {zx}
the sequence of functions defined by

{—dN, x € By,

N ) (4.1)
||~ —d™", xe By .

zk(x) =
Lemma 4.1 Let {pi} be a strictly decreasing sequence of numbers such that
;—2 < % and limy_, o ;—: =0. Then
(=A) 2z (2) < —ep gl N2, x € B
where ¢y, = —ca0 log(;—i) with cog > 0 independent of k.

Proof. For any = € Bj_, there holds

(—A)O‘zk(x) _ _1 /RN Zk(x +y) + Zk(x - y) - 2Zk(x)dy

2 |y | V2
1 [ eyl ™ xee o)) + e =yl ™V xBe @ (1) — 2™
T2 Jp |y| N2 Y
1 N2 6(z, 2, k)
=3l /RN ez

where 0(z,z,13) = |z + €m|_NXBC&(—ex)(Z) + [z - 6:13|_NXBCTJi(ex)(Z) —2and
B [z
ey = ‘—i‘
We observe that r—’“ < < Lland|zte]>1—|2] >3 for z € Bs.
$| Pk 2 2 P

Then there exists co; > 0 such that
6(x, 2,7)| = ||z 4+ ex| ™ + |2 — ex| ™ — 2| < e 2%

Therefore,

5(56’ Z, Tk)

|0(z, 2, 1)
—————dz| < / ————dz
By 0) |2[N+2a By 0 || N+2a

IN

021/ 2P N2z < e,
B1(0)

10



where cog > 0 is independent of k.
When z € B1(—e,) there holds
2

-N
x r. (—e -2
/ Sazr) / |2 + €] XBr 2 (2) N
By (~ex) || V2 T B (—er) || V2
2

> on / (127N - 2)d=
31(0)\BT (0)

\w\

Tk Tk
> —cu 10%(@) > —Coy 10g(p_k),

where co3, co4 > 0 are independent of k.
For z € Bi(e,), we have
2

6($,Z,T’k) / (S(CC,Z,’I“k)
——vaga 4z = ———"dz.
/B% (ez) |Z|N+2a B% (76:1;) |Z|N+2a

Finally, for z € O := R¥ \ (B1(0) U B1(—e;) U Bi(e;)), we have

1
2

X, 2,Tk) |27V +1
|/ 2[V+2a —— Vg2 9% |§C25/BC 0 Wdzﬁcz&
1

2

N

where co5, cog > 0 are independent of k.
Combining these inequalities we obtain that there exists cog > 0 independent
of k such that

Tk
(=A)* 2 ()] 2]V T2 < ey log(p—k) = CLk,
which ends the proof. O
Proposition 4.2 Assume that

2a <1+2a
N — 2« N’

2
O‘a}<p<1+—a (4.2)

1
max{,N_2 N

1
and zj, is defined by (4.1) withr, =k N—(N 207 (logk)=2. Then there exists
ko > 0 such that for any k > ko

1

ukzcg’?zk in By, (4.3)

where ¢}, = Inln k.

11



Proof. For p € (max{l, z2%-},1+ 22), it follows by (1.9) and Lemma
2.1-(i79) that there exist pg € (0,d) and co7, cog > 0 independent of k such
that, for z € B, \ {0},

up(z) > kGaldol(z) — kK" Gal(Galdo])"](x)

; 027k’x‘—N+2a o k?p‘.%" N 2a p+2a
_ 0271{:’1,‘7N+2a(1 . Cﬁkp 1’1“N N72a)p).
Ca7
We choose -
pr =k N2 (log k)1 (4.4)

There exits k1 > 1 such that for k > k

up(z) = 627k‘|$|7N+2a(1—Z—ikpflpfcv’(]v”a)l’)
> VR g e B, \ {0}, (45)

2 )

Since p < 1+ %a, 1-— % > 0 and there exists kg > ki such that

627k 20 > (InIn k)71 (4.6)
for k > kg. This implies
ZLklal** = (n1n k)71, zeB, \B,
Together with (4.1) and (4.5), we derive
up(z) > (Inln k)7 iz,(z), @€ By \ By,
for k > kg. Furthermore, it is clear that
(Inln k)P_ilzk(m) <0 < ug(x)

whenever x € B,, or x € Bj. Set ¢ = Inlnk, then by Lemma 4.1

_1
(=) zk(x )+62k z(2)” < e 1Ifﬂl VTR [o VHRTA) <0,

for any = € By \ B
2.1, we infer that

s Since N +2a — Np > 0 and d < 1. Applying Theorem

1

05”;1 zi () < ug(z) Va € By,

which ends the proof. U

12



Proposition 4.3 Assume

2 2 2
@ gl—i——aandp: @

1
S N_2a N N - 2a

(4.7)

and let zy be defined by (4.1) withr, =k NN (logk)™® and k > 2. Then
there exists ko > 2 such that (4.3) holds for k > k.

Proof. By (1.9) and Lemma 2.1-(i4), there exist pg € (0,d) and c39,c31 > 0
independent of k, such that for x € B, \ {0}

Y

030k|x|7N+2a + c31kP log ||

= caokla| N 2(1 + %kp—lrmvv-m log |]).

ug(z)

2a
If we choose pp = k~ N™-22) (logk)~? there exists k; > 1 such that for
k > ki, we have 1 + 23_(1)]{;)71[)2\/—2(1 log(px) > % and

ug(x) > %k\x]_N““ vz € B,, \ {0}. (4.8)

Since N%Oéa <1+ QWO‘, there holds 1 — N(%_QQO{) > 0 and there exists ky > kq

such that

€30, 94  €30,1-—4a _ “6ar -
Tkrk :7]{: N2 (log k) > (Inlnk)»—1

for k > kg. The remaining of the proof is the same as in Proposition 4.2. [J

In the sequel, we point out the fact that the limit behavior of the wuy
depends which of the following three cases holds:

2 2a N

=1 = — 4.9
N -2« * N 2o’ (4.9)
20 2a N
1+ — — 4.1
N — 2« <1+ N < 2a] (4.10)
20 2a N
1+ — — 4.11
N — 2« > N =~ 2 ( )
Proposition 4.4 Assume
2 2
1 <14+ — d 1 4.12
SN-2 Sty e lsPs gy (4.12)
or 5 N
«o o
1+ — d 1 — 4.1
+N<N—2a an <p<2a, (4.13)

and zy is defined by (4.1) with rp, = k~ N-2a (logk)~L. Then there ewists
ko > 2 such that (4.3) holds for k > k.

13



Proof. By (1.9) and Lemma 2.1-(4), there exist pg € (0,d) and c33,c34 > 0
independent of k such that for z € B, \ {0},

uk(x) > 033/{?’1' B — cgq kP
|7N+2a(1 _ cﬁkp71|x|Nf2a)‘

= 033k3|£l7
€33

-1
We choose pp = k& 1\?*2&. Then there exists k1 > 1 such that for & > kq,
1 — @app=lpN=2e > 1 and
€33 -

ug(z) > %mrmm Va € B,, \ {0}. (4.14)

Clearly p < £& by assumptions (4.12), (4.13), together with relations (4.9)(4.10),

(4.11), thus 1 — (p — 1)N2_0‘2a > 0. Therefore there exists ko > k; such that

_1
c‘%gkr,%a = 0373]{:17(;;71)1\,{2& (log k)~2* > (log log k:)P_il =it

for k > kg. The remaining of the proof is similar to the one of Proposition
4.2. O

4.2 The case p € (1,14 %]

We give below the proof, in two steps, of Theorem 1.1 part (i) with p €
(1,1 + 22] and Theorem 1.2 part (i) with p € (1, 22].

Step 1: We claim that us, = 00 in By. We observe that for NQ:XQQ <1+ ZWO‘,
Propositions 4.2, 4.3, 4.4 cover the case p € (max{1, %}, 1+ QWO‘), the case
1< N2_0‘2a <1+ QWO‘ along with p = N2_0‘2a and the case 1 < N2_°‘2a <1+ %a
along with p € (1, %) respectively. For NQ:XQQ =1+ ZWO‘, Proposition 4.3,
4.4 cover the case p = N2_0‘2a and the case p € (1, N%O‘Qa) respectively. So
it covers p € (1,1 + 22] in Theorem 1.1 part (i). When 2% > 1+ 22,

N
) 2«

Proposition 4.4 covers p € (1,5-) in Theorem 1.2 part (7). Therefore, we

have )
Uoo > cg’?zk in By
1
and since for any z € By \ {0}, limg_ o0 cé’? 2k () = oo, we deive
U = 00 In By

Step 2: We claim that us = 0o in . By the fact of u, = oo in By and
Ug4+1 > Uk in €2, then for any n > 1 there exists k, > 0 such that u;, > n
in By. For any zo € 2\ By, there exists p > 0 such that B,(zg) C 2N Bg/z-
We denote by w,, the solution of

(=A)*u+u” =0 in Bj(xo)
u=0 in Bj(zo) \ By (4.15)

u=mn in Bgyps.
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Then by Theorem 2.1, we have
Uk, = W, (4.16)
Let 71 be the solution of
(—A)*u=1 in Bj(xo)
u=0 in Bf(zo),
and v, = w, — NX By then v, = w, in B,(xp) and
(=A)%vn(z) +op(z) = (=A)%wn(z) —n(=A)%XB,,(z) + w}(z)

dy
= n — 2 Vze B,(x).
/Bd/2 ly — [N ’

This means that v, is a solution of

dy
|y — x|NF2e

(=A% + uP = n/

Bg/2
u=0 in  By(zo).

in By(ao), (4.17)

It is clear that

1 / dy
— < —————— < cC35 V:CEB(xo)
cs5 ~ Jpyy, Iy — 2|V T2 P

1
for some c35 > 1. Furhermore (5—==-)?m is sub solution of (4.17) for n
large enough. Then using Theorem 2.1, we obtain that

n 1

> (7 €eB ,
Up > (2035 m )P Va »(20)
which implies that
>(— "y \ B
D & .
Wy > (2035 771) 1 x (o)

Then

lim wy,(z9) — oo.
n—o0

Since zg is arbitrary and together with (4.16), it implies that us = oo in €,
which completes the proof. O

4.3 The case of p € (1 + %a, N],Vga)

Proposition 4.5 Let a € (0,1) and ro = dist(0,09). Then
(i) if max{1+ 2%, 2%-} < p < p},, there ezist Ry € (0,79) and c35 > 0 such
that

Uoo() > c3glz| 7T Va € Bp, \ {0}, (4.18)
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(i) if 72%= > 1+ 22 and p = 2%, there exist Ry € (0,1¢) and cs7 > 0

N—2«a
such that
_ p(N=2a)
Uoo () > ST e, VeeBp \ {0},  (4.19)

(1 + [log(||))7=*

(iid) if 355 > 1+ 3 andp € (1+ 3¢, §%%53), there exist Ro € (0,70) and

c3g > 0 such that

pP(N—2«a)

Uoo(T) > e3g|x|” 71 Vz € Bpg, \ {0}. (4.20)

Proof. (i) Using (1.9) and Lemma 2.1(i) with max{1+2%, 22} < p < p,
we see that there exist pg € (0,7¢9) and c39, cq9 > 0 such that

up(z) > caokle| VT2 — cyokP|z| V22w e B\ {0}, (4.21)

Set
Pk = (Q(N*M)p*?a*l C‘l_okpfl)m_ (4.22)
€39
Since (N —2a)(p—1) — 2« < 0, there holds limy_, o, pr = 0. Let kg > 0 such
that pr, < po, then for z € B, \B%k, we have

C4Okp’x‘f(Nf2a)p+2a < c40kp(%)f(Nf2a)p+2a
_ G399, _N42
= ke
< Cﬁk|x|fN+2a
-2
and
_ 1 N-2a—22% 90— 20
k:(g(N—Qa)p—Qa—laﬁ) = I S 2N
€39
1
where c¢q; = (Q(N*%‘)p*%‘*l?Tg)*ﬁz(N*QQ)(Pfl)*Qafl. Combining with
(4.18), we obtain
uk(aj) = C39k|$|_N+2a—C40k‘p|$|_(N_2a)p+2a
> S0y N+20
2
2
> cqplr] T, (4.23)

for x € By, \ By, where cg0 = %039041 is independent of k. By (4.22), we
2

can choose a sequence {k,} C [1,400) such that
1
Pkpsr = 5Pk

16



For any x € B, \ {0}, there exists k,, such that z € By, \ Bew,, then, by
2
(4.23),
2
Ug, () > cqolz| P-T.

Together with ug41 > ug, we derive

_2a
Uso(®) > caol| P, =z € B, \{0}.

(#1) By (1.9) and Lemma 2.1-(ii) with p = 2%, there exist py € (0,79)
and c43, cq4 > 0 such that

wp(2) > crghlal N2 — k| log(al)l, @€ By \ {0} (4.24)
Let {pr} be a sequence of real numbers with value in (0,1) and such that

_ C _
cuk? ! log(50)| = 2o Vi, (4.25)

Then limg_, pr = 0 and there exists kg > 0 such that pg, < pg. Thus, for
any x € B,, \ Bex and k > ko,
2

C _ c _
cazkP|log(|z])] < 044/<:p]10g(p2—k)] = ?kpkNJrZoz < ?k!w\ N+2a

Therefore, assuming always « € B, \ Bex, we derive from (4.25) that
2

__ N-2a
i~y pp N - |~ o

= 1 > C45 )
213 1+ [log(py)] (1 + [ log(|z])|) 71

N—2« 1
where g5 =27 771 (£i-) " 7=1. Consequently
up(z) > caskla| TV — cpakPllog(|2])]
~ p(N—2a)

-1
A P L R (4.26)

2 (1 + log(|z)]) 7T

where cy5 = %043045 is independent of k.

By (4.25), we can choose a sequence k,, € [1,4+00) such that

1
Pkt > 5/0/% )

Then for any = € By, \ {0}, there exists k, such that x € By, \ Bex,. By
2
(4.26) there holds




Together with ug,q1 > ug, we infer

vz € By, \ {0}.

(i) By (1.9) and Lemma 2.1-(iii) with p € (1 + 22, 32%-), there exist
po € (0,79) and cq7, cyg > 0 such that

up () > carkl|z| TN T2 — cygkP Va € By, \ {0} (4.27)
Put c )
pr = (kP s, (4.28)
2¢y7

then limy_,~ pr = 0 and there exists kg > 0 such that p, < pg. Therefore,
if x € By, \ Bex and k > kg, there holds
2

cagk? = %/WI;NH& < %km—NHa’
which yields -
= %)Pllpkp_la > C49|$|7NP:21Q,
by (4.28), where c49 = 27%(2064_487)*7;. Consequently,
wp(@) > carkla|TNT2 —cugkP > %km_N“a
> egola TV (4.29)

where c59 = %047049 is independent of k.
By (4.28), we can choose a sequence k,, € [1,+00) such that

1
Phpsr = 5 Pkn
Then for any z € B, \ {0}, there exists k;, such that x € By, \ Br, and
2
then by (4.29),

_ p(N—2«a)
Uk, (T) > csolz| T

Together with ugq > uy, we have

_p(N—-2a)
Uso(T) > c50lz|” P71 Vz € By, \ {0},

which ends the proof. O
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Lemma 4.2 Letp € (1 + QWO‘,pZ) and ug be a strongly singular solution of
(1.4) satisfying (1.5). Then

Uso <us in Q\ {0}, (4.30)
where us is defined by (1.13).

Proof. By (1.5) and (1.9), it follows
gl;_)rrbus\x]% =¢y and glcgr%uk\x]Nfza = ¢,
which implies that there exists ;1 > 0 such that
up <wus in By \ {0}
Since by Theorem 3.1, uy, satisfies
(=A)*up+up, =0 in Q\ B, (0),

so does us. By Theorem 2.1 there holds u; < us in '\ {0}. Jointly with
(1.13), it implies
Uso <us in 0\ {0}

O

Proof of Theorem 1.1 (ii) and Theorem 1.2 (iv). By Lemma 4.2 and
Theorem 3.2, we obtain that us is a classical solution of (1.4). Moreover,
by Proposition 4.5 part (i) and Lemma 4.2, we have

1 _ 2 _ 2
— 2| Pt S uso(x) < csifw| P,
C51
for some ¢51 > 1. Then us = u,s in R\ {0} since ug is unique in the class
of solutions satisfying (1.6). O
4.4 Proof of Theorem 1.2 (ii) and (i)

By Lemma 4.2 and Theorem 3.2, u, is a classical solution of (1.4) and it
satisfies
Uso <us in O\ {0}

Therefore (1.16) and (1.15) follow by Proposition 4.5 part (i) and (ii7),
respectively.
(]
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