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Abstract

Let p ∈ (0, N
N−2α

), α ∈ (0, 1) and Ω ⊂ RN be a bounded C2 domain
containing 0. If δ0 is the Dirac measure at 0 and k > 0, we prove that
the weakly singular solution uk of (Ek) (−∆)αu+up = kδ0 in Ω which
vanishes in Ωc, is a classical solution of (E∗) (−∆)αu+up = 0 in Ω\{0}
with the same outer data. When 2α

N−2α
≤ 1 + 2α

N
, p ∈ (0, 1 + 2α

N
] we

show that the uk converges to ∞ in whole Ω when k → ∞, while, for
p ∈ (1 + 2α

N
, N
N−2α

), the limit of the uk is a strongly singular solution

of (E∗). The same result holds in the case 1 + 2α
N

< 2α
N−2α

excepted if
2α
N

< p < 1 + 2α
N
.
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1 Introduction

Let Ω be a bounded C2 domain of RN (N ≥ 2) containing 0, α ∈ (0, 1) and
let δ0 denote the Dirac measure at 0. In this paper, we study the properties
of the weak solution to problem

(−∆)αu+ up = kδ0 in Ω

u = 0 in Ωc,
(1.1)

where k > 0 and p ∈ (0, N
N−2α ) and (−∆)α is the α-fractional Laplacian

defined by
(−∆)αu(x) = lim

ǫ→0+
(−∆)αǫ u(x),

where for ǫ > 0,

(−∆)αǫ u(x) = −

∫

RN

u(z)− u(x)

|z − x|N+2α
χǫ(|x− z|)dz

and

χǫ(t) =

{

0, if t ∈ [0, ǫ]

1, if t > ǫ.

In 1980, Benilan and Brezis (see [2, 1]) studied the case α = 1 in equation
(1.1) and proved in particular that equation

−∆u+ uq = kδ0 in Ω

u = 0 on ∂Ω
(1.2)

admits a unique solution uk for 1 < q < N/(N − 2), while no solution exists
when q ≥ N/(N − 2). Soon after, Brezis and Véron [3] proved that the
problem

−∆u+ uq = 0 in Ω \ {0}

u = 0 on ∂Ω
(1.3)

admits only the zero solution when q ≥ N/(N − 2). When 1 < q < N/(N −
2), Véron in [13] obtained the description of the all the possible singular
behaviour of the positive solutions of (1.3). In particular he proved that
this behaviour is always isotropic (when (N + 1)/(N − 1) ≤ q < N/(N − 2)
the assumption of positivity is unnecessary) and that two types of singular
behaviour occur:
(i) either u(x) ∼ cNk|x|2−N when x → 0 and k can take any positive value;
u is said to have a weak singularity at 0, and actually u = uk.

(ii) or u(x) ∼ cN,q|x|
− 2

q−1 when x → 0 and u has a strong singularity at 0,
and u = u∞ := limk→∞ uk.

A large series of papers has been devoted to the extension of semilinear
problems involving the Laplacian to problems where the diffusion operator
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is non-local, the most classical one being the fractional Laplacian, see e.g.
[4, 5, 9, 10, 11]. In a recent work, Chen and Véron [7] considered the problem

(−∆)αu+ up = 0 in Ω \ {0}

u = 0 in Ωc,
(1.4)

where 1 + 2α
N < p < p∗α := N

N−2α . They proved that (1.4) admits a singular
solution us which satisfies

lim
x→0

us(x)|x|
2α
p−1 = c0, (1.5)

for some c0 > 0. Moreover us is the unique positive solution of (1.4) such
that

0 < lim inf
x→0

u(x)|x|
2α
p−1 ≤ lim sup

x→0
u(x)|x|

2α
p−1 < ∞. (1.6)

In this article we will call weakly singular solution a solution u of (1.4)
which satisfies lim supx→0 |u(x)||x|

N−2α < ∞ and strongly singular solution
if limx→0 |u(x)||x|

N−2α = ∞.
The existence of solutions of (1.1) is a particular case of the more general

problem
(−∆)αu+ g(u) = ν in Ω

u = 0 in Ωc
(1.7)

which has been study by Chen and Véron in [8] under the assumption that g
is a subcritical nonlinearity, ν being a positive and bounded Radon measure
in Ω.

Definition 1.1 A function u belonging to L1(Ω) is a weak solution of (1.7)
if g(u) ∈ L1(Ω, ραdx) and

∫

Ω
[u(−∆)αξ + g(u)ξ]dx =

∫

Ω
ξdν ∀ξ ∈ Xα, (1.8)

where ρ(x) := dist(x,Ωc) and Xα ⊂ C(RN) is the space of functions ξ
satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ c1 for some c1 > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ǫ0 > 0 such that |(−∆)αǫ ξ| ≤ ϕ a.e. in
Ω, for all ǫ ∈ (0, ǫ0].

According to Theorem 1.1 in [8], problem (1.1) admits a unique weak
solution uk, moreover,

Gα[kδ0]−Gα[(Gα[kδ0])
p] ≤ uk ≤ Gα[kδ0] in Ω, (1.9)
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where Gα[·] is the Green operator defined by

Gα[ν](x) =

∫

Ω
Gα(x, y)dν(y), ∀ ν ∈ M(Ω, ρα), (1.10)

with Gα is the Green kernel of (−∆)α in Ω and M(Ω, ρα) denotes the space
of Radon measures in Ω such that

∫

Ω ραd | ν |< ∞. By (1.9),

lim
x→0

uk(x)|x|
N−2α = cα,Nk. (1.11)

for some cα,N > 0. From Theorem 1.1 in [8], there holds

uk(x) ≤ uk+1(x), ∀x ∈ Ω; (1.12)

then there exists

u∞(x) = lim
k→∞

uk(x) ∀x ∈ R
N \ {0}, (1.13)

and u∞(x) ∈ R+ ∪ {+∞}.
Motivated by these results and in view of the nonlocal character of the

fractional Laplacian, in this article we analyse the connection between the
solutions of (1.1) and the ones of (1.4). Our main result is the following

Theorem 1.1 Assume that 1 + 2α
N ≥ 2α

N−2α and p ∈ (0, p∗α). Then uk is a
classical solution of (1.4). Furthermore,
(i) if p ∈ (0, 1 + 2α

N ),
u∞(x) = ∞ ∀x ∈ Ω; (1.14)

(ii) if p ∈ (1 + 2α
N , p∗α),

u∞ = us,

where us is the solution of (1.4) satisfying (1.5).
Moreover, if 1 + 2α

N = 2α
N−2α , (1.14) holds for p = 1 + 2α

N .

The result of part (i) indicates that even if the absorption is superlinear,
the diffusion dominates and there is no strongly singular solution to problem
(1.4). On the contrary, part (ii) points out that the absorption dominates
the diffusion; the limit function us is the least strongly singular solution of
(1.4). Comparing Theorem 1.1 with the results for Laplacian case, part (i)
with p ∈ (0, 1] and (ii) are similar as the Laplacian case, but part (i) with
p ∈ (1, 1+ 2α

N ] is totally different from the one in the case α = 1. This striking
phenomenon comes comes from the fact that the fractional Laplacian is a
nonlocal operator, which requires the solution to belong to L1(Ω), therefore
no local barrier can be constructed if p is too close to 1.

At end, we consider the case where 1 + 2α
N < 2α

N−2α . It occurs when

N = 2 and
√
5−1
2 < α < 1 or N = 3 and 3(

√
5−1)
4 < α < 1. In this situation,

we have the following results.
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Theorem 1.2 Assume that 1 + 2α
N < 2α

N−2α and p ∈ (0, p∗α). Then uk is a
classical solution of (1.4). Furthermore,
(i) if p ∈ (0, N

2α), then

u∞(x) = ∞ ∀x ∈ Ω;

(ii) if p ∈ (1 + 2α
N , 2α

N−2α ), then u∞ is a classical solution of (1.4) and there
exist ρ0 > 0 and c2 > 0 such that

c2|x|
− (N−2α)p

p−1 ≤ u∞ ≤ us ∀x ∈ Bρ0 \ {0}; (1.15)

(iii) if p = 2α
N−2α , then u∞ is a classical solution of (1.4) and there exist

ρ0 > 0 and c3 > 0 such that

c3
|x|

− (N−2α)p
p−1

(1 + | log(|x|)|)
1

p−1

≤ u∞ ≤ us ∀x ∈ Bρ0 \ {0}; (1.16)

(iv) if p ∈ ( 2α
N−2α , p

∗
α), then

u∞ = us.

We remark that N
2α < 1 + 2α

N if 1 + 2α
N < 2α

N−2α . Therefore Theorem 1.2
does not provide any description of u∞ in the region

U :=
{

(α, p) ∈ (0, 1) × (1, N
N−2) :

N
2α < 1 + 2α

N , N
2α < p < 1 + 2α

N

}

.

Furthermore, in parts (ii) and (iii), we do not obtain that u∞ = us, since
(1.15) and (1.16) do not provide sharp estimates on u∞ in order it to belong
to the uniqueness class characterized by (1.6).

The paper is organized as follows. In Section 2, we present some some
estimates for the Green kernel and comparison principles. In Section 3, we
prove that the weak solution of (1.1) is a classical solution of (1.4). Section
4 is devoted to analyze the limit of weakly singular solutions as k → ∞.

2 Preliminaries

The purpose of this section is to recall some known results. We denote by
Br(x) the ball centered at x with radius r and Br := Br(0).

Lemma 2.1 Assume that 0 < p < p∗α, then there exists c4, c5, c6 > 1 such
that
(i) if p ∈ (0, 2α

N−2α),

1

c4
≤ Gα[(Gα[δ0])

p] ≤ c4 in Br \ {0};
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(ii) if p = 2α
N−2α ,

−
1

c5
ln |x| ≤ Gα[(Gα[δ0])

p] ≤ −c5 ln |x| in Br \ {0};

(iii) if p ∈ ( 2α
N−2α , p

∗
α),

1

c6
|x|2α−(N−2α)p ≤ Gα[(Gα[δ0])

p] ≤ c6|x|
2α−(N−2α)p in Br \ {0},

where r = 1
4 min{1, dist(0, ∂Ω)} and Gα is defined by (1.9).

Proof. The proof follows easily from Chen-Song’s estimates of Green func-
tions [9], see [6, Theorem 5.2] for a detailled computation. �

Theorem 2.1 Assume that O is a bounded domain of RN and u1, u2 are
continuous in Ō and satisfy

(−∆)αu+ up = 0 in O.

Moreover, we assume that u1 ≥ u2 in Oc. Then,

(i) either u1 > u2 in O,

(ii) or u1 ≡ u2 a.e. in R
N .

Proof. The proof refers to [5, Theorem 2.3] (see also [4, Theorem 5.2]). �

The following stability result is proved in [5, Theorem 2.2].

Theorem 2.2 Suppose that O is a bounded C2 domain and h : R → R is
continuous. Assume {un} is a sequence of functions, uniformly bounded in
L1(Oc, dy

1+|y|N+2α ), satisfying

(−∆)αun + h(un) ≥ fn (resp (−∆)αun + h(un) ≤ fn ) in O

in the viscosity sense, where the fn are continuous in O. If there holds
(i) un → u locally uniformly in O,
(ii) un → u in L1(RN , dy

1+|y|N+2α ),

(iii) fn → f locally uniformly in O,

then
(−∆)αu+ h(u) ≥ f (resp (−∆)αu+ h(u) ≤ f ) in O

in the viscosity sense.
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3 Regularity

In this section, we prove that any weak solution of (1.1) is a classical solution
of (1.4). To this end, we introduce some auxiliary lemma.

Lemma 3.1 Assume that w ∈ C2α+ǫ(B̄1) with ǫ > 0 satisfies

(−∆)αw = h in B1,

where h ∈ C1(B̄1). Then for β ∈ (0, 2α), there exists c7 > 0 such that

‖w‖Cβ(B̄1/4)
≤ c7(‖w‖L∞(B1)+‖h‖L∞(B1)+‖(1+ | · |)−N−2αw‖L1(RN )). (3.1)

Proof. Let η : RN → [0, 1] be a C∞ function such that

η = 1 in B 3
4

and η = 0 in Bc
1.

We denote v = wη, then v ∈ C2α+ǫ(RN ) and for x ∈ B 1
2
, ǫ ∈ (0, 14),

(−∆)αǫ v(x) = −

∫

RN\Bǫ

v(x+ y)− v(x)

|y|N+2α
dy

= (−∆)αǫ w(x) +

∫

RN\Bǫ

(1− η(x+ y))w(x + y)

|y|N+2α
dy.

Together with the fact of η(x+ y) = 1 for y ∈ Bǫ, we have

∫

RN\Bǫ

(1− η(x+ y))w(x+ y)

|y|N+2α
dy =

∫

RN

(1− η(x+ y))w(x + y)

|y|N+2α
dy =: h1(x),

thus,
(−∆)αv = h+ h1 in B 1

2
.

For x ∈ B 1
2
and z ∈ R

N \B 3
4
, there holds

|z − x| ≥ |z| − |x| ≥ |z| −
1

2
≥

1

16
(1 + |z|)

which implies

|h1(x)| =|

∫

RN

(1− η(z))w(z)

|z − x|N+2α
dz | ≤

∫

RN\B 3
4

|w(z)|

|z − x|N+2α
dz

≤ 16N+2α

∫

RN

|w(z)|

(1 + |z|)N+2α
dz

= 16N+2α‖(1 + | · |)−N−2αw‖L1(RN ).

7



By [11, Proposition 2.1.9], for β ∈ (0, 2α), there exists c8 > 0 such that

‖v‖Cβ (B̄1/4)
≤ c8(‖v‖L∞(RN ) + ‖h+ h1‖L∞(B1/2))

≤ c8(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖h1‖L∞(B1/2))

≤ c9(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖(1 + | · |)−N−2αw‖L1(RN )),

where c9 = 16N+2αc8. Combining with w = v in B 3
4
, we obtain (3.1). �

Theorem 3.1 Let α ∈ (0, 1) and 0 < p < p∗α, then the weak solution of
(1.1) is a classical solution of (1.4).

Proof. Let uk be the weak solution of (1.1). By [8, Theorem 1.1], we have

0 ≤ uk = Gα[kδ0]−Gα[u
p
k] ≤ Gα[kδ0]. (3.2)

We observe that Gα[kδ0] = kGα[δ0] = kGα(·, 0) is C
2
loc(Ω \ {0}). Denote by

O an open set satisfying Ō ⊂ Ω \Br with r > 0. Then Gα[kδ0] is uniformly
bounded in Ω \Br/2, so is upk by (3.2).

Let {gn} be a sequence nonnegative functions in C∞
0 (RN ) such that

gn → δ0 in the weak sense of measures and let wn be the solution of

(−∆)αu+ up = kgn in Ω

u = 0 in Ωc.
(3.3)

From [8], we obtain that

uk = lim
n→∞

wn a.e. in Ω. (3.4)

We observe that 0 ≤ wn = Gα[kgn] − Gα[w
p
n] ≤ kGα[gn] and Gα[gn] con-

verges to Gα[δ0] uniformly in any compact set of Ω \{0} and in L1(Ω); then
there exists c10 > 0 independent of n such that

‖wn‖L∞(Ω\Br/2) ≤ c10k and ‖wn‖L1(Ω) ≤ c10k.

By [10, Corollary 2.4] and Lemma 3.1, there exist ǫ > 0, β ∈ (0, 2α) and
positive constants c11, c12, c13 > 0 independent of n and k, such that

‖wn‖C2α+ǫ(O) ≤ c11(‖wn‖
p
L∞(Ω\B r

2
) + ‖kgn‖L∞(Ω\B r

2
) + ‖wn‖Cβ(Ω\B 3r

4
))

≤ c12(‖wn‖
p
L∞(Ω\B r

2
) + ‖wn‖L∞(Ω\B r

2
) + ‖kgn‖L∞(Ω\B r

2
) + ‖wn‖L1(Ω))

≤ c13(k + kp).

Therefore, together with (3.4) and the Arzela-Ascoli Theorem, it follows
that uk ∈ C2α+ ǫ

2 (O). This implies that uk is C2α+ ǫ
2 locally in Ω \ {0}.

Therefore, wn → uk and gn → 0 uniformly in any compact subset of Ω \ {0}
as n → ∞. We conclude that uk is a classical solution of (1.4) by Theorem
2.2. �
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Corollary 3.1 Let uk be the weak solution of (1.1) and O be an open set
satisfying Ō ⊂ Ω \ Br with r > 0. Then there exist ǫ > 0 and c14 > 0
independent of k such that

‖uk‖C2α+ǫ(O) ≤ c14(‖uk‖
p
L∞(Ω\B r

2
) + ‖uk‖L∞(Ω\B r

2
) + ‖uk‖L1(Ω)). (3.5)

Proof. By Theorem 3.1, uk is a solution of (1.4). Then the result follows
from [10, Corollary 2.4] and Lemma 3.1 since there exist ǫ > 0, β ∈ (0, 2α)
and constants c15, c16 > 0, independent of k, such that

‖uk‖C2α+ǫ(O) ≤ c15(‖uk‖
p
L∞(Ω\B r

2
) + ‖uk‖Cβ(Ω\B 3r

4
))

≤ c16(‖uk‖
p
L∞(Ω\B r

2
) + ‖uk‖L∞(Ω\B r

2
) + ‖uk‖L1(Ω)).

�

Theorem 3.2 Assume that the weak solutions uk of (1.1) satisfy

‖uk‖L1(Ω) ≤ c17 (3.6)

for some c17 > 0 independent of k and that for any r ∈ (0, dist(0, ∂Ω)),
there exists c18 > 0 independent of k such that

‖uk‖L∞(Ω\B r
2
) ≤ c18. (3.7)

Then u∞ is a classical solution of (1.4).

Proof. Let O be an open set satisfying Ō ⊂ Ω \Br for 0 < r < dist(0, ∂Ω).
By (3.5), (3.6) and (3.7), there exist ǫ > 0 and c19 > 0 independent of k
such that

‖uk‖C2α+ǫ(O) ≤ c19.

Together with (1.13) and the Arzela-Ascoli Theorem, it implies that u∞
belongs to C2α+ ǫ

2 (O). Hence u∞ is C2α+ ǫ
2 , locally in Ω \ {0}. Therefore,

wn → uk and gn → 0 uniformly in any compact set of Ω \ {0} as n → ∞.
Applying Theorem 2.2 we conclude that u∞ is a classical solution of (1.4).
�

4 The limit of weakly singular solutions

We recall that uk denotes the weak solution of (1.1) and d = min{1, dist(0, ∂Ω)}.
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4.1 The case p ∈ (0, 1 + 2α
N
]

Proposition 4.1 Let p ∈ (0, 1], then limk→∞ uk(x) = ∞ for x ∈ Ω.

Proof. We observe that Gα[δ0],Gα[(Gα[δ0])
p] > 0 in Ω. Since by (1.9)

uk ≥ kGα[δ0]− kpGα[(Gα[δ0])
p],

this implies the claim when p ∈ (0, 1), for any x ∈ Ω. For p = 1, uk = ku1.
The proof follows since u1 > 0 in Ω. �

Now we consider the case of p ∈ (1, 1+ 2α
N ]. Let {rk} ⊂ (0, d2 ] be a strictly

decreasing sequence of numbers satisfying limk→∞ rk = 0. Denote by {zk}
the sequence of functions defined by

zk(x) =

{

−d−N , x ∈ Brk

|x|−N − d−N , x ∈ Bc
rk
.

(4.1)

Lemma 4.1 Let {ρk} be a strictly decreasing sequence of numbers such that
rk
ρk

< 1
2 and limk→∞

rk
ρk

= 0. Then

(−∆)αzk(x) ≤ −c1,k|x|
−N−2α, x ∈ Bc

ρk

where c1,k = −c20 log(
rk
ρk
) with c20 > 0 independent of k.

Proof. For any x ∈ Bc
ρk
, there holds

(−∆)αzk(x) = −
1

2

∫

RN

zk(x+ y) + zk(x− y)− 2zk(x)

|y|N+2α
dy

= −
1

2

∫

RN

|x+ y|−NχBc
rk

(−x)(y) + |x− y|−NχBc
rk

(x)(y)− 2|x|−N

|y|N+2α
dy

= −
1

2
|x|−N−2α

∫

RN

δ(x, z, rk)

|z|N+2α
dz,

where δ(x, z, rk) = |z + ex|
−NχBc

rk
|x|

(−ex)(z) + |z − ex|
−NχBc

rk
|x|

(ex)(z)− 2 and

ex = x
|x| .

We observe that rk
|x| ≤

rk
ρk

< 1
2 and |z ± ex| ≥ 1 − |z| ≥ 1

2 for z ∈ B 1
2
.

Then there exists c21 > 0 such that

|δ(x, z, rk)| = ||z + ex|
−N + |z − ex|

−N − 2| ≤ c21|z|
2.

Therefore,

|

∫

B 1
2
(0)

δ(x, z, rk)

|z|N+2α
dz| ≤

∫

B 1
2
(0)

|δ(x, z, rk)|

|z|N+2α
dz

≤ c21

∫

B 1
2
(0)

|z|2−N−2αdz ≤ c22,

10



where c22 > 0 is independent of k.
When z ∈ B 1

2
(−ex) there holds

∫

B 1
2
(−ex)

δ(x, z, rk)

|z|N+2α
dz ≥

∫

Bc
1
2

(−ex)

|z + ex|
−NχB rk

|x|
(−ex)(z)− 2

|z|N+2α
dz

≥ c23

∫

B 1
2
(0)\B rk

|x|
(0)

(|z|−N − 2)dz

≥ −c24 log(
rk
|x|

) ≥ −c24 log(
rk
ρk

),

where c23, c24 > 0 are independent of k.
For z ∈ B 1

2
(ex), we have

∫

B 1
2
(ex)

δ(x, z, rk)

|z|N+2α
dz =

∫

B 1
2
(−ex)

δ(x, z, rk)

|z|N+2α
dz.

Finally, for z ∈ O := R
N \ (B 1

2
(0) ∪B 1

2
(−ex) ∪B 1

2
(ex)), we have

|

∫

O

δ(x, z, rk)

|z|N+2α
dz| ≤ c25

∫

Bc
1
2

(0)

|z|−N + 1

|z|N+2α
dz ≤ c26,

where c25, c26 > 0 are independent of k.
Combining these inequalities we obtain that there exists c20 > 0 independent
of k such that

(−∆)αzk(x)|x|
N+2α ≤ c20 log(

rk
ρk

) := c1,k,

which ends the proof. �

Proposition 4.2 Assume that

2α

N − 2α
< 1 +

2α

N
, max{1,

2α

N − 2α
} < p < 1 +

2α

N
(4.2)

and zk is defined by (4.1) with rk = k
− p−1

N−(N−2α)p (log k)−2. Then there exists
k0 > 0 such that for any k ≥ k0

uk ≥ c
1

p−1

2,k zk in Bd, (4.3)

where c2,k = ln ln k.

11



Proof. For p ∈ (max{1, 2α
N−2α}, 1 + 2α

N ), it follows by (1.9) and Lemma
2.1-(iii) that there exist ρ0 ∈ (0, d) and c27, c28 > 0 independent of k such
that, for x ∈ B̄ρ0 \ {0},

uk(x) ≥ kGα[δ0](x)− kpGα[(Gα[δ0])
p](x)

≥ c27k|x|
−N+2α − c28k

p|x|−(N−2α)p+2α

= c27k|x|
−N+2α(1−

c28
c27

kp−1|x|N−(N−2α)p).

We choose
ρk = k

− p−1
N−(N−2α)p (log k)−1. (4.4)

There exits k1 > 1 such that for k ≥ k1

uk(x) ≥ c27k|x|
−N+2α(1−

c28
c27

kp−1ρ
N−(N−2α)p
k )

≥
c27
2
k|x|−N+2α, x ∈ B̄ρk \ {0}. (4.5)

Since p < 1 + 2α
N , 1− 2α(p−1)

N−(N−2α)p > 0 and there exists k0 ≥ k1 such that

c27
2
kr2αk ≥ (ln ln k)

1
p−1 , (4.6)

for k ≥ k0. This implies

c27
2
k|x|2α ≥ (ln ln k)

1
p−1 , x ∈ B̄ρk \Brk .

Together with (4.1) and (4.5), we derive

uk(x) ≥ (ln ln k)
1

p−1 zk(x), x ∈ B̄ρk \Brk ,

for k ≥ k0. Furthermore, it is clear that

(ln ln k)
1

p−1 zk(x) ≤ 0 ≤ uk(x)

whenever x ∈ Brk or x ∈ Bc
d. Set c2,k = ln ln k, then by Lemma 4.1

(−∆)αc
1

p−1

2,k zk(x) + c
p

p−1

2,k zk(x)
p ≤ c

p
p−1

2,k |x|−N−2α(−1 + |x|N+2α−Np) ≤ 0,

for any x ∈ Bd \Bρk , since N +2α−Np ≥ 0 and d ≤ 1. Applying Theorem
2.1, we infer that

c
1

p−1

2,k zk(x) ≤ uk(x) ∀x ∈ B̄d,

which ends the proof. �
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Proposition 4.3 Assume

1 <
2α

N − 2α
≤ 1 +

2α

N
and p =

2α

N − 2α
(4.7)

and let zk be defined by (4.1) with rk = k
− 2α

N(N−2α) (log k)−3 and k > 2. Then
there exists k0 > 2 such that (4.3) holds for k ≥ k0.

Proof. By (1.9) and Lemma 2.1-(ii), there exist ρ0 ∈ (0, d) and c30, c31 > 0
independent of k, such that for x ∈ B̄ρ0 \ {0}

uk(x) ≥ c30k|x|
−N+2α + c31k

p log |x|

= c30k|x|
−N+2α(1 +

c31
c30

kp−1|x|N−2α log |x|).

If we choose ρk = k
− 2α

N(N−2α) (log k)−2 there exists k1 > 1 such that for
k ≥ k1, we have 1 + c31

c30
kp−1ρN−2α

k log(ρk) ≥
1
2 and

uk(x) ≥
c30
2
k|x|−N+2α ∀x ∈ B̄ρk \ {0}. (4.8)

Since 2α
N−2α < 1 + 2α

N , there holds 1− 4α2

N(N−2α) > 0 and there exists k0 ≥ k1
such that

c30
2
kr2αk =

c30
2
k
1− 4α2

N(N−2α) (log k)−6α ≥ (ln ln k)
1

p−1

for k ≥ k0. The remaining of the proof is the same as in Proposition 4.2. �

In the sequel, we point out the fact that the limit behavior of the uk
depends which of the following three cases holds:

2α

N − 2α
= 1 +

2α

N
=

N

2α
; (4.9)

2α

N − 2α
< 1 +

2α

N
<

N

2α
; (4.10)

2α

N − 2α
> 1 +

2α

N
>

N

2α
. (4.11)

Proposition 4.4 Assume

1 <
2α

N − 2α
≤ 1 +

2α

N
and 1 < p <

2α

N − 2α
, (4.12)

or

1 +
2α

N
<

2α

N − 2α
and 1 < p <

N

2α
, (4.13)

and zk is defined by (4.1) with rk = k−
p−1

N−2α (log k)−1. Then there exists
k0 > 2 such that (4.3) holds for k ≥ k0.

13



Proof. By (1.9) and Lemma 2.1-(i), there exist ρ0 ∈ (0, d) and c33, c34 > 0
independent of k such that for x ∈ B̄ρ0 \ {0},

uk(x) ≥ c33k|x|
−N+2α − c34k

p

= c33k|x|
−N+2α(1−

c34
c33

kp−1|x|N−2α).

We choose ρk = k−
p−1

N−2α . Then there exists k1 > 1 such that for k ≥ k1,
1− c34

c33
kp−1ρN−2α

k ≥ 1
2 and

uk(x) ≥
c33
2
k|x|−N+2α ∀x ∈ B̄ρk \ {0}. (4.14)

Clearly p < N
2α by assumptions (4.12), (4.13), together with relations (4.9)(4.10),

(4.11), thus 1− (p − 1) 2α
N−2α > 0. Therefore there exists k0 ≥ k1 such that

c33
2
kr2αk =

c33
2
k1−(p−1) 2α

N−2α (log k)−2α ≥ (log log k)
1

p−1 = c
1

p−1

2,k

for k ≥ k0. The remaining of the proof is similar to the one of Proposition
4.2. �

4.2 The case p ∈ (1, 1 + 2α
N
]

We give below the proof, in two steps, of Theorem 1.1 part (i) with p ∈
(1, 1 + 2α

N ] and Theorem 1.2 part (i) with p ∈ (1, 2αN ].

Step 1: We claim that u∞ = ∞ in Bd. We observe that for 2α
N−2α < 1+ 2α

N ,

Propositions 4.2, 4.3, 4.4 cover the case p ∈ (max{1, 2α
N−2α}, 1+

2α
N ), the case

1 < 2α
N−2α < 1 + 2α

N along with p = 2α
N−2α and the case 1 < 2α

N−2α < 1 + 2α
N

along with p ∈ (1, 2α
N−2α) respectively. For 2α

N−2α = 1 + 2α
N , Proposition 4.3,

4.4 cover the case p = 2α
N−2α and the case p ∈ (1, 2α

N−2α ) respectively. So

it covers p ∈ (1, 1 + 2α
N ] in Theorem 1.1 part (i). When 2α

N−2α > 1 + 2α
N ,

Proposition 4.4 covers p ∈ (1, N
2α ) in Theorem 1.2 part (i). Therefore, we

have

u∞ ≥ c
1

p−1

2,k zk in Bd

and since for any x ∈ Bd \ {0}, limk→∞ c
1

p−1

2,k zk(x) = ∞, we deive

u∞ = ∞ in Bd.

Step 2: We claim that u∞ = ∞ in Ω. By the fact of u∞ = ∞ in Bd and
uk+1 ≥ uk in Ω, then for any n > 1 there exists kn > 0 such that ukn ≥ n
in Bd. For any x0 ∈ Ω \Bd, there exists ρ > 0 such that B̄ρ(x0) ⊂ Ω∩Bc

d/2.
We denote by wn the solution of

(−∆)αu+ up = 0 in Bρ(x0)

u = 0 in Bc
ρ(x0) \Bd/2

u = n in Bd/2.

(4.15)

14



Then by Theorem 2.1, we have

ukn ≥ wn. (4.16)

Let η1 be the solution of

(−∆)αu = 1 in Bρ(x0)

u = 0 in Bc
ρ(x0),

and vn = wn − nχBd/2
, then vn = wn in Bρ(x0) and

(−∆)αvn(x) + vpn(x) = (−∆)αwn(x)− n(−∆)αχBd/2
(x) + wp

n(x)

= n

∫

Bd/2

dy

|y − x|N+2α
∀x ∈ Bρ(x0).

This means that vn is a solution of

(−∆)αu+ up = n

∫

Bd/2

dy

|y − x|N+2α
in Bρ(x0),

u = 0 in Bc
ρ(x0).

(4.17)

It is clear that

1

c35
≤

∫

Bd/2

dy

|y − x|N+2α
≤ c35 ∀x ∈ Bρ(x0)

for some c35 > 1. Furhermore ( n
2c35 max η1

)
1
p η1 is sub solution of (4.17) for n

large enough. Then using Theorem 2.1, we obtain that

vn ≥ (
n

2c35 max η1
)
1
p η1 ∀x ∈ Bρ(x0),

which implies that

wn ≥ (
n

2c35 max η1
)
1
p η1 ∀x ∈ Bρ(x0).

Then
lim
n→∞

wn(x0) → ∞.

Since x0 is arbitrary and together with (4.16), it implies that u∞ = ∞ in Ω,
which completes the proof. �

4.3 The case of p ∈ (1 + 2α
N
, N
N−2α

)

Proposition 4.5 Let α ∈ (0, 1) and r0 = dist(0, ∂Ω). Then
(i) if max{1+ 2α

N , 2α
N−2α} < p < p∗α, there exist R0 ∈ (0, r0) and c36 > 0 such

that
u∞(x) ≥ c36|x|

− 2α
p−1 ∀x ∈ BR0 \ {0}, (4.18)
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(ii) if 2α
N−2α > 1 + 2α

N and p = 2α
N−2α , there exist R0 ∈ (0, r0) and c37 > 0

such that

u∞(x) ≥
c37

(1 + | log(|x|)|)
1

p−1

|x|
− p(N−2α)

p−1 , ∀x ∈ BR0 \ {0}, (4.19)

(iii) if 2α
N−2α > 1 + 2α

N and p ∈ (1 + 2α
N , 2α

N−2α ), there exist R0 ∈ (0, r0) and
c38 > 0 such that

u∞(x) ≥ c38|x|
− p(N−2α)

p−1 ∀x ∈ BR0 \ {0}. (4.20)

Proof. (i) Using (1.9) and Lemma 2.1(i) with max{1+ 2α
N , 2α

N−2α} < p < p∗α,
we see that there exist ρ0 ∈ (0, r0) and c39, c40 > 0 such that

uk(x) ≥ c39k|x|
−N+2α − c40k

p|x|−(N−2α)p+2α ∀x ∈ Bρ0 \ {0}. (4.21)

Set
ρk = (2(N−2α)p−2α−1 c40

c39
kp−1)

1
(N−2α)(p−1)−2α . (4.22)

Since (N −2α)(p−1)−2α < 0, there holds limk→∞ ρk = 0. Let k0 > 0 such
that ρk0 ≤ ρ0, then for x ∈ Bρk \B ρk

2
, we have

c40k
p|x|−(N−2α)p+2α ≤ c40k

p(
ρk
2
)−(N−2α)p+2α

=
c39
2
kρ−N+2α

k

≤
c39
2
k|x|−N+2α

and

k = (2(N−2α)p−2α−1 c40
c39

)
− 1

p−1ρ
N−2α− 2α

p−1

k ≥ c41|x|
N−2α− 2α

p−1 ,

where c41 = (2(N−2α)p−2α−1 c40
c39

)−
1

p−12(N−2α)(p−1)−2α−1. Combining with
(4.18), we obtain

uk(x) = c39k|x|
−N+2α − c40k

p|x|−(N−2α)p+2α

≥
c39
2
k|x|−N+2α

≥ c42|x|
− 2α

p−1 , (4.23)

for x ∈ Bρk \ B ρk
2
, where c42 = 1

2c39c41 is independent of k. By (4.22), we

can choose a sequence {kn} ⊂ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,
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For any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

, then, by

(4.23),

ukn(x) ≥ c42|x|
− 2α

p−1 .

Together with uk+1 > uk, we derive

u∞(x) ≥ c42|x|
− 2α

p−1 , x ∈ Bρk0
\ {0}.

(ii) By (1.9) and Lemma 2.1-(ii) with p = 2α
N−2α , there exist ρ0 ∈ (0, r0)

and c43, c44 > 0 such that

uk(x) ≥ c43k|x|
−N+2α − c44k

p| log(|x|)|, x ∈ Bρ0 \ {0}. (4.24)

Let {ρk} be a sequence of real numbers with value in (0, 1) and such that

c44k
p−1| log(

ρk
2
)| =

c43
2
ρ−N+2α
k . (4.25)

Then limk→∞ ρk = 0 and there exists k0 > 0 such that ρk0 ≤ ρ0. Thus, for
any x ∈ Bρk \B ρk

2
and k ≥ k0,

c43k
p| log(|x|)| ≤ c44k

p| log(
ρk
2
)| =

c43
2
kρ−N+2α

k ≤
c43
2
k|x|−N+2α.

Therefore, assuming always x ∈ Bρk \B ρk
2
, we derive from (4.25) that

k = (
c44
2c43

)
− 1

p−1 (
ρ−N+2α
k

1 + | log(ρk)|
)

1
p−1 ≥ c45

|x|−
N−2α
p−1

(1 + | log(|x|)|)
1

p−1

,

where c45 = 2
−N−2α

p−1 ( c44
2c43

)
− 1

p−1 . Consequently

uk(x) ≥ c43k|x|
−N+2α − c44k

p| log(|x|)|

≥
c43
2
k|x|−N+2α ≥ c46

|x|
− p(N−2α)

p−1

(1 + | log(|x|)|)
1

p−1

, (4.26)

where c46 =
1
2c43c45 is independent of k.

By (4.25), we can choose a sequence kn ∈ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,

Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

. By

(4.26) there holds

ukn(x) ≥ c46
|x|

− p(N−2α)
p−1

(1 + | log(|x|)|)
1

p−1

.
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Together with uk+1 > uk, we infer

u∞(x) ≥ c46
|x|

− p(N−2α)
p−1

(1 + | log(|x|)|)
1

p−1

∀x ∈ Bρk0
\ {0}.

(iii) By (1.9) and Lemma 2.1-(iii) with p ∈ (1 + 2α
N , 2α

N−2α), there exist
ρ0 ∈ (0, r0) and c47, c48 > 0 such that

uk(x) ≥ c47k|x|
−N+2α − c48k

p ∀x ∈ Bρ0 \ {0}. (4.27)

Put
ρk = (

c48
2c47

kp−1)−
1

N−2α , (4.28)

then limk→∞ ρk = 0 and there exists k0 > 0 such that ρk0 ≤ ρ0. Therefore,
if x ∈ Bρk \B ρk

2
and k ≥ k0, there holds

c48k
p =

c47
2
kρ−N+2α

k ≤
c47
2
k|x|−N+2α,

which yields

k = (
c48
2c47

)
− 1

p−1 ρ
−N−2α

p−1

k ≥ c49|x|
−N−2α

p−1 ,

by (4.28), where c49 = 2−
N−2α
p−1 ( c48

2c47
)−

1
p−1 . Consequently,

uk(x) ≥ c47k|x|
−N+2α − c48k

p ≥
c47
2
k|x|−N+2α

≥ c50|x|
− p

p−1
(N−2α), (4.29)

where c50 =
1
2c47c49 is independent of k.

By (4.28), we can choose a sequence kn ∈ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,

Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

and

then by (4.29),

ukn(x) ≥ c50|x|
− p(N−2α)

p−1 .

Together with uk+1 > uk, we have

u∞(x) ≥ c50|x|
− p(N−2α)

p−1 ∀x ∈ Bρk0
\ {0},

which ends the proof. �
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Lemma 4.2 Let p ∈ (1 + 2α
N , p∗α) and us be a strongly singular solution of

(1.4) satisfying (1.5). Then

u∞ ≤ us in Ω \ {0}, (4.30)

where u∞ is defined by (1.13).

Proof. By (1.5) and (1.9), it follows

lim
x→0

us|x|
2α
p−1 = c0 and lim

x→0
uk|x|

N−2α = ck,

which implies that there exists r1 > 0 such that

uk < us in Br1 \ {0}.

Since by Theorem 3.1, uk satisfies

(−∆)αuk + upk = 0 in Ω \Br1(0),

so does us. By Theorem 2.1 there holds uk ≤ us in Ω \ {0}. Jointly with
(1.13), it implies

u∞ ≤ us in Ω \ {0}.

�

Proof of Theorem 1.1 (ii) and Theorem 1.2 (iv). By Lemma 4.2 and
Theorem 3.2, we obtain that u∞ is a classical solution of (1.4). Moreover,
by Proposition 4.5 part (i) and Lemma 4.2, we have

1

c51
|x|−

2α
p−1 ≤ u∞(x) ≤ c51|x|

− 2α
p−1 ,

for some c51 > 1. Then u∞ = us in RN \ {0} since us is unique in the class
of solutions satisfying (1.6). �

4.4 Proof of Theorem 1.2 (ii) and (iii)

By Lemma 4.2 and Theorem 3.2, u∞ is a classical solution of (1.4) and it
satisfies

u∞ ≤ us in Ω \ {0}.

Therefore (1.16) and (1.15) follow by Proposition 4.5 part (ii) and (iii),
respectively.

�
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[13] L. Véron, Singular solutions of some nonlinear elliptic equations, Non-
linear Anal. T. M. & A. 5, 225-242 (1981).
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