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Abstract
If pe (0, +5%=), € (0,1), k>0 and Q C R is a bounded C?

domain contaﬁliﬁg 0 and dg is the Dirac measure at 0, we prove that
the weak solution of (E)i (—A)*u + uP = kdp in © which vanishes in
Q° is a weak singular solution of (F)s (—A)*u+ u? = 0 in Q\ {0}
with the same outer data. Furthermore, we study the limit of weak
solutions of (E)x when k — oo. For p € (0,1+ 22], the limit is infinity

in Q. For p € (1+ 22, <), the limit is a strong singular solution of
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1 Introduction

Let © be an open bounded C? domain of RY (NN > 2) containing 0, a € (0, 1)
and dy denote the Dirac measure at 0. In this paper, we study the properties
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of the weak solution the problem

(—A)*u+uP =kdp in 9,

1.1
u=20 in Q°, (L)

where £ > 0 and p € (0, N%Qa) The operator (—A)® is the fractional
Laplacian defined by

(=A)%u(x) = lim (=A)u(z),

€
e—0t

where for € > 0,

(-a)zute) = [ Ol - 2

0, if te]l0,¢,
Xe(t) = {

and

1, if t>e

In 1980, Benilan and Brezis (see [2, 1]) proved that when for 1 < ¢ <
N/(N — 2), the following equation

—Au+ul=kdyg in €,

1.2
u=20 on Of. (1.2)

admits a unique solution wuy, while no solution exists when ¢ > N/(N — 2).
Soon after, Brezis and Véron [3] proved that the problem

—Au+u?=0 in Q) {0},

1.3
u=0 on JN. (1.3)

admits only the zero solution when ¢ > N/(N—2). When 1 < ¢ < N/(N-2),
Véron obtained in [16] the description of the all the possible singular be-
haviour of positive solutions (1.3). In particular he proved that this be-
haviour is always isotropic (when (N 4+ 1)/(N —1) < ¢ < N/(N — 2) the
assumption of positivity is unnecessary) and that two types of singular be-
haviour occur:
(i) either u(x) ~ cxk|z|>Y when z — 0 and k can take any positive value;
u is said to have a weak singularity at 0, and actually v = wug.
(ii) or u(zx) ~ cN7q]x\7% when z — 0 and u has a strong singularity at 0,
and U = U = limy_yoo Up.

For another interesting contributions to singularity problems see Chen,
Matano and Véron [9], Vazquez and Véron [13, 14] and Véron [17].



In a recent work, Chen and Véron [7] considered the fractional elliptic
problem

—A)u+u? =0 in Q\{0},
(—=4) \ {0} (14)
u=0 in Q°

where 1 + ZWO‘ <p<ph= Nivza' They proved that (1.4) admits a strong

singular solution wus such that

2
lim ug(x)|z|?-1 =c¢ 1.5
2—0 3( )’ ‘ 0 ( )
for some ¢g > 0. Moreover, the strong singular solution us of (1.4) is unique
in the class of solutions satisfying

0< liminfu(x)\x]% < limsupu(x)\x]% < o0. (1.6)
z—0 z—0
Here in the fractional framework, we call u as a weakly singular solution
if limsup,_,q |u(x)||z|Y 2% < oo and u as a strongly singular solution if
lim o [1(z)] 2 ¥~22
More recently, Chen and Véron in [8] studied the existence and unique-
ness of weak solution to problem

= OQ.

(—A)*u+g(u)=v in Q,

1.7
u=0 1in Q° (L.7)

under the hypotheses that g is subcritical integrability and v is a Radon
measure. Here the weak solution is given as following.

Definition 1.1 We say that u is a weak solution of (1.7), if u € L*(Q),
g(u) € LY(Q, p®dx), where p(x) = dist(x,Q°), and

/mem%+¢m@mz/&m vEEX,, (1.8)
Q Q

where X, C C(RN) is the space of functions & satisfying:
(i) supp(§) C ,
(11) (—A)*¢(x) exists for all x € Q and |(—A)*(z)| < ¢1 for some ¢; > 0,

(i) there exist ¢ € LY(Q, p*dx) and ey > 0 such that |(—=A)%€| < ¢ a.e. in
Q, for all € € (0, €o].

For problem (1.7), we consider the simplest case g(s) = s with 0 < p <
p; and v = kdp. According to Theorem 1.1 in [8], problem (1.1) admits a
unique weak solution wuj, moreover,

Galkdo] — Gal(Galkdo))?] < up < Galkdy] in 9, (1.9)



where G, -] is the Green operator defined by

Galv](z) = /QGa(x,y)dy(y), Vv e M, p), (1.10)

with G, is the Green kernel of (—A)® in © and (2, p*) denotes the space
of Radon measures in € such that [, p*d | p |< oo. By (1.9),

lim ug(2)]2|V 2% = co k. (1.11)
z—0

for some ¢, n > 0. Moveover, from Theorem 1.1 in [8], we have that
ugp(z) <wugyi(x), x€9Q, (1.12)
then the limit of ug(x) exists or +00, denoted by us,, that is

Uso(z) = lim uy(z), xRN\ {0}. (1.13)
k—o0
Throughout of this paper, we denote uy is the weak solution of (1.1) and
Uso 1s defined by (1.13).

Motivated by these results and in view of the nonlocal character of the
fractional Laplacian we are interested in considering the connection between
the solutions of (1.1) and the ones of (1.4). Being more precise, our main
theorem states as follows.

Theorem 1.1 Assume that 1 + QWO‘ > NQ:XQQ and p € (0,p}). Then uy is a

classical solution of (1.4). Furthermore,
(i) if pe (0,14 32),
Uso(z) =00, Vz el (1.14)
(i) if p € (1+ 3, p5),
Uco = Us,
where ug s the solution of (1.4) satisfying (1.5).
Moreover, if 1 + QWO‘ = Naoéa, (1.14) holds for p =1+ QWO‘

The result of part (i) indicates that even if the absorption is superlinear,
the diffusion dominates and there is no strongly singular solution to problem
(1.4). On the contrary, part (i7) points out that the absorption dominates
the diffusion; the limit function us is the least strongly singular solution of
(1.4). Comparing Theorem 1.1 with the results for Laplacian case, part (i)
with p € (0,1] and (i7) are similar as the Laplacian case, but part (i) with
p € (1,1 + 29] is totally different from the one in the case o = 1. This
difference comes from the fact that the fractional Laplacian is a nonlocal
operator, which requires the solution to belong to L(Q).

. 2a 2c
At end, we consider the case where 1 + T < x=55.

N:2and@<a<10rN:3and@<a<l. In this situation,
we have the following results.

It occurs when



Theorem 1.2 Assume that 1 + QWO‘ < NQ:XQQ and p € (0,p}). Then uy is a

classical solution of (1.4). Furthermore,
(i) if p € (0,20), then

Uso(z) = 00, Vz el

(i) if p € (1+ 22, 2%, then ux is a classical solution of (1.4) and there
exist pg > 0 and ca > 0 such that

(N—2a)p

colz|” 7T <wue <ug, Vre By \{0}; (1.15)

(i) if p = %=, then un is a classical solution of (1.4) and there exist
po >0 and c3 > 0 such that

’ ‘_(N*2ix)p
=
C3 = —— < Uoo < Us, Vz € By, \ {0}; (1.16)
(1 + [log(|z|)]) 7T

(iv) if p € (%%, P5), then
Uso = Usg.-

In Theorem 1.2 parts (i) and (iii), we do not obtain that us = us, since
(1.15) and (1.16) do not provide sharp estimate on u, in order it to belong
to the uniqueness class characterized by ((1.6)).

The paper is organized as follows. In Section 2, we present some prelim-
inaries such as some estimate for Green kernel and comparison principle. In
Section 3, we prove that the weak solution of (1.1) is a classical solution of
(1.4). Section 4 is devoted to analyze the limit of weakly singular solutions
as k — oo in our theorems.

2 Preliminaries

The purpose of this section is to recall some known results. We denote by
B,.(x) the ball centered at « with radius r and B, := B,(0).

Lemma 2.1 Assume that 0 < p < p}, then there exists c4 > 1 such that
(i) if p € (0, ¥%%).

ég Gol(Galdol/’) < e in B\ {0}

vy . 2
(ZZ) lfp = r%;

—iln\x! < Cul(Caldo])’] < —cstnfz| in B\ {0}:



(it) if p € (5% Pa);
1 .
%\x!m_(]v_m)p < Gal(Galdo])?] < cola*~N 2P i B\ {0},
where r = L min{1, dist(0,0Q)} and G, is defined by (1.9).

Proof. The proof refers to Lemma 5.3 in [6]. O

Theorem 2.1 Assume that O is an open and bounded domain of RN and
w1, ug are continuous in O and satisfy

(—A)*u+uP =0 in O.
Moreover, we assume that u; > ug in O°. Then
up >ug in O

or
U3 =uy a.e. in RY.

Proof. The proof refers to Theorem 2.2 in [5] (see also Theorem 5.2 in [4]).
(]
The following stability result is proved in [5, Th 2.2]

Theorem 2.2 Suppose that O is an open, bounded and C? domain and
h:R — R. Assume that (uy)n, n € N is a sequence of functions, uniformly
bounded in L'(O°, H—ch\l%) and fy, f are continuous in O and that there
holds

(=A)uwy + h(un) > f (resp (~A)*uy + hug) < fu) in O

in the viscosity sense and
(i) un, — u locally uniformly in O,
(ii) wn — w in LNRY, s
(iii) fr, — f locally uniformly in O.
Then
(=A)*u~+ h(u) > f (resp (=A)*u+h(u) < f) nO

in the viscosity sense.



3 Regularity

In this section, we prove that a weak solution of (1.1) is a classical solution
of (1.4). To this end, we introduce some auxiliary lemma.

Lemma 3.1 Assume that w € C?*T¢(By) with € > 0 satisfies
(—A)*w=h in By,
where h € C1(By). Then for B € (0,2q), there exists c; > 0 such that
lwlles () < er(lwllzo sy + Al B + I Q+-D TV w] 1@y (3.1)
Proof. Let n:RY — [0,1] be a C* function such that
n=1 in B% and n=0 in Bf.

We denote v = wn, then v € C2*T¢(RY) and for z € B1, € € (0, 1),
2

vy [ vty @)
(—A)0(z) (@M& P

 CAVu(x [1 —n(@ +y)w(z +y)

— (—A)u >+—/LN\B€ ey,

Together with the fact of n(x +y) =1 for y € B, we have
1—n(z+y)w(z+ 1—n(z+y)|wx+
/ [1 —n(z + y)Juw( y)dy _ / [ —n(z + y)Juw( y)dy (@),
RN\ B, RN

’y‘N—i—Zoz ’y‘N—i—Zoz

thus,
(—A)a?} =h+ h1 n B%

For # € B1 and z € RV \ Bs, we have
2 4

1 1
|z — x| > |z] = |z| > |7 3 > 1_6(1+|Z|)
and then
[1—n(z)w(z) / lw(z)|
@)= [ B, —
R e I B
4

< 16N+2a / |’U)(Z)| d
= v (1 + |22

162 (1 + |- )N 2wl 1 gy

By [12, Proposition 2.1.9], for 5 € (0, 2«), there exists cg > 0 such that

[ollcss, ) < csllvlloe@yy + 1h + PallL (s, ,,))

< es(llwllpeo(my) + 1Ml L) + 1Pl L (B, )
< colllwllze(my) + Ml + 10+ 1- )N %wl| 11 gr)),
where cg = 16V¥+2%¢cg. Combining with w = v in Bs, we obtain (3.1). O
4

7



Theorem 3.1 Let o € (0,1) and 0 < p < p}, then the weak solution of
(1.1) is a classical solution of (1.4).

Proof. Let uj be the weak solution of (1.1). According to [8, Theorem 1.1],
we have

0 < wp = Ga[kdo] — Galu?] < Galkdy]. (3.2)

We observe that G, [kdy] = kGa[do] = kGal(-,0) is C7 (22 \ {0}). Denote by
O an open set satisfying O C Q\ B, with r > 0. Then G,[kdo] is uniformly
bounded in 2\ B, 5, so is u}, by (3.2).

Let {gn} be a sequence nonnegative functions in C§°(RY) such that
gn — 9 in the weak sense of measures and let w,, be the solution of

(=A)*u +uP =kg, in Q,

u=0~0 in €°.

(3.3)

From [8], we obtain that

up = lim w, a.e.in Q. (3.4)
n—o0

We observe that 0 < w, = G4[kgn] — Ga[wh] < kGalgn], Galgn] converges
to Gq[dp] uniformly in any compact set of 2\ {0} and G,[g,] converges to
Ga[do] in L'(£2); then there exists c10 > 0 independent of n such that

[wnllLoo@\B, ) < 1ok and w10y < c1ok.

By [11, Corollary 2.4] and Lemma 3.1, for some € > 0 and g € (0,2«), there
exist constants ci1, ¢12,c13 > 0 independent of n and k, such that

[[wn|c2ate(0) < 011(Hwn|!’£oo(g\3§) + lkgnllz=@\By) + llwnllos@\sy,))
< era(llwnllpo@\py) T lwnlli=@sy) + Ikgnllz=@y) + lwnlle)
< ci3(k + KP).

Therefore, together with (3.4) and Arzela-Ascoli Theorem, we have that
u € C%*F2(0), which implies that uy, is €22 locally in Q\ {0}. Therefore,
wy, — ug and g, — 0 uniformly in any compact subset of Q\ {0} as n — co.
We conclude that wuy is a classical solution of (1.4) by Theorem 2.2. O

Corollary 3.1 Let uy be the weak solution of (1.1) and O be an open set
satisfying O C Q\ B, with r > 0. Then for some € > 0, there exists c14 > 0
independent of k such that

lullcza+eo) < eralllurlio@\my ) + 1urll=@my) + luklze). (3.5)



Proof. By Theorem 3.1, uy is a solution of (1.4). By [11, Corollary 2.4]
and Lemma 3.1, for some ¢ > 0 and 8 € (0,2a), there exist ci5,¢16 > 0,
independent of k, such that

[urllcza+e0) < 015(\\%”2@(9\3%)+HukHcﬂ(Q\B%))

< ClGH“kleoo(Q\B%) + HukHLw(Q\B%) + llukllrr@)-
]
Theorem 3.2 Assume that the weak solution uy of (1.1) satisfy
|ugll < e17 (3.6)

for some c17 > 0 independent of k and that for r € (0,dist(0,01)), there
exists c1g > 0 independent of k such that

lurll oo @85 < crs. (3.7)
Then ux, is a classical solution of (1.4).

Proof. Let O be an open set satisfying O C Q\ B, for 0 < r < dist(0, 92).
By (3.5), (3.6) and (3.7), for some € > 0 there exists ¢j9 > 0 independent of
k such that

[ullc2a+e(0) < 19

Together with (1.13) and Arzela-Ascoli Theorem, we have that u., € C2**2(0),
which implies that us, is C?*+% locally in Q\ {0}. Therefore, w,, — u; and
gn — 0 uniformly in any compact set of Q\ {0} as n — oco. We apply
Theorem 2.2 and conclude that u is a classical solution of (1.4). O

4 The limit of weak solutions

We recall that uy denotes the weak solution of (1.1) and d = min{1, dist(0,08)}.

4.1 The case of p € (0,1+ QWQ]

Proposition 4.1 Let p € (0,1], then limg_,o ug(x) = oo for x € Q.

Proof. We observe that G,[dy], Ga[(Galdo])?] > 0 in Q. By (1.9), for
p € (0,1) and z € Q we have

urp, > kGg[do] — kPG [(Galdo])?]
— oo as k — oo.

For p = 1, it is obvious that ui = kuy and wy; > 0 in €, then

lim up =00 in €.
k—o0



The proof is complete. U
Now we consider the case of p € (1, 1+22]. Let {ry} C (0, ] be a strictly

decreasing sequence of numbers satisfying limy_,o, 7 = 0. Denote by {zx}
a sequence of functions as

—d N, r € B,
k() = (4.1)
lo| N —d™N, e Bg.

Lemma 4.1 Let {pi} be a strictly decreasing sequence of numbers such that
;—’Z < % and limp_, o ;—’; =0. Then

(—A)%z(2) < —crpla| V7% ze By,
where c1 ), = —ca0 log(;—i) with cog > 0 independent of k.

Proof. For any z € By , we have

(—A)azk(x) _ _1 /RN Zk(x + y) + Zk(x - y) — QZk(x)dy

92 |z|N+2a
1 [ ety xee o)) + e =yl ™V xBe @) — 20T
"2 Je |y N2 Y
1 0
= ——|z —N_ZO‘/ (x’NZ’gk)dz,
2 RN ’Z‘ 20

where 8(z, 2,11) = |2+ eo| ™ X, (_en)(2) + 12 = €al N xps, (o) (2) — 2 and

3] [

—

€x = T

We observe that & < ;—Z <iand |zEe, >1—|z] >3 for 2 € By.
2

lz| =

Then there exists cp; > 0 such that

16(z, 2,m)| = Iz + x| ™V + [z — eV = 2| < a2
Thus,
Sz, z, k) |0(z, z, 7))
| 2| N+2a dz| < / 2| N+2a dz
BL(0) 17 By (0) |7

< 621/ 2|27V 7204z < g,
B%(O)

where coo > 0 is independent of k.

10



For z € Bi(—e;), we have
2

—N
x r. (—e -2
/ 6(1E,Z,Tk)dz - / |Z +e | XB\_fT( x)(z) i
By (~ex) || V2 T JBS (—en) || V2
2

> 023/ (2|7 = 2)dz
BL(O)\B‘L&‘(O)

Tk
> —cu 10%(@) > —Coy 10g(p_k),

where co3, co4 > 0 are independent of k.
For z € Bi(ey), we have
2

6($,Z,T’k) / (S(CC,Z,’I“k)
—— . dz = ————=dz.
/Bl(ez) || r2e By (~ex) |2 | N2
For 2 € O :=RN\ (B

(0)u B%(—ex) U Bi(ey)), we have

1 1
2 2

X, 2,T) |27V +1
s [ i< on
1(0)
2
where co5, 06 > 0 are independent of k. Therefore, there exists cog > 0
independent of k such that
r
(=A) 2 ()2 T2 < ey log(—k) = CLk,
Pk
which ends the proof. U
Proposition 4.2 Assume that

2a <1+2a
N — 2« N’

20 2cy
1+ — 4.2
< j<p<ir (12)

1

max{ "N
1

and zj, is defined by (4.1) withr, =k NN 2007 (logk)=2. Then there exists

ko > 0 such that for any k > ko

1
u > cé’; z, in By, (4.3)

where co ), = Inln k.

Proof. For p € (max{l, %%-},1+ 2%), it follows by (1.9) and Lemma
2.1(4i7) that there exist py € (0,d) and ca7,co8 > 0 independent of k such
that for z € B, \ {0},

up(z) = kGaldo](z) — KGa[(Gald0])?](2)
> 0271{:’1,‘7N+2a o CQSkp‘x’f(Nf2a)p+2a
_ CQ7]€|$|7N+2CV(1 _ Cﬁkp71|x|N7(Nf2a)p)‘

Ca7

11



We choose -
pr =k N2 (log k) 1. (4.4)

There exits k1 > 1 such that for & > k;

’—N+2a(1 _ cﬁkp_le—(N—Qa)p)

up(z) > corklz A

> 02_7k|x|—N+2a

5 . z € B, \{0}. (4.5)

Since p < 1+ ZWO‘, 1-— % > 0 and there exists ky > k; such that

c;—7kr,%a > (Inln k)7 T, (4.6)
for k > kg. This implies
%km?a > (Inlnk)s1, z€B, \ By,
Together with (4.1) and (4.5), we have
ug(z) > (lnlnk)z’_ilzk(x), z € By, \ By,

for k > ko. It is obvious that for x € B,, or x € BY,

(lnlnk)rilzk(m) <0 < ug(x).

Set cp ), = Inln k, by Lemma 4.1, then for x € By \ B,,,

1 _p_ _p_
(_A)acé;l zk(m) + 057;1 Zk(x)p < 05’;1 ’x‘fN72a(_1 + ’m‘N+2apr) < O,

since N +2a — Np > 0 and d < 1. By Theorem 2.1, we derive

1

cé’; ze(7) < ug(x), x € By,
which ends the proof. U

Proposition 4.3 Assume that

2 2 2a
<l+—, p=

1<
N —2a — N’

(4.7)

2

and z, is defined by (4.1) with r, = k ¥-2a) (log k)~ and k > 2. Then
there exists ko > 2 such that (4.3) holds for k > k.

12



Proof. By (1.9) and Lemma 2.1(ii), there exist pg € (0,d) and c3p,c31 > 0
independent of k such that for z € B, \ {0}

v

c;»,ok\x]_N“O‘ + c31kP log | z|

= coohle] V(L + )N 2 log ),

2a
Then we choose pp, = k ¥&-29) (log k) , and then there exists k1 > 1 such
that for k > ki, we have 1 + S3LkP™ 1p ~2a log(py) > 3 and

we(@) > %Okym\—N“a, z € B, \ {0}. (4.8)

Since N - <1 + 2 N, there holds 1 — W > 0 and there exists kg > k1
such that

C3Ok 20 _ 0370]{; NN 2a) (log k)~%* > (Inln k:)ﬁ

for k > kg. The remaining of the proof is the same as in Proposition 4.2. [

In the sequel, the description of the limit behavior depends which of the
following three cases holds:

20 2cy N

=14+ —==—; 4.
N -2« * N  2a’ (4.9)
2 2a N
14+ — < — 4.1
N—2a " * N <2 (4.10)
20 2x N
1+ —>—. 411
N — 2« Z N - 20 ( )

Proposition 4.4 Assume that

20 20 20
1 <1422 1 4.12
SN _oa Sty 1SPSN oo (4.12)
or 9 9 N
o)) o))
1+ = 1 - 4.1
+N<N—2 <p<2a, (4.13)

and zy is defined by (4.1) with rp = k™ ¥-2a (logk)™'. Then there exists
ko > 2 such that (4.3) holds for k > k.

Proof. By (1.9) and Lemma 2.1(4), there exist py € (0,d) and c33,c34 > 0
independent of k such that for z € B,, \ {0}

v

ngk’%“iNJr%{ — cgq kP
— 633k3|£6|7N+2a(1 _ Ci4kp71|x|Nf2a)
€33

)

13



-1
Then we choose p, = k s —20) and then there exists k1 > 1 such that for
k> ky, 1— S4pp=1pi2% > 1and
€33 —N+2a 5
up(x) > 7k!m\ . x € B, \{0}. (4.14)

By our setting (4.12), (4.13), together with relations (4.9)(4.10), (4.11), w
have p < % and then 1 — (p — 1)N 55 > 0. Therefore there exists kg > kl
such that

1

Bz = B =0mUN (log k)72 = (loglog k)71 = e

for k£ > ky. The remaining of the proof is similar to the one of Proposition
4.2. O

Proof of Theorem 1.1 part (i) with p € (1,1 + 2%] and Theorem 1.2
part (i) with p € (1,1 + %a] We divided the proof into two steps.

Step 1. To prove uo, = 00 in By. Indeed, we observe that for N2°é <1+ 2a
Proposmons 4.2, 4.3, 4.4 cover the case p € (max{1, 3251, 1+ 2O‘) the case

1< N 20‘ along with p = N2f‘2 and the case 1 < N
along w1th p € (1, N2_0‘2a) respectively. For N2_°‘2a 1+ 2]\0;, Proposmon 4.3,
4.4 cover the case p = sz‘éa and the case p € (1, sz‘éa) respectively. So

it covers p € (1,1 + 22] in Theorem 1.1 part (i). When 2%~ > 1+ 32
Proposition 4.4 covers p € (1,2) in Theorem 1.2 part (i). Therefore, we

) 2«

have .

Uoo = cé’?zk in By
and for any x € By \ {0},
1

lim ¢’ = c0.
i cgy zip(z) = 00

Then
Uso = 00 in By

Step 2. To prove uy, = o0 in €. By the fact of uy, = 00 in By and ug1q1 > ug
in €2, then for any n > 1 there exists k, > 0 such that u,, > n in B;. For
any xo € 1\ By, there exists p > 0 such that B,(xo) C QN By, We denote
by w,, the solution of

(=A)*u+u? =0 in B,(zo),
u=0 n Bg(fEO) \ Bd/Qa (415)

u=mn in Bgp

14



Then by Theorem 2.1, we have
Ug, > Wy, (4.16)
Let 1 be the solution of
(=A)*u =1 in Bj(xo),
u=0 in Bj(zo)
and v, = w, — NX By then v, = w, in B,(xp) and

(=A)%n(x) +vp(z) = (=A)%wn(2) = n(=L)"XB,, (*) + wj(2)

dy
=n —— s x € B,(xp),
/Bd/2 |y — a|Nt2e ’

that is, v, is a solution of

(—A)*u +uP = n/

Ba/2
u=20 in  Bj(zo).

dy .
R By (o),

(4.17)

: 1 dy
It is clear that _— < de/2 ez < ¢35, = € B,(xo) for some c35 > 1 and

1
(3emascyy )P is sub solution of (4.17). Then using Theorem 2.1, we obtain

that

n 1
v )P, « € By(xo),

>0
"= (20 max 1p
which implies that

n 1
> (—— , €B .
Wn = (20 maxm)p771 o p($0)
Then
lim wy,(xg) = 0.
n—oo

Since z is arbitrary and together with (4.16), it implies that us = 0o in Q.
The proof is complete. U

4.2 The case of p € (1+ 32,p})

Proposition 4.5 Let a € (0,1) and ro = dist(0,09). Then
(i) if max{1+ 2%, 2%-} < p < p},, there ezist Ry € (0,79) and c35 > 0 such
that

2a
Uso(T) > c36|z| P~1, x € Bpr, \{0}; (4.18)

() if széa > 1+ QWO‘ and p = széa, there exist Ry € (0,r¢) and cg7 > 0
such that

c37 _ p(N—20a)

Uoo(T) > ——lz|" »T , x € Bg,\{0}. (4.19)
(1 4 [log(l|)])»=T
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(i11) if 2% > 1422 andp € (1 + 22, 2%-), there exist Ry € (0,79) and
c3g > 0 such that

~ p(N—2a)
Uso(x) > c38|z|” »=T , x € Bpg, \ {0} (4.20)

Proof. (i) Using (1.9) and Lemma 2.1(i) with max{1+322, 2%~} < p < p},
then there exist pg € (0,7¢) and c39,cq9 > 0 such that

’—N+2a _ C4Okp’x‘f(Nf2a)p+2a7 z € By, \ {0}. (4.21)

ug () > csgk|z
Let us define

pp = (2WN—20)p—20-1 %kpfl)m‘ (4.22)

Since (N — 2a)(p — 1) — 2a < 0, we have that
lim pp =0
k—o0

and then there exists kg > 0 such that py, < po. Then for z € B, \ Bey,
2

we have

kP ||~ (V200420 < C4Okp(@)—(N—2a)p+2a

€40 )
_ 839, —N+2
= ke
< N
2
and
kL = (2(N72a)p72a71Qﬁ)fﬁpN—Qa—%
€39 k
2
Z C41|$|N72a7ﬁ’
where ¢q = (2(V-20)p—20-1e0) " p(N=20)p—1)=20=1  Combining with
(4.18), we obtain
Uk;(,I) = ngkj|$|7N+2a _ C4Okp|x|f(Nf2a)p+2a
> gy ~N+2e
2
2
2 cale| P, (4.23)

for v € B, \ Bri, where cg9 = %039041 is independent of k. By (4.22), we
2

can choose a sequence {k,} C [1,+00) such that

1
Pkpsr = 5 Pkn
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Then for any = € B, \ {0}, there exists k;, such that x € By, \ Br, and
2
then by (4.23),
2
ug, () > cqo|z| P-T.

Together with ug1 > ug, we derive

_ 2a
Uoo(X) > cyolz| -1, =z € Bp,cO \ {0}.

(#1) By (1.9) and Lemma 2.1(ii) with p = 2%, there exist p € (0,79)
and c43, cq4 > 0 such that

up(x) > cazklz| N2 — cykP|log(|z])|, = € By, \ {0} (4.24)

Denote by (pg) a sequence number in (0, 1) such that

_ & —
cak? ! log(B1)] = S2p N2, (4.25)
then
lim py =0
k—o0
and there exists kg > 0 such that py, < po. Then for x € B, \ Bpy and
2
k > kOa
cask?|log([e)| < cark? | log(50)| = Z2hpp N2 < S2klaf N4,
By (4.25), for x € B,, \ Brx, we have that
2
—N+2a _N—_2a
2¢43 14 [log(ps)| (1 + |log(|z))) 7T
N—-2a
where c45 =2~ »-1 (205—42)7’]7; Therefore, for © € B, \ Brx we have
2
up(z) > caskla| VT2 — cygk?|log(|a))|
‘ ’717(1\’*1204)
=
> c;_gk‘x’_N+2a > C46 i 1 (426)
(1 + [log(|=[)]) 7=

where ¢4 = %043045 independent of k.
By (4.25), we can choose a sequence k,, € [1,4+00) such that

1
Pkpsr = 5 Pkn

Then for any z € B, \ {0}, there exists k, such that x € B, \ By, and
2
then by (4.26),




Together with ugq > ug, we have

Uoo(T) > Cy6 ——, =€ B, \{0}
(1 + [log(|=[)]) =T

(iii) By (1.9) and Lemma 2.1 (iii) with p € (1 + 2%, 52%-), then there
exist po € (0,79) and c47, cag > 0 such that

up () > cark|e| N2 — cigkP,  x € B, \ {0}. (4.27)
Let c )
pr = (kP ", (4.28)
2c47
then
lim pp =0
k—o00

and there exists kg > 0 such that py, < po. Then for xz € B, \ Br, and
2
k 2 k:Oa

C _ (& —
C48k‘p = gkjpkNJ&a < §k|$| N+2a.

By (4.28), for x € B,, \ Brx, we have that
2

N—2a

1 — 1 —2a
p—1 Py L

_N—-2a
ZC4Q|$| L )

C4 —
E— (28
2¢y7

N—2« 1
— 9 Tp— C48 \ 7 p—
where cq9 = 27 7= ()" »=1. Therefore, for z € B,, \ B op We have

C§_7k|x|fN+2a

esolz| TN T2 (4.29)

up(z) > carkl|e| N2 — cygkP

v

v

where c59 = %047049 independent of k.
By (4.28), we can choose a sequence k,, € [1,4+00) such that

1
Pkpsr = 5 Pkn

Then for any = € By, \ {0}, there exists k;, such that x € By, \ Br, and
2
then by (4.29),

_ p(N—2a)
Uk, (T) > csolz| T

Together with ug41 > ug, we have

p(N—2a)

Usol@) = esolel 7, @ € By, \ {0},

We complete the proof. O
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Lemma 4.2 Letp € (1 + QWO‘,pZ) and ug be a strongly singular solution of
(1.4) satisfying (1.5). Then

Uso <us in O\ {0} (4.30)
where us is defined by (1.13).
Proof. By (1.5) and (1.9), we have that

. 2o . N—2
lim ug|lz|P~T =¢p and lm uglz|™ ™ = ¢,
x—0 x—0

then there exists r; > 0 such that
up <wus in By \ {0}
By Theorem 3.1, we have that wy satisfies
(=A)*up+up, =0 in Q\ B, (0),

so does us. By Theorem 2.1, we have uj < ug in 2\ {0}. Combining with
(1.13), then
Uso <us in 0\ {0}

The proof is complete. H

Proof of Theorem 1.1 (ii) and Theorem 1.2 part (iv). By Lemma
4.2 and Theorem 3.2, we obtain that us is a classical solution of (1.4).
Moreover, by Proposition 4.5 part (i) and Lemma 4.2, we have

1 _2a _2a
oy Tl S teo(@) S el e

for some ¢z > 1. Since us is unique in the sense of (1.6), then us = ug in
RN\ {0}. The proof is complete. O

4.3 Proof of Theorem 1.2 (ii) and (i)

Proof of Theorem 1.2 parts (ii) and (i7i). By Lemma 4.2 and Theorem
3.2 we obtain that us, is a classical solution of (1.4) satisfying

Uso <us in 0\ {0}

Moreover, we obtain (1.16) and (1.15) by Proposition 4.5 part (i) and (ii7),
respectively. The proof is complete. O
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