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Abstract

If p ∈ (0, N
N−2α

), α ∈ (0, 1), k > 0 and Ω ⊂ RN is a bounded C2

domain containing 0 and δ0 is the Dirac measure at 0, we prove that
the weak solution of (E)k (−∆)αu + up = kδ0 in Ω which vanishes in
Ωc is a weak singular solution of (E)∞ (−∆)αu + up = 0 in Ω \ {0}
with the same outer data. Furthermore, we study the limit of weak
solutions of (E)k when k → ∞. For p ∈ (0, 1+ 2α

N
], the limit is infinity

in Ω. For p ∈ (1 + 2α
N
, N
N−2α

), the limit is a strong singular solution of
(E)∞.
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1 Introduction

Let Ω be an open bounded C2 domain of RN (N ≥ 2) containing 0, α ∈ (0, 1)
and δ0 denote the Dirac measure at 0. In this paper, we study the properties
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of the weak solution the problem

(−∆)αu+ up = kδ0 in Ω,

u = 0 in Ωc,
(1.1)

where k > 0 and p ∈ (0, N
N−2α ). The operator (−∆)α is the fractional

Laplacian defined by

(−∆)αu(x) = lim
ǫ→0+

(−∆)αǫ u(x),

where for ǫ > 0,

(−∆)αǫ u(x) = −

∫

RN

u(z)− u(x)

|z − x|N+2α
χǫ(|x− z|)dz

and

χǫ(t) =

{

0, if t ∈ [0, ǫ],

1, if t > ǫ.

In 1980, Benilan and Brezis (see [2, 1]) proved that when for 1 < q <
N/(N − 2), the following equation

−∆u+ uq = kδ0 in Ω,

u = 0 on ∂Ω.
(1.2)

admits a unique solution uk, while no solution exists when q ≥ N/(N − 2).
Soon after, Brezis and Véron [3] proved that the problem

−∆u+ uq = 0 in Ω \ {0},

u = 0 on ∂Ω.
(1.3)

admits only the zero solution when q ≥ N/(N−2). When 1 < q < N/(N−2),
Véron obtained in [16] the description of the all the possible singular be-
haviour of positive solutions (1.3). In particular he proved that this be-
haviour is always isotropic (when (N + 1)/(N − 1) ≤ q < N/(N − 2) the
assumption of positivity is unnecessary) and that two types of singular be-
haviour occur:
(i) either u(x) ∼ cNk|x|2−N when x → 0 and k can take any positive value;
u is said to have a weak singularity at 0, and actually u = uk.

(ii) or u(x) ∼ cN,q|x|
− 2

q−1 when x → 0 and u has a strong singularity at 0,
and u = u∞ := limk→∞ uk.

For another interesting contributions to singularity problems see Chen,
Matano and Véron [9], Vazquez and Véron [13, 14] and Véron [17].
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In a recent work, Chen and Véron [7] considered the fractional elliptic
problem

(−∆)αu+ up = 0 in Ω \ {0},

u = 0 in Ωc,
(1.4)

where 1 + 2α
N < p < p∗α := N

N−2α . They proved that (1.4) admits a strong
singular solution us such that

lim
x→0

us(x)|x|
2α
p−1 = c0, (1.5)

for some c0 > 0. Moreover, the strong singular solution us of (1.4) is unique
in the class of solutions satisfying

0 < lim inf
x→0

u(x)|x|
2α
p−1 ≤ lim sup

x→0
u(x)|x|

2α
p−1 < ∞. (1.6)

Here in the fractional framework, we call u as a weakly singular solution
if lim supx→0 |u(x)||x|

N−2α < ∞ and u as a strongly singular solution if
limx→0 |u(x)||x|

N−2α = ∞.
More recently, Chen and Véron in [8] studied the existence and unique-

ness of weak solution to problem

(−∆)αu+ g(u) = ν in Ω,

u = 0 in Ωc
(1.7)

under the hypotheses that g is subcritical integrability and ν is a Radon
measure. Here the weak solution is given as following.

Definition 1.1 We say that u is a weak solution of (1.7), if u ∈ L1(Ω),
g(u) ∈ L1(Ω, ραdx), where ρ(x) := dist(x,Ωc), and

∫

Ω
[u(−∆)αξ + g(u)ξ]dx =

∫

Ω
ξdν, ∀ξ ∈ Xα, (1.8)

where Xα ⊂ C(RN ) is the space of functions ξ satisfying:

(i) supp(ξ) ⊂ Ω̄,

(ii) (−∆)αξ(x) exists for all x ∈ Ω and |(−∆)αξ(x)| ≤ c1 for some c1 > 0,

(iii) there exist ϕ ∈ L1(Ω, ραdx) and ǫ0 > 0 such that |(−∆)αǫ ξ| ≤ ϕ a.e. in
Ω, for all ǫ ∈ (0, ǫ0].

For problem (1.7), we consider the simplest case g(s) = sp with 0 < p <
p∗α and ν = kδ0. According to Theorem 1.1 in [8], problem (1.1) admits a
unique weak solution uk, moreover,

Gα[kδ0]−Gα[(Gα[kδ0])
p] ≤ uk ≤ Gα[kδ0] in Ω, (1.9)
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where Gα[·] is the Green operator defined by

Gα[ν](x) =

∫

Ω
Gα(x, y)dν(y), ∀ ν ∈ M(Ω, ρα), (1.10)

with Gα is the Green kernel of (−∆)α in Ω and M(Ω, ρα) denotes the space
of Radon measures in Ω such that

∫

Ω ραd | ρ |< ∞. By (1.9),

lim
x→0

uk(x)|x|
N−2α = cα,Nk. (1.11)

for some cα,N > 0. Moveover, from Theorem 1.1 in [8], we have that

uk(x) ≤ uk+1(x), x ∈ Ω, (1.12)

then the limit of uk(x) exists or +∞, denoted by u∞, that is

u∞(x) = lim
k→∞

uk(x), x ∈ R
N \ {0}. (1.13)

Throughout of this paper, we denote uk is the weak solution of (1.1) and
u∞ is defined by (1.13).

Motivated by these results and in view of the nonlocal character of the
fractional Laplacian we are interested in considering the connection between
the solutions of (1.1) and the ones of (1.4). Being more precise, our main
theorem states as follows.

Theorem 1.1 Assume that 1 + 2α
N ≥ 2α

N−2α and p ∈ (0, p∗α). Then uk is a
classical solution of (1.4). Furthermore,
(i) if p ∈ (0, 1 + 2α

N ),
u∞(x) = ∞, ∀x ∈ Ω; (1.14)

(ii) if p ∈ (1 + 2α
N , p∗α),

u∞ = us,

where us is the solution of (1.4) satisfying (1.5).
Moreover, if 1 + 2α

N = 2α
N−2α , (1.14) holds for p = 1 + 2α

N .

The result of part (i) indicates that even if the absorption is superlinear,
the diffusion dominates and there is no strongly singular solution to problem
(1.4). On the contrary, part (ii) points out that the absorption dominates
the diffusion; the limit function us is the least strongly singular solution of
(1.4). Comparing Theorem 1.1 with the results for Laplacian case, part (i)
with p ∈ (0, 1] and (ii) are similar as the Laplacian case, but part (i) with
p ∈ (1, 1 + 2α

N ] is totally different from the one in the case α = 1. This
difference comes from the fact that the fractional Laplacian is a nonlocal
operator, which requires the solution to belong to L1(Ω).

At end, we consider the case where 1 + 2α
N < 2α

N−2α . It occurs when

N = 2 and
√
5−1
2 < α < 1 or N = 3 and 3(

√
5−1)
4 < α < 1. In this situation,

we have the following results.
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Theorem 1.2 Assume that 1 + 2α
N < 2α

N−2α and p ∈ (0, p∗α). Then uk is a
classical solution of (1.4). Furthermore,
(i) if p ∈ (0, N

2α), then

u∞(x) = ∞, ∀x ∈ Ω;

(ii) if p ∈ (1 + 2α
N , 2α

N−2α ), then u∞ is a classical solution of (1.4) and there
exist ρ0 > 0 and c2 > 0 such that

c2|x|
− (N−2α)p

p−1 ≤ u∞ ≤ us, ∀x ∈ Bρ0 \ {0}; (1.15)

(iii) if p = 2α
N−2α , then u∞ is a classical solution of (1.4) and there exist

ρ0 > 0 and c3 > 0 such that

c3
|x|

− (N−2α)p
p−1

(1 + | log(|x|)|)
1

p−1

≤ u∞ ≤ us, ∀x ∈ Bρ0 \ {0}; (1.16)

(iv) if p ∈ ( 2α
N−2α , p

∗
α), then

u∞ = us.

In Theorem 1.2 parts (ii) and (iii), we do not obtain that u∞ = us, since
(1.15) and (1.16) do not provide sharp estimate on u∞ in order it to belong
to the uniqueness class characterized by ((1.6)).

The paper is organized as follows. In Section 2, we present some prelim-
inaries such as some estimate for Green kernel and comparison principle. In
Section 3, we prove that the weak solution of (1.1) is a classical solution of
(1.4). Section 4 is devoted to analyze the limit of weakly singular solutions
as k → ∞ in our theorems.

2 Preliminaries

The purpose of this section is to recall some known results. We denote by
Br(x) the ball centered at x with radius r and Br := Br(0).

Lemma 2.1 Assume that 0 < p < p∗α, then there exists c4 > 1 such that
(i) if p ∈ (0, 2α

N−2α),

1

c4
≤ Gα[(Gα[δ0])

p] ≤ c4 in Br \ {0};

(ii) if p = 2α
N−2α ,

−
1

c5
ln |x| ≤ Gα[(Gα[δ0])

p] ≤ −c5 ln |x| in Br \ {0};
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(iii) if p ∈ ( 2α
N−2α , p

∗
α),

1

c6
|x|2α−(N−2α)p ≤ Gα[(Gα[δ0])

p] ≤ c6|x|
2α−(N−2α)p in Br \ {0},

where r = 1
4 min{1, dist(0, ∂Ω)} and Gα is defined by (1.9).

Proof. The proof refers to Lemma 5.3 in [6]. �

Theorem 2.1 Assume that O is an open and bounded domain of RN and
u1, u2 are continuous in Ō and satisfy

(−∆)αu+ up = 0 in O.

Moreover, we assume that u1 ≥ u2 in Oc. Then

u1 > u2 in O

or
u1 ≡ u2 a.e. in R

N .

Proof. The proof refers to Theorem 2.2 in [5] (see also Theorem 5.2 in [4]).
�

The following stability result is proved in [5, Th 2.2]

Theorem 2.2 Suppose that O is an open, bounded and C2 domain and
h : R → R. Assume that (un)n, n ∈ N is a sequence of functions, uniformly
bounded in L1(Oc, dy

1+|y|N+2α ) and fn, f are continuous in O and that there

holds

(−∆)αun + h(un) ≥ fn (resp (−∆)αun + h(un) ≤ fn ) in O

in the viscosity sense and
(i) un → u locally uniformly in O,
(ii) un → u in L1(RN , dy

1+|y|N+2α ),

(iii) fn → f locally uniformly in O.

Then
(−∆)αu+ h(u) ≥ f (resp (−∆)αu+ h(u) ≤ f ) in O

in the viscosity sense.
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3 Regularity

In this section, we prove that a weak solution of (1.1) is a classical solution
of (1.4). To this end, we introduce some auxiliary lemma.

Lemma 3.1 Assume that w ∈ C2α+ǫ(B̄1) with ǫ > 0 satisfies

(−∆)αw = h in B1,

where h ∈ C1(B̄1). Then for β ∈ (0, 2α), there exists c7 > 0 such that

‖w‖Cβ(B̄1/4)
≤ c7(‖w‖L∞(B1)+‖h‖L∞(B1)+‖(1+ | · |)−N−2αw‖L1(RN )). (3.1)

Proof. Let η : RN → [0, 1] be a C∞ function such that

η = 1 in B 3
4

and η = 0 in Bc
1.

We denote v = wη, then v ∈ C2α+ǫ(RN ) and for x ∈ B 1
2
, ǫ ∈ (0, 14),

(−∆)αǫ v(x) = −

∫

RN\Bǫ

v(x+ y)− v(x)

|y|N+2α
dy

= (−∆)αǫ w(x) +

∫

RN\Bǫ

[1− η(x+ y)]w(x + y)

|y|N+2α
dy.

Together with the fact of η(x+ y) = 1 for y ∈ Bǫ, we have
∫

RN\Bǫ

[1− η(x+ y)]w(x + y)

|y|N+2α
dy =

∫

RN

[1− η(x+ y)]w(x + y)

|y|N+2α
dy =: h1(x),

thus,
(−∆)αv = h+ h1 in B 1

2
.

For x ∈ B 1
2
and z ∈ R

N \B 3
4
, we have

|z − x| ≥ |z| − |x| ≥ |z| −
1

2
≥

1

16
(1 + |z|)

and then

|h1(x)| = |

∫

RN

[1− η(z)]w(z)

|z − x|N+2α
dz| ≤

∫

RN\B 3
4

|w(z)|

|z − x|N+2α
dz

≤ 16N+2α

∫

RN

|w(z)|

(1 + |z|)N+2α
dz

= 16N+2α‖(1 + | · |)−N−2αw‖L1(RN ).

By [12, Proposition 2.1.9], for β ∈ (0, 2α), there exists c8 > 0 such that

‖v‖Cβ (B̄1/4)
≤ c8(‖v‖L∞(RN ) + ‖h+ h1‖L∞(B1/2))

≤ c8(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖h1‖L∞(B1/2))

≤ c9(‖w‖L∞(B1) + ‖h‖L∞(B1) + ‖(1 + | · |)−N−2αw‖L1(RN )),

where c9 = 16N+2αc8. Combining with w = v in B 3
4
, we obtain (3.1). �
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Theorem 3.1 Let α ∈ (0, 1) and 0 < p < p∗α, then the weak solution of
(1.1) is a classical solution of (1.4).

Proof. Let uk be the weak solution of (1.1). According to [8, Theorem 1.1],
we have

0 ≤ uk = Gα[kδ0]−Gα[u
p
k] ≤ Gα[kδ0]. (3.2)

We observe that Gα[kδ0] = kGα[δ0] = kGα(·, 0) is C
2
loc(Ω \ {0}). Denote by

O an open set satisfying Ō ⊂ Ω \Br with r > 0. Then Gα[kδ0] is uniformly
bounded in Ω \Br/2, so is upk by (3.2).

Let {gn} be a sequence nonnegative functions in C∞
0 (RN ) such that

gn → δ0 in the weak sense of measures and let wn be the solution of

(−∆)αu+ up = kgn in Ω,

u = 0 in Ωc.
(3.3)

From [8], we obtain that

uk = lim
n→∞

wn a.e. in Ω. (3.4)

We observe that 0 ≤ wn = Gα[kgn] − Gα[w
p
n] ≤ kGα[gn], Gα[gn] converges

to Gα[δ0] uniformly in any compact set of Ω \ {0} and Gα[gn] converges to
Gα[δ0] in L1(Ω); then there exists c10 > 0 independent of n such that

‖wn‖L∞(Ω\Br/2) ≤ c10k and ‖wn‖L1(Ω) ≤ c10k.

By [11, Corollary 2.4] and Lemma 3.1, for some ǫ > 0 and β ∈ (0, 2α), there
exist constants c11, c12, c13 > 0 independent of n and k, such that

‖wn‖C2α+ǫ(O) ≤ c11(‖wn‖
p
L∞(Ω\B r

2
) + ‖kgn‖L∞(Ω\B r

2
) + ‖wn‖Cβ(Ω\B 3r

4
))

≤ c12(‖wn‖
p
L∞(Ω\B r

2
) + ‖wn‖L∞(Ω\B r

2
) + ‖kgn‖L∞(Ω\B r

2
) + ‖wn‖L1(Ω))

≤ c13(k + kp).

Therefore, together with (3.4) and Arzela-Ascoli Theorem, we have that
uk ∈ C2α+ ǫ

2 (O), which implies that uk is C
2α+ ǫ

2 locally in Ω\{0}. Therefore,
wn → uk and gn → 0 uniformly in any compact subset of Ω\{0} as n → ∞.
We conclude that uk is a classical solution of (1.4) by Theorem 2.2. �

Corollary 3.1 Let uk be the weak solution of (1.1) and O be an open set
satisfying Ō ⊂ Ω \Br with r > 0. Then for some ǫ > 0, there exists c14 > 0
independent of k such that

‖uk‖C2α+ǫ(O) ≤ c14(‖uk‖
p
L∞(Ω\B r

2
)
+ ‖uk‖L∞(Ω\B r

2
) + ‖uk‖L1(Ω)). (3.5)

8



Proof. By Theorem 3.1, uk is a solution of (1.4). By [11, Corollary 2.4]
and Lemma 3.1, for some ǫ > 0 and β ∈ (0, 2α), there exist c15, c16 > 0,
independent of k, such that

‖uk‖C2α+ǫ(O) ≤ c15(‖uk‖
p
L∞(Ω\B r

2
) + ‖uk‖Cβ(Ω\B 3r

4
))

≤ c16‖uk‖
p
L∞(Ω\B r

2
) + ‖uk‖L∞(Ω\B r

2
) + ‖uk‖L1(Ω).

�

Theorem 3.2 Assume that the weak solution uk of (1.1) satisfy

‖uk‖ ≤ c17 (3.6)

for some c17 > 0 independent of k and that for r ∈ (0, dist(0, ∂Ω)), there
exists c18 > 0 independent of k such that

‖uk‖L∞(Ω\B r
2
) ≤ c18. (3.7)

Then u∞ is a classical solution of (1.4).

Proof. Let O be an open set satisfying Ō ⊂ Ω \Br for 0 < r < dist(0, ∂Ω).
By (3.5), (3.6) and (3.7), for some ǫ > 0 there exists c19 > 0 independent of
k such that

‖uk‖C2α+ǫ(O) ≤ c19.

Together with (1.13) and Arzela-Ascoli Theorem, we have that u∞ ∈ C2α+ ǫ
2 (O),

which implies that u∞ is C2α+ ǫ
2 locally in Ω \ {0}. Therefore, wn → uk and

gn → 0 uniformly in any compact set of Ω \ {0} as n → ∞. We apply
Theorem 2.2 and conclude that u∞ is a classical solution of (1.4). �

4 The limit of weak solutions

We recall that uk denotes the weak solution of (1.1) and d = min{1, dist(0, ∂Ω)}.

4.1 The case of p ∈ (0, 1 + 2α
N
]

Proposition 4.1 Let p ∈ (0, 1], then limk→∞ uk(x) = ∞ for x ∈ Ω.

Proof. We observe that Gα[δ0],Gα[(Gα[δ0])
p] > 0 in Ω. By (1.9), for

p ∈ (0, 1) and x ∈ Ω we have

uk ≥ kGα[δ0]− kpGα[(Gα[δ0])
p]

→ ∞ as k → ∞.

For p = 1, it is obvious that uk = ku1 and u1 > 0 in Ω, then

lim
k→∞

uk = ∞ in Ω.
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The proof is complete. �

Now we consider the case of p ∈ (1, 1+ 2α
N ]. Let {rk} ⊂ (0, d2 ] be a strictly

decreasing sequence of numbers satisfying limk→∞ rk = 0. Denote by {zk}
a sequence of functions as

zk(x) =

{

−d−N , x ∈ Brk ,

|x|−N − d−N , x ∈ Bc
rk
.

(4.1)

Lemma 4.1 Let {ρk} be a strictly decreasing sequence of numbers such that
rk
ρk

< 1
2 and limk→∞

rk
ρk

= 0. Then

(−∆)αzk(x) ≤ −c1,k|x|
−N−2α, x ∈ Bc

ρk

where c1,k = −c20 log(
rk
ρk
) with c20 > 0 independent of k.

Proof. For any x ∈ Bc
ρk
, we have

(−∆)αzk(x) = −
1

2

∫

RN

zk(x+ y) + zk(x− y)− 2zk(x)

|x|N+2α
dy

= −
1

2

∫

RN

|x+ y|−NχBc
rk

(−x)(y) + |x− y|−NχBc
rk

(x)(y)− 2|x|−N

|y|N+2α
dy

= −
1

2
|x|−N−2α

∫

RN

δ(x, z, rk)

|z|N+2α
dz,

where δ(x, z, rk) = |z + ex|
−NχBc

rk
|x|

(−ex)(z) + |z − ex|
−NχBc

rk
|x|

(ex)(z)− 2 and

ex = x
|x| .

We observe that rk
|x| ≤

rk
ρk

< 1
2 and |z ± ex| ≥ 1 − |z| ≥ 1

2 for z ∈ B 1
2
.

Then there exists c21 > 0 such that

|δ(x, z, rk)| = ||z + ex|
−N + |z − ex|

−N − 2| ≤ c21|z|
2.

Thus,

|

∫

B 1
2
(0)

δ(x, z, rk)

|z|N+2α
dz| ≤

∫

B 1
2
(0)

|δ(x, z, rk)|

|z|N+2α
dz

≤ c21

∫

B 1
2
(0)

|z|2−N−2αdz ≤ c22,

where c22 > 0 is independent of k.
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For z ∈ B 1
2
(−ex), we have

∫

B 1
2
(−ex)

δ(x, z, rk)

|z|N+2α
dz ≥

∫

Bc
1
2

(−ex)

|z + ex|
−NχB rk

|x|
(−ex)(z)− 2

|z|N+2α
dz

≥ c23

∫

B 1
2
(0)\B rk

|x|
(0)

(|z|−N − 2)dz

≥ −c24 log(
rk
|x|

) ≥ −c24 log(
rk
ρk

),

where c23, c24 > 0 are independent of k.
For z ∈ B 1

2
(ex), we have

∫

B 1
2
(ex)

δ(x, z, rk)

|z|N+2α
dz =

∫

B 1
2
(−ex)

δ(x, z, rk)

|z|N+2α
dz.

For z ∈ O := R
N \ (B 1

2
(0) ∪B 1

2
(−ex) ∪B 1

2
(ex)), we have

|

∫

O

δ(x, z, rk)

|z|N+2α
dz| ≤ c25

∫

Bc
1
2

(0)

|z|−N + 1

|z|N+2α
dz ≤ c26,

where c25, c26 > 0 are independent of k. Therefore, there exists c20 > 0
independent of k such that

(−∆)αzk(x)|x|
N+2α ≤ c20 log(

rk
ρk

) := c1,k,

which ends the proof. �

Proposition 4.2 Assume that

2α

N − 2α
< 1 +

2α

N
, max{1,

2α

N − 2α
} < p < 1 +

2α

N
(4.2)

and zk is defined by (4.1) with rk = k
− p−1

N−(N−2α)p (log k)−2. Then there exists
k0 > 0 such that for any k ≥ k0

uk ≥ c
1

p−1

2,k zk in Bd, (4.3)

where c2,k = ln ln k.

Proof. For p ∈ (max{1, 2α
N−2α}, 1 + 2α

N ), it follows by (1.9) and Lemma
2.1(iii) that there exist ρ0 ∈ (0, d) and c27, c28 > 0 independent of k such
that for x ∈ B̄ρ0 \ {0},

uk(x) ≥ kGα[δ0](x)− kpGα[(Gα[δ0])
p](x)

≥ c27k|x|
−N+2α − c28k

p|x|−(N−2α)p+2α

= c27k|x|
−N+2α(1−

c28
c27

kp−1|x|N−(N−2α)p).

11



We choose
ρk = k

− p−1
N−(N−2α)p (log k)−1. (4.4)

There exits k1 > 1 such that for k ≥ k1

uk(x) ≥ c27k|x|
−N+2α(1−

c28
c27

kp−1ρ
N−(N−2α)p
k )

≥
c27
2
k|x|−N+2α, x ∈ B̄ρk \ {0}. (4.5)

Since p < 1 + 2α
N , 1− 2α(p−1)

N−(N−2α)p > 0 and there exists k0 ≥ k1 such that

c27
2
kr2αk ≥ (ln ln k)

1
p−1 , (4.6)

for k ≥ k0. This implies

c27
2
k|x|2α ≥ (ln ln k)

1
p−1 , x ∈ B̄ρk \Brk .

Together with (4.1) and (4.5), we have

uk(x) ≥ (ln ln k)
1

p−1 zk(x), x ∈ B̄ρk \Brk ,

for k ≥ k0. It is obvious that for x ∈ Brk or x ∈ Bc
d,

(ln ln k)
1

p−1 zk(x) ≤ 0 ≤ uk(x).

Set c2,k = ln ln k, by Lemma 4.1, then for x ∈ Bd \Bρk ,

(−∆)αc
1

p−1

2,k zk(x) + c
p

p−1

2,k zk(x)
p ≤ c

p
p−1

2,k |x|−N−2α(−1 + |x|N+2α−Np) ≤ 0,

since N + 2α−Np ≥ 0 and d ≤ 1. By Theorem 2.1, we derive

c
1

p−1

2,k zk(x) ≤ uk(x), x ∈ B̄d,

which ends the proof. �

Proposition 4.3 Assume that

1 <
2α

N − 2α
≤ 1 +

2α

N
, p =

2α

N − 2α
(4.7)

and zk is defined by (4.1) with rk = k
− 2α

N(N−2α) (log k)−3 and k > 2. Then
there exists k0 > 2 such that (4.3) holds for k ≥ k0.

12



Proof. By (1.9) and Lemma 2.1(ii), there exist ρ0 ∈ (0, d) and c30, c31 > 0
independent of k such that for x ∈ B̄ρ0 \ {0}

uk(x) ≥ c30k|x|
−N+2α + c31k

p log |x|

= c30k|x|
−N+2α(1 +

c31
c30

kp−1|x|N−2α log |x|),

Then we choose ρk = k
− 2α

N(N−2α) (log k)−2, and then there exists k1 > 1 such
that for k ≥ k1, we have 1 + c31

c30
kp−1ρN−2α

k log(ρk) ≥
1
2 and

uk(x) ≥
c30
2
k|x|−N+2α, x ∈ B̄ρk \ {0}. (4.8)

Since 2α
N−2α < 1 + 2α

N , there holds 1− 4α2

N(N−2α) > 0 and there exists k0 ≥ k1
such that

c30
2
kr2αk =

c30
2
k
1− 4α2

N(N−2α) (log k)−6α ≥ (ln ln k)
1

p−1

for k ≥ k0. The remaining of the proof is the same as in Proposition 4.2. �

In the sequel, the description of the limit behavior depends which of the
following three cases holds:

2α

N − 2α
= 1 +

2α

N
=

N

2α
; (4.9)

2α

N − 2α
< 1 +

2α

N
<

N

2α
; (4.10)

2α

N − 2α
> 1 +

2α

N
>

N

2α
. (4.11)

Proposition 4.4 Assume that

1 <
2α

N − 2α
≤ 1 +

2α

N
, 1 < p <

2α

N − 2α
, (4.12)

or

1 +
2α

N
<

2α

N − 2α
, 1 < p <

N

2α
, (4.13)

and zk is defined by (4.1) with rk = k−
p−1

N−2α (log k)−1. Then there exists
k0 > 2 such that (4.3) holds for k ≥ k0.

Proof. By (1.9) and Lemma 2.1(i), there exist ρ0 ∈ (0, d) and c33, c34 > 0
independent of k such that for x ∈ B̄ρ0 \ {0}

uk(x) ≥ c33k|x|
−N+2α − c34k

p

= c33k|x|
−N+2α(1−

c34
c33

kp−1|x|N−2α),

13



Then we choose ρk = k
− p−1

(N−2α) , and then there exists k1 > 1 such that for
k ≥ k1, 1−

c34
c33

kp−1ρN−2α
k ≥ 1

2 and

uk(x) ≥
c33
2
k|x|−N+2α, x ∈ B̄ρk \ {0}. (4.14)

By our setting (4.12), (4.13), together with relations (4.9)(4.10), (4.11), we
have p < N

2α and then 1− (p − 1) 2α
N−2α > 0. Therefore there exists k0 ≥ k1

such that

c33
2
kr2αk =

c33
2
k1−(p−1) 2α

N−2α (log k)−2α ≥ (log log k)
1

p−1 = c
1

p−1

2,k

for k ≥ k0. The remaining of the proof is similar to the one of Proposition
4.2. �

Proof of Theorem 1.1 part (i) with p ∈ (1, 1 + 2α
N ] and Theorem 1.2

part (i) with p ∈ (1, 1 + 2α
N ]. We divided the proof into two steps.

Step 1. To prove u∞ = ∞ in Bd. Indeed, we observe that for
2α

N−2α < 1+ 2α
N ,

Propositions 4.2, 4.3, 4.4 cover the case p ∈ (max{1, 2α
N−2α}, 1+

2α
N ), the case

1 < 2α
N−2α < 1 + 2α

N along with p = 2α
N−2α and the case 1 < 2α

N−2α < 1 + 2α
N

along with p ∈ (1, 2α
N−2α) respectively. For 2α

N−2α = 1 + 2α
N , Proposition 4.3,

4.4 cover the case p = 2α
N−2α and the case p ∈ (1, 2α

N−2α ) respectively. So

it covers p ∈ (1, 1 + 2α
N ] in Theorem 1.1 part (i). When 2α

N−2α > 1 + 2α
N ,

Proposition 4.4 covers p ∈ (1, N
2α ) in Theorem 1.2 part (i). Therefore, we

have

u∞ ≥ c
1

p−1

2,k zk in Bd

and for any x ∈ Bd \ {0},

lim
k→∞

c
1

p−1

2,k zk(x) = ∞.

Then
u∞ = ∞ in Bd.

Step 2. To prove u∞ = ∞ in Ω. By the fact of u∞ = ∞ in Bd and uk+1 ≥ uk
in Ω, then for any n > 1 there exists kn > 0 such that ukn ≥ n in Bd. For
any x0 ∈ Ω\Bd, there exists ρ > 0 such that B̄ρ(x0) ⊂ Ω∩Bc

d/2. We denote
by wn the solution of

(−∆)αu+ up = 0 in Bρ(x0),

u = 0 in Bc
ρ(x0) \Bd/2,

u = n in Bd/2

(4.15)

14



Then by Theorem 2.1, we have

ukn ≥ wn. (4.16)

Let η1 be the solution of

(−∆)αu = 1 in Bρ(x0),

u = 0 in Bc
ρ(x0)

and vn = wn − nχBd/2
, then vn = wn in Bρ(x0) and

(−∆)αvn(x) + vpn(x) = (−∆)αwn(x)− n(−∆)αχBd/2
(x) + wp

n(x)

= n

∫

Bd/2

dy

|y − x|N+2α
, x ∈ Bρ(x0),

that is, vn is a solution of

(−∆)αu+ up = n

∫

Bd/2

dy

|y − x|N+2α
in Bρ(x0),

u = 0 in Bc
ρ(x0).

(4.17)

It is clear that 1
c35

≤
∫

Bd/2

dy
|y−x|N+2α ≤ c35, x ∈ Bρ(x0) for some c35 > 1 and

( n
2C max η1

)
1
p η1 is sub solution of (4.17). Then using Theorem 2.1, we obtain

that
vn ≥ (

n

2Cmax η1
)
1
p η1, x ∈ Bρ(x0),

which implies that

wn ≥ (
n

2C max η1
)
1
p η1, x ∈ Bρ(x0).

Then
lim
n→∞

wn(x0) → ∞.

Since x0 is arbitrary and together with (4.16), it implies that u∞ = ∞ in Ω.
The proof is complete. �

4.2 The case of p ∈ (1 + 2α
N
, p∗α)

Proposition 4.5 Let α ∈ (0, 1) and r0 = dist(0, ∂Ω). Then
(i) if max{1+ 2α

N , 2α
N−2α} < p < p∗α, there exist R0 ∈ (0, r0) and c36 > 0 such

that
u∞(x) ≥ c36|x|

− 2α
p−1 , x ∈ BR0 \ {0}; (4.18)

(ii) if 2α
N−2α > 1 + 2α

N and p = 2α
N−2α , there exist R0 ∈ (0, r0) and c37 > 0

such that

u∞(x) ≥
c37

(1 + | log(|x|)|)
1

p−1

|x|−
p(N−2α)

p−1 , x ∈ BR0 \ {0}. (4.19)
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(iii) if 2α
N−2α > 1 + 2α

N and p ∈ (1 + 2α
N , 2α

N−2α ), there exist R0 ∈ (0, r0) and
c38 > 0 such that

u∞(x) ≥ c38|x|
− p(N−2α)

p−1 , x ∈ BR0 \ {0}. (4.20)

Proof. (i) Using (1.9) and Lemma 2.1(i) with max{1+ 2α
N , 2α

N−2α} < p < p∗α,
then there exist ρ0 ∈ (0, r0) and c39, c40 > 0 such that

uk(x) ≥ c39k|x|
−N+2α − c40k

p|x|−(N−2α)p+2α, x ∈ Bρ0 \ {0}. (4.21)

Let us define

ρk = (2(N−2α)p−2α−1 c40
c39

kp−1)
1

(N−2α)(p−1)−2α . (4.22)

Since (N − 2α)(p − 1)− 2α < 0, we have that

lim
k→∞

ρk = 0

and then there exists k0 > 0 such that ρk0 ≤ ρ0. Then for x ∈ Bρk \ B ρk
2
,

we have

c40k
p|x|−(N−2α)p+2α ≤ c40k

p(
ρk
2
)−(N−2α)p+2α

=
c39
2
kρ−N+2α

k

≤
c39
2
k|x|−N+2α

and

k = (2(N−2α)p−2α−1 c40
c39

)
− 1

p−1ρ
N−2α− 2α

p−1

k

≥ c41|x|
N−2α− 2α

p−1 ,

where c41 = (2(N−2α)p−2α−1 c40
c39

)
− 1

p−12(N−2α)(p−1)−2α−1. Combining with
(4.18), we obtain

uk(x) = c39k|x|
−N+2α − c40k

p|x|−(N−2α)p+2α

≥
c39
2
k|x|−N+2α

≥ c42|x|
− 2α

p−1 , (4.23)

for x ∈ Bρk \ B ρk
2
, where c42 = 1

2c39c41 is independent of k. By (4.22), we

can choose a sequence {kn} ⊂ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,
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Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

and

then by (4.23),

ukn(x) ≥ c42|x|
− 2α

p−1 .

Together with uk+1 > uk, we derive

u∞(x) ≥ c42|x|
− 2α

p−1 , x ∈ Bρk0
\ {0}.

(ii) By (1.9) and Lemma 2.1(ii) with p = 2α
N−2α , there exist ρ0 ∈ (0, r0)

and c43, c44 > 0 such that

uk(x) ≥ c43k|x|
−N+2α − c44k

p| log(|x|)|, x ∈ Bρ0 \ {0}. (4.24)

Denote by (ρk) a sequence number in (0, 1) such that

c44k
p−1| log(

ρk
2
)| =

c43
2
ρ−N+2α
k , (4.25)

then
lim
k→∞

ρk = 0

and there exists k0 > 0 such that ρk0 ≤ ρ0. Then for x ∈ Bρk \ B ρk
2

and

k ≥ k0,

c43k
p| log(|x|)| ≤ c44k

p| log(
ρk
2
)| =

c43
2
kρ−N+2α

k ≤
c43
2
k|x|−N+2α.

By (4.25), for x ∈ Bρk \B ρk
2
, we have that

k = (
c44
2c43

)−
1

p−1 (
ρ−N+2α
k

1 + | log(ρk)|
)

1
p−1 ≥ c45

|x|
−N−2α

p−1

(1 + | log(|x|)|)
1

p−1

,

where c45 = 2−
N−2α
p−1 ( c44

2c43
)−

1
p−1 . Therefore, for x ∈ Bρk \B ρk

2
we have

uk(x) ≥ c43k|x|
−N+2α − c44k

p| log(|x|)|

≥
c43
2
k|x|−N+2α ≥ c46

|x|−
p(N−2α)

p−1

(1 + | log(|x|)|)
1

p−1

, (4.26)

where c46 =
1
2c43c45 independent of k.

By (4.25), we can choose a sequence kn ∈ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,

Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

and

then by (4.26),

ukn(x) ≥ c46
|x|

− p(N−2α)
p−1

(1 + | log(|x|)|)
1

p−1

.
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Together with uk+1 > uk, we have

u∞(x) ≥ c46
|x|

− p(N−2α)
p−1

(1 + | log(|x|)|)
1

p−1

, x ∈ Bρk0
\ {0}.

(iii) By (1.9) and Lemma 2.1 (iii) with p ∈ (1 + 2α
N , 2α

N−2α), then there
exist ρ0 ∈ (0, r0) and c47, c48 > 0 such that

uk(x) ≥ c47k|x|
−N+2α − c48k

p, x ∈ Bρ0 \ {0}. (4.27)

Let
ρk = (

c48
2c47

kp−1)−
1

N−2α , (4.28)

then
lim
k→∞

ρk = 0

and there exists k0 > 0 such that ρk0 ≤ ρ0. Then for x ∈ Bρk \ B ρk
2

and

k ≥ k0,

c48k
p =

c47
2
kρ−N+2α

k ≤
c47
2
k|x|−N+2α.

By (4.28), for x ∈ Bρk \B ρk
2
, we have that

k = (
c48
2c47

)
− 1

p−1 ρ
−N−2α

p−1

k ≥ c49|x|
−N−2α

p−1 ,

where c49 = 2
−N−2α

p−1 ( c48
2c47

)
− 1

p−1 . Therefore, for x ∈ Bρk \B ρk
2

we have

uk(x) ≥ c47k|x|
−N+2α − c48k

p ≥
c47
2
k|x|−N+2α

≥ c50|x|
− p

p−1
(N−2α), (4.29)

where c50 =
1
2c47c49 independent of k.

By (4.28), we can choose a sequence kn ∈ [1,+∞) such that

ρkn+1 ≥
1

2
ρkn ,

Then for any x ∈ Bρk0
\ {0}, there exists kn such that x ∈ Bρkn

\B ρkn
2

and

then by (4.29),

ukn(x) ≥ c50|x|
− p(N−2α)

p−1 .

Together with uk+1 > uk, we have

u∞(x) ≥ c50|x|
− p(N−2α)

p−1 , x ∈ Bρk0
\ {0}.

We complete the proof. �
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Lemma 4.2 Let p ∈ (1 + 2α
N , p∗α) and us be a strongly singular solution of

(1.4) satisfying (1.5). Then

u∞ ≤ us in Ω \ {0}. (4.30)

where u∞ is defined by (1.13).

Proof. By (1.5) and (1.9), we have that

lim
x→0

us|x|
2α
p−1 = c0 and lim

x→0
uk|x|

N−2α = ck,

then there exists r1 > 0 such that

uk < us in Br1 \ {0}.

By Theorem 3.1, we have that uk satisfies

(−∆)αuk + upk = 0 in Ω \Br1(0),

so does us. By Theorem 2.1, we have uk ≤ us in Ω \ {0}. Combining with
(1.13), then

u∞ ≤ us in Ω \ {0}.

The proof is complete. �

Proof of Theorem 1.1 (ii) and Theorem 1.2 part (iv). By Lemma
4.2 and Theorem 3.2, we obtain that u∞ is a classical solution of (1.4).
Moreover, by Proposition 4.5 part (i) and Lemma 4.2, we have

1

c51
|x|−

2α
p−1 ≤ u∞(x) ≤ c51|x|

− 2α
p−1 ,

for some c51 > 1. Since us is unique in the sense of (1.6), then u∞ = us in
R
N \ {0}. The proof is complete. �

4.3 Proof of Theorem 1.2 (ii) and (iii)

Proof of Theorem 1.2 parts (ii) and (iii). By Lemma 4.2 and Theorem
3.2 we obtain that u∞ is a classical solution of (1.4) satisfying

u∞ ≤ us in Ω \ {0}.

Moreover, we obtain (1.16) and (1.15) by Proposition 4.5 part (ii) and (iii),
respectively. The proof is complete. �
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[8] H. Chen and L. Véron, Semilinear fractional elliptic equations involving
measures, arXiv:1305.0945v2, [math.AP], 15 (May 2013).
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