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A highly anisotropic nonlinear elasticity model for vesicles
I. Eulerian formulation, rigidity estimates and vanishing
energy limit

24 July 2013

Abstract We propose a nonlinear elasticity model for vesicle membranes which is an Eulerian
version of a model introduced by Pantz and Trabelsi. We describe the limit behavior of sequences
of configurations whose energy goes to 0 in a fixed domain. The material is highly anisotropic
and the analysis is based on some rigidity estimates adapted to this anisotropy. The main part of
the paper is devoted to these estimates and to some of their consequences. The strongest form
of these estimates are used in a second article to derive the thin-shell limit bending theory of the
model.

Keywords Calculus of Variation · Helfrich functional · Willmore functional · Rigidity estimates ·
Non-linear elasticity · Lipid bilayers

Mathematics Subject Classification (2000) 49Q10 · 74B20 · 74K25 · 74K25

1 Introduction

In an aqueous environment, the components of biological or artificial vesicles self-assemble spon-
taneously to form large structures. Usually these components are phospholipid molecules with a
hydrophilic head and two hydrophobic hydrocarbon chains. This variation of the solubility along
the molecules drives the aggregation process. To lower their energy, the phospholipids form small
spheres called micelles, with heads pointing towards the surrounding aqueous medium and tails
pointing toward the center. They also aggregate to form large membranes made of two mono-
molecular layers with all hydrophobic tails pointing toward the interior — see Figure 1.1. Because
open sheet configurations would involve a huge edge energy, the bilayers form closed encapsulat-
ing structures. The enclosed area and the bilayer membrane are called a vesicle. The composition
of the fluid inside a vesicle may differ from that of the surrounding medium. For this reason,
vesicles play a crucial role in the organization of substances in living cells.

The vesicles membranes are a few nanometer thick whereas their size can reach the order
of tenth of micrometers. In such a situation we can consider that the size of the vesicle is large
with respect to the thickness of its membrane (diam(S) ≫ 2ε) and it is tempting to model the
membrane as a surface Σ = ∂O and to define its free energy as a function of its geometry. This
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Fig. 1.1 Main phospholipid structures.
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Fig. 1.2 A minimizing configuration for the model of Peletier and
Röger.

point of view has been introduced by Canham [2] and Helfrich [5] — see also the review paper by
Seifert [13] for a description of such models and comparisons to experiments. Vesicle membranes
do not behave as other interfaces as their shapes are well described by the optimization of a
bending energy and not by surface-tension theories. In the seminal paper [5], Helfrich considers
an inextensional membrane represented by the surface Σ whose elastic energy is given by the
integral over Σ of a second order polynomial function of its principal curvatures. This assumption
includes the invariance of the stored energy function with respect to rotations in the tangent plane
to the surface Σ . Under these conditions, he deduces the general form of the free energy of a
membrane:

WHel = κ1

∫

Σ
|h−µ |2 +κ2

∫

Σ
K +κ3H

2(Σ).

In this formula h denotes the scalar mean curvature of Σ and K denotes its Gauss curvature. These
quantities are derived from the second fundamental form of Σ which is defined as II =∇Σ n where
n is the outward unit normal to Σ = ∂O. With this notation, K := det II and h := Tr II = ∇Σ ·n —
notice that the sign of the scalar mean curvature depends on the choice of the orientation on Σ .
Thanks to the Gauss-Bonnet formula, the second term of WHel only depends on the genus of Σ
and by inextensionality, the last term is a constant. Hence, it is equivalent to consider the energy

Wµ =

∫

Σ
|h−µ |2 . (1.1)

The parameter µ ∈ R accounts for the spontaneous curvature of the membrane which may arise
for instance from differences between the properties of the environment on both sides of the
membrane. When µ = 0, the energy simplifies to the Willmore functional

W (Σ) =
∫

Σ
|h|2. (1.2)

Our purpose is to derive rigorously the Helfrich energy Wµ as a limit as ε goes to 0 of a 3-D
model of nonlinear elasticity for vesicle membranes with small but positive thickness 2ε > 0.
Our work follows other attempts in this direction. Let us mention a very interesting model in-
volving thick membranes introduced by Peletier and Röger in [10]. Their model is based on the
description of the location of the tails and the heads of the lipid molecules thanks to density
functions — see Figure 1.2. The Willmore energy appears as a second order term in the Γ -limit
expansion of the family of energies that they consider.
The Helfrich energy also arises as the Γ -limit of some phase field models, see e.g. [1,7]. Such
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models are used to approximate the Willmore energy in image processing and our work may ap-
pear as an alternative in this field.
One can already find formal derivations of the energy of vesicle membranes from 3-D elasticity
theory [12,3]. In these papers it is either assumed that the lipid molecules are rigid rods, or that
the deformation of the material varies linearly in the out-of-plane direction.

Our choice of a continuum mechanics description is disputable. Indeed, since the thickness
of a vesicle membrane is of the same order as the length of the molecules that make it up, we
believe that an accurate model should be based on quantum mechanics or, at least, on a dis-
crete description of the material. The finite thickness model for vesicle membranes is relevant as
an intermediate description between a two-dimensional bending theory and models accounting
for interactions between discrete objects. Our model is also oblivious to various phenomenons
such as phase transitions in the membrane, fluid flows or the possible presence of a cytoskeleton
strengthening the membrane.

1.1 A highly anisotropic model in nonlinear elasticity

The lipids in a vesicle membrane are held together by non-covalent bonds. If the aqueous en-
vironment prevents membrane lipids from escaping from the bilayer, nothing stops them from
moving about and changing places with one another within the bilayer. Hence, the membrane
behaves as a two dimensional fluid. On the other hand, the membrane is a structure which resists
to stretching and bending and it can also be considered as a solid. Here, we propose to model the
vesicle membrane as a degenerated elastic material. In the sequel, we will switch to an Eulerian
formalism but we start from the more familiar Lagrangian description. We represent a piece of
membrane as the result of the deformation of a reference domain S× (−ε ,ε) where S is a sur-
face and 2ε is the natural thickness of the membrane. The deformation and displacement of the
membrane are given by a (one to one) mapping,

Φ : S× (−ε ,ε) −→ R3.

The free energy associated to such deformation reads

F (Φ) =
∫

S×(−ε ,ε)
f (DΦ(x))dx,

where f : R3×3 → R+ is the so called stored energy function. For simplicity, let us assume that
S ⊂ R2 is a piece of a plane and that f (Id) = 0.1

Since, the membrane is a two dimensional fluid, the stored energy function has to be anisotropic.
For an isotropic material, the symmetries of the problem are given by the relations f (DΦ(x)R) =
f (DΦ(x)) for any R ∈ SO(3). Here, we expect that for any deformation Φ of the form

Φ(x) = (Φ ′(x1,x2),x3) with Φ ′ ∈C1(S,R2) volume preserving, (1.3)

we have f (DΦ(x)) = 0. We deduce that f (DΦ(x)A) = f (DΦ(x)) for any A ∈ SL(3) such that

Ae3 = e3 and Ae⊥3 ⊂ e⊥3 . This leads to

f (DΦ(x)) = g(∂1Φ(x)×∂2Φ(x),∂3Φ(x)), (1.4)

for some g : R3 ×R3 → R. Moreover,

f (DΦ(x)) = 0 ⇐= ∂1Φ(x)×∂2Φ(x) = ∂3Φ(x) ∈ S2. (1.5)

1 These restrictions rule out non-vanishing spontaneous curvatures but we will recover the general case in the Eulerian setting,
at the end of the next subsection.
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Notice that there exist smooth functions f complying to the above symmetries for which equiv-
alence holds — for instance f (DΦ(x)) = |∂1Φ(x)×∂2Φ(x)−∂3Φ(x)|2 +(|∂3Φ(x)|2 −1)2. The
set of zero-energy deformations is larger than in the isotropic case. In this sense, we consider a
highly anisotropic model.

Such stored energy functions have been proposed and studied by Pantz and Trabelsi in [9],
where they perform a formal asymptotic analysis. With their notation, the present model cor-
responds to W0 ≡ 0. It is fair to mention that the present study has been suggested by Olivier
Pantz.

We have described the set of zero-energy deformations. Before switching to the Eulerian set-
ting, let us briefly describe the simplest elements of the complement of this set: linear deforma-
tions which are penalized by an energy cost. In view of (1.5) the linear deformations which may
cause an increase of the free energy are combinations of the form Φ = R ◦Φ1 ◦Φ◦

2 Φ3 where
R is a rotation and at least one thes elementary linear deformation Φi is not the identity. These
elementary deformations are:

– a variation of the width of the membrane Φ1(x
′, s) = (x′/

√
λ ,λ s) with λ > 0,

– an isotropic variation of the density of the material, Φ2(x) = λx,,
– a tilt deformation of the form Φ3(x

′, s) = λx′+se, with λ > 0, e∈ S2 and det DΦ3 = λ 2e ·e3 =
1 — see Figure 1.3.

α = arccos(e · e3)

Φ

Fig. 1.3 A tilt deformation.

1.2 Eulerian version of the model

In order to achieve a rigorous Γ -limit analysis, we have to establish some compactness results
for sequences of deformations satisfying uniform energy bounds. For this task, the Lagrangian
point of view is troublesome. Indeed, since any planar volume preserving rearrangement of the
form (1.3) does not affect the energy, any compactness statement can only conclude to conver-
gence up to right composition by such rearrangement. We avoid these difficulties by considering
the Eulerian counterpart of the above model. This is also consistent with the fluid nature of the
membrane.

Let us set Ω = Φ(S× (−ε ,ε)) and rewrite the energy as a function of Ψ = Φ−1. We obtain
formally,

FEu(Ψ ,Ω) =
∫

Ω
f (DΨ−1(y))detDΨ(y)dy =

∫

Ω
fEu(DΨ).

The symmetry hypotheses on the Lagrangian model transpose as

fEu(ADΨ(y)) = fEu(DΨ(y))

for any A ∈ SL(3) such that Ae3 = e3 and Ae⊥3 ⊂ e⊥3 . The counterparts of (1.4) and (1.5) write,

fEu(DΨ(y)) = gEu(∇Ψ1(y)×∇Ψ2(y),∇Ψ3(y)),

fEu(DΨ(y)) = fEu(Id) ⇐= ∇Ψ1(y)×∇Ψ2(y) = ∇Ψ3(y) ∈ S2. (1.6)
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Let us now get rid of the Lagrangian formalism. From the reverse deformation Ψ , we only need
to keep track of the two following fields defined on Ω ,

σ := ∇Ψ1 ×∇Ψ2 and t := Ψ3.

By Piola identity, we know that ∇ · σ = 0 in Ω . We also see that |t| < ε in Ω and, if Φ is
sufficiently smooth, that t =±ε on ∂Ω . Our model then rewrites formally as,

FEu(σ ,τ ,Ω) =

∫

Ω
gEu(σ(y),τ(y))dy.

where Ω is an open set, σ is divergence free vector field on Ω and where there exists t ∈
C(Ω̄ , [−ε ,ε ]) such that Ω = [|t|< ε ] and τ = ∇t.

The quantities σ and t have natural physical significations. We can see the reference shape
S× (−ε ,ε) as a collection of fibers with length 2ε , indexed by x′ ∈ S and oriented by e3. Given
x′ ∈ S, the corresponding reference fiber is described by (x′, s) where the abscissa s on the fiber
ranges from −ε to ε . The deformation of this fiber is given by ϕx′(s) = Φ(x′, s). If we consider a
single deformed fiber passing at some point y ∈ Ω , then t(y) gives the abscissa at this point on the
corresponding reference fiber, that is the natural abscissa of this point on the fiber at rest. On the
other hand, the relation Ψ = Φ−1 shows that σ(y) = ∇Ψ1 ×∇Ψ2(y) is the flux of fibers passing
at point y.
Therefore, σ gives the local direction of the oriented fibers and τ = ∇t is orthogonal to the level
sets of the fiber natural abscissa. The relations on the right hand sides of (1.6) mean that these
directions are equal (no tilt), that the local elastic fiber is not stressed and that the local density of
matter is the density at rest.

In order to take into account a possible spontaneous curvature of the membrane, we relax the
divergence free condition on σ to the condition,

∇ ·σ = µ in R3.

The parameter µ ∈R depends on the material. At micro-scale, this amounts to consider that fibers
have a linearly varying “thickness” along their abscissa. We can also obtain this spontaneous
curvature model from the Lagrangian model by considering stressed reference shapes.

Eventually, we want to model closed membranes which separate the inside from the outside.
To achieve this we assume that we can extend t as a continuous function on R3 with values
into [−ε ,ε ]. By convention, we assume t ≡ ε in the neighborhood of infinity. The domain of the
membrane is still [|t|< ε ] and the area [t =−ε ] defines the interior of the vesicle.

1.3 The general model in dimension d and the zero energy limit

Since it does not create any additional difficulty, we fix an integer d ≥ 2 and set the problem in
Rd . The physical case corresponds to d = 3.

Given µ ∈ R and ε > 0, a membrane of thickness 2ε in Rd is modeled by a bounded open set
Ω ⊂ Rd and two mappings τ ∈ L2(Rd ,Rd) and σ ∈ L2(Ω ,Rd). These objects are subjected to a
set of constraints:

• there exists t ∈W
1,2
loc (R

d)∩C(Rd, [−ε ,ε ]) such that τ = ∇t.

• Ω = {y ∈ Rd : |t|(y)< ε}.

• ∇ ·σ ≡ µ in D ′(Ω).
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We will say that a configuration a = (σ ,∇t,Ω) complying to these hypotheses is an ε-membrane.

The elastic energy associated to an ε-membrane has the form

F (a) :=
∫

Ω
f (σ(y),∇t(y))dy,

where f ∈C(Rd ×Rd ,R+) depends on the material. In our context, the stored-energy functions
f of interest vanish on the sphere

Sd−1 :=
{
(e,e) : e ∈ Sd−1

}
⊂ Rd ×Rd,

We assume that the stored energy function is not degenerated with respect to this property, that is
f (.)/d(·,Sd−1)2 is bounded from below by a positive constant on Rd ×Rd \Sd−1.

1.4 Heuristic for thin vesicle membranes

For an ε-membrane (σ ,∇t,Ω) with moderate energy, the vector fields ∇t and σ should be close

from one another, with magnitudes close to 1. If we have exactly (σ ,∇t)∈ Sd−1 then ∆t =∇ ·σ =
µ . We conclude that τ = ∇t is a unit magnitude harmonic vector field for which the following
Liouville type property holds.

Let O ⊂ Rd , open. If τ : O → SN is harmonic. Then τ is locally constant. (1.7)

Proof (of (1.7)) Let B ⊂ B ⊂ O be an open ball with center y. Using |τ | ≡ 1 and the mean value
property, we compute,

�

∫

B

|τ − τ(y)|2
2

= 1− τ(y) ·�
∫

B
τ = 1−|τ(y)|2 = 0 ,

and τ is constant in B. ⊓⊔
In this zero energy case, the domain Ω = [|t|< ε ] can only be a disjoint union of plates with width
2ε . It can not model a finite closed membrane: in our setting, membranes are always stressed.
To treat the case of a small but non-vanishing energy, we establish below rigidity inequalities
which roughly state that if (σ ,∇t) is close to Sd−1 in some domain, then σ and ∇t are close to
the same constant vector field in this domain. We expect that for configurations with a moderate
energy, Ω is almost the ε-neighborhood of some close surface Σ and that σ and ∇t are close to
the unit normal to Σ .

To get a more intuitive understanding of the link between our finite thickness model and
Helfrich bending theory for surfaces, let us consider a fixed smooth hypersurface Σ = ∂O ⊂ Rd

and let us build a family of ε-membranes with moderate energy and whose domain is the ε-
neighborhood of Σ .
Let µ ∈ R and let O ⊂ Rd be a smooth bounded open set, let Σ = ∂O and ν be the outward unit
normal on ∂O. We first define the function t as the signed distance function from Σ .

t(y) := d(y,O)−d(y,Rd \O).

Then for ε > 0, we set Ωε = {y : |t(y)|< ε} and

tε(y) :=

{
t(y) if y ∈ Ωε ,

±ε if ± t(y)≥ ε .
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For ε > 0 small enough the function tε is smooth in Ωε and |∇tε | ≡ 1 in Ωε . We then need to
define a vector field σε ∈ L2(Ωε), close to ∇tε which satisfies ∇ ·σε ≡ µ in D ′(Ωε). For this, we
consider the mapping

ψ : Σ ×R → Rd, ψ(x, s) := x+ sν(x).

There exists ε⋆ > 0 such that ψ is a smooth difeomorphism from Σ × (−ε⋆,ε⋆) onto its image
Ω⋆. The inverse mapping is given by Ψ−1 = (π, t) where π is the orthogonal projection on Σ .

As an ansatz, we look for a vector field σ : Ω⋆ → Rd of the form

σ(y) =
λ (π(y), t(y))

det[Id+ t(y)∇Σ ν(π(y))]
∇t(y),

with λ (x,0) = 1 for x ∈ Σ . The condition on ∇ ·σ ≡ µ in Ω⋆ is equivalent to
∫

Ω⋆

∇ϕ ·σ = −µ

∫

Ω⋆

ϕ for every ϕ ∈ D(Ω⋆).

Using the change of variable y = Ψ(x, s) and noticing that the Jacobian determinant of Ψ is
JΨ (x, s) = det [Id +sDν(x)], we get

∫

Σ

∫ ε⋆

−ε⋆
λ (x, s)

d

ds
[ψ(x+ sν(x))] dsdH

d−1(x)

= −µ

∫

Σ

∫ ε⋆

−ε⋆
ψ(x+ sν(x))det(Id + s∇Σ ν(x))dsdH

d−1(x).

Integrating by parts in s in the left hand side, we deduce that λ satisfies the ordinary differential
equation, ∂sλ (x, s) = µ det(Id+ s∇Σ ν(x)). With the condition λ (x,0) = 1 on Σ , we obtain

σ(x+ sν(x)) =




1+µ

∫ s

0
det(Id+ r∇Σ ν(x))dr

det(Id + s∇Σ ν(x))


ν(x).

Expanding the determinant with respect to s, this yields

σ(x+ sν(x)) = ν(x)− s(h(x)−µ)ν(x)+O(s2),

where h(x) = ∇Σ ·nν(x) is the scalar mean curvature on Σ .
Now, for ε ∈ (0,ε⋆), we set

σε(y) :=

{
σ(y) if y ∈ Ωε ,

0 if y ∈ Rd \Ωε .

For x ∈ Σ and s ∈ (−ε ,ε), we have ∇tε(x+ sν(x)) = ν(x) and σε(x+ sν(x)) = ν(x)− s(h(x)−
µ)ν(x) +O(s2). Taking into account the identity D f ≡ 0 on Sd−1, we see that the energy of
aε = (σε ,∇tε ,Ωε) expands as

F (aε) = ε3
∫

Σ
c(D2 f (ν ,ν))(h−µ)2 +O(ε4),

where the function c depends on the Hessian matrix of f on Sd−1.
In view of these computations, we expect that under symmetry hypotheses on f , the Helfrich
energy (1.1) arises as the limit as ε tends to 0 of the family {F/ε3} defined on ε-membranes.
This analysis is performed in the second part [8] of this paper in the case µ = 0 and under further
hypotheses and volume constraints. In the language of Γ -convergence, we prove a compactness
result, a lower bound result and we establish the matching upper bound in the smooth case.
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1.5 The vanishing energy limit

From now, on we assume µ = 0 and, in this first part, we only consider the non-degenerated case
f = f0 where

f0(u,v) := |u− v|2 +(|u|−1)2 +(|v|−1)2 for every u,v ∈ Rd.

The energy functional associated to this particular function is denoted by

F0(σ ,τ ,Ω) :=
∫

Ω
f0(σ(y),τ(y))dy. (1.8)

As a first step toward the Γ -limit analysis of [8], we study the vanishing energy limit for
configurations with fixed typical membrane width. When (σε ,∇tε ,Ωε) is an ε-membrane, we
can perform the scaling

Ω(ε) := ε−1Ωε , t(ε)(y) := ε−1tε(εy), σ(ε)(y) := σε(εy).

We easily see that (σ(ε),∇t(ε),Ω(ε)) is a 1-membrane and

F0(σ(ε),τ(ε),Ω(ε)) = ε3−d
F0(σε ,τε ,Ωε).

It is thus sufficient to consider membranes of width 2. We prove the following compactness/structure
result.

Theorem 1.1 Let O ⊂ Rd be a bounded open set.
Consider a sequence ak = (σk,∇tk,Ok), k ≥ 1 such that

i) Ok ⊂ O is open;
ii) σk ∈ L2(Ok,R

d) is divergence free;
iii) tk ∈W 1,2(O, [−1,1]), satisfies tk =±1 in O\Ok;

iv) (tk) is uniformly equi-continuous on O;
v) we have

F0(σk,∇tk,Ok)→ 0 as k ↑ ∞.

Then, there exists t⋆ ∈W 1,2(O)∩C(O, [−1,1]) such that, up to extraction,

tk → t⋆ uniformly in C(O), weakly in W 1,2(O),

and strongly in W
1,2
loc (O⋆) with O⋆ := {y ∈ O : |t⋆|(y)< 1}.

Moreover, ∇t⋆ is locally constant with unit magnitude in O⋆.

More explicitly, the structure of the limit t⋆ is the following.
The function t⋆ is constant (equal to ±1) on any connected component of O\O⋆.

For any connected component C of O⋆, there exist e ∈ Sd−1 and y0 ∈ Rd such that t⋆(y) = (y−
y0) ·e for y ∈ C . In particular C is a connected component of O∩{y ∈ Rd : |(y−y0).e|< 1} (see
Figure 1.4). Let us observe that this structure corresponds to a union of plane membranes with
thickness 2 and with fibers aligned along the normal direction.
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{t⋆ ≡ 1}

{t⋆ ≡−1}

O⋆

∇t⋆

Fig. 1.4 Example of a vanishing energy limit state for which O⋆ has four connected components.

1.6 Rigidity estimates

The proof of Theorem 1.1 is based on some rigidity estimates. However the more precise rigidity
estimates and their corollaries established in the present paper are not required for this task but
are motivated by the Γ -convergence analysis exposed in the second part. In particular ε −δ type
statements are not sufficient for this analysis and we need precise quantitative estimates.

For the compactness and lower bound results of [8], we are led to consider families {aε} =
{(σε ,∇tε ,Ωε)}0<ε≤1 such that aε is ε-admissible and satisfies the energy bound,

F0(aε) ≤ E0ε3. (1.9)

In the proof of the compactness result we build a smooth hypersurface Σε which represents the
membrane (σε ,τε ,Ωε) in the sense that Ωε is close in L1 to the ε-neighborhood of Σε and that
the normal νε on Σε is close to ∇tε and σε . We then need to establish that the vector field ∇tε(y)
is close in Ωε to the normal νε(x) of a smooth surface passing through some point x near y. This
normal defines a “thickness” direction for the membrane. A natural candidate for such a direction
is ∇tε , this choice amounts to define Σε as a level set of tε . Since ∇tε may not be continuous,
this choice is not reasonable without preparation: we first need to mollify ∇tε . We are then led to
consider averaged quantities and address the following issue:

Consider a closed ball Bδ ε(x) ⊂ Ωε , where δ > 0 is a small radius. Does their exist a direction

νε(x) ∈ Sd−1 such that ∇tε is close to νε(x) in L2(Bδ ε(x)) ?

The relevant tool to tackle this problem is the energy bound (1.9). This bound indicates that
f0(σε ,τε) has typical order of ε2. This implies that ∇tε is close to Sd−1 in L2(Ωε) but also that tε
is almost harmonic in the following sense.
For every ψ ∈ D(Bδ ε(x)), we have, since σε is divergence free:

∫

Bδε (x)
∇tε ·∇ψ =

∫

Bδε (x)
(∇tε −σε) ·∇ψ ≤

(∫

Bδε (x)
f0(σε ,∇tε)

)1/2

‖∇ψ‖L2 .

Hence, ‖∆tε‖2
H−1(Bδε (x))

≤ ∫
Bδε (x)

f0(σε ,τε) = O(εd+2).

It is convenient to introduce the scaled function ϕ(y) := 1
ε tε(x+ εy). The preceding argument

implies that the local energy

E :=

∫

Bδ

(|∇ϕ |−1)2+‖∆ϕ‖2
H−1(Bδ )
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has typical order of ε2.

In the limit case E = 0, ∇ϕ is a harmonic vector field with unit magnitude in Bδ . The rigidity
property (1.7) implies that ∇ϕ is constant in Bδ . In this case, the natural normal direction is the
constant unit vector e = ∇ϕ .
For E > 0, E ∼ ε2, we establish rigidity estimates associated to (1.7). The weakest form of these
estimates states that:

∀η > 0, ∃β > 0 such that E < β =⇒ min
e∈Sd−1

‖∇ϕ − e‖L2(Bδ )
< η .

The minimizer e⋆ ∈ Sd−1 of ‖∇ϕ − e‖L2(Bδ )
then provides an average “thickness” direction.

Remark that the rigidity property (1.7) is related to the Liouville theorem: if O ⊂ Rd is an
open set then for every ψ ∈W 1,1(O,Rd),

∇ψ ∈ SO(d) a.e. =⇒ ∇ψ is locally constant.

The associated L2-rigidity estimate established by Frieseke, James and Müller in [4] is now clas-
sical: if O ⊂ Rd is a Lipschitz, bounded and connected open set, then,

inf
R∈SO(d)

∫

O
|∇ψ −R|2 ≤ C(O)

∫

O
d(∇ψ,SO(d))2 for every ψ ∈W 1,2(O,Rd).

In the same spirit, we establish some rigidity inequalities associated to (1.7).

It turns out that when we apply these rigidity estimates to a harmonic function ϕ , they provide
some control on the curvature of the level sets of ϕ . In particular we can deduce bounds on
their Willmore energy (1.2). These bounds are a key ingredient of the compactness step in [8].
Indeed, the main part of the hypersurface Σε is defined as a piece of a level set of some harmonic
function. In the sequel, we state the consequences on level sets of harmonic functions of our
rigidity estimates which are relevant for this purpose.

1.7 Notation

Throughout the paper, the letter C denotes a non negative constant which is either a universal con-
stant or only depends on the dimension d. For constants which also depend on other parameters,
α1, · · · ,αk, we write C(α1, · · · ,αk). As usual, the values of these constants may change from line
to line.

We write Br(y) to denote the open ball in Rd with center y and radius r > 0 or simply Br for
Br(0).

The k-dimensional hausdorff measure of a set E ⊂ Rd is denoted by H k(E).

For e ∈ Sd−1, πe denotes the orthogonal projection on the space

e⊥ = {y ∈ Rd−1 : y · e = 0},

that is πe(y) = y− (y · e)e.

We also identify e⊥d with Rd−1 and for y ∈ Rd , we write y′ = (y1, · · · ,yd−1) = πed
y. Hence, y =

(y′,yd).
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1.8 Outline of the first part

In Section 2 we establish some local rigidity estimates associated to the Liouville property (1.7).
We start with Theorem 2.1 which only applies to harmonic functions ϕ . This result will allow us
to control the average Willmore energy of the level sets of such harmonic function (Corollary 2.1).
Another application of Theorem 2.1 is the weak rigidity estimate (Theorem 2.2) which states that
the L2-distance from ∇ϕ to Sd−1 is controlled by the square root of the L2-norm of |∇ϕ |−1. At
the end of the section, we prove Theorem 1.1 as a consequence of this rigidity estimate.

In Section 3, we improve the rigidity estimates and obtain a linear control of the Willmore
energy of the level sets of ϕ with respect to the integral of (|∇ϕ |−1)2 (Corollary 3.1).

2 Weak rigidity estimates and proof of Theorem 1.1

As stated above, if O ⊂ Rd is a non empty connected open set and if ϕ : O → Rd is harmonic and
satisfies |∇ϕ | ≡ 1 in O then ∇ϕ is constant. We prove here various estimates associated to this
rigidity property.

We begin by relaxing the constraint |∇ϕ | ≡ 1, still assuming that ϕ is harmonic. As in [4], the
first step relies on the Bochner idendity,

∆ [|∇ϕ |2] = 2∇ϕ ·∇∆ϕ +2|D2ϕ |2 ϕ harm.
= 2|D2ϕ |2.

Theorem 2.1 (Weak rigidity estimate, harmonic case)
Let O ⊂ Rd be a nonempty open set and let ϕ : O → R be a non locally constant harmonic
function.

Then, for 0 ≤ α < d/(d − 1), the function |D2ϕ |2/|∇ϕ |α is locally integrable and we have the

estimate,
∫

O

|D2ϕ |2
|∇ϕ |α χ ≤ 1

1−α(d −1)/d

∫

O

|∇ϕ |2−α

2−α
∆χ, (2.1)

for every χ ∈ D(O,R+).

Remark 2.1

i. The case α = 0 corresponds to Step 2 in the proof of Proposition 3.4 in [4].

ii. The proof combines the Bochner identity and the simple pointwise inequality (2.5). This
line of reasoning is well known in the Geometric Analysis community (see e.g. [6], [11]). How-
ever, we did not find the estimate (2.1) in the literature. For example, it follows from [6]-

Lemma 7.2 and [6]-Lemma 6.1 applied to |∇ϕ |(d−2)/(d−1) that for 0 < α < d/(d − 1) and
O0 ⊂⊂ O,

∫

O0

|∇|∇ϕ ||2
|∇ϕ |α ≤ C(O0,O,α)

∫

O
|∇ϕ |2−α . (2.2)

In this inequality, the weight ∆χ which appears in the right hand side of (2.1) is missing. This
weight (or any other bounded weight with vanishing mean value) is necessary to establish Corol-
lary 2.1.b below.

iii. An interesting consequence of the lemma is that for ϕ harmonic in O and β := 1−α/2 >
(d −2)/2(d −1), we have

|∇ϕ |β ∈W 1.2
loc (O). (2.3)

In particular, in any dimension,
√

|∇ϕ | ∈W
1,2
loc (O).



12 Benoı̂t Merlet

iv. The result does not hold in general if ϕ is not harmonic, even if ∇ϕ is. For instance, if we
choose ϕ(y) = y2

1/2, then

|D2ϕ |2/|∇ϕ |α = 1/|y1|α 6∈ L1
loc(R

d) for α ≥ 1.

v. As shown by the counterexample ϕ(y)= y1y2, the conditions α < 2, β > 0 for (2.2) and (2.3)
are optimal in dimension d = 2. In higher dimensions, we do not know the optimal exponents.

Proof (of Theorem 2.1) Let O, ϕ and χ be as in the statement of the lemma, let 0 ≤ α ≤ 2 and
let η > 0 be a small parameter.
We start with the identity ∆ [|∇ϕ |2/2] = |D2ϕ |2 which holds for any harmonic function ϕ .

Mutliplying this identity by χ/(η2 + |∇ϕ |2)α/2 and integrating by parts, we get,

−
∫

O

|∇ϕ |(∇|∇ϕ | ·∇χ)

(η2 + |∇ϕ |2)α/2
+α

∫

O

|D2ϕ ·∇ϕ |2

(η2 + |∇ϕ |2)α
2 +1

χ =

∫

O

|D2ϕ |2
(η2 + |∇ϕ |2)α/2

χ.

Using the notation,

A(y) := D2ϕ(y) and nη(y) := ∇ϕ(y)/
√

η2 + |∇ϕ |2(y),

the above identity rewrites as,

∫

O

|A|2−α|Anη |2
(η2 + |∇ϕ |2)α/2

χ = −
∫

O

|∇ϕ |
(η2 + |∇ϕ |2)α/2

∇|∇ϕ | ·∇χ

We simplify the right hand side by using the identity,

∇

[
(η2 + |∇ϕ |2)1−α/2

2−α

]
=

|∇ϕ |
(η2 + |∇ϕ |2)α/2

∇|∇ϕ |.

Integrating by parts, we get

∫

O

|A|2 −α|Anη |2
(η2 + |∇ϕ |2)α/2

χ =
∫

O

(η2 + |∇ϕ |2)1−α/2

2−α
∆χ. (2.4)

Now, let us fix y ∈ O and let us estimate from below the quantity |A|2(y)−α|Anη |2(y) which
appears in the left hand side.
Since ϕ is harmonic, the symmetric matrix A(y) = D2ϕ(y) has zero trace. Let λi, i = 1, · · · ,d be
the eigenvalues of A(y), ordered by magnitude (in particular, |λd|= max |λi|). Using |nη(y)| ≤ 1,
we have,

|A(y)|2 −α|A(y)nη(y)|2 ≥ ∑λ 2
i −αλ 2

d = |A(y)|2
(
1−αβ 2

d

)
,

where we have set βi := λi/|A(y)|.
Minimizing the last term under the constraints ∑d

i=1 βi = 0 and ∑d
i=1 β 2

i = 1, we obtain (1 −
αβ 2

d )≥ (1−α(d −1)/d). Hence, for α < d/(d −1),

|A(y)|2 −α|A(y)nη (y)|2 ≥
(

1−α
d −1

d

)
|A(y)|2. (2.5)

Assuming α < d/(d −1), and using this inequality in (2.4), we get,

(
1−α

d −1

d

)∫

O

|D2ϕ |2 χ

(η2 + |∇ϕ |2)α/2
≤
∫

O

(η2 + |∇ϕ |2)1−α/2

2−α
∆χ.
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Letting η ↓ 0, we get by the monotone convergence theorem,

(
1−α

d −1

d

)∫

O

|D2ϕ |2
|∇ϕ |α χ ≤

∫

O

|∇ϕ |2−α

2−α
∆χ.

This proves the lemma. ⊓⊔

For our purpose, the interest of Theorem 2.1 resides in that it allows us to control the second
fundamental form of the level sets of ϕ in L2.

Corollary 2.1 Let O ⊂ Rd be a connected, non empty open set and let ϕ : O → R be a harmonic
function.

Then, for almost every s, the set Γ s := ϕ−1({s}) is either empty, either an analytic hypersurface.
Moreover:

a) We have the following control on the (d −1)-volume of these hypersurfaces,

∣∣∣∣
∫

R
H

d−1(Γ s)ds −H
d(O)

∣∣∣∣ ≤
∫

O
||∇ϕ |−1|.

b) Let O0 ⊂⊂ O and let us set γs := Γ s ∩O0 for s ∈ R. We have the following control on the
curvature of these level sets,

∫

R

{∫

γs
|IIs|2(y)dH

d−1(y)

}
ds ≤ C(O0,O)

∫

O
||∇ϕ |−1| ,

where IIs denotes the second fundamental form on γs.

Remark 2.2 Thereafter, we improve the control on the Willmore energy of the level sets of ϕ
in domains where we already know that |∇ϕ | is bounded from below by a positive constant.
The strength of Theorem 2.1 and Corollary 2.1 lie in their robustness as they are valid in the
neighborhood of the critical set [∇ϕ = 0].

Proof (of Corollary 2.1)

(a) By Sard theorem, for almost every s, the vector field ∇ϕ does not vanish on Γ s. For such
s, Γ s is either empty, either an analytic hypersurface. Now, by the co-area formula, we have,

∫

O
|∇ϕ | =

∫

R

[∫

Γ s
1O dH

d−1

]
ds =

∫

R
H

d−1(Γ s)ds.

Writing
∫

O |∇ϕ |= H d(O)+
∫

O[|∇ϕ |−1], we obtain the first estimate.

(b) The unit normal at some point x ∈ Γ s is defined as n(x) := ∇ϕ/|∇ϕ |(x). Then, for v,w ∈
n(x)⊥,

IIs(x)(v,w) = vT ∇n(x)w =
D2ϕ(x)(v,w)

|∇ϕ |(x) .

In particular, |IIs|(x) ≤ |D2ϕ |/|∇ϕ |(x). Squaring and integrating on γs and then in s, the co-area
formula leads to,

∫

R

{∫

γs
|IIs|2 dH

d−1

}
ds ≤

∫

R

{∫

γs

|D2ϕ |2
|∇ϕ |2 dH

d−1

}
ds =

∫

O0

|D2ϕ |2
|∇ϕ | .

The conclusion follows from Theorem 2.1 with α = 1. ⊓⊔
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Now, we also relax the condition ∆ϕ ≡ 0. In our context, the relevant quantity for measuring
the distance from the constraints is the (local) energy,

E :=
∫

O
(|∇ϕ |−1)2 + inf

{∫

O
|σ −∇ϕ |2 : σ ∈ L2(O)d, ∇ ·σ ≡ 0

}
. (2.6)

Notice that by definition of F0 (see (1.8)), we have E ≤ F0(∇ϕ ,σ ,O) for any divergence free

vector field σ ∈ L2(O)d .
When O is bounded and ∇ϕ ∈ L2(O), the infimum appearing in the right hand side of (2.6) is
equal to ‖∆ϕ‖2

H−1(O)
. Indeed, the minimizer σ satisfies the Euler-Lagrange equations

∫
(σ −∇ϕ) · σ̂ = 0, for every σ̂ ∈ L2(O)d s.t. ∇ · σ̂ ≡ 0 in D

′(O).

By De Rham theorem, we see that σ −∇ϕ = ∇p where p solves

−∆ p = ∆ϕ in D
′(O), p ∈W

1,2
0 (O). (2.7)

The infimum in (2.6) is thus ‖∇p‖2
L2(O)

= ‖∆ϕ‖2
H−1(O)

≤ E .

The notation (2.6) is used throughout this paper. We also use the decomposition ϕ = ϕ̃ − p
where p solves (2.7). By construction, the function ϕ̃ ∈W 1,2(O) is harmonic and

∫

O
(|∇ϕ̃|−1)2 ≤ 2

∫

O
(|∇ϕ |−1)2 +2

∫

O
|∇p|2 = 2E .

We use Theorem 2.1 to control the distance (in L2(O)) from ∇ϕ to the set of constant functions

with values into Sd−1.

Theorem 2.2 (Weak rigidity estimate) Let O ⊂ Rd be a Lipschitz bounded and connected open

set, then for every ϕ ∈W 1,2(O),

inf
e∈Sd−1

∫

O
|∇ϕ − e|2 ≤ C(O)

(√
H d(O)E +E

)
. (2.8)

Remark 2.3 By homogeneity, the constant K := C(O) in (2.8) only depends on the shape of O,
i.e. if O′ = λRO, λ > 0, R ∈ O(d) then (2.8) also holds in O′ with C(O′) = K.

Proof We split ϕ in ϕ = ϕ̃ − p as above. We have ‖∇ϕ̃ −∇ϕ‖2
L2(O)

≤ E , so it is sufficient to

establish the lemma for the harmonic function ϕ̃ .

We now assume that ϕ is harmonic. Let C be a partition of O in cubes of the form K = yK +
ρK [−1,1)d such that

K̃ := yK +ρK [−2,2)d ⊂ O, d(yK,R
d \O) ≤ 4diam(K)

and for every z ∈ O, #
{

K ∈ C : z ∈ K̃
}

≤ 2d.

Remark 2.4 To build such a partition, we start with a cube K0 ⊃ O and subdivide it in 2d half-

cubes K1, · · ·K2d . For every i, we check whether K̃i ⊂ O. If this is true, we pick Ki (that is Ki ∈C ),

if not, we divide Ki into 2d equal subcubes Ki,1, · · · ,Ki,2d and proceed recursively.
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For each cube K = y+ρ[−1,1)d ∈ C , we apply Theorem 2.1 with α = 0 and χ ∈D(K̃)(y)) such
that χ ≥ 1K and |∆χ| ≤C/ρ2. We obtain,

ρ2
∫

K
|D2ϕ | ≤C

∫

K̃
||∇ϕ |2−1|

By construction, for every z ∈ K, d(z,∂O)≤ 9
√

dρK . Summing on all the elements of C , we get
∫

O
|D2ϕ |2η2 ≤ C

∫

O

∣∣|∇ϕ |2−1
∣∣ ,

where η denotes the distance function η := d(·,∂O).
Since O is a Lipschitz connected domain, the following weighted Poincaré inequality holds:

‖ψ −ψ‖L2(O) ≤C(O)
∫

O
|∇ψ|2η2 for every ψ ∈W 1,2(O),

where we use the notation ψ = �

∫
O ψ .

Remark 2.5 This inequality is easy to establish in dimension 1 for functions in W 1,2(0,R1) which
vanish at 0 and with η(y) = y.
Then consider a domain of the form

Q = {y ∈ Rd : 0 < yi < Ri for i = 1, · · ·d −1 and 0 < yd − f (y1, · · ·yd−1)< Rd}
with f Lipschitz continuous and R1, · · · ,Rd > 0. Applying the 1D result in direction ed , we see
that the inequality holds for functions of W 1,2(Q) that vanish on the bottom ∂Qb := {y∈ ∂Q ; yd =
f (y1, · · ·yd−1)} and with η(y) = ηQ(y) = yd − f (y1, · · · ,yd−1).
The result on a general connected and bounded Lipschitz domain O is obtained as follows. Cover
O with a finite collection of sets, each one being either a ball B ⊂⊂ O or a rigid displacement
of a set of type Q. Apply the last result on each subdomain of the form Q. Eventually, notice
that d(y,∂O). ηQ(y) for y in such domain Q, sum the estimates and use the Poincaré inequality∫

O′×O′ |ψ(y)−ψ(z)|2 ≤C(O′)‖∇ψ‖2
L2(O′

1∪O′
2)

valid for Lipschitz bounded open sets O′ ⊂ Rd .

Returning to the proof, this leads to
∫

O
|∇ϕ −∇ϕ |2 ≤ C(O)

∫

O

∣∣|∇ϕ |2−1
∣∣ .

On the other hand, by the Cauchy-Schwarz inequality,
∫

O

∣∣|∇ϕ |2 −1
∣∣ =

∫

O
||∇ϕ |−1| |(|∇ϕ |−1+2) ≤ E +2

√
H d(O)E .

Hence, ∫

O
|∇ϕ −∇ϕ |2 ≤ C(O)

(
E +

√
H d(O)E

)
. (2.9)

Next, writing ||∇ϕ|−1| ≤ ||∇ϕ |−1|+ |∇ϕ −∇ϕ |, we also obtain,

H
d(O)

(
|∇ϕ|−1

)2

≤ C(O)

(
E +

√
H d(O)E

)
. (2.10)

Considering separately the cases |∇ϕ| ≤ 1/2 and |∇ϕ|> 1/2, we deduce that there exists e∈ Sd−1

such that ∫

O
|∇ϕ − e|2 ≤ C(O)

(
E +

√
H d(O)E

)
.

Indeed, in the case |∇ϕ| ≤ 1/2, the inequality is obvious for any e ∈ Sd−1. In the second case, it

follows from (2.9) and (2.10) with e := ∇ϕ/|∇ϕ|. This proves the theorem. ⊓⊔
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To close the section, we establish Theorem 1.1. The main tool here is the weak rigidity in-
equality of Theorem 2.2.

Proof (of Theorem 1.1)

Let ε , O and (σk, tk,Ok) be as in the statement of the theorem. By assumption the sequence (tk)
is bounded in W 1,2(O) and uniformly equi-continuous, so, up to extraction, there exists a (not

relabeled) subsequence of (tk) weakly converging in W 1,2(O) and strongly converging in C(O) to

some t⋆ ∈W 1,2(O)∩C(O, [−ε ,ε ]).

Now, let O⋆ := {y∈O : |t⋆(y)|< ε} and let B⊂⊂O⋆ be an open ball. By uniform convergence,
there exists k0 ≥ 1 such that B ⊂ Ok for k ≥ k0. By definition of E (see (2.6) and the ensuing
discussion) we have

Ek :=
∫

B
(|∇tk|−1)2 +‖∆tk‖2

H−1(B) → 0 as k ↑ ∞.

Applying Theorem 2.2 with ϕ = tk on the ball B, there exists (νk)⊂ Sd−1 such that,

‖∇tk −νk‖L2(B1)
k↑∞−→ 0.

Since tk → t⋆ in D ′(B), it follows that ∇t⋆ ≡ e in B for some e ∈ Sd−1. ⊓⊔

3 Strong rigidity estimates

The weak rigidity estimate of Theorem 2.2 and Theorem 1.1 are used in the proof of the com-
pactness result of [8] as ε-δ statements. They enable defining a local normal direction in the bulk
of the membrane, at least away from a controlled number of balls of radius of order ε . However,
the sublinear growth of the right hand side of (2.8) with respect to the local energy E prevents
deducing uniform L2-bounds on the variation of this normal. For this, one could think about using
an estimate of the form,

inf
e∈Sd−1

∫

O
|∇ϕ − e|2 ≤ C(O)E for every ϕ ∈W 1,2(O). (3.1)

If d = 1 and O is a non empty interval, this estimate is obviously true. It also holds for d = 2 when
O is a bounded and connected Lipschitz open set (see Remark 3.2) but not in higher dimensions.

Proof (Counterexample for (3.1) in the case d ≥ 3)

Let ψ ∈W 1,2(O) be harmonic. If (3.1) were true, writing ϕ(y) = yd +ηψ(y), and sending η to
0, we would obtain,

inf
w∈e⊥

d

∫

O
|∇ψ −w|2 ≤ C(O)

∫

O
|∂dψ|2.

If ψ is a harmonic function that does not depend on yd and is not affine, the right hand side
vanishes whereas the left hand side is positive. Since for d ≥ 3, such functions do exist, this
yields a contradiction. ⊓⊔

Although (3.1) is too strong to be true, there is room for improving the estimate of Theorem 2.2
by lowering the left hand side. We find out a relevant correction by linearizing the constraints
|∇ϕ | ≡ 1 and ∆ϕ ≡ 0 around ϕ0(y) = e · y. Setting ∇ϕ = e+∇ψ , we have, at leading order,
e ·∇ψ ≡ 0 and ∆ψ ≡ 0. This suggests the following estimate.

inf
ψ∈LO,e

∫

O
|∇ϕ − e−∇ψ|2 ≤ C(O)E , (3.2)
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where e ∈ argmin
{∫

O |∇ϕ − e|2 : e ∈ Sd−1
}

and

LO,e := {ψ : O → R : ψ is harmonic and e ·∇ψ ≡ 0} .
Unfortunately, (3.2) is wrong in general.

Proof (Counterexample for (3.2))
Let us assume that O is the unit ball in R3, let p ≥ 1 be an integer and let us set (using cylindrical
coordinates),

ϕ(r,θ , z) := z+ηzrp sin pθ .

By symmetry, the infimum in (3.2) is reached at point e = ez with ψ ≡ 0. Sending η to 0, (3.2)
leads to the contradiction p2 ≤C. ⊓⊔
On the other hand, substituting a relatively compact convex subset O0 for O in the left hand side
of (3.2)leads to a correct statement.

Theorem 3.1 Let O be an open set, let e ∈ Sd−1 and let O0 ⊂⊂ O. Then, for every ϕ ∈W 1,2(O),

inf
ψ∈LO0 ,e

‖∇ϕ − e−∇ψ‖2
L2(O0)

≤ C(O0,O)
(
E +‖∇ϕ − e‖4

L2(O)

)
. (3.3)

Remark 3.1 i. The condition, ψ ∈ LO0,e does not imply ψ = ψ ′ ◦ πe for some function ψ ′ ∈
W 1,2(πe(O0)). We obtain a counterexample in dimension 3 by considering the helix shape do-
mains

O0 := {(r cosθ , r sinθ , z) : r ∈ (1/2,2), θ ∈ (0,4π), |z−θ |< 1/2},
and O := O0 +B1/4. The function defined on O by

ψ(r cosθ , r sinθ , z) =
√

r cos(θ/2), with θ such that |θ − z|< π

is harmonic and we have ∂3ψ ≡ 0 but since ψ(y1,y2, z+2π) =−ψ(y1,y2, z), we have ‖ξ ′ ◦πe −
∇ψ‖L2(O0)

≥ α > 0 for every vector field ξ ′ ∈ L2(πe(O0),R
3).

Now, setting ϕη = e3 +ηψ and sendig η ↓ 0, we obtain

inf
ξ ′
‖∇ϕη − e3 −ξ ′ ◦πe‖2

L2(O0)
≥ α2η2

≫ ‖|∇ϕη |−1‖2
L2(O)+‖∇ϕη − e3‖4

L2(O) = O(η4).

ii. However, if O0 is convex or simply e-convex, then for ψ ∈ LO0,e there exists a unique harmonic
function ψ ′ on πe(O0) such that ψ = ψ ′ ◦πe.

Proof (of Theorem 3.1.)
In view of Theorem 2.2, we can assume E ≤ 1. As above, we decompose ϕ = ϕ̃ − p with ϕ̃

harmonic and p ∈W
1,2
0 (O) such that ‖∇p‖2

L2(O)
≤ E . We see that it is sufficient to establish (3.3)

substituting ϕ̃ for ϕ . Eventually, by isometry invariance, we can assume e = ed .
From now on we assume E ≤ 1, ϕ harmonic and e = ed . To lighten notation, we set Q :=
‖∇ϕ − ed‖4

L2(O)
.

Step 1 (finite cylinder case). Let us first assume that O0 is a finite cylinder with direction ed

and width 2: let D′ be a smooth bounded open subset of e⊥d = Rd−1, we assume that

O0 = D := {y ∈ Rd : y′ ∈ D′,−1 < yd < 1}. (3.4)

Let us also fix λ > 1 such that λD ⊂ O.
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We have, by harmonic regularity,

‖∇ϕ − ed‖2
L∞(λ D) ≤ C(λD,O)

√
Q. (3.5)

Thanks to this inequality, we can linearize the penalization on |∇ϕ | − 1. Indeed, writing ∇ϕ =
ed +∇w, we have ||∇ϕ |−1−∂dw| ≤C|∇w|2. Hence,

E ≥
∫

λ D
(|∇ϕ |−1)2 ≥ 1

2

∫

λ D
|∂dw|2 −C

∫

λ D
|∇w|4.

With (3.5), this yields ∫

λ D
|∂dw|2 ≤ 2 E +C(λ ,D,O)Q. (3.6)

Now, let θ ∈ D(−1,1) satisfying
∫

θ = 1 and let us define

ψ ′
⋆(y

′) :=
∫

θ (s)w(y′, s)ds, for every y′ ∈ λD′.

By Poincaré-Wirtinger inequality, we have,

‖w−ψ ′
⋆ ◦πed

‖2
L2(λ D) ≤ C(θ )‖∂dw‖2

L2(λ D). (3.7)

Let us write ψ ′(y′) = ψ ′
⋆(y

′)−ζ ′(y′) where ζ ′ ∈W
1,2
0 (D′) is the variational solution of

−∆ ′ζ ′ = ∆ ′ψ ′
⋆ in λD′, ζ ′ ≡ 0 on ∂ [λD′].

We compute,

∆ ′ζ ′(y′) =
∫

θ (s)∆ ′w(y′, s)ds
w harm. + ipp

=
∫

dθ

ds
(s)∂dw(y′, s)ds.

Therefore,
‖∆ ′ζ ′‖2

L2(λ D′) ≤ C(θ )‖∂dw‖2
L2(λ D). (3.8)

We deduce from (3.7) and (3.8) that the harmonic function ψ = ψ ′ ◦πed
satisfies

‖w−ψ‖2
L2(λ D) ≤ C(D′,θ )‖∂dw‖2

L2(λ D)

(3.6)

≤ C(λ ,D,O,θ )(E +Q).

By harmonic regularity, we conclude to:

‖∇ϕ − ed −∇ψ‖2
L2(D) = ‖∇w−∇ψ‖2

L2(D) ≤ C(D,O)(E +Q).

This establishes the lemma, for O0 of the form (3.4) and e = ed .

Step 2 (stack of cylinders) Let us now assume that O0 has the following form. Let N ≥ 1 and
D′

1, · · · ,D′
N such that for every 0 ≤ k ≤ N, D′

k is either empty or a smooth open subset of Rd−1,
we assume that

O0 is the interior of the set

N⋃

k=0

Dk where Dk := D′
k × (k,k+1). (3.9)

For α > 0, let us note B′
α the (d − 1)-ball {y′ ∈ Rd−1, |y′| < α}. By assumption , there exists

α > 0 such that setting

O♭
0 :=

N⋃

k=0

D♭
k, with D♭

k := Dk +[B′
α × (−α,α)],
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we have O0 ⊂⊂ O♭
0 ⊂⊂ O.

Now, let ϕ ∈W 1,2(O). We first apply Step 1 in the sets D♭
k ⊂⊂ O. For every 0 ≤ k ≤ N, there

exist a harmonic functions ψk : D♭
k → R such that ∂dψk ≡ 0 and

‖∇ϕ − ed −∇ψk‖2

L2(D♭
k
)
≤ C(O0,O)(E +Q) . (3.10)

We note ψ ′
k the harmonic function defined on D♭

k

′
such that ψk = ψ ′

k ◦πed
. We also set for y ∈ D♭

k,
ξk(y) := ϕ(y)−yd −ψk(y). Up to the addition of locally constant functions to the ψk, we assume
that for k = 0, · · · ,N,

∫

X
ξk = 0 on each connected component X of D♭

k. (3.11)

Let 0 ≤ k ≤ N −1 such that I′k := D′
k ∩D′

k+1 6= ø. Using

Ik := [I′k +B′
α ]× (k+1−α,k+1+α) ⊂ D♭

k ∩D♭
k+1

and (3.10) for k and k+1, we first deduce:

‖∇ψ ′
k −∇ψ ′

k+1‖L2(I′
k
+B′

α )
=

1√
2α

‖∇ψk −∇ψk+1‖L2(Ik)

≤ 1√
2α

∑
j∈{k,k+1}

‖∇ξ j‖L2(Ik)
≤ C(O0,O)

√
E +Q .

Similarly, we compute, using (3.11) and the Poincaré-Wirtinger inequality,

‖ψ ′
k −ψ ′

k+1‖L2(I′
k
+B′

α )
≤ 1√

2α
∑

j∈{k,k+1}
‖ξ j‖L2(Ik)

≤ ∑
j∈{k,k+1}

C(D♭
j)‖∇ξ j‖L2(D♭

j)

(3.10)

≤ C(O0,O)
√

E +Q .

We summarize the two last inequalities as

‖ψ ′
k −ψ ′

k+1‖W 1,2(I′
k
+B′

α )
≤ C(O0,O)

√
E +Q . (3.12)

Next, for 0 ≤ k ≤ l ≤ N, we note J♭k,l := ∩k≤ j≤lD
♭
j

′
. In particular, J♭k,k+1 = I′k +B′

α for k ≤ N −1,

and Jk,l is non-decreasing with respect to k and non-increasing with respect to l.

Writing ψk −ψl = ∑l−1
j=k

(ψ j+1 −ψ j) and noticing that J♭k,l ⊂ I′j +B′
α for k ≤ j < l, we deduce

from (3.12),

‖ψ ′
l −ψ ′

k‖W 1,2(J♭
k,l)

≤ C(O0,O)
√

E +Q . (3.13)

In order to define a global correction ψ⋆(y) =∑N
k=0 wk(y)ψ

′
k(y

′), we need to build a partition of
unity wk on O0. For this, let us introduce a last sequence of (ed-convex) sets. For every 1 ≤ k ≤ N,
we define

Tk :=

[
⋃

l<k

J′l,k × (l,k+1]

]
∪ D♭

k

′× (0,1) ∪
[
⋃

l>k

J′k,l × [k, l+1)

]
.

We now build a partition of unity with the required properties.
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Claim There exist weight functions wk ∈W 1,∞(O0,R+), k = 0, · · · ,N such that

N

∑
k=0

wk ≡ 1 in O0 and for 0 ≤ k ≤ N, ∂dwk ≡ 0 in O0 and suppwk ⊂ Tk. (3.14)

Proof (of the claim) Let us introduce the relation ∼ on O0 defined as y∼ z if an only if y∈ z+Red

and [y, z] ⊂ O0, or equivalently, if and only if y and z belong to the same connected component
of [z+Red]∩O0. For y ∈ O0, we denote by ȳ the class of y in the quotient space O0

/
∼ and we

denote by P the canonical projection from O0 onto O0

/
∼ .

We define a distance on O0

/
∼ . For this, we first set,

d1(ȳ, z̄) :=

{
|y′− z′| if there exists λ ∈ R such that (λ ,y′) ∈ ȳ and (λ , z′) ∈ z̄,

+∞ in the other cases.

Notice that we have d1(ȳ, z̄)≥ |y′− z′| for very y′, z′ ∈ O0. We then set,

d(ȳ, z̄) :=

inf

{
R

∑
i=0

d1(ȳi, ȳi+1) : R ≥ 0, ȳ0 = ȳ, ȳR+1 = z̄ and ȳi ∈ M for i = 1, · · · ,R
}
.

We easily check that d defines a distance with values into [0,+∞] on O0

/
∼ . Moreover, we still

have d(ȳ, z̄)≥ |y′− z′|.
Notice also that for E ⊂ O0

/
∼ , the mapping dE : y ∈ O0 7→ d(ȳ,E) is Lipschitz-continuous on its

domain S = [dE < ∞], with the bound ‖∇dE‖L∞(S) ≤ 1. Indeed, let y ∈ O0 such that dE(y) < ∞
and let 0 ≤ k ≤ N and U be a neighborhood of y such that y ∈ U ⊂ Dk. By definition of d, we
have dE(z) ≤ dE(y)+ |z̄− ȳ| for every z ∈ U . By exchanging the roles of y and z, we conclude
that |dE(y)−dE(z)| ≤ 1.
We are now ready to define the weight functions. We first set, for 0 ≤ k ≤ N,

θk(y) := max

(
0,1− d(ȳ,P(Dk))

2α

)
,

so that θk ≡ 1 on Dk, |∇θk| ≤ 1/(2α) on O0 and θk is constant on every segment of the form
y+ (a,b)ed ⊂ O0. Moreover, if y ∈ suppθk, then d(ȳ,P(Tk) < α and by definition of d, there
exists a finite chain ȳ0, · · · , ȳR+1 ∈ O0 with ȳ0 = ȳ and ȳR+1 ⊂ Dk such that ∑i d1(ȳi, ȳi+1) < α .
By downward induction on i, we see that ȳi ⊂ Tk for every R+1 ≥ i ≥ 0. In particular ȳ ⊂ Tk and
thus suppθk ⊂ Tk.
Eventually, we define recursively,

w0 := θ0 and wk :=

(
1−∑

i<k

wi

)
θk for k = 2, · · · ,N.

We easily check that the family (wk) complies to (3.14). ⊓⊔

We can now define ψ⋆ ∈W 1,2(O0) as

ψ⋆(y) :=
N

∑
k=0

wk(y)ψ
′
k(y

′) for y ∈ O0.
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By construction, ∂dψ⋆ ≡ 0 in O0. In particular, for 1 ≤ k ≤ N, the restriction of ψ⋆(y) to Dk does
not depend on yd . We note ψ ′

⋆,k ∈W 1,2(D′
k) the function such that ψ⋆ := ψ ′

⋆,k ◦πed
on Dk.

Using ∑wl = 1 and ∇wk =−∑l 6=k ∇wl , we obtain for y ∈ Dk,

∇(ψ⋆,k −ψk)(y) =
N

∑
l=1

wl(y)∇(ψ ′
l −ψ ′

k)(y
′)+

N

∑
l=1

(ψl −ψk)(y
′)∇wl(y).

Taking into account (3.10), (3.13) and the fact that suppwl ∩Dk ⊂ Jk,l for k ≤ l (respectively Jl,k

if k > l), we obtain:

‖∇ϕ − ed −∇ψ⋆‖2
L2(O0)

≤ C(O0,O)(E +Q) . (3.15)

Now let us set ψ := ψ⋆+ζ where ζ ∈W 1,2(O0) is the variational solution to

−∆ζ = ∆ψ⋆ in O0, ζ ≡ 0 on Γ , ∂dζ ≡ 0 on Γ ′,

where Γ = ∪∂D′
k×(k,k+1) denotes the vertical part of ∂O0 and Γ ′ := ∂O0 \Γ is the horizontal

part, i.e: Γ ′ = ∂O0 ∩ [∪N+1
k=1 Rd−1 ×{k}]. In particular, the outward unit normal to O0 on Γ ′ is

±ed , so that ζ satisfies homogeneous Neumann boundary condition on Γ ′.
The function ψ is harmonic in O0 and since ∂dζ solves ∆(∂dζ ) = 0 in O0, ∂dζ ≡ 0 on ∂O0, we
have ∂dζ ≡ 0 and thus ∂dψ ≡ 0. Eventually, we compute

‖∇ζ‖2
L2(O0)

=

∫

O0

∇ψ⋆ ·∇ζ =
N

∑
k=1

∫

Dk

∇ψ⋆ ·∇ζ

ψ ′
k harm.
=

N

∑
k=1

∫

Dk

∇(ψ⋆−ψk) ·∇ζ ≤
[

N

∑
k=1

‖∇(ψ ′
⋆,k −ψ ′

k)‖L2(D′
k
)

]
‖∇ζ‖L2(O0)

(3.15)

≤ C(O0,O)
√

E +Q ‖∇ζ‖L2(O0)
.

Hence, we can substitute ψ for ψ⋆ in (3.15). This establishes the theorem for O0 of the form (3.9)
and e = ed .

Step 3 (general case)

Let O0 ⊂⊂ O ⊂ Rd . For every direction e♭ ∈ Sd−1, there exist a set O♭
0 of the form (3.9)

and O♭ ⊂ Rd such that O0 ⊂⊂ O♭
0 ⊂⊂ O♭ ⊂⊂ O, we can apply Step 2 to O♭

0 ⊂ O♭ and deduce the

theorem for e= e♭ and with a constant C(e♭,O♭
0,O

♭). The only remaining issue is that the constant
in the right hand side of (3.3) should not depend on the particular direction e.

Now, for every e♭ ∈ Sd−1, there exists a neighborhood N ♭ of Id in SO(d) such that

O0 ⊂⊂ RO♭
0 ⊂⊂ RO♭ ⊂⊂ O for every R ∈ N

♭.

By isometry invariance, the lemma also holds with the constant C(e♭,O♭
0,O

♭) for any direction

e ∈ N ♭e♭. By compactness of Sd−1, we deduce that the lemma holds for any e ∈ Sd−1 with

the constant C(O0,O) := maxe♭∈I C(e♭,O♭
0,O

♭) where I is some finite subset of Sd−1 such that

∪e♭∈IN
♭e♭ = Sd−1. ⊓⊔

Combining Theorem 2.2 and Theorem 3.2 we deduce the following result.
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Theorem 3.2 (Strong rigidity inequality) Let O be an open subset of Rd and let O0 ⊂⊂ O be
connected then for every ϕ ∈W 1,2(O), if

e⋆ ∈ argmin

{∫

O
|∇ϕ − e|2 : e ∈ Sd−1

}
,

then,

inf
ψ∈LO0,e⋆

∫

O0

|∇ϕ − e⋆−∇ψ|2 ≤ C(B,O) E .

Remark 3.2 In dimension d = 2 the set LO0,e⋆ reduces to the space of affine functions ψ : O0 → R

such that ∇ψ ≡ w for some w ∈ e⊥⋆ . By Theorem 2.2, we have |w|2 .
√

E , so if we set e :=

(e⋆+w)/|e⋆+w|= e⋆+w+O(
√

E ), Theorem 3.2 yields
∫

O0

|∇ϕ − e|2 ≤ C(B,O)E .

Then, reasoning as in [4] (Proof of Theorem 3.1 from Proposition 3.4), we see that (3.2) holds in
any connected and bounded Lipschitz domain.

When ϕ is harmonic, Theorem 3.2 leads to an optimal control on the mean curvature of the
level sets of ϕ . This result improves Corollary 2.1 in the sense that the right hand side is now
linear in E .

Corollary 3.1 Assume that O is the non empty open ball Br(x). Let ϕ : O → R be harmonic and

let Γ := {y ∈ O : ϕ(y) = ϕ(x)}.

There exists β0 > 0 such that if E ≤ β0rd then Γ ∩Br/2(x) is an analytic hypersurface and we
have the estimate,

|II|4(x) ≤ Cr−(d+4)
E , |h|2(x) ≤ Cr−(d+2)

E . (3.16)

where II denotes the second fundamental form of Γ and h its mean curvature.

Proof Using, the change of variable ϕ̃(y) = r−1[ϕ(x+ ry)−ϕ(x)], we see that we may assume
that O = B1 and ϕ(0) = 0.
First, by Theorem 2.2 and harmonic regularity, we have,

‖∇ϕ − e⋆‖2
L∞(B1/2)

≤ C(
√

E +E ),

with e⋆ ∈ argmin{∫B1
|∇ϕ − e|2 : e ∈ Sd−1}. So, there exists β0 > 0 such that if E ≤ β0,

‖∇ϕ − e⋆‖2
L∞(B1/2)

≤ C
√

E ≤ 1/2. (3.17)

Assuming, from now on, E ≤ β0, we have |∇ϕ | ≥ 1/2 in B1/2 and the implicit function theorem
implies that Γ ∩B1/2 is an analytic hypersurface. In fact. it is easy to see that Γ ∩B1/2 is a graph
splitting B1/2 into two topological balls.

Next, let us denote by n(x) = ∇ϕ/|∇ϕ |(x) the unit normal to Γ at x ∈ Γ ∩B1/2. We compute

for x ∈ Γ ∩B1/2, and v,w ∈ n(x)⊥,

vT ∇n(x)w = |∇ϕ |−1(x)vT D2ϕ(x)w. (3.18)

Taking into account |∇ϕ |(0)≥ 1/2 and (3.17) we get by harmonic regularity,

|II|2(0) = |∇n|2(0) ≤ 2|D2ϕ |2(0) ≤ C
√

E . (3.19)
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Let us now estimate the mean curvature h(0). Solving the optimization problem which defines
e⋆, we see that e⋆ = m/|m| with m = �

∫
B1

∇ϕ . By the mean value property we have m = ∇ϕ(0),
hence

e⋆ = n(0).

Let us come back to (3.18). Taking the trace of ∇n(0) on n(0)⊥ and using ∆ϕ = 0, we obtain,

h(0) = ∇Γ ·n(0) = −|∇ϕ |−1(0)
[
nT D2ϕ n

]
(0).

By Theorem 3.2, there exists ψ : B1/2 → R, harmonic, such that n(0) ·∇ψ ≡ 0 and ‖∇ϕ −n(0)−
∇ψ‖2

L2(B1/2)
≤CE .

By harmonic, regularity, we deduce |D2(ϕ−ψ)|(0)≤C
√

E . In particular, since D2ψ(0)n(0)= 0,

we have |D2ϕ n|(0) ≤ C
√

E . Therefore,

|h|2(0) ≤ 4|nT D2ϕ n|2(0) ≤ CE .

Unscaling (3.19) and this last estimate, we have established (3.16). ⊓⊔
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